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(2) Inria Grenoble - Rhône-Alpes & Université de Lyon, F-69000, Lyon; Université
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Abstract. Phylogenetic tree reconciliation is the approach commonly used to in-
vestigate the coevolution of sets of organisms such as hosts and symbionts. Given a
phylogenetic tree for each such set, respectively denoted by H and S, together with a
mapping φ of the leaves of S to the leaves of H , a reconciliation is a mapping % of the
internal vertices of S to the vertices of H which extends φ with some constraints.

Given a cost for each reconciliation, a huge number of most parsimonious ones are
possible, even exponential in the dimension of the trees. Without further information,
any biological interpretation of the underlying coevolution would require that all optimal
solutions are enumerated and examined. The latter is however impossible without pro-
viding some sort of high level view of the situation. One approach would be to extract
a small number of representatives, based on some notion of similarity or of equivalence
between the reconciliations.

In this paper, we define two equivalence relations that allow one to identify many
reconciliations with a single one, thereby reducing their number. Extensive experiments
indicate that the number of output solutions greatly decreases in general. By how much
clearly depends on the constraints that are given as input.

1 Scientific Background
Given a directed binary tree T , we denote by V (T ) and A(T ) the set of its vertices

and arcs, respectively. Given v ∈ V (T ), we denote by p(v) its parent and by s(v) its
sibling.

Given two vertices u, v ∈ V (T ), u is an ancestor of v, denoted by u �T v, if either
u = v or there exists a directed path from u to v. If either u �T v or v �T u, then we
say that they are comparable. We say that u and v are incomparable if there is not a
directed path between u and v.

If u �T v, we denote by pathT (u, v) = (t1, . . . , tj) the (unique) ordered sequence
of vertices of T traversed along the directed path from u to v. Of course, t1 = u and
tj = v.

A phylogenetic tree T is a leaf-labelled rooted binary tree that models the evolution
of a set of taxa (placed at the leaves) from their most recent common ancestor (placed
at the root). The internal nodes of the tree correspond to the speciation events.

The model of host-symbiont evolution we rely on in this paper is the event-based one
[1, 9]. Let H and S be the phylogenetic trees for the host and symbiont species, respec-
tively. A function φ is defined from the leaves of S to the leaves of H that indicates the
association between currently living host and symbiont species.

A reconciliation % is a function from the set of internal vertices of S to the set of
vertices of H that extends the mapping φ of the leaves under some constraints. Notice
that each internal vertex of S can be associated to an event among: cospeciation (when
both the parasite and the host speciate), duplication (when the parasite speciates but not
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the host) and host-switch (when the parasite speciate and one of its children is associated
to an incomparable host), while each arc (u, v) of S is associated to a certain number of
loss events l(u,v) ≥ 0 that is equal to the length of pathH(%(u), %(v)) if %(u) �H %(v).
It is therefore possible to associate to each reconciliation % a vector E% = 〈ec, ed, es, el〉
[2], that we call event vector, where ec, ed, es and el denote the number of cospeciations,
duplications, host-switches and losses, respectively, that are in %.

Given a vector C = 〈cc, cd, cs, cl〉 of real values that correspond to the cost of each
type of event, the most parsimonious (or optimal) reconciliations are the ones that min-
imise the total cost, i.e. that minimise cost(%) =

∑
i∈{c,d,s,l} ei ci.

We denote by R(H,S, φ, C) the set of all optimal reconciliations from the tree S to
the tree H whose leaves are connected by means of the mapping φ, and in which the
costs of the events are given by C.

Phylogenetic tree reconciliation is the approach commonly used to investigate the
coevolution of sets of organisms such as hosts and symbionts [6, 8].

However, a huge number of most parsimonious reconciliations are possible (see e.g.
[4]). While any biological interpretation of the underlying coevolution would require
that all optimal solutions are enumerated and examined, this is humanly unfeasible with-
out providing some sort of high level view of the situation. One approach allowing this
would be to extract a small number of representatives, based on some notion of similar-
ity between reconciliations.

To the best of our knowledge, only a few such notions have been proposed in the
literature. One of them is based on the comparison of the number of each one of the
four events (cospeciation, duplication, loss and host-switch): two reconciliations are
considered similar, and hence put in a same cluster, if they have the same number of
each event, i.e. if they have the same event vector [2]. However, it is not difficult to
find examples of very different reconciliations having the same number of each kind of
event. Two of them are given in Figures 1.a and 1.b.

In [3], the authors define some operators which enable to go from one reconcilia-
tion to another, and from this provide a similarity measure between two reconciliations
that is the smallest number of operations needed to change one reconciliation into an-
other. Unfortunately, with this approach, it can happen that reconciliations that appear
very similar have a rather high distance, as shown for example by Figures 1.c and 1.d.
Moreover, the complexity of computing the similarity between reconciliations remains
an open question, and there are thus no efficient algorithms for now.

a. b. c. d.

Figure 1: a. and b. Two reconciliations with the same event vector that nevertheless are
rather different. The grey tubes represent the host tree, while the black (plain or dotted)
lines inside the tubes represent the symbiont tree.
c. and d. Two reconciliations very similar with a possibly high distance (by adding
arbitrarily many host vertices on the right path from the root) based on the operators.
The roots of the symbiont trees are double lined to facilitate their recognition.

In this work, we try to overcome the above problems by proposing, in Section 2, two
equivalence relations that allow to identify many similar reconciliations with a single
one, thereby substantially reducing the number of reconciliations that are enumerated.
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In Section 3, we present some experimental results on real datasets which show that
in most of the cases, these relations perform very well, especially when they are consid-
ered together. Finally, Section 4 proposes some future lines of research.

We call attention to the fact that in this extended abstract, due to lack of space, we will
only give an intuition on which reconciliations we consider as equivalent and why, while
we omit all technical details that make these results sound. These will be presented in
the journal version of this paper.

2 Equivalent Reconciliations
2.1 Equivalence ∼1

Given an optimal reconciliation % ∈ R(H,S, φ, C) and a vertex u of S such that
arc (u, v) is mapped by % as a host-switch, i.e. v is mapped to a vertex %(v) that is
incomparable with %(u), we have that u can be mapped by % to anyone of the vertices
of pathH(%(p(u)), %(s(v))) without changing the cost of %, as proved by the following
result.

Lemma 1. Given any two reconciliations %, σ, if:
− there exists an arc (u, v) mapped by both % and σ as a host-switch, and
− %(w) = σ(w) for each w 6= u, and
− %(u) 6= σ(u) and %(u) and σ(u) are mapped to two different vertices of
pathH(%(p(u)), %(s(v))), %(p(u) excluded

then the costs associated to % and σ are the same. In particular, % will be optimal if and
only if σ is.

The previous result leads us to consider as equivalent (using symbol∼1) all reconcil-
iations that, for each host-switch (u, v), map u on a different vertex of pathH(%(p(u)),
%(s(v))). We call the latter a sliding path to highlight the idea that u can be moved
anywhere inside this path without modifying the cost of the reconciliation.

The following result claims an interesting property of equivalent reconciliations w.r.t.
relation ∼1.

Theorem 1. Given two reconciliations %, σ ∈ R(H,S, φ, C), if % ∼1 σ, then they have
the same event vector, i.e. E% = Eσ.

Observe that from the previous lemma, it follows that the partition of R(H,S, φ, C)
induced by ∼1 is finer than the partition induced by the event vector, since two recon-
ciliations that are equivalent w.r.t. ∼1 are surely equivalent w.r.t. to the event vector
partition, but the opposite is not true, and this is in agreement with the fact that two
reconciliations with the same event vector can be very different: in such a case, our
equivalence distinguishes them.

2.2 Equivalence ∼2

We now propose a second equivalence relation between optimal reconciliations. This
one is motivated by the following observation. Assume there are two siblings v and w
in S that are mapped by φ on two incomparable vertices φ(v) and φ(w) in H . If host-
switches are allowed, any reconciliation can equivalently map p = p(v) = p(w) on a
vertex that is either comparable with φ(v) and incomparable with φ(w) or vice-versa.
All these solutions are equally feasible, and there is no reason to distinguish them. We
can better explain this concept on the basis of the following result.

Lemma 2. Given a reconciliation % ∈ R(H,S, φ, C) with cl > 0, for each arc (u, v)
mapped by % as a host-switch s.t. %(u) and %(p(u)) are incomparable, %(u) = %(s(v)).
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Given optimal reconciliations in which there are two adjacent vertices u and v of S
(w.l.o.g. assume u = p(v)) that are both associated to a host-switch event, the previous
result leads us to consider as equivalent (using symbol ∼2) the reconciliations that map
v to anyone of the vertices of H where its children are mapped. Figure 2.a illustrates
this concept.

More formally, we have the following:

Theorem 2. Given any two reconciliations %, σ, if in both % and σ:
− there exists a vertex v such that the mappings of v and of one of its children, let it be
w, are incomparable, while v and s(w) have the same mappings, and

− its parent u = p(v) is such that its mapping and the one of one of its children (either
v or s(v)) are incomparable, and

− %(t) = σ(t) for each t 6= v,
then the costs associated to % and σ are the same. In particular, % will be optimal if and
only if σ is.

u

a. b.
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v

s(v)
w

s(w)

u

v

s(v) w
s(w)

u
v

s(v) ws(w)

u
v

s(v) ws(w)

Figure 2: The two cases in which equivalence ∼2 can be applied, focusing on vertex v.

Observe that, if u = p(v) is incomparable with s(v) (hence we are in the context of
Figure 2.b), then if the two reconciliations are optimal, if cl > 0 and cc ≤ cd, either the
arc (u, p(u)) is mapped as a host-switch while arc (p(p(u)), p(u)) is not mapped as a
host-switch by % or σ, or there must be an ancestor of u (and thus of v), let us denote it
by x, such that the following is verified:
− arc (p(x), x) is mapped as a host-switch by both % and σ, and
− arc (p(p(x)), p(x)) is not mapped as a host-switch by both % and σ (we reach the end

of the ancestry recursion), and
− all the vertices y in the path pathS(x, u) are such that:
− they are mapped to the same host vertex as v, and
− their child that is not in the path, let us denote it by z, is such that the arc (y, z) is

mapped as a host-switch by both % and σ.

3 Results
We now show the results of some experiments performed on real datasets.
To compute the numbers of ∼1 and ∼2 equivalence classes, we modified the code

of a well known algorithm enumerating reconciliations, i.e. EUCALYPT. It works by
computing a matrix by means of dynamic programming, and then exploiting it to enu-
merate or count all reconciliations in polynomial delay. For both equivalence classes,
we operated only on the first part producing a different matrix in order to output or count
one and only one reconciliation per class. Our modification therefore does not affect the
computational time.

As concerns the first equivalence relation, we output for each class what can be con-
sidered as a canonical representative since the produced reconciliations have some iden-
tifying properties. On the contrary, for the second equivalence, we limit ourselves to
count the number of classes without enumerating them.
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We selected 13 datasets which correspond to those also used in [4] and that are in-
dicated in that paper as GL, RH, FD, COG2085, COG3715, COG4964, COG4965, PP,
SFC, EC, PMP, PML, and Wolbachia. The latter is a dataset of our own which corre-
sponds to arthropod hosts and a bacterium genus, Wolbachia, living inside the cells of
their hosts. It represents a larger set (each tree has 397 leaves) than the others that were
taken from the literature and where the number of leaves varies between 13 to 100. We
performed the experiments using the most commonly used cost vectors, namely (0, 1,
1, 1), (0, 1, 2, 1), and (0, 2, 3, 1) which correspond also to those presented in [4].

In all the tables, # solutions indicates the number of all optimal reconciliations, while
# ∼1, # ∼2 and # ∼2 + ∼1 indicate the number of equivalence classes when relations
∼1, ∼2 or both are applied; the last column, called NMR, indicates the value of the Nor-
malized Magnitude Reduction, rounded to two digits after the decimal point, which is
given by log(#sol)−log(#∼1+∼2))

log(#sol)
. Such value is one when all optimal solutions are reduced

to a single parsimonious reconciliation when applying the two equivalences. Inversely,
the closer this value is to zero, the less the two equivalences were able to reduce by
similarity the number of solutions.

Observe that for Wolbachia, the number of solutions is so huge that, for space reason,
we rounded the number to fit the table.

Table 1: Results for cost vector (0, 1, 1, 1).
Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 42 42 8 8 0,44
FD 25184 22752 224 180 0,49
COG2085 44544 36224 11 4 0,87
COG3715 1172598 777030 1888 872 0,52
COG4964 224 224 2 2 0,87
COG4965 17408 17408 4 4 0,86
PP 5120 4480 344 280 0,34
SFC 184 160 16 10 0,56
EC 16 16 13 13 0,07
PMP 2 2 1 1 1
PML 180 160 33 21 0,41
Wolbachia ∼ 3.19 · 1048 ∼ 5.72 · 1047 ∼ 9.33 · 105 ∼ 7.68 · 104 0,90

Table 2: Results for cost vector (0, 1, 2, 1).
Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 2208 368 1608 268 0,27
FD 408 180 48 20 0,50
COG2085 37568 3200 226 14 0,75
COG3715 9 7 4 2 0,68
COG4964 36 4 9 1 1
COG4965 640 576 4 3 0,83
PP 72 72 36 36 0,16
SFC 40 16 10 4 0,62
EC 18 18 18 18 0
PMP 2 2 1 1 1
PML 2 2 1 1 1
Wolbachia ∼ 1.01 · 1047 ∼ 3.77 · 1044 ∼ 2.92 · 108 ∼ 2.42 · 104 0,91

We now briefly comment the results presented in Tables 1 to 3. More detailed analy-
ses will be provided in the journal version of this paper.

First, note that it is not surprising that in the case of the cost vector (0, 1, 1, 1), there
are on average more optimal solutions than with the other cost vectors. This is due



Proceedings of CIBB 2017 6

Table 3: Results for cost vector (0, 2, 3, 1).
Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 288 48 288 48 0,32
FD 80 16 10 2 0,84
COG2085 46656 1344 540 10 0,79
COG3715 33 2 33 2 0,80
COG4964 54 6 18 2 0,83
COG4965 6528 448 94 5 0,82
PP 72 72 36 36 0,16
SFC 40 16 10 4 0,62
EC 16 16 16 16 0
PMP 18 18 10 10 0,20
PML 11 6 7 4 0,42
Wolbachia ∼ 4.08 · 1042 ∼ 1.33 · 1036 ∼ 4.18 · 1010 ∼ 1.15 · 103 0,93

to the fact that the events that are different from cospeciation are indistinguishable in
terms of cost, and this freedom of choice offers many alternatives for reaching a most
parsimonious solution.

Given that both equivalence relations are primarily based on host-switch mappings,
we would then expect that the higher is the number of host switches, the greater would
be the chance of having a lower number of equivalence classes w.r.t. the total number of
solutions. Equivalence∼2 depends further on the relative position of such host switches,
that is, on whether the vertices involved in a host switch are ancestors of one another,
and on how long is such ancestor path inH . It is better if such paths are very long rather
than if they are frequent, as there is then more chance that each long one will lead to a
collapse of many solutions into a single class.

Comparing the three tables, we observe that when the cost of a host-switch event is
close to the cost of a loss, there is in general a smaller reduction of the number of optimal
reconciliations when we pass to the ∼1 equivalence classes. Intuitively, this is indeed
because long sliding paths are more uncommon in this case. Inversely, the highest re-
ductions from the total number of optimal solutions to the number of ∼1 equivalence
classes in general occur when the cost vectors are (0, 1, 2, 1) or (0, 2, 3, 1), i.e. when
the cost of the host-switch event is higher w.r.t. the cost of a loss. In the other situ-
ations with many host switches (due either to the cost vector – e.g. (0, 1, 1, 1) - or to
the leaf-mapping, spreading close symbiont leaves to far host leaves – e.g. the dataset
COG2085), equivalence ∼2 performs better.

4 Perspectives
While the two equivalence relations introduced in this paper in general lead to very

good results in terms of the overall goal of providing a more compact view of the so-
lution space, we believe there are more such relations that could be explored in future.
Alternatively, it is already possible – when less solutions are desired – to apply fur-
ther clustering techniques based on a measure of similarity, or of distance among the
equivalence classes identified in this paper as their number has become now much more
reasonable even for large trees. One such approach has already been implemented and
will be presented in the journal version of this paper.
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