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Abstract: This paper investigates the interaction of different shear- and Rayleigh–Lamb-guided waves
in plates with a discontinuity such as a notch or an internal void. The problem was solved numerically
using a finite element model and by exploiting an analytical solution obtainable for the double sharp
changes of the cross-section that served as a reference. We aimed to elucidate the relation between the
size and shape of the discontinuity and the reflection and transmission coefficients of the scattered
field. Different sizes and profiles of the discontinuity were considered, with the shapes ranging from
step changes of the height to ellipses, both symmetric and nonsymmetric. Regimes related to low and
high values of the product frequency multiplied by the height of the plate were investigated. These
showed how the mode conversion was related to the symmetry between the incident mode and the
discontinuity, and to the actual existence of multiple propagating modes. The analysis presented was
motivated by the need to set up procedures that exploit propagating waves not only to detect the
presence of a notch, but also to characterize its size and shape.

Keywords: guided waves; damage characterization; scattered fields; reflection and transmission
coefficients

1. Introduction

Guided waves play an important role in nondestructive health monitoring, with applications
ranging from the detection of cracks and corrosion to the monitoring of states of stress [1,2]. Their
success is related to the geometric waveguide structure of many structural elements, such as beams,
rails, plates and pipes. With remarkable advantages compared to bulk waves for inspection areas,
guided waves propagating in such solids can be used to monitor large structural portions, due to the
existence of modes with minimal attenuation. This technique has mainly been used for defect screening
rather than defect characterization because of the many difficulties that arise when the scattered field
that originates from a wave encountering a discontinuity has to be interpreted. Such an aspect is
crucial, as has also been noted by recent reviews of research on guided-wave-based structural health
monitoring [3,4]. Moreover, a detailed knowledge of the displacement field can be used to improve
the focus in defect image reconstruction when using wave mode beamforming and compounding
strategies [5].

Practical guided-wave sonic and ultrasonic testing is performed by sending a signal along a
waveguide and interpreting the scattered response. In the simplest case, one single-mode signal is
used. A high frequency of excitation is used when it is necessary to detect minute damage, with a
size comparable to the magnitude of the excitation wavelength. In the presence of a defect, if the
frequency of excitation for some waves is higher than the cutoff frequency, the transmitted and
reflected responses can consist of a complex superposition of wave modes, depending on the number
of propagating modes that exist in the range of frequencies excited, and on the geometric symmetry of
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both the wave and the discontinuity. The scattered signal can be a complex multimodal signal, due
to mode conversion that occurs as a result of the requirement that boundary conditions are satisfied
on the surface of the discontinuity. The dispersive character of many modes further complicates the
interpretation, as the shape of the signal changes in time and space with distance [6,7].

The use of guided waves in detecting the presence of and locating a defect is well established,
although their application in geometrically sizing and mapping the in-depth profile of the defect is still
out of reach. Detailed understanding of wave interactions with defects can be of use in the model-based
definition of a procedure for defect characterization based on the scattering response [8]. In fact, the
ability to describe the variation of scattering coefficients as a function of the geometric characteristics
of the discontinuity is fundamental to define a strategy to solve the inverse problem, and it can also
help to select modes and frequencies that improve the inspection sensitivity to various discontinuities.
Some applications of guided waves to defect sizing and shape reconstruction of surfaces and inner
defects have recently appeared [9–13].

The focus of this paper is the interaction between shear (SH0) and Rayleigh–Lamb (S0) waves
with voids and discontinuities of different kinds, in order to elucidate the relationship between the
discontinuity size and the profile, and the scattered field. Some aspects of this topic have already been
investigated by several researchers in the last two decades. Some of the most important research is
listed below.

The interaction of the SH0 mode with discontinuities of various profiles was investigated by
Demma et al. [14], although they limited their analysis to low frequencies and were not able to observe
mode conversion. In other studies, such as those of Rajagopal and Lowe [6] or Ratassep et al. [7],
the diffraction of the SH0 mode was again studied using a finite element model, but only for
through-thickness defects. From a practical point of view, the SH0 mode is nondispersive and can be
applied to both plates and pipes because its dynamics also satisfactorily describe the behavior of the
first torsional mode in pipes of large radii. Its sizing ability was experimentally demonstrated in [15].
The work by Alleyne and Cawley [16] is an important reference on the interaction of Lamb waves with
defects. Using finite element models, they determined the scattered field originated by symmetric
(S0) and asymmetric (A0) waves encountering notch-type nonsymmetric defects, considering several
frequency bands and notch sizes. Various phenomena of mode conversion were observed by Cho [17],
and recently, by Schaal and Mal [18], who investigated the interaction of Lamb waves with step
discontinuities, and by Wang et al. [19], who dealt with the scattering from internal slot defects.

In the authors’ opinion, the influence of the discontinuity profile on the scattered field deserves
investigation. To do so, we chose different profiles, a double sharp discontinuity and an elliptic
profile, that were placed inside or on the surface of the waveguide, either symmetrically or
nonsymmetrically; several sizes of the discontinuity were considered. The response was calculated
with finite element models, although we also made use of an analytical model that was fit to describe
the simplest geometrical case—the sharp change in height. This analytical model was based on
an integral formulation of the boundary conditions that exploits the principle of reciprocity in
elastodynamics [20,21] and is described in detail in [22,23] or, similarly, in [24]. The analytical model
improves the understanding of the finite element (FE) results and unveils the background for which
the mechanical phenomena of scattering occur. Hence, a short analytical description of guided waves
and their interaction with defects is first presented. The simulations presented here provide a valuable
tool for research in non-destructive evaluation. They enabled us to define the most sensitive kinds
of waves to be used to interrogate the structure on the size and shape of the defects, and to define
the most appropriate order to follow for defect characterization. In particular, the simulations treated
the problem of internal defects that could be difficult to study experimentally because of the practical
inconvenience of making internal defects in a real plate. In the first three sections of the paper, we
provide a statement of the problem and a description of the model used. Then, we present and discuss
the results of the analyses for shear and Rayleigh–Lamb waves.
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2. Guided Waves in Plates

In the absence of body forces, the vibrations of a three-dimensional homogeneous and isotropic
elastic solid are described by the equation:

divσ = ρü (1)

where ü is the second-order time derivative of the displacement vector; ρ is the material density; and
σ = λtr(E)I + 2µE is the stress tensor, with λ and µ as the Lamé constants, I as the identity tensor, and
E = (∇u +∇uT)/2 as the strain tensor. In plates (Figure 1), bulk waves reflect between the free-stress
boundaries, such that plane wavefront (x2, x3) solutions travelling along the x1, x3 plane exist [25]:

u = Uei[k(x1+αx3)−ωt] (2)

where k is the wavenumber along x1, α is the ratio of the wavenumber in the x3 direction to that
along x1, and ω is the angular frequency in rad/s. In such plane waves, no dependence on x2 occurs.
Substituting Equation (2) into Equation (1), the equations of motion decouple into two equations (first
and third) involving displacements along x1 and x3, which are the Rayleigh–Lamb waves, and one
equation (second) involving only displacements along x2, which represents shear waves. The following
eigenvalue problem in α is hence obtained:

k2[−λ− (2 + α2)µ] + ω2ρ 0 −α(λ + µ)

0 −k[(1 + α2)µ + ω2ρ 0
−α(λ + µ) 0 −k[µ− α2(λ + 2µ)] + ω2ρ


u1

u2

u3

 =

0
0
0

 (3)

The solution of the characteristic equation deriving from Equation (3) provides six roots, which can
be ordered in couples equal in modulus and opposite in sign. Four roots are related to Rayleigh–Lamb
waves, and two are related to shear waves. Substituting these values in Equation (1), the displacement
field is obtained, from which the stress field is derived through the constitutive equations. The
free-stress boundary condition on x3 = ±h can now be set up, providing a second eigenvalue problem
whose solution gives the values of k and enables determination of the dispersion relation.

Figures 2 and 3 respectively report the dispersion relation of shear and Rayleigh–Lamb waves,
showing phase (a) and group velocity (b) as a function of the thickness-frequency product 2hf
(in MHz mm), with frequency f (in Hz). The plot refers to the aluminum plate that was used in
the examples, with the following parameters: ρ = 2810 kg/m3, µ = 27,000 MPa, and λ = 55,000 MPa.
Longitudinal and shear velocities were respectively equal to cL = 6200 m/s and cT = 3071 m/s.
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x
3

2h

x
2

Figure 1. Plate.
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Figure 2. Phase (a) and group (b) velocity of shear waves in an aluminum plate.
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Figure 3. Phase (a) and group (b) velocity of Rayleigh–Lamb waves in an aluminum plate.
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3. Interaction of Guided Waves with Discontinuities

When a guided wave meets geometric discontinuities, which can be flaws, voids, cavities or
discontinuities of any kind, reflected and transmitted waves arise. Let us consider the simplest case,
which is a single sharp change of cross-section, and assume that the incident wave is the nth wave
mode with frequency ω in rad/s. We have one displacement component along x2 for shear waves:

uinc
2n = U2n(x3)ei(knx1−ωt) (4)

and two components, along x1 and x3, for Rayleigh–Lamb waves:

uinc
1n = U1n(x3)ei(knx1−ωt) uinc

3n = U3n(x3)ei(knx1−ωt) (5)

where Un(x3) is the nth wave mode shape, and kn is its wavenumber.
The far-field harmonic response ul at a point before the discontinuity can be expressed as the

superposition of the incident wave mode plus a reflected wave field, represented by the sum of wave
modes with reflection coefficients Rnp. The subscripts n and p specify both the nth incident and pth
reflected wave modes. The response can hence be written as:

ul
2 = uinc

2n +
N

∑
p=0

RS
npU2p(x3)ei(−kpx1−ωt) (6)

for shear waves, and

ul
1 = uinc

1n +
N

∑
p=0

RRL
np U1p(x3)ei(−kpx1−ωt) ul

3 = uinc
3n +

N

∑
p=0

RRL
np U3p(x3)ei(−kpx1−ωt) (7)

for the two components of the Rayleigh–Lamb waves. The summation index extends to the N modes
propagating at the given frequency. Regarding the transmitted wave field ur, the superposition of the
N wave modes is expressed as a summation of waves with transmission coefficients Tnp, that is:

ur
2 =

N

∑
p=0

TS
npUr

2p(x3)e
i(kr

px1−ωt) (8)

for shear waves, and

ur
1 =

N

∑
p=0

TRL
np Ur

1p(x3)e
i(kr

px1−ωt) ur
3 =

N

∑
p=0

TRL
np Ur

3p(x3)e
i(kr

px1−ωt) (9)

for the two components of Rayleigh–Lamb waves. The superscript r in the wavenumbers and
wave modes of Equations (8) and (9) indicates that they depend on the mechanical and geometrical
characteristics of the right part of the waveguide. The index N in Equations (6)–(9) can, in principle,
be different. In the absence of energy loss, the sum of the power flow of the incident wave must be
equal to the sum of the energy flows of the reflected and transmitted waves.

The coefficients Rnp and Tnp can be calculated analytically by making use of the principle of
reciprocity in elastodynamics, with a method presented in [22]. In short, a relation between two states,
in the presence and in the absence of the discontinuity, was established and projected onto the wave
basis of the undamaged structure. The requirement that the reciprocity condition is satisfied restores
congruence and balance, and is a practical way to set up boundary conditions in integral form at a
discontinuity. This approach is limited by the fact that it can be applied only to sharp changes in
height, be they symmetric or nonsymmetric, as the wave modes are only defined onto a waveguide
of constant height or cross-section. If the discontinuity is of notch-type, which can be described by
a double change of height, the mentioned relations are established twice, that is, one time for each
change in height.
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The derived coefficients Rnp and Tnp depend on the geometry of the discontinuity, which, in
the case of a single sharp change of cross-section, is described by the ratio between the depth of the
notch h− hd and the undamaged height h, with residual height hd, that is, r = (h− hd)/h, and by
the ratio δ = d/λw, where d is the length of the notch and λw is the wavelength of the incident wave
(Figure 4a). The parameter r measures the notch magnitude, as r = 0 corresponds to a continuous
plate, whereas r = 1 corresponds to a fully cracked cross section. To clarify such dependence, we
have investigated how different kinds of waves interact with voids of different shapes, as depicted
in Figure 4. A double sharp discontinuity (Figure 4A–C) and an elliptic profile (Figure 4D–F) were
studied considering different symmetries: external symmetric (A,D), internal symmetric (B,E), and
external nonsymmetric (C,F). The nondimensional parameters used to describe such voids were again
the ratio r and δ. Different sizes of the discontinuity were considered by varying r and δ. To study the
scattering for these profiles, all the cases were studied with an FE model, using the analytical model as
a reference.
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d
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Figure 4. Profiles of discontinuities and voids under investigation: external symmetric (A,D); internal
symmetric (B,E); external nonsymmetric (C,F).

4. Finite Element Model of Guided Waves in a Plate

Two plane models were developed: a state of plane strain with in-plane displacements describing
Rayleigh–Lamb waves, and an axisymmetric model with a very large radius and out-of-plane
displacements, which describes shear waves. In fact, the shear solution tends to a torsional solution
for large radii. The different kinds of waves investigated were generated by exciting one free end
of the plate with a sine burst that we obtained as a sine wave modulated with a Gaussian window
including around six periods. The time-history and Fourier transform of the forcing function are
reported respectively in Figure 5a,b. The sine burst was used to select a narrow frequency band
and reduce dispersion phenomena, and had an appropriate spatial distribution so that different
incident waves could be modeled, as shown in Figure 6. This distribution of forces was merely a
finite element strategy and is highly impracticable for laboratory tests. In practice, guided waves are
generated with piezoelectric patches glued on the surface of the plate, whose strain time-history is
electrically driven [26]. By using two in-phase transducers on the two surfaces of the plate, which
apply displacements in the plane of the plate, an S0 wave can be easily generated. In an isotropic plate,
the SH0 wave results as a by-product of this excitation at an angle of π/4 with respect to the direction
of the displacement applied.

The spatial distribution of forces of Figure 6a,b generate, respectively, SH0 and S0 waves.
For shear waves, two regimes of the product 2hf were investigated, which we will call low-
(2hf = 1 MHz mm) and high- (2hf = 4 MHz mm) frequency height regimes (Figure 2). These different
regimes were modeled by modifying the thickness of the plate. They differ in the fact that when
2hf = 1 MHz mm, the only propagating modes are SH0 for shear waves, but when 2hf = 4 MHz mm,
SH1 and SH2 are also present. For Rayleigh–Lamb waves, only the low-frequency regime with
2hf = 1 MHz mm was considered, where both S0 and A0 propagate (Figure 3).
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Figure 5. Time-history (a) and Fourier transform (b) of the forcing function.
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Figure 6. Spatial distribution of forces used to generate SH0 (a) and S0 (b) waves.

This dynamic problem was solved with a transient analysis by the Newmark time integration
method. Time and space resolutions were chosen so that accurate results were obtained. In particular,
the time step used was 1/20 of the frequency, and the maximum size of the elements was 1/20 of the
maximum wavelength involved. Structural damping was neglected, and a linear elastic material was
used, with the mechanical properties listed in Section 2. The depths of the discontinuities that were
investigated corresponded to five values of r = 0.17, 0.33, 0.50, 0.67, and 0.83.

5. Interaction of the Shear (SH0) Mode with Discontinuities

A qualitative description of the interaction between the SH0 mode and an A-type discontinuity
(Figure 5) is provided in Figure 7, which reports the contour plot of displacements u2 at a time instant
after the SH0 wave had encountered the discontinuity. The case depicted in Figure 7 concerned a 2hf
regime in which SH0, SH1 and SH2 waves could, in principle, propagate, and shows that the scattered
response contained only the SH0 and SH2 modes. This result could be explained by observing that the
contribution of nonsymmetric modes vanishes if the discontinuity is symmetric when one sets up the
boundary conditions in the analytical form obtainable from the principle of reciprocity.
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-1 10

SH0 SH2 SH2 SH0

Figure 7. Contour plot of u2 displacements at a time step following the interaction of the SH0 mode
with an A-type discontinuity (2hf = 4 MHz mm).

The coefficients of reflection and transmission were extracted from the FE results by observing
the amplitude of the Fourier transforms of the deformed shape along a straight line parallel to the axis
at an appropriately chosen time. To operate in this way, the function exp−ikx must be assumed to be
the kernel of the Fourier transform, establishing a duality between space and wavenumber instead
of the usual time frequency. The line must be chosen appropriately for each mode, that is, where
the amplitude of its mode shape is at a maximum. In such a way, the peak observed in the Fourier
transform gives the amplitude of the wave mode that is afterwards normalized by the amplitude of
the incident mode. We considered first the low- (2hf = 1 MHz mm) frequency height regime, and then
the high- (2hf = 4 MHz mm) frequency height regime.

5.1. Low 2hf Regime

In the low- (2hf = 1 MHz mm) frequency height regime, only SH0 wave propagated in the
far-field (Figure 2). Hence, when SH0 wave encountered a discontinuity, whatever its shape, the only
propagating mode retrieved in the scattered response was the SH0 mode. As a first step, we will
elucidate how RSH and TSH varied for a double sharp change of cross section. This situation is a
case that can be easily solved analytically by exploiting the principle of reciprocity in elastodynamics.
Figure 8a,b shows the analytical variation of RSH

00 and TSH
00 as a function of δ for several values of r for

an A-type discontinuity. A periodic pattern is shown, with maxima and minima of both reflection
and transmission coefficients occurring at integer multiples of the ratio δ = n/2. Such maxima and
minima were due to the constructive or destructive interference of the reflection between the two
changes of cross-section [10], and were also retrieved experimentally in [27]. It is interesting to observe
that such properties of the double sharp change of cross-section made this case very similar to the
Fabry-Pérot interferometer in optics, which was used to measure the wavelength of light. Conversely,
in the context of guided waves, this could be exploited to measure the extension of the discontinuity.
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For δ = 0.16 (Figure 8), the dependence of RSH and TSH on r is shown in Figure 9a for double
sharp changes of the cross-section and in Figure 9b for elliptical profiles. Apart from the continuous
lines, both solid and dashed, that refer to the analytical solution obtained for case A, all the discrete
results were obtained from an FE model. All the cases examined have a trend that closely resembles
that of the analytical results. The response was exactly the same for cases A and B, and for cases D and
E. This result means that, provided that the notch is symmetric, for such values of 2hf, the response is
insensitive to the in-depth location of the notch. Moreover, the difference between the couples A–B
and D–E are extremely limited, which indicates a feeble dependence of the response on the profile
of the notch. The nonsymmetric cases C and F present some deviations from the other cases. This
result was because, in order to satisfy the boundary conditions, local, non-propagating, nonsymmetric
modes arose.
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Figure 9. RSH
00 and TSH

00 as a function of r for δ = 0.16 for rectangular (a) and elliptical (b) profiles of
the notch.

5.2. High 2hf Regime

In the high- (2hf = 4 MHz mm) frequency height regime, SH0, SH1 and SH2 waves could, in
principle, propagate (Figure 2). For an A-type discontinuity, the dependence on δ obtained from
the analytical model of RSH

00 , RSH
02 , TSH

00 and TSH
02 for r = 0.1 is presented in Figure 10. Similarly to

that occurring at low frequencies, we observed a periodic pattern in all the scattered components.
The normalized spatial period, which was n/2 for the SH0 mode, is longer for the SH2 mode, as this
has a larger wavelength.
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Figure 10. RSH
00 and RSH

02 (a) and TSH
00 and TSH

02 (b) as a function of δ for r = 0.1.

For δ = 0.16, with the SH0 mode incident, Figures 11 and 12 show the coefficients of reflection and
transmission of the three modes involved for all the discontinuity shapes under investigation, together
with the analytical solution obtained using the principle of reciprocity for the A-type discontinuity.
It can be observed that, when SH0 wave encountered a symmetric discontinuity (cases A–E), only the
SH0 and SH2 modes were found in the scattered response, whereas if the discontinuity was asymmetric
(cases C and F), the SH1 mode also emerged. Similarly to that occurring for 2h f = 1 MHz mm, the
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numerical results closely resembled the analytical results, and, more importantly, the scattered field
had the same amplitude for coupled cases A–B and D–E; that is, it did not depend on the notch profile.

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1

R
00 analytical

R
02

 
analytical

R
00

R
02

(a)

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1

R
00 analytical

R
02

 
analytical

R
00

R
02

(c)

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1

R00

 
analytical

R01

 
analytical

R02

 
analytical

R00

R01

R02

(e)

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1

T
00

 
analytical

T
02

 
analytical

T
00

T
02

(b)

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1

T
00

 
analytical

T
02

 
analytical

T
00

T
02

(d)

0 0.2 0.4 0.6 0.8 1r

0

0.2

0.4

0.6

0.8

1
T

00

 
analytical

T
01

 
analytical

T
02

 
analytical

T
00

T
01

T
02

(f)

A A

B B

C C

Figure 11. RSH
00 , RSH

01 and RSH
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02 (b,d,f) as a function of r for δ = 0.16 for
cases A–C.
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6. Interaction of Rayleigh–Lamb Wave Mode S0 with Discontinuities

For Rayleigh-Lamb modes, the analysis was limited to the low- (2h f = 1 MHz mm) frequency
height regime, which already contains a symmetric S0 and an asymmetric A0 mode. Figure 13 reports
an FE qualitative description of the interaction of the S0 mode with a symmetric A-type discontinuity.
This figure reports a contour plot of u1 displacements at a time step following the interaction between
the incident mode and the discontinuity. It shows that when S0 waves encountered an A-type
symmetric discontinuity, the scattered response contained only the S0 mode, as the A0 mode was not
required to satisfy the boundary conditions. In contrast, when S0 waves encountered a nonsymmetric
C-type discontinuity, the response contained both the incident S0 and the nonsymmetric A0 mode,
which was then necessary to satisfy the boundary conditions. The evidence for this statement is given
in Figure 14, which shows the displacement field u1 at a time step after the S0 mode had encountered
a nonsymmetric discontinuity. The interaction of the S0 mode with symmetric discontinuities is
presented first, followed by the interaction with nonsymmetric discontinuities.

S0S0

A0A0

a

bFigure 13. Contour plot of u1 displacements at a time step following the interaction of the S0 mode
with an A-type discontinuity (2h f = 1 MHz mm).

S0+A0

a

b

S0+A0

S0+A0 S0+A0

Figure 14. Contour plot of u1 displacements at a time step following the interaction of the S0 mode
with a C-type discontinuity (2h f = 1 MHz mm).

When the S0 mode interacted with a symmetric discontinuity, the reflection and transmission
coefficients exhibited a dependence on δ that was similar to that obtained for shear waves, as reported
in Figure 8. Figure 15 reports the reflection and transmission coefficients for a symmetric A-type
discontinuity as a function of r for two different values of δ = 0.13 (a) and δ = 0.07 (b). The curves
present a pattern analogous to that of the SH0 mode (see Figure 9), and show that there was a
remarkable similarity between the analytical and FE model results.

Given δ = 0.07, Figure 16 reports the dependence of RRL
S0S0

and TRL
S0S0

on r for the sharp changes
of the cross-section cases A and B (a), and for the elliptical profile cases D and E (b). The case that
was best described by the analytical results is clearly case A, whereas the others presented some
deviation. Differently to the case concerning shear waves, here, cases A and B, and D and E, differed
from each other. This result was due to the in-plane Poisson effect, an effect which is tied to the notch
profile. Regardless, the differences between the different cases were limited, which indicated a feeble
dependence of the response on the profile of the notch.

Figure 17, again for δ = 0.07, shows the coefficients RRL
S0S0

, RRL
S0 A0

, TRL
S0S0

and TRL
S0 A0

as a function of
r for the asymmetric cases C and D. Differently to that occurring for symmetric discontinuities, here,
we also had the contribution of asymmetric modes, that was null when r = 0 or r = 1, and reached
a maximum for middle values of the damage intensity. This result was again because, for middle
values of r, the contribution of asymmetric modes was needed to satisfy the boundary conditions.
The agreement between the numerical and analytical results was reasonably good.
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Figure 15. RRL
S0S0

and TRL
S0S0

for δ = 0.13 (a) and δ = 0.07 (b) for the A-type discontinuity.

Figure 16. RRL
S0S0

and TRL
S0S0

for rectangular (a) and elliptical voids (b); δ = 0.07.

Figure 17. RRL
S0S0

and TRL
S0S0

(a), RRL
S0 A0

(b) and TRL
S0 A0

(c) for cases C and F; δ = 0.07.
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7. Conclusions

We described the interaction of SH0 (shear) and S0 (Rayleigh–Lamb) wave modes with a
discontinuity such as a notch or an internal void in a plate. A finite element model was used to
model different profiles, whereas an analytical solution obtainable for the double sharp change of the
cross-section was maintained as a reference and exploited to elucidate some details of the interaction.
Reflection and transmission coefficients of the scattered field were evaluated considering the different
sizes and profiles of the discontinuity, such as step changes in height or elliptical shapes (internal or
external and symmetric or nonsymmetric).

It was shown that, depending on the value of the product 2h f , the far-field scattered signal
depends on the number of wave modes that propagate at that given frequency, as indicated by
the dispersion relation. For low values of the product 2h f , for which shear waves support only
one propagating mode, when the SH0 mode is incident, only that single mode will be contained in
the far-field response, irrespective of the shape and symmetry of the discontinuity. Other modes
necessary to satisfy the boundary conditions were only retrieved locally. Differently to shear modes,
Rayleigh–Lamb modes supported at least symmetric S0 and nonsymmetric A0 modes for low values of
the product 2h f . When several propagating modes exist and an incident symmetric mode (SH0 or S0)
encounters a symmetric discontinuity, only symmetric modes will exist in the scattered response. If the
discontinuity is nonsymmetric, both symmetric and nonsymmetric modes will exist. This result is
probably the most useful for applications, as it could be used to discern symmetric from nonsymmetric
discontinuities. It was also found that the dependence of the R and T coefficients on the profile of the
discontinuity was limited, which made it difficult to detect the shape of the profile in the presence of
experimental errors. Further confirming the previous results of the authors, it was also shown that
R and T depended both on the depth and on the extension of the discontinuity. Moreover, in the
presence of several propagating modes, the contribution of modes other than the incident mode was
more important for mid-range values of the ratio r, where these modes contributed to satisfying the
boundary conditions.
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