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Introduction and Motivations

The Standard Model (SM) of particle physics has been producing reliable estimates
to a high precision level in the last few decades. Moreover, the discovery of a scalar
particle with properties consistent with the SM Higgs boson [1, 2], together with
the fact that no Beyond Standard Model (BSM) particle has been detected so far,
suggests that the New Physics (NP) scale Λ can be placed above the electro-weak
symmetry breaking (EWSB) scale.

Therefore, an effective field theory built solely using the SM fields, called Stan-
dard Model Effective Field Theory (SMEFT), can be used to describe the low
energy limit of BSM physics. This theory should be written adding to the renor-
malizable SM interactions further terms of higher dimensions, suppressed by suit-
able powers of the scale Λ and invariant under the SM gauge group. The schematic
Lagrangian is

LSMEFT = LSM + L5 + L6 + . . . .

L5 contains only the Weinberg operator, which can be used to provide masses
to neutrinos. Assuming the conservation of baryon number, in L6 there are 59
operators, many of which have flavour indices (explicitly taking them into account,
the number of operators grows up to 2499); a complete list can be found in [3]. The
full one-loop anomalous dimension (AD) matrix needed for renormalization group
evolution (RGE) of the dimension 6 operators has been recently computed [4–7];
several entries have been found to be of order 1, therefore suggesting a relevant
mixing between some of these operators.

The SMEFT approach can be used to interpret several patterns of deviations
in SM processes: it allows for model independent analysis, which is a particularly
useful feature given our present lack of knowledge regarding the ultraviolet (UV)
completion of the SM theory. The BSM fields can in fact be integrated out of the
theory at the NP scale, in such a way that there is no evident sign of their presence
at the EWSB scale, but their effects can be mimicked by means of the couplings
of the higher dimension operators; it will therefore be possible to use experimental
informations in order to constrain the bounds of the such couplings, which can be
consequently reinterpreted as bounds on the NP scale once the SMEFT is mapped
on the desired UV completion of the theory.
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In my PhD project, I have focused my attention to phenomenological implica-
tions due to the effect of dimension 6 operators. As a first step of my project, I
have partially recomputing the AD from Refs. [4–7], in order to check the correct-
ness of their results. Subsequently, I have been involved in analyses concerning
the status of the anomalies present in B physics, with a particular focus on b→ s
transitions. My work on the field, aiming at discerning the shape of the potential
NP underling such processes and potentially disentangling it from effects stem-
ming from QCD effects, is reported in Refs. [8–11]. A systematic reinterpretation
of such findings in the SMEFT framework is an original contribution to this PhD
thesis, and is yet to be published. Moreover, I have spent some time working on
the study of the trilinear Higgs self-coupling. Given the large room for NP effects
to such coupling, induced by the present status of the experimental constraints, the
(SM)EFT approach is not a phenomenologically-meaningful framework to employ
in order to study potential BSM effects in this sector. Therefore, I have adopted
an alternative method to approach the matter, exploiting the study of electroweak
precision observables in order to further constrain the bound that can be put on
the Higgs trilinear self-coupling [12].

The thesis is organized as follows. Part I is devoted to a review of the the-
oretical framework employed in my projects: Chapter 1 is focused on the SM
theory, Chapter 2 briefly introduces the EFT approach and Chapter 3 describes
the features of the SMEFT framework. The analyses of the anomalies in b → s
transitions are reviewed in Part II: the effective Hamiltonian employed to build
the observables of interest is described in Chapter 4; subsequently, a summary
of the anomalies and their main interpretation is carried out in Chapter 5, while
the results of the systematic SMEFT analysis is reported in Chapter 6. Finally,
Part III is devoted to the study of the constrains that can be imposed on the Higgs
trilinear self-coupling by means of precision electroweak measurements.
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Part I

The Theoretical Framework
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Chapter 1

The Standard Model of Particle
Physics

1.1 The Standard Model Lagrangian

Our present knowledge of the strong and electroweak interactions is described by
means of the Standard Model (SM) Lagrangian LSM . Its fundamental degrees
of freedom are the spin one-half quarks and leptons, the spin one gauge bosons
and the spin zero Higgs boson. It is invariant under SU(3) gauge transformations
for the strong interactions and under SU(2)×U(1) gauge transformations for the
electroweak interactions; therefore, its gauge group structure is

SU(3)c × SU(2)L × U(1)Y . (1.1)

The Standard Model contains 3 kinds of quarks

QLi =

(
uLi
dLi

)
= (3, 2, 1/6), uRi = (3, 1, 2/3), dRi = (3, 1,−1/3), (1.2)

and, if one considers the non-interacting νRi , 3 kinds of leptons

LLi =

(
νLi
lLi

)
= (1, 2,−1/2), lRi = (1, 1,−1), νRi = (1, 1, 0), (1.3)

where i is the flavour index, that goes from 1 to 3 and implies the existence of
a SU(3)5 × U(1)4 flavour symmetry (note that there are only four U(1) flavour
symmetries because the fifth one is already present as the U(1)Y gauge symmetry).
While the SU(3)c symmetry is unbroken, low energy phenomenology implies that
SU(2)L × U(1)Y must be broken onto a U(1)em symmetry; besides, the different
experimental values of quark and lepton masses imply that also the flavour sym-
metries need to be broken, in particular into a phenomenological U(1)B × U(1)L
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symmetry; moreover, the symmetry breaking must give mass to three out of the
four gauge bosons (Z0, W±), while the fourth one (the photon) remains massless.
All this can be accomplished through the Higgs mechanism [13–15], which requires
the introduction of a four-component scalar field that forms a complex doublet of
SU(2)L with hypercharge Y = 1/2:

ϕ =

(
ϕ+

ϕ0

)
. (1.4)

This new field has the opposite quantum numbers of LLi , and its Lagrangian can
be written as

LH = Dµϕ
+Dµϕ+ µ2ϕ+ϕ− λ

4
(ϕ+ϕ)2, (1.5)

where Dµ is the covariant derivative

Dµ = ∂µ − igW i
µ

σi

2
− ig

′

2
Bµ, (1.6)

W i
µ and Bµ are respectively the gauge bosons of the SU(2)L and U(1)Y symmetries,

and g and g′ are the corresponding coupling constants. Note that both µ2 and λ are
positive constants so that the ground state breaks the symmetry, and performing
a gauge transformation in a way such that 〈ϕ+〉 = 0 and ϕ0 becomes real, the
Higgs doublet acquires the Vacuum Expectation Value (VEV)

〈ϕ〉 =
1√
2

(
0

v

)
, with v =

√
µ2

λ
. (1.7)

In the next sections we will see how the introduction of this new field affects the
other SM fields.

1.1.1 Gauge Boson Masses

In order to compute the masses of the three massive gauge bosons, one has to
analyze how the Lagrangian in Eq. (1.5) changes once the Higgs VEV is introduced;
in particular, one has to study the term

1

2

(
0 v

)(
gW i

µ

σi

2
+
g′

2
Bµ

)(
gW j

µ

σj

2
+
g′

2
Bµ

)(0

v

)
=
v2

8

(
g2W i

µW
µ
i +g′

2
BµB

µ−2gg′W 3
µB

µ
)

=
v2

8

(
g2(W 1

µ)
2

+ g2(W 2
µ)

2
+ (gW 3

µ − g′Bµ)
2
)
. (1.8)

This term allow us to write the gauge boson mass eigenstates

W±
µ =

1√
2

(
W 1
µ ∓W 2

µ

)
, (1.9)
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Z0
µ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

)
, (1.10)

whose masses are

MW = g
v

2
, MZ =

√
g2 + g′2

v

2
. (1.11)

It is now possible to define the fourth mass eigenstate through the orthogonality
with Z0

µ:

A0
µ =

1√
g2 + g′2

(
g′W 3

µ + gBµ

)
, MA = 0. (1.12)

Moreover, it is possible to express the covariant derivative

Dµ = ∂µ − igW i
µT

i − ig′Y Bµ, (1.13)

where T i =
σi

2
for SU(2) doublets and T i = 0 for SU(2) singlets, in terms of

the gauge boson mass eigenstates: inverting Eqs. (1.9), (1.10), (1.12) and defining

T± = T 1 ± T 2, (1.14)

it is possible to write

Dµ = ∂µ−
ig√

2
(W+

µ T
++W−

µ T
−)− i√

g2 + g′2
Zµ(g2T 3−g′2Y )− igg′√

g2 + g′2
Aµ(T 3+Y ).

(1.15)
Observing now that the last term must be the one which describes the electromag-
netic current, we obtain the relations

e =
gg′√
g2 + g′2

, (1.16)

Q = T 3 + Y. (1.17)

Furthermore, if one defines the weak mixing angle θW through the relation(
Z0
µ

A0
µ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
⇒ sin θW =

g′√
g2 + g′2

, (1.18)

Eq. (1.15) may be written as

Dµ = ∂µ −
ig√

2
(W+

µ T
+ +W−

µ T
−)− ig

cos θW
Zµ(T 3 − sin2 θWQ)− ieAµQ. (1.19)
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1.1.2 Neutral and Charged Currents

Once the covariant derivative is written in the form of Eq. (1.19), it is possible to
obtain the fermions-bosons coupling terms and therefore the explicit form of the
neutral and charged currents. In order to do so, one has to write the Lagrangian
for chiral fermions:

LF = L̄iLi /DL
i
L + l̄iRi /Dl

i
R + Q̄i

Li /DQ
i
L + ūiRi /Du

i
R + d̄iRi /Dd

i
R

= g(W+
µ J

+ +W−
µ J
−) + gZ0

µJ
Z
µ + eAµJ

em
µ +K , (1.20)

where K is the kinetic terms

K = l̄iLi/∂l
i
L + ν̄iLi/∂ν

i
L + l̄iRi/∂l

i
R + ūiLi/du

i
L + ūiRi/∂u

i
R + d̄iLi/∂d

i
L + d̄iRi/∂d

i
R , (1.21)

and

J+
µ =

1√
2

(ν̄iLγ
µliL + ūiLγ

µdiL), (1.22)

Jemµ = −l̄iLγµliL − l̄iRγµliR +
2

3
ūiLγ

µuiL +
2

3
ūiRγ

µuiR −
1

3
d̄iLγ

µdiL −
1

3
d̄iRγ

µdiR, (1.23)

JZµ =
1

cos θW

(
1

2
ν̄iLγ

µνiL +
(
− 1

2
+ sin2 θW

)
l̄iLγ

µliL + sin2 θW l̄
i
Rγ

µliR

+
(1

2
− 2

3
sin2 θW

)
ūiLγ

µuiL +
(
− 1

2
+

1

3
sin2 θW

)
d̄iLγ

µdiL

− 2

3
sin2 θW ū

i
Rγ

µuiR +
1

3
sin2 θW d̄

i
Rγ

µdiR

)
. (1.24)

1.1.3 Fermion Masses

In order to let the fermions acquire masses, it is necessary to write a gauge invariant
Yukawa Lagrangian which contains the interactions among fermions and the Higgs
boson:

LY = −(Yd)ijQ̄
i
Lϕd

j
R − (Yu)ijQ̄

i
Lϕ̃u

j
R − (Yl)ijL̄

i
Lϕl

j
R + h.c. (1.25)

where Yi are the Yukawa couplings and ϕ̃α = εαβϕ∗β, with εαβ a totally antisym-
metric matrix. Once the Higgs doublet acquires a VEV, the Lagrangian takes the
form

LY = − v√
2

(Yd)ij d̄
i
Ld

j
R −

v√
2

(Yu)ijū
i
Lu

j
R −

v√
2

(Yl)ij l̄
i
Ll
j
R + h.c. (1.26)

so that the fermions acquire the masses

(md)ij =
v√
2

(Yd)ij, (mu)ij =
v√
2

(Yu)ij, (ml)ij =
v√
2

(Yl)ij. (1.27)
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It is now possible to write the Lagrangian in the mass eigenstate basis. In order to
do so, it is first necessary to diagonalize the mass matrix mψ of fermion ψ through
a bi-unitary transformation:

U+
ψ,LmψUψ,R = mD

ψ ≡ diag(m1,m2,m3); (1.28)

it is now possible to write the mass term in the form

ψ̄LmψψR = ψ̄′Lm
D
ψψ
′
R, (1.29)

where we have defined the mass eigenstates

ψ′L = U+
ψ,LψL, ψ′R = U+

ψ,RψR. (1.30)

1.1.4 The Cabibbo-Kobayashi-Maskawa Matrix VCKM

If one takes the currents from Eqs. (1.22)-(1.24) and expresses them in terms of the
mass eigenstate basis defined by Eq. (1.30), it is straightforward to observe that
the neutral currents remain unmodified: this implies that the Standard Model
predicts the absence of tree-level Flavour Changing Neutral Currents (FCNC).
Instead, the charged current J+

µ takes the form

J+
µ =

1√
2

(ν̄iLγ
µU l

Ll
′i
L + ū′

i
LU

u
L

+γµUd
Ld
′i
L) ≡ 1√

2
(¯̃νiLγ

µl′iL + ū′
i
LVCKMγ

µd′iL), (1.31)

where we have redefined the mass-less neutrino field setting

ν̃L = U l
L

+
νL (1.32)

and we have defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix [16, 17]

VCKM = Uu
L

+Ud
L. (1.33)

This matrix will not generally be diagonal, so that the Standard Model predicts
the occurrence of Flavour Changing Charged Currents at tree-level.

We observe that CP violation in weak interactions requires the Yukawa matrices
Y d, Y u to be complex. In the mass eigenstate basis they take the form

Y d → U+
QL
Y dUdR , Y u → U+

QL
Y uUuR . (1.34)

For 3 quark generations the Yukawa matrices contain 9 real parameters and 9
phases each; the three U matrices, which contain 9 angles and 17 phases (the
18th phase is related to the UB(1) symmetry), can be used to reduce the number
of undetermined quantities so that there are only 9 physical real parameters and
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1 physical phase: the 6 quarks masses, and 3 angles and 1 phase for the VCKM
matrix.

Following this observation, the standard way to parameterize the CKM ma-
trix [18] is through the phase δ and the angles θ12,θ13 and θ23:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.35)

where cij = cos θij and sij = sin θij.
An approximation of the VCKM matrix has been given by Wolfenstein [19],

through a power series in the small parameter λ = |Vus| ' 0.22:

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.36)

1.2 Equations of Motion

Putting together all the pieces from the previous section (and adding the kinetic
terms for the gauge field strength tensors), it is possible to write down the SM
Lagrangian:

LSM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ
†)(Dµϕ)− λ

(
ϕ†ϕ− 1

2
v2

)2

+L̄iLi /DL
i
L + l̄iRi /Dl

i
R + Q̄i

Li /DQ
i
L + ūiRi /Du

i
R + d̄iRi /Dd

i
R

−
[
(Yd)ijQ̄

i
Lϕd

j
R + (Yu)ijQ̄

i
Lϕ̃u

j
R + (Yl)ijL̄

i
Lϕl

j
R + h.c.

]
. (1.37)

Starting from this Lagrangian, it is therefore possible to extract the Equation of
Motion (EoM) for all the dynamical fields involved. In particular, for the Higgs
field one obtains

D2ϕk − λv2ϕk + 2λ(ϕ†ϕ)ϕk +Q
j

L Y
†
u uRεjk + dR YdQ

k
L + eR Ye L

k
L = 0 ; (1.38)

for the fermion fields, the EoM reads

i /DQj
L = Y †u uR ϕ̃j + Y †d dR ϕj , i /D dR = YdQ

j
L ϕ
† j ,

i /D uR = YuQ
j
L ϕ̃
† j , i /D LjL = Y †e eRϕj ,

i /D eR = Ye Ljϕ
† j ; (1.39)
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and for the gauge fields, one obtains

[Dα, Gαβ]A = g3j
A
β , [Dα,Wαβ]I = g2j

I
β, DαBαβ = g1jβ, (1.40)

where [Dα, Fαβ] is the covariant derivative in the adjoint representation. The gauge
currents are

jAβ =
∑

ψ=uR,dR,QL

ψ TAγβψ , (1.41)

jIβ =
1

2
QL τ

IγβQL +
1

2
LL τ

IγβLL +
1

2
ϕ† i
←→
D I

βϕ , (1.42)

jβ =
∑

ψ=uR,dR,QL,eR,LL

ψ yiγβψ +
1

2
ϕ† i
←→
D βϕ , (1.43)

where yi are the fermions U(1) hypercharges, and

ϕ† i
←→
D βϕ = iϕ†(Dβϕ)− i(Dβϕ

†)ϕ , (1.44)

ϕ† i
←→
D I

βϕ = iϕ†τ I(Dβϕ)− i(Dβϕ
†)τ Iϕ . (1.45)

1.3 Renormalization Group Improved Perturba-

tive Expansion

Weak decays mediated by the exchange of the W boson may receive corrections
by QCD loops, as the ones shown in Fig. 1.1. Those corrections may give rise to
terms proportional to (denoting the external momenta by p, with p2 < 0)

αS ln
M2

W

−p2
, (1.46)

Figure 1.1: 1-loop QCD corrections to W mediated weak decays. Figure taken
from Ref. [20].
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where the logarithms, for −p2 �M2
W , may become large and eventually overcome

the smallness of αS, invalidating the perturbative expansion. This problem can
be solved using a Renormalization Group Improved Perturbative Expansion; for a
pedagogical introduction see [20]. Let us work out the steps necessary to obtain
this feature.

1.3.1 Renormalization

In order to eliminate the divergences that may arise at loop level in Green Func-
tions, calculated for example using dimensional regularization [21] in which one
evaluates Feynman diagrams in D = 4− 2ε space-time dimensions, the fields and
the parameters present in the Lagrangian have to be renormalized through

Aa0µ = Z
1/2
3 Aaµ, q0 = Z1/2

q q, g0,s = Zggsµ
ε, m0 = Zmm, (1.47)

where the “0” indicates bare quantities, Aaµ is the renormalized gauge field, q
is the renormalized quark field, gs is the renormalized QCD coupling, µ is the
renormalization scale and m is the renormalized quark mass; the Zi factors are
called renormalization constants, and are divergent quantities chosen in a way
such that the divergences disappear in the observables written in terms of the
renormalized quantities only. It should be stressed that since bare quantities are
µ independent, gs must be µ dependent and, since all Zi have a perturbative
expansion in gs, they must all be µ dependent as well.

The value of the renormalization constants (scheme) is arbitrary, and the com-
putationally simplest renormalization scheme is the Minimal Subtraction MS [22],
in which the Zi subtract only the divergences; in this scheme, the renormalization
constants at Leading Order (LO) are

Zq = 1− αs
4π

1

ε
CF +O(α2

s), (1.48)

Zg = 1− αs
4π

1

ε

(
11

6
NC −

2

6
nf

)
+O(α2

s), (1.49)

Z3 = 1− αs
4π

1

ε

(
2

3
nf −

5

3
NC

)
+O(α2

s), (1.50)

Zm = 1− αs
4π

1

ε
3CF +O(α2

s), (1.51)

where CF = 4/3 is the relevant colour factor, NC is the number of colours and nf
is the number of active quark flavours.
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1.3.2 Renormalization Group

Given the independence of the bare quantities from µ, it is possible to write equa-
tions for the renormalized quantities which describe how they evolve as a function
of µ.

Let us focus on the couplings, observing that it is possible to write

µ
d

dµ
g0 = 0 = µ

d

dµ
(Zggµ

ε) =

(
1

g
µ
∂

∂µ
g +

1

Zg
µ
∂

∂µ
Zg + ε

)
Zggµ

ε, (1.52)

so that

µ
∂

∂µ
g = −gε− g

Zg
µ
∂

∂µ
Zg; (1.53)

if now one defines the quantities

β
(
g(µ), ε

)
=

∂

∂ lnµ
g, β

(
g(µ)

)
= −gd lnZg

d lnµ
, (1.54)

Eq. (1.53) takes the form

β
(
g(µ), ε

)
= −gε− β

(
g(µ)

)
. (1.55)

Defining now the quantity

β
(
g(µ)

)
= gf(g), with f(g) =

1

Zg

dZg
d lnµ

, Zg = 1 +
∞∑
k=1

1

εk
Zg,k(g), (1.56)

we can write

Zgf(g) =
dZg
d lnµ

=
dZg
dg

dg

d lnµ
= β

(
g(µ), ε

)dZg
dg

, (1.57)

so that

f(g)

(
1 +

1

ε
Zg,1 + . . .

)
= (−gf(g)− εg)

(
1

ε

d

dg
Zg,1 + . . .

)
. (1.58)

Solving this equation order by order one obtains

f(g) = −gdZg,1
dg

, (1.59)

so that, taking the ε → 0 limit (or the D → 4 limit) and using the definition in
Eq. (1.49), one obtains the explicit form

β(g) = g2dZg,1
dg

= − g3

16π2

(
11

3
NC −

2

3
NF

)
≡ − g3

16π2
β0. (1.60)
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Multiplying now both sides by
g

4π
and remembering the definition in Eq. (1.54),

one obtains

dαs
d lnµ

= −2β0
α2
s

4π
, (1.61)

whose solution, calculated using as upper bound MW where nf = 5, is

αs(µ) =
αs(MW )

1− 1
2π
β0αs(MW ) ln MW

µ

= αs(MW )

[
1 +

∑
n

(
1

2π
β0αs(MW ) ln

MW

µ

)n]
.

(1.62)
Note that this procedure allows to resum all logarithms of the form(

αs(MW ) ln
MW

µ

)n
, (1.63)

therefore removing the large logarithms problem that may arise computing QCD
corrections to weak decays (see below). Furthermore, the calculation of β at Next
to Leading Order (NLO) would lead to a resummation of the logarithms

αs(MW )
(
αs(MW ) ln

MW

µ

)n
, (1.64)

and so on.
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Chapter 2

Effective Field Theories

2.1 Effective Lagrangians as a Tool to Search for

New Physics Effects

The purpose of the effective Lagrangian method is to allow the study of a the-
ory in the low energy limit, where the heavy particles can be removed from the
Lagrangian keeping correctly into account their effects at low energies.

Those Lagrangians can be obtained by writing the most general terms which
satisfy the symmetries of the theory at low energy; moreover, given the fact that
at that particular energy scale the heavy particles cannot be produced, one has to
explicitly take into account only terms containing the lightest ones. This process
is called integrating out the heavy fields, and its consequences are described by
the decoupling theorem: if the remaining low energy theory is renormalizable, then
all effects of the heavy particles integrated out appear either as a renormalization
of the coupling constants in the theory or else as terms with dimension d > 4
suppressed by appropriate powers of the heavy particles masses.

As an illustrative example, the basic effective Lagrangian for weak interactions
is the Fermi Lagrangian [23]

LF ∼
GF√

2
J+
µ J

+, µ, (2.1)

where the coefficient of the dimension 6 current-current operator is

GF√
2

=
g2

8M2
W

∝
1

M2
W

, (2.2)

so that the Lagrangian has dimension 4. The W boson is integrated out in this
theory, since it is produced at a scale much higher than the ones involved in such
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processes. In turn, the theory develops a 4 fermion local interaction, responsible
e.g. for the neutron decay. However, the effects of this particle are encoded in the
effective coupling GF , where the factor 1/M2

W is produced when the W propagator
is shrunk to a point, assuming q2 �M2

W .
Therefore, the Effective Field Theory (EFT) approach allows to build low-

energy Lagrangians, where all the heavy degrees of freedom that can not be pro-
duced directly (but that can induce virtual effects) are removed from the theory,
building in turn special local operators which include in their couplings the ef-
fects of such removed fields. This can be a really powerful tool, simplifying indeed
several computations. Moreover, it can also be a useful way to probe NP: inte-
grating away potentially-unknown BSM degrees of freedom, it is possible to use
experimental information in order to constrain the bounds of the EFT couplings;
subsequently, once the EFT theory will be matched to a UV completion of the
theory, it will be possible to reinterpret such bounds as constrains on the parame-
ter of the new theory. Hence, the EFT approach is one of the most employed tool
when one wants to inspect the possible shape of NP.

2.2 Operator Product Expansion

Weak decays of hadrons are not easily described since they include both weak
interactions, which mediate the decay, and strong interactions, which bind the
quarks into hadrons, at different energy scales: the strong interactions are char-
acterized by the typical hadronic energy scale of O(1 GeV), much lower than the
scale of weak interactions, of O(MW,Z). Therefore, we need an effective theory
for weak interactions capable of describing these decays, which can be obtained
through the so-called Operator Product Expansion [20, 24, 25].

In order to obtain this effective theory, one has first to integrate out the W
boson (as well as the t quark) and write the most general Hamiltonian, which is
composed by all the possible local operators which can mediate the decay; this
effective Hamiltonian will therefore take the form of a series of local operators
Qi(µ) whose contributions are weighted by the effective scale-dependent couplings
Ci(µ), called Wilson Coefficients :

Heff =
4GF√

2
V ∗q1q2Vq3q4

∑
i

Ci(µ)Qi(µ) ; (2.3)

the result of this procedure is illustrated in Fig. 2.1.
The next step is to consider the full theory Hfull and calculate the amplitude

at a given order; if now one calculates at the same order the matrix elements
< Qi(µ) > of all the local operators included in Heff , it is possible to perform the
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matching
Afull = Aeff , (2.4)

and to extract the values of the Wilson Coefficients Ci(µ). It is worth to note that,
if a renormalization is applied to the effective Hamiltonian through the relation

< Q
(0)
i >= Z−2

q Zij < Qj >, (2.5)

where Zq is the quark field renormalization, the fields of the full Hamiltonian must
be renormalized following the same scheme, in order to obtain a correct matching;
furthermore, since in the matching infrared logarithms cancel out,

αS ln
M2

W

−p2
→ αS ln

M2
W

−µ2
, (2.6)

the matching has to be performed at a scale µW = O(MW ), in order to avoid the
problem of large logarithms.

Now we can use the techniques of the Renormalization Group and evolve the
Wilson Coefficients to the scale of the hadronic decay. In order to accomplish
this process one has to note in the first place that the quantity Ci(µ)Qi(µ) is an
observable: this means that it must be µ independent, so that

µ
dCi
dµ

Qi + µ
dQi

dµ
Ci = 0 ⇒ µ

dCi
dµ

= −d lnQi

d lnµ
Ci; (2.7)

Figure 2.1: The W boson has been integrated out and its propagator has been
contracted to a point. Figure taken from Ref. [20].

18



moreover, remembering that the bare quantity (2.5) has to be µ independent as
well, one may diagonalize the matrix Zij and obtain the relation

µ
dZi
dµ

Qi + µ
dQi

dµ
Zi = 0 ⇒ d lnQi

d lnµ
= −d lnZi

d lnµ
≡ −γi(g), (2.8)

so that

dCi(µ)

d lnµ
= γi(g)Ci(µ) ⇒ Ci(µ) = Ui(µ, µ0)Ci(µ0), (2.9)

where Ui(µ, µ0) is the function that governs the evolution of the quantity Ci(µ).
Note that one has to pay attention to quark thresholds, given the change of the
total flavour number at a scale µb = O(Mb).

Finally, one has to calculate the hadronic matrix elements 〈Qi(µ)〉 at the decay
energy scale. This task, given the non-perturbative nature of the matrix elements,
usually has to be performed on lattice QCD, which consists in discretizing the
space-time, and therefore the fields, on a lattice. This introduces a momentum
cut-off at the order 1

a
, where a is the lattice spacing, which regularizes QCD and

allows numerical computation of non-perturbative objects. The continuum values
can be obtained performing the a → 0 extrapolation, which can be done once
repeated calculations at different lattice spacings have been performed.

The main feature of the Operator Product Expansion is therefore to factor-
ize the contributions to the amplitude into a short-distance, high energy term (
Ci(µ) ) and a long-distance, low energy term ( 〈Qi(µ)〉 ). Moreover, the prod-
uct Ci(µ) 〈Qi(µ)〉 is µ independent, and the large logarithms are automatically
resummed through the implementation of the Renormalization Group method.

2.3 Bottom-Up vs Top-Down

As we have described at the beginning of this chapter, an EFT is built with
the purpose to write down a low-energy Lagrangian, where the heavy degrees
of freedom are removed and their effects are encoded in the couplings of local
operators. This allows to build a theory where computations are simplified, or
even feasible in the first place, and to study the indirect effects of some field at a
scale way below the one where it can be produced.

These features make the EFT approach really appealing in present days: the
LHC has yet to directly observe new particles, different from the SM ones. More-
over, it can also be possibile that the NP scale is well above a few tens of TeV,
hence beyond the grasp of a direct observation at the LHC. However, this does not
mean that these new heavy degrees of freedom can not be produced at loop-level,
hence contributing to SM-like processes in such a way that precise measurements
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could detect their effects, effectively yielding an indirect NP observation. There-
fore, following the EFT approach and studying the effects of such fields by means
of effective couplings to local operators might be a useful probe on the hunt for
NP.

With this situation in mind, it is interesting to conclude this chapter with a
description of the two possibile approaches one can make us of, when building an
EFT. The first one is the Top-Down approach: in this first scheme, the underlying,
high-energy theory is known. However, one might be interested in studying its
effects at a low scale, lower than the production scale of one (or more) of the degrees
of freedom present in the theory. Moreover, it is also possible that the underlying
theory is cumbersome, and trying to directly apply it makes some computation
heavily non-trivial. As we have already seen, this is the case of e.g. weak decays:
the underlying theory - the SM - is well known, however directly applying it in
order to compute hadron weak decays is utterly complicated. Therefore, it is
convenient to integrate out the W boson and the top quark, and build an effective
theory consisting of fuor-quark operators. Their effective couplings are functions
of the W and top masses, which can be exactly computed performing the matching
procedure described in Sec. 2.2. The Weak Effective Theory (WET) build in such
a manner allows to perform computations in a feasible way, without losing any
SM information but working in a viable environment which allows to resumming
large logarithms.

A diametrically opposed approach is the Bottom-Up one: in this second scheme,
one makes no assumptions on the underlying theory, and works in a model-
independent framework. Once the field content of the low-energy theory is de-
cided, along with its gauge symmetries, one simply has to build accordingly all the
Lorentz invariant operators. The EFT couplings will be free parameters. There-
fore, this approach could be really interesting for a generic NP search: given the
present experimental status and the lack of informations regarding an UV comple-
tion of the SM, one can decide to make no assumptions at all on this completion.
Therefore, it is possible to make predictions for a desired decay channel, compare
them with experimental data and subsequently extract the values of the EFT cou-
plings. If one (or more) of such couplings is to be found different from zero, this
will be a signature of a NP effect: only then, it will be possible to look for those UV
model capable of producing relevant operator, paying attention that such models
do not produce also operators that would spoil other, “well-behaving” measure-
ments.
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Chapter 3

The Standard Model Effective
Field Theory

As I have stated in the Introduction, the SM of particle physics has been extremely
reliable in the last decades, producing an astonishing number of accurate estimates
for a very large number of observables, confirmed by experimental data. However,
several elements (e.g. Dark Matter, neutrino mass/oscillation, baryon asymmetry,
gravity ...) point towards the fact that the SM is not the final theory of particle
physics, but it has to be included in some more general framework.

Therefore, due to the lack of an UV completion of the SM, a useful way to
study possible BSM effects consists of employing an EFT framework, following
the Bottom-Up approach. In particular, given the lack of NP signals guiding us
in the construction of such EFT, it is convenient to build this theory according to
the following prescriptions:

- its gauge group should contain the SM one, SU(3)C × SU(2)L × U(1)Y ;

- it should be built using solely SM fields;

- it should contain all the possible Lorentz invariant terms.

The EFT built according to the above guidelines is called Standard Model Effective
Field Theory (SMEFT), and can be a remarkably useful tool to describe the low
energy limit of BSM physics. The schematic Lagrangian is

LSMEFT = L(d≤4)
SM +

∞∑
d=5

∑
i

(
1

Λ

)(d−4)

c
(d)
i O(d)

i , (3.1)

where d represent the operator dimension. For each dimension, following the afore-
mentioned guidelines, it is possible to define a certain set of operators; however,
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these sets might be redundant due to possible relations between different operators.
Hence, by means of EoM, Fierz identities and integration by parts, it is possible
to define a minimal basis for the operators for each dimension. The choice for
the basis is of course irrelevant once physical observables are computed; however,
given the process of interest, certain bases can be more suitable than others.

In the following sections we discuss the first terms appearing in Eq. (3.1),
analyzing the number and the structure of such operators.

3.1 dim-5 operators

At dimension 5, only one operator structure survives, together with its hermitian
conjugate [26]:

Oνν = εjkεmnϕ
jϕm(lkp)

TC lnr + h.c. ≡ (ϕ̃†lp)
TC (ϕ̃†lr) + h.c. , (3.2)

where C is the charge conjugation matrix, ϕ is the Higgs field, l is a left lepton field
and p, r are flavour indices. Since both Oνν and its hermitian conjugate are sym-

metric in flavour indices, the total number of operators is equal to 2 · nf (nf + 1)

2
,

where nf is the number of flavour present in the theory. Hence, in a single-flavour
theory, only 2 independent dim-5 operators exist, while in a theory with nf = 3
there are 12 independent operators.

The operatorOνν , often referred to as “Weinberg operator”, violates the B − L
accidental symmetry (as all operators with an odd dimension [27, 28]), and is
therefore expected to be heavily suppressed. It can be introduced in theories
involving a right handed neutrino: if this new particle is heavy enough, it can be
integrated out giving rise to the Weinberg operator at low energy. After EWSB,
this operator generates a Majorana mass term for left-handed neutrinos, which is
indirectly proportional to the NP scale Λ. This mechanism, where a very light
left-handed neutrino is generated by means of a very heavy right-handed one, goes
by the name of seesaw mechanism [29–32].

3.2 dim-6 operators

Dimension-6 operators are suppressed by two powers of the NP scale; however,
most of the operators of this class do not violate any SM accidental symmetry
(contrary to all dim-5 ones): hence, the overall suppression of such operators is
expected to be lower. Moreover, there are plenty of NP models whose primary
effects arise at the level of dim-6 operators, making this particular EFT a popular
choice for BSM analysis at LHC [33].
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The first dim-6 operators historically taken into account were four-fermion op-
erators, and their study can go back to the pioneering work on weak interactions
by Enrico Fermi [23]. The four-fermion operators sub-set was heavily used there-
after, but it was only in the Eighties that a first attempt to catalogue the full set of
operators was carried over by Buchmuller and Wyler [34]. However this basis, con-
sisting of 80 operators in a single-flavour theory, was missing one last operator and,
more importantly, was redundant. Finally, in 2010, a first complete non-redundant
basis was obtained by Grzadkowski, Iskrzynski, Misiak, and Rosiek [3]1, obtained
following the guidelines of reducing the number of derivatives as much as possi-
ble. As we stated above, this is just a possible choice for the basis: for instance,
for the analysis of strongly-interacting light Higgs an ad hoc sub-basis (often re-
ferred to as the SILH basis) has been identified by Giudice, Grojean, Pomarol and
Rattazzi [35], focusing on Higgs operators. Analogously, the HISZ sub-basis has
been introduced by Hagiwara, Ishihara, Szalapski and Zeppenfeld [36] to study
interactions between the Higgs and the vector bosons.

In the remainder of this thesis we will work with the Warsaw basis (and in
general only with operators not violating the B − L accidental symmetry), since
it was the first complete dimension-6 basis to be computed, and moreover (as we
will see) it is the only fully renormalized basis to date.

3.2.1 The Warsaw basis

The number of operators in this basis is quite big: in a single-flavour theory there
are 59 independent operators2, with this number growing up to 2499 in a theory
with nf = 3. This plethora of operators can be sub-divided in 8 classes, in terms
of the field content and of the number of covariant derivatives contained in each of
them. Hereafter, we will denote with ϕ a Higgs field, with D a covariant derivative,
with X a gauge field strength tensor, with ψ a generic fermion field, with l(e) a
left (right) lepton field, with q a left quark field and with u(d) an up-(down-)type
right quark field. In the reminder of this section, we will briefly review the content
of each class, showing why the basis is indeed non-redundant; in order to do so,
we will extensively make use of the following tensor relations:

τ Ijkτ
I
mn = 2δjnδmk − δjkδmn , (3.3)

TAαβT
A
κλ =

1

2
δαλδκβ −

1

6
δαβδκλ , (3.4)

1Due to the difficulty in pronouncing the names of these authors, this basis is usually referred
to as the “Warsaw basis”, in honor to the city where this work was carried out.

2The actual number of operators is 76, if one considers the Hermitian conjugate of non-
Hermitian operators as a separate operator.
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where τ I is a rescaled Pauli matrix τ I ≡ σI/2 and TA is a Gell-Mann matrix, and
of Fierz identities, such as

(ψ̄γµψ)(χ̄γµχ) = (ψ̄γµχ)(χ̄γµψ) . (3.5)

• 1 : X3

This first class contains all the operators involving 3 gauge field strength
tensors (denoted by A, B and C in this section). The only non-vanishing
independent Lorentz contraction reads A ν

µ B
ρ

ν C
µ

ρ , and since each tensor is
antisymmetric, the other two have from being different in order to prevent
them to be symmetric resulting in a vanishing operator; moreover, this couple
cannot be related by duality, feature that would make them symmetric and
forbid the operator again. Hence, the only way to build a non-vanishing
singlet is by means of the structure constants fABC or εIJK :

QG = fABCGAν
µ GBρ

ν GCµ
ρ , (3.6)

QG̃ = fABCG̃Aν
µ GBρ

ν GCµ
ρ , (3.7)

QW = εIJKW Iν
µ W Jρ

ν WKµ
ρ , (3.8)

QW̃ = εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ . (3.9)

These operators have no flavour content, hence they are 4 independent of
nf , 2 CP -even and 2 CP -odd ones.

• 2 : ϕ6

Due to hypercharge, three of the Higgs fields of each operator of this class
needs to be complex conjugated. We have then three (ϕ∗ϕ) couples, each
being either a singlet or a triplet. The three-triplet case vanishes since the
three identical couples have to be saturated with an antisymmetric tensor,
while the two-triplet one can be rewritten in terms of an overall singlet by
means of Eq. (3.3); hence, the only surviving operator in this class is:

QH = (ϕ†ϕ)3 . (3.10)

This operator has no flavour content, hence there is only 1 CP -even operator.

• 3 : ϕ4D2

Again, due to hypercharge, two of the Higgs fields of each operator of this
class need to be complex conjugated. We can therefore build operators con-
taining two singlets or two triplets; however, in the latter case, we can employ
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Eq. (3.3) in order to rewrite these operators as products of singlets. After re-
ducing the number of operators by means of EOM and integration by parts,
we obtain the following final sub-set of independent operators:

QH� = (ϕ†ϕ)�(ϕ†ϕ) , (3.11)

QHD = (ϕ†Dµϕ)∗(ϕ†Dµϕ) . (3.12)

These operators have no flavour content, hence they are 2 CP -even operators.

• 4 : X2ϕ2

Once again, due to hypercharge, one of the Higgs fields of each operator of
this class needs to be complex conjugated. We will therefore build all the
possible operators containing either two singlets or two triplets, with an n-let
containing Higgs fields and the other containing field strength tensors. Op-
erators containing a single W I

µν tensor need to be contracted with a rescaled
Pauli matrix τ I , in order to obtain an operator which is an isospin singlet.
The list of operators is the following:

QHG = (ϕ†ϕ)GA
µνG

Aµν , (3.13)

QHG̃ = (ϕ†ϕ)G̃A
µνG

Aµν , (3.14)

QHW = (ϕ†ϕ)W I
µνW

Iµν , (3.15)

QHW̃ = (ϕ†ϕ)W̃ I
µνW

Iµν , (3.16)

QHB = (ϕ†ϕ)BµνB
µν , (3.17)

QHB̃ = (ϕ†ϕ)B̃µνB
µν , (3.18)

QHWB = (ϕ†τ Iϕ)W I
µνB

µν , (3.19)

QHW̃B = (ϕ†τ Iϕ)W̃ I
µνB

µν . (3.20)

These operators have no flavour content, hence they are 8, 4 CP -even and 4
CP -odd ones.

• 5 : ψ2ϕ3

This class of operators contains two fermionic fields, forming a scalar cur-
rent, coupled with a first Higgs field. Such currents, in order to combine
with the two remaining Higgs fields, have to be isospin doublets and colour
singlets: hence, the scalar current has the same shape of a Yukawa interac-
tion, with the remaining Higgs forming the only non-vanishing isospin singlet
available, (ϕ†ϕ). Therefore we remain with 3 operators, each one along with
its hermitian conjugate:

QeH = (ϕ†ϕ)(l̄perϕ) , (3.21)
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QuH = (ϕ†ϕ)(q̄purϕ̃) , (3.22)

QdH = (ϕ†ϕ)(q̄pdrϕ) . (3.23)

Each family of operators, being non-Hermitian, is described by a nf × nf
complex matrix, with n2

f CP-even operators coming from the real matrix
elements, and n2

f CP-odd operators coming from the imaginary ones. There-
fore, in a single-fermion theory we have 6 independent operators, 3 CP -even
and 3 CP -odd, while in a theory with nf = 3 there are 54 independent
operators, 27 CP -even and 27 CP -odd ones.

• 6 : ψ2Xϕ

This class of operators contains again two fermionic fields, combined this time
in a tensorial antisymmetric form due to the presence of the field strength
tensor. The Higgs field displays a Yukawa-like behavior due to hypercharge
(i.e., contracted with a totally antisymmetric matrix when coupled to right-
handed up-type quarks), while the W I

µν and GA
µν tensors need to be con-

tracted either with a rescaled Pauli matrix τ I or with a Gell-Mann matrix
TA, in order to obtain an operator which is an isospin and colour singlet,
respectively. The final list contains 8 operators, each one along with its
hermitian conjugate:

QeW = (l̄pσ
µνer)τ

IϕW I
µν , (3.24)

QeB = (l̄pσ
µνer)ϕBµν , (3.25)

QuG = (q̄pσ
µνTAur)ϕ̃G

A
µν , (3.26)

QuW = (q̄pσ
µνur)τ

Iϕ̃W I
µν , (3.27)

QuB = (q̄pσ
µνur)ϕ̃Bµν , (3.28)

QdG = (q̄pσ
µνTAdr)ϕG

A
µν , (3.29)

QdW = (q̄pσ
µνdr)τ

IϕW I
µν , (3.30)

QdB = (q̄pσ
µνdr)ϕBµν . (3.31)

Analogously to the previous class, each family of non-Hermitian operators is
described by a nf × nf complex matrix, with n2

f CP-even operators coming
from the real matrix elements, and n2

f CP-odd operators coming from the
imaginary ones. Hence, in a single-fermion theory we have 16 independent
operators, 8 CP -even and 8 CP -odd, while in a theory with nf = 3 there
are 144 independent operators, 72 CP -even and 72 CP -odd ones.

• 7 : ψ2ϕ2D

This is the last class of operators containing two fermionic fields, contracted
to form a vector current. The derivative will act on scalars only, since EOM
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will reduce the operators with a derivative applied to a fermionic field to the
ones of class 5. Therefore, the complete list of Hermitian operators is the
following:

Q
(1)
Hl = (ϕ†i

←→
D µϕ)(l̄pγ

µlr) , (3.32)

Q
(3)
Hl = (ϕ†i

←→
D I

µϕ)(l̄pτ
Iγµlr) , (3.33)

QHe = (ϕ†i
←→
D µϕ)(ēpγ

µer) , (3.34)

Q
(1)
Hq = (ϕ†i

←→
D µϕ)(q̄pγ

µqr) , (3.35)

Q
(3)
Hq = (ϕ†i

←→
D I

µϕ)(q̄pτ
Iγµqr) , (3.36)

QHu = (ϕ†i
←→
D µϕ)(ūpγ

µur) , (3.37)

QHd = (ϕ†i
←→
D µϕ)(d̄pγ

µdr) . (3.38)

Moreover, there also exists another non-Hermitian operator, together with
its Hermitian conjugate:

QHud = i(ϕ̃†Dµϕ)(ūpγ
µdr) . (3.39)

The first seven families of operators, due to their Hermiticity, can be de-
scribed each by means of a matrix of the form H = S+ iA, where S is a real
symmetric matrix, containing ne = nf (nf +1)/2 CP -even operators, while A
is a real antisymmetric one, containing no = nf (nf−1)/2 CP -odd operators.
Considering also QHud and its Hermitian conjugate, described by a nf × nf
complex matrix, the total number of CP -even operators is nf (9nf + 7)/2
while the total number of CP -odd ones is nf (9nf − 7)/2. Therefore, in a
single-fermion theory we have 9 independent operators, 8 CP -even and 1
CP -odd, while in a theory with nf = 3 there are 81 independent operators,
51 CP -even and 30 CP -odd ones.

• 8 : ψ4

The last class of dimension 6 operators is the most numerous: it contains
four-fermion operators, each composed by two bilinears; to better describe
them, it is useful to further group them, according to their chiral content.

- (L̄L)(R̄R)

The first sub-class is composed by the product of a left-handed with a
right-handed current:

Qle = (l̄pγ
µlr)(ēsγ

µet) , (3.40)

Qlu = (l̄pγ
µlr)(ūsγ

µut) , (3.41)
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Qld = (l̄pγ
µlr)(d̄sγ

µdt) , (3.42)

Qqe = (q̄pγ
µqr)(ēsγ

µet) , (3.43)

Q(1)
qu = (q̄pγ

µqr)(ūsγ
µut) , (3.44)

Q(8)
qu = (q̄pγ

µTAqr)(ūsγ
µTAut) , (3.45)

Q
(1)
qd = (q̄pγ

µqr)(d̄sγ
µdt) , (3.46)

Q
(8)
qd = (q̄pγ

µTAqr)(d̄sγ
µTAdt) . (3.47)

All these operators are products of L and R Hermitian currents, each
one containing ne CP -even operators and no CP -odd operators, as ex-
plained below Eq. (3.39). Multiplying the two currents, there is a total
of 8 · (n2

e + n2
o) = 4n2

f (n
2
f + 1) CP -even operators and of 8 · 2neno =

4n2
f (n

2
f − 1) CP -odd operators. Hence, in a single-fermion theory we

have 8 independent CP -even operators, while in a theory with nf = 3
there are 648 independent operators, 360 CP -even and 288 CP -odd
ones.

- (L̄L)(L̄L)

The second sub-class is composed by two vector currents containing
only left-handed fermions:

Qll = (l̄pγ
µlr)(l̄sγ

µlt) , (3.48)

Q(1)
qq = (q̄pγ

µqr)(q̄sγ
µqt) , (3.49)

Q(3)
qq = (q̄pγ

µτ Iqr)(q̄sγ
µτ Iqt) , (3.50)

Q
(1)
lq = (l̄pγ

µlr)(q̄sγ
µqt) , (3.51)

Q
(3)
lq = (l̄pγ

µτ I lr)(q̄sγ
µτ Iqt) . (3.52)

It is interesting to notice that the operator Q
(3)
ll is redundant, since it

can be written in terms of Qll by applying Eq. (3.3) and then Eq. (3.5)3.

Analogously, a Q
(8)
qq operator composed by two colour octets is redun-

dant due to Eqs. (3.3)-(3.5).

The Q
(1,3)
lq operators are products of two different Hermitian currents

so, analogously to the (L̄L)(R̄R) family, there is a total of 2 ·(n2
e+n2

o) =
n2
f (n

2
f + 1) CP -even operators and of 2 · 2neno = n2

f (n
2
f − 1) CP -

odd operators. However, one can not apply the same procedure to
the remaining operators, where the two currents are equal and we

3It is worth to mention that the same procedure does not work for Q
(3)
qq as well, since Eq. (3.5)

Fierzes also the colour indices, in such a way that it is not possible to rewrite this operator in

terms of Q
(1)
ll only.
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therefore have four fields whose flavour indices transform under the
same SU(nF ) flavour group. These 3 operators, following group the-
ory prescriptions that can be found e.g. in Refs. [37, 38], transform
each as a 1 + adj + adj + āa + s̄s, where 1 is a singlet contain-
ing 1 CP -even operator, adj is an adjoint representation containing
(nf − 1)(nf + 2)/2 CP -even operators and nf (nf − 1)/2 CP -odd op-

erators, āa is the T
[i,j]
[k,l] representation, antisymmetric in both higher

and lower indices and containing nf (nf − 3)(n2
f + nf + 2)/8 CP -even

operators and nf (nf − 3)(nf − 1)(nf + 2)/8 CP -odd operators, and

s̄s is the T
{i,j}
{k,l} representation, symmetric in both higher and lower in-

dices and containing nf (nf − 1)(nf + 1)(nf + 2)/8 CP -even operators
and nf (nf − 1)(n2

f + 3nf − 2)/8 CP -odd operators. Hence, in a single-
fermion theory we have 5 independent CP -even operators, while in a
theory with nf = 3 there are 297 independent operators, 171 CP -even
and 126 CP -odd ones.

- (R̄R)(R̄R)

The following sub-class is composed by two currents containing only
right-handed fermions:

Qee = (ēpγ
µer)(ēsγ

µet) , (3.53)

Quu = (ūpγ
µur)(ūsγ

µut) , (3.54)

Qdd = (d̄pγ
µdr)(d̄sγ

µdt) , (3.55)

Qeu = (ēpγ
µer)(ūsγ

µut) , (3.56)

Qed = (ēpγ
µer)(d̄sγ

µdt) , (3.57)

Q
(1)
ud = (ūpγ

µur)(d̄sγ
µdt) , (3.58)

Q
(8)
ud = (ūpγ

µTAur)(d̄sγ
µTAdt) . (3.59)

For this sub-class as well, due to eqs. (3.3)-(3.5), Q
(8)
ud is the only non-

redundant operator containing colour octets, due to the different field
content of the two currents.

Analogously to the previous class, the Qeu, Qed and Q
(1,8)
ld operators

each contain a total of (n2
e + n2

o) CP -even operators and of 2neno CP -
odd operators, while the Quu and Qdd operators both transform as a 1
+ adj + adj + āa + s̄s. The operator Qee is a special case: the Fierz
identity of Eq. (3.5) transform the operator into itself, implying that it
is symmetric in both e and ē indices, and therefore that it transforms
as a 1 + adj + s̄s. Therefore, in a single-fermion theory we have 7
independent CP -even operators, while in a theory with nf = 3 there
are 450 independent operators, 255 CP -even and 195 CP -odd.
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- (L̄R)(L̄R)

This sub-class is composed by either two scalar currents or two tensor
ones, with the barred fermions always being the left ones. The operator
list is the following, each one along with its hermitian conjugate:

Q
(1)
quqd = (q̄jpur)εjk(q̄

k
sdt) , (3.60)

Q
(8)
quqd = (q̄jpT

Aur)εjk(q̄
k
sT

Adt) , (3.61)

Q
(1)
lequ = (l̄jper)εjk(q̄

k
sut) , (3.62)

Q
(3)
lequ = (l̄jpσµνer)εjk(q̄

k
sσ

µνut) . (3.63)

Due to non-Hermiticity, each family of operators is described by two
nf ×nf complex matrices, with a total of n4

f CP-even operators and n4
f

CP-odd ones. Hence, in a single-fermion theory we have 8 independent
operators, 4 CP -even and 4 CP -odd, while in a theory with nf = 3
there are 648 independent operators, 324 CP -even and 324 CP -odd
ones.

- (L̄R)(R̄L)

The final sub-class is composed by just one scalar operator, along with
its hermitian conjugate:

Qledq = (l̄per)(d̄sqt) . (3.64)

This last operator is again non-Hermitian, hence described by two nf ×
nf complex matrices, with a total of n4

f CP-even operators and n4
f CP-

odd ones. Therefore, in a single-fermion theory we have 2 independent
operators, 1 CP -even and 1 CP -odd, while in a theory with nf = 3
there are 162 independent operators, 81 CP -even and 81 CP -odd ones.

3.2.2 The Anomalous Dimension

The computation of the AD for dimension 6 operators, needed to perform the
RGE of the respective Wilson coefficients, has been slowly performed for several
decades [36, 39–52]. However, most of the early studies were focused only on
small sub-sets of the operators, often without even taking into account the mixing
between the different classes of operators described in the previous section.

Presently, the Warsaw basis is the only basis for which a complete computa-
tion of the one-loop AD has been fully performed [4–7]4. These results agreed

4The computation was performed in a rescaled basis for convenience, but it is straightforward
to obtain the results for the original basis by scaling back the rescaled operators.
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g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 g2 0 0 1 0 0 0 0

H6 2 0 λ, g2 g4, g2λ, λ2 g6, g4λ y4 0 y4 0

H4D2 3 0 0 g2, λ g4 y2 0 y2 0

g2X2H2 4 g4 0 1 g2, λ 0 y2 1 0

yψ2H3 5 0 0 g2, y2 g4 g2, λ, y2 g2λ, g4, g2y2 g2, λ, y2 y2

gyψ2XH 6 g4 0 0 g2 1 g2, y2 1 1

ψ2H2D 7 0 0 y2 g4 y2 g2y2 g2, λ, y2 y2

ψ4 8 0 0 0 0 0 g2y2 y2 g2, y2

g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 0 0 0 1 0 0 0 0

H6 2 g6λ 0 g2λ, λ2 λg4 λy2 0 λg2, λy2 0

H4D2 3 g6 0 g2 g4 0 g2y2 g2 0

g2X2H2 4 g4 0 0 0 0 0 0 0

yψ2H3 5 g6 0 g2, λ, y2 g4 y2 g2λ, g2y2 g2, λ, y2 λ, y2

gyψ2XH 6 g4 0 0 0 0 g2, y2 1 1

ψ2H2D 7 g6 0 g2 g4 0 g2y2 g2, y2 g2, y2

ψ4 8 g6 0 0 0 0 g2y2 g2, y2 g2, y2

Table 3.1: The form of the one-loop AD matrix for the coefficients of the rescaled
dimension six operators [5–7]. The scaling factors are shown next to each operator
class. The upper table gives entries generated by direct contribution from a 1PI
one-loop diagram. The lower table gives entries which are generated after EOM are
employed to remove redundant operators, hence not directly generated by means
of 1PI diagrams. There are also y2 contributions to be added to all diagonal entries
except the first one, stemming from Higgs wave-function renormalization.
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with the small subsets computed before, supplementing such results with several
new elements. A scheme of the non-null entries of the AD matrix is shown in
Tab. 3.1, where the contributions are divided in two classes: the first one comes
from the direct mixing between dim-6 operators, with AD entries stemming from
the computation of 1 particle-irreducible (1PI) diagrams; however, a second set
of contributions has to be taken in consideration when redundant operators are
removed from the basis by means of the EOM: even though these operators are
not present in the final basis, one must keep track of their effects in order to fully
compute the one-loop AD. The effect of this kind of contribution is often recovered
by taking a look at 1 particle-reducible (1PR) diagrams, in a similar fashion as
one must do when adding penguin operators to the four-quark operators of the
Lagrangian needed to study weak decays [53, 54]: penguin operators do need to
be taken into account to properly renormalize the theory, but using the EOM is
possible to re-write them in terms of four-quark operators.

As a first step in my PhD program, I recomputed several of the entries of
the AD, namely all those stemming from 1PI diagrams. This computation was
performed since a systematic cross-check of the computation from Refs. [4–7] was
lacking in the literature. All the results obtained were found in perfect agreement
with their results. In the rest of this section, I will illustrate the procedure I
followed to perform this cross-check.

The computation of the AD of a set of operators is closely connected to the ul-
traviolet (UV) divergences renormalization of such operators, due to the following
relation between the AD matrix γ̂ and the renormalization matrix Ẑ:

γ̂ = Ẑ−1 dẐ

d lnµ
. (3.65)

Bearing this in mind, the calculation of the AD is carried out after performing the
following preliminary operations:

- the Feynman rules for the dimension 6 Lagrangian L6 are obtained using the
FeynRules package [55], after creating a suitable model file;

- all relevant one-loop diagrams are written employing the FeynArts pack-
age [56].

Once these operations are carried out, the actual computation can be performed.
The employed algorithm is the Passarino-Veltman reduction [57]: this algorithm
allows to rewrite all tensor integrals in terms of well-known scalar ones. A recent
review can be found in Appendix A of Ref. [58], while here I will cover only the
main features of the method.

32



The computation of a generic one loop diagram requires calculating integrals
of the following form:

IN ∼
∫

d4l

(2π)4

N (l)

(l2 −m2
1)((l + q1)2 −m2

2) . . . ((l + qN−1)2 −m2
N)

, (3.66)

where N is the number of external particles (with momentum pi) and qi =
∑i

j=1 pj.
The numerator N (l) is a polynomial function of the loop momentum l, and a
scalar integral is the special case where N (l) = 1. It is important to stress the
fact that power counting implies that a UV divergence appears in IN only if N (l)
contains a tensor of rank r ≥ 2N − 4; hence, only one-point and two-point scalar
integrals are UV divergent. In the presence of UV divergences, the integrals require
regularization; a conventional scheme is dimensional regularization [21], where the
number of dimensions of the space-time is set to D = 4− 2ε, and the limit ε→ 0
is performed at the end of the computation. As a result, the integration measure
in Eq. (3.66) is changed to

d4l

(2π)4
→ dDl

(2π)D
. (3.67)

The Passarino-Veltman reduction scheme makes use of Lorentz invariance in order
to reduce the tensor integrals to scalar ones. Focusing for example on N = 1, 2,
the one-point and two-point integrals can be written as

A0(m) =
1

iπD/2

∫
dDl

1

(l2 −m2)
, (3.68)

B0, B
µ, Bµν(p1,m1,m2) =

1

iπD/2

∫
dDl

1, lµ, lµν

(l2 −m2
1) ((l + p1)2 −m2

2)
; (3.69)

hence, it is possible to expand in terms of so-called form factors the two-point
tensor integrals:

Bµ = pµ1B1 , (3.70)

Bµν = gµνB00 + pµ1p
ν
1B11 . (3.71)

By contracting these equations with p1 and gµν , all form factors can be expressed
in terms of the well-known scalar integrals A0 and B0.

The renormalization matrix (and hence the AD matrix) can be finally obtained
by taking in consideration the coefficients of the divergent parts of the diagrams
(i.e. the coefficients of the ε−1 terms of the scalar integrals); these coefficients can
be extracted employing the following relations:

Div[A0(m)] = m2 , Div[B0(p1,m1,m2)] = 1 , (3.72)

and remembering that the one-point and two-point scalar integrals are the only
scalar integrals to develop a UV divergence.
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3.3 Higher Dimension Operators

A systematic study of operators with dimension higher than 6 has been started only
recently [59, 60]. Such study is limited by the rapidly increasing growing number
of such operators [61]: for instance, there are 30 (1542) dimension 7 operators and
993 (44807) dimension 8 operators in a theory with one (three) flavours. Moreover,
given such an enormous number of operators involved, it was necessary to develop
new techniques based on Hilbert Series in order to catalogue them in a systematic
and “usable” way [62].

However, operators with higher dimension are usually considered as sub-leading
with respect to the widely employed and studied dimension six ones, given the
higher suppression induced by the NP scale. Therefore, it is common to neglect
operators with dimension higher than six in phenomenological analyses, unless
there are particular reasons to include them, usually dictated by a specific choice
of symmetries [63]. Nevertheless, one has to keep in mind that observables are
built from squared amplitudes: this means that the effects of squared dimension six
operators are of the same order of the ones stemming from the interference between
SM operators and dimension eight ones. Hence, once the future experiments will
became sensitive to quadratic dimension six operators effects, dimension eight
operators will have to be taken into account as well.
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Part II

Anomalies in b→ s transitions
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In the decades that have followed the original formulation of flavour mixing [16],
the flavour structure of the SM has been experimentally tested and well established.
On the one side, the tremendous progress on the experimental facilities has probed
the flavour structure of the SM to a high level of precision [64]; on the other
side, a substantial effort has been carried on by the theoretical community to
go well beyond leading order computations [65]. In this flavour “precision tests”
context, radiative and (semi)leptonic ∆B = 1 processes, related at the quark level
to b→ sγ, s`` transitions, occupy a special place in probing the SM and its possible
extensions in terms of NP models [66, 67].

Firstly, this is due to the fact that these rare B meson decays belong to the
class of FCNC processes. These processes are among the most sensitive probes of
BSM Physics, thanks to the GIM mechanism [68]: the flavour structure of the SM
allows for FCNC starting only at the loop level. Hence, there is significant room
for heavy new degrees of freedom to sizably contribute to these rare processes.

Secondly, from the experimental side, the study of rare B meson decays offers
us some of the most precise measurements amongst the |∆F | = 1 processes. For
instance, the inclusive Branching Fraction of B → Xsγ has been measured with
a relative uncertainty of a few percent [69–71], while the study of an exclusive
mode such as B → K∗`` allows for a detailed analysis of the angular distribution
of the four final state particles, yielding rich experimental information in terms
of angular functions of the dilepton invariant mass, with full kinematic coverage
of the latter [72] and – starting from Ref. [73] – also with available experimental
correlations among the angular observables.

Finally, the occurrence of several so-called anomalies has been arising in the last
few years within the family of ∆B = 1 processes. These anomalies, if confirmed,
would point to the presence of NP underling the b → sγ, s`` transitions [74–83].
Therefore, a coherent study of this pattern of anomalies performed by means of
the SMEFT, trying to find a systematic explanation of the experimental data,
could provide an interesting insight of the shape of NP (if these anomalies would
be indeed confirmed by future experiments).
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Chapter 4

The Theoretical Framework

In this chapter we review out all the equations needed to define the observables
displaying the recent anomalies in b→ sγ, s`` transitions, further analyzed in the
following chapter. We will first study the B → V `+`− decays, with V being a
vector meson (e.g., a K∗ or a φ), and then we will easily obtain formulae for the
B → V γ and B → P`+`− decays, with P being a pseudoscalar meson (e.g., a K).

4.1 Weak Hamiltonian and Amplitude

The b→ sγ, s`` transitions can be described by means of the ∆B = 1 WET Hamil-
tonian [84–86] which can be split in two parts, a hadronic one and a semileptonic
one:

H∆B=1
eff = Hhad

eff +Hsl+γ
eff , (4.1)

where

Hhad
eff =

4GF√
2

∑
p=u,c

λp

[
C1P

p
1 + C2P

p
2 +

∑
i=3,...,6

CiPi + C8gQ8g

]
, (4.2)

Hsl+γ
eff =

4GF√
2
λt

[
C7Q7γ + C ′7Q

′
7γ + C9Q9V + C ′9Q

′
9V + C10Q10A + C ′10Q

′
10A

+ CSQS + C ′SQ
′
S + CPQP + C ′PQ

′
P

]
. (4.3)

The operators Pi are defined as

P1 = (s̄LγµT
apL)(p̄Lγ

µT abL) , (4.4)

P2 = (s̄LγµpL)(p̄Lγ
µbL) , (4.5)

P3 = (s̄LγµbL)
∑

q(q̄γ
µq) , (4.6)
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P4 = (s̄LγµT
abL)

∑
q(q̄γ

µT aq) , (4.7)

P5 = (s̄Lγµ1γµ2γµ3bL)
∑

q(q̄γ
µ1γµ2γµ3q) , (4.8)

P6 = (s̄Lγµ1γµ2γµ3T
abL)

∑
q(q̄γ

µ1γµ2γµ3T aq) , (4.9)

and the operators Qi are defined as

Q7γ =
e

16π2
m̂bs̄σµνPRF

µνb , (4.10)

Q8g =
gs

16π2
m̂bs̄σµνPRG

µνb , (4.11)

Q9V =
αem
4π

(s̄γµPLb)(¯̀γµ`) , (4.12)

Q10A =
αem
4π

(s̄γµPLb)(¯̀γµγ5`) , (4.13)

QS =
αem
4π

m̂b

mW

(s̄PRb)(¯̀̀ ) , (4.14)

QP =
αem
4π

m̂b

mW

(s̄PRb)(¯̀γ5`) . (4.15)

The primed operators Q′i are obtained from the operators Qi by substituting PR →
PL, PL → PR in the quark bilinears. T a are the SU(3)c generators, gs denotes
the strong coupling constant, e denotes the electromagnetic coupling constant,
αem = e2/(4π) and m̂b is the b-quark mass in the MS scheme at the scale mb. In
principle, Hsl+γ

eff could also contain the tensor operators

QT =
e2

(4π)2
(s̄σµνb)(¯̀σµν`) , QT5 =

e2

(4π)2
(s̄σµνb)(¯̀σµνγ5`) ; (4.16)

however, these operators can not be generated in the SM, so they are usually
neglected.

We can now compute the decay amplitude A of a B meson decaying into a
vector meson V (e.g. a K∗ or a φ) and a lepton pair. The contribution of the
semileptonic Hamiltonian can be factorized in a sum of products of hadronic and
leptonic currents:

Asl = 〈V `+`−|Hsl+γ
eff |B̄〉 = LµV aV µ+LµAaAµ+LSaS +LPaP +LµTLaTLµ+LµTRaTRµ ,

(4.17)
where, using the relation

(s̄σµνPR(L)b)(µ̄σ
µνPR(L)µ) =

4

q2
(s̄qνσ

µνPR(L)b)(µ̄qρσ
µρPR(L)µ) , (4.18)

we have defined

LµV = 〈`+`−| ¯̀γµ` |0〉 , (4.19)
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LµA = 〈`+`−| ¯̀γµγ5` |0〉 , (4.20)

LS = 〈`+`−| ¯̀̀ |0〉 , (4.21)

LP = 〈`+`−| ¯̀γ5` |0〉 , (4.22)

and

aV µ =
4GF√

2

e2

16π2
λt

[
C9 〈V | s̄γµPLb |B̄〉+ C ′9 〈V | s̄γµPRb |B̄〉

+2
m̂b

q2

(
C7q

ν 〈V | s̄σµνPRb |B̄〉+ C ′7q
ν 〈V | s̄σµνPLb |B̄〉

)]
, (4.23)

aAµ =
4GF√

2

e2

16π2
λt

[
C10 〈V | s̄γµPLb |B̄〉+ C ′10 〈V | s̄γµPRb |B̄〉

]
, (4.24)

aS =
4GF√

2

e2

16π2
λt
m̂b

mW

[
CS 〈V | s̄PRb |B̄〉+ C ′S 〈V | s̄PLb |B̄〉

]
, (4.25)

aP =
4GF√

2

e2

16π2
λt
m̂b

mW

[
CP 〈V | s̄PRb |B̄〉+ C ′P 〈V | s̄PLb |B̄〉

]
. (4.26)

The contribution of the hadronic Hamiltonian does not naively factorize, but with
the insertion of two electromagnetic currents to mediate the semileptonic decay
the amplitude takes the form

Ahad = −ie
2

q2

∫
dx4e−iq·x 〈`+`−| jem,leptµ (x) |0〉

∫
dy4eiq·y 〈V |T{jem,had µ(y)Hhad

eff (0)} |B̄〉

≡ e2

q2
LµV a

had
µ , (4.27)

in such a manner that its contribution can be absorbed in (4.23):

aV µ =
4GF√

2

e2

16π2
λt

[
C9 〈V | s̄γµPLb |B̄〉+ C ′9 〈V | s̄γµPRb |B̄〉

+2
m̂b

q2

(
C7q

ν 〈V | s̄σµνPRb |B̄〉+ C ′7q
ν 〈V | s̄σµνPLb |B̄〉

)
+

16π2

q2
ahadµ

]
.

(4.28)

4.2 Helicity Amplitudes and Helicity Form Fac-

tors

In this section we carry out the decomposition of the leptonic currents in spins
and helicities, using the completeness relation

ηµν = εt,µε
∗
t,ν −

∑
λ=±1,0

εµ(1, λ)ε∗ν(1, λ) , (4.29)
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where εµ(1, λ) denotes a spin-1 helicity triplet of polarisation 4-vectors for a vector

particle of four-momentum qµ and mass
√
q2, and εµt = qµ/

√
q2.

Using the fact that all leptonic currents are conserved, except for LµA, we get
that all their contractions with εt,µ are equal to zero; observing now that

qµL
µ
A = 2mlLp , (4.30)

we can write the amplitude in the following form:

A = −
∑

λ=±1,0

LV (λ)HV (λ)−
∑

λ=±1,0

LA(λ)HA(λ) + LSHS + LPHP , (4.31)

where

LV (λ) = εµ(λ)LµV , HV (λ) = ε∗µ(λ)aµV , (4.32)

LA(λ) = εµ(λ)LµA , HA(λ) = ε∗µ(λ)aµA , (4.33)

LS(λ) = LS , HS(λ) = aS , (4.34)

LP (λ) = LP , HP (λ) = aP +
2ml

q2
qµa

µ
A . (4.35)

The quantities HV , HA, HP and HS are called helicity amplitudes. Working with
these amplitudes is particularly useful, since they allow us to study directly how
the non-factorizable effects coming from the hadronic Hamiltonian contribute to
the observables, as we will discuss in the following sections.

In order to define explicitly those amplitudes we first need to define the follow-
ing helicity form factors:

−imBṼL(R)λ(q
2) = 〈V (λ)| s̄/ε∗(λ)PL(R)b |B̄〉 , (4.36)

m2
BT̃L(R)λ(q

2) = ε∗µ(λ)qν 〈V | s̄σµνPL(R)b |B̄〉 , (4.37)

imBS̃L(R)(q
2) = 〈V (λ = 0)| s̄PL(R)b |B̄〉 . (4.38)

We can now write the explicit form of the helicity amplitudes:

HV (λ) = −iN
{
C9ṼLλ + C ′9ṼRλ +

m2
B

q2

[2m̂b

mB

(C7T̃Lλ + C ′7T̃Rλ)− 16π2hλ

]}
, (4.39)

HA(λ) = −iN(C10ṼLλ + C ′10ṼRλ) , (4.40)

HS = iN
m̂b

mW

(CSS̃L + C ′SS̃R) , (4.41)

HP = iN
{ m̂b

mW

(CP S̃L + C ′P S̃R) +
2mµmB

q2

[
C10

(
S̃L −

ms

mb

S̃R
)

+ C ′10

(
S̃R −

ms

mb

S̃L
)]}

,

(4.42)
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where

N = −4GFmB√
2

e2

16π2
λt (4.43)

is a normalization factor, and

hλ =
i

m2
B

εµ∗(λ)ahadµ (4.44)

contains all the non-factorizable effects coming from the hadronic Hamiltonian.
Note that parity invariance of strong interactions allow us to write down the

following relations:

ṼLλ = −η(−1)LṼR,−λ ≡ Ṽλ , (4.45)

T̃Lλ = −η(−1)LT̃R,−λ ≡ T̃λ , (4.46)

S̃L = −η(−1)LS̃R ≡ S̃ , (4.47)

where L is the angular momentum and η is the intrinsic parity of the vector meson
V ; this means that there are seven independent helicity form factors for spin ≥ 1
and three for spin 0. It is now possible to rescale the helicity-0 form factors as

V0(q2) =
2mB

√
q2

ρ1/2
Ṽ0(q2) , (4.48)

T0(q2) =
2m3

B√
q2ρ1/2

T̃0(q2) , (4.49)

S(q2) = −2mB(mb +ms)

ρ1/2
S̃(q2) , (4.50)

where

ρ = 4m2
B|~k|2, (4.51)

and ~k is 3-momentum of the recoiling K̄∗ in the B̄ rest frame,

~k2 =
m4
B + (m2

K∗ − q2)2 − 2m2
B(m2

K∗ + q2)

4m2
B

. (4.52)

Defining for the remaining helicities

V±(q2) ≡ Ṽ±(q2) , T±(q2) ≡ T̃±(q2) , (4.53)

it is possible to express these form factors in terms of the traditional transverse
form factors [87, 88]:

V±(q2) =
1

2

[(
1 +

mV

mB

)
A1(q2)∓ ρ1/2

mB(mB +mV )
V (q2)

]
, (4.54)
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V0(q2) =
1

2mV ρ1/2(mB +mV )

[
(mB +mV )2(m2

B − q2 −m2
V )A1(q2)− ρA2(q2)

]
,

(4.55)

T±(q2) =
m2
B −m2

V

2m2
B

T2(q2)∓ ρ1/2

2m2
B

T1(q2) , (4.56)

T0(q2) =
mB

2mV ρ1/2

[
(m2

B + 3m2
V − q2)T2(q2)− ρ

(m2
B −m2

V )
T3(q2)

]
, (4.57)

S(q2) = A0(q2) . (4.58)

4.3 Kinematic Distribution

Let us now take a further step, and consider the final state particles of the decay
(produced when the vector meson V decays into a pair of long-lived particles). In
this section we will consider, without any loss of generality, the case where the
vector meson is a K∗: the full decay channel is therefore

B̄(p)→ K̄∗(k)[→ K̄(k1)π(k2)]`+(q1)`−(q2) , (4.59)

where K̄ = K̄0 or K− and π = π+ or π0 (when φ is the vector meson, the final state
mesons are a K+ and a K−). Let us define the angles θK , θl and φ as illustrated
in Fig. 4.1. We first define, in the B̄ rest frame,

el =
pl− × pl+

|pl− × pl+|
, ek =

pK̄ × pπ
|pK̄ × pπ|

, ẑ =
pK̄ + pπ
|pK̄ + pπ|

. (4.60)

We can now define φ in the interval [0, 2π) through the relations

sinφ = (el × ek) · ẑ , cosφ = el · ek . (4.61)

Figure 4.1: Definition of kinematic variables in the decay B0 → K∗0(→
K−π+)`+`−. Figure taken from Ref. [89].
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Hence, φ is the angle between the normals to the planes defined by K−π+ and `+`−

in the rest frame of the B meson, θl is defined as the angle between the direction
of flight of the B̄ and the `− in the dilepton rest frame, and θK is defined as the
angle between the direction of motion of the B̄ and the K̄ in the di-meson rest
frame; both angles are defined in the interval [0, π).

Making the assumption that the K̄∗ is a narrow resonance which decays, we
should make the replacement

|K̄∗;λ〉 →
√
b

∫
dΩKY

λ
1 (θ, φK) |θK ;φK〉 , (4.62)

where θK is previously defined, φK is the angle between the x axis and the projec-
tion of the former onto the xy plane and b ≡ BF (K∗ → Kπ) ≈ 1.

Squaring the amplitude and summing over lepton spins allow us to write the
fully differential decay rate as

d(4)Γ

dq2d(cos θ`)d(cos θK)dφ
=

9

32π

(
Is1 sin2 θK + Ic1 cos2 θK + (Is2 sin2 θK + Ic2 cos2 θK) cos 2θ`

+I3 sin2 θK sin2 θ` cos 2φ+ I4 sin 2θK sin 2θ` cosφ

+I5 sin 2θK sin θ` cosφ+ (Is6 sin2 θK + Ic6 cos2 θK) cos θ`

+I7 sin 2θK sin θ` sinφ+ I8 sin 2θK sin 2θ` sinφ

+I9 sin2 θK sin2 θ` sin 2φ
)
. (4.63)

The angular coefficients Ii are functions of q2, and can be expressed in terms of
the helicity amplitudes defined in Eqs. (4.39)-(4.42) as

Ic1 = F

{
1

2

(
|H0

V |2 + |H0
A|2
)

+ |H0
P |2 +

2m2
l

q2

(
|H0

V |2 − |H0
A|2
)

+ β2|H0
S|2
}
, (4.64)

Is1 = F

{
β2 + 2

8

(
|H+

V |2 + |H−V |2 + (V → A)
)

+
m2
l

q2

(
|H+

V |2 − |H−V |2)− (V → A)
)}

,

(4.65)

Ic2 = −F β
2

2

(
|H0

V |2 + |H0
A|2
)
, (4.66)

Is2 = F
β2

2

(
|H+

V |2 + |H−V |2
)

+ (V → A) , (4.67)

I3 = −F β
2

2
Re
[
H+
V (H−V )∗

]
+ (V → A) , (4.68)

I4 = F
β2

4
Re
[
(H+

V +H−V )(H0
V )∗
]

+ (V → A) , (4.69)

I5 = F

{
β

4
Re
[
(H−V −H+

V )(H0
A)∗
]

+ (V ↔ A)− βml√
q2

Re
[
H∗S(H+

V +H−V )
]}

, (4.70)
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Is6 = Fβ Re
[
H−V (H−A )∗ −H+

V (H+
A )∗
]
, (4.71)

Ic6 = 4F
βml√
q2

Re
[
H∗SH

0
V

]
, (4.72)

I7 = F

{
β

2
Im
[
(H+

A +H−A )(H0
V )∗
]

+ (V ↔ A)− βml√
q2

Im
[
H∗S(H−V +−H+

V )
]}

,

(4.73)

I8 = F
β2

4
Im
[
(H−V −H+

V )(H0
V )∗
]

+ (V → A) , (4.74)

I9 = F
β2

4
Im
[
H+
V (H−V )∗

]
+ (V → A) , (4.75)

where

F =
ρ1/2βq2

3× 25π3m3
B

BF (K∗ → Kπ), β =

√
1− 4m2

l

q2
, (4.76)

and ρ is defined in Eq. (4.51).
It is worth to notice that it is possible to study the CP-conjugate decay

B → K∗`+`− in an analogous way, obtaining a decay rate with the same form
of Eq. (4.63) with the following substitutions:

I1s(c),2s(c),3,4,7 → Ī1s(c),2s(c),3,4,7, I5,6s(c),8,9 → −Ī5,6s(c),8,9, (4.77)

where the angles are defined as in the B̄ decays, with K− → K+. All the Īi’s are
equal to the Ii’s, but with all the weak phases conjugated.

4.4 Angular Observables

We have now all the ingredients needed in order to define all the relevant observ-
ables. Taking into account both the Ii angular coefficients and their CP -conjugate
counterparts, it is possible to define the following quantities:

Σi =
Ii + Īi

2
, ∆i =

Ii − Īi
2

. (4.78)

As a first step, we can now define the “usual” observables: the branching ratio,
its longitudinal component and the forward-backward asymmetry, which can be
defined in terms of the averaged angular coefficients as:

Γ′ =
1

2

dΓ + dΓ̄

dq2
=

1

4
[(3Σ1c − Σ2c) + 2(3Σ1s − Σ2s)] ,

44



FL =
3Σ1c − Σ2c

4Γ′
, AFB = −3Σ6s

4Γ′
. (4.79)

In the limit q2 � m2
` the terms proportional to m2

`/q
2 can be dropped from

the angular coefficients in Eqs. (4.64)-(4.75), and moreover the helicity amplitude
HP → 0 (since it is proportional to mi/q

2 in the SM). In this limit, one therefore
obtains further relations connecting the angular coefficients, which can be exploited
in order to reduce the number of independent observables. These relations can be
written as:

Σ1c = −Σ2c , Σ1s = 3Σ2s , (4.80)

and they simplify the expressions for FL and Γ′ to

FL =
Σ1c

Γ′
and Γ′ = Σ1c + 4Σ2s . (4.81)

Focusing now on angular observables, two different prescriptions have been
advocated in the past [90, 91] in order to define these observables, and both have
been used for experimental analyses [72–74, 77, 78, 92, 93]. These two definitions
can be easily related to each other, since they are (obviously) equal from the
physical point of view.

As a first possibility, following [90] one can define

Si =
Ii + Īi

2Γ′
, Ai =

Ii − Īi
2Γ′

. (4.82)

On the other hand, in an attempt to reduce the uncertainties coming from form
factors and hadronic contributions one can define a new set with suitable ratios of
angular coefficients [91, 94–96]:

P1 =
Σ3

2Σ2s

, P2 =
Σ6s

8Σ2s

, P3 = − Σ9

4Σ2s

, (4.83)

P ′4 =
Σ4√−Σ2sΣ2c

, P ′5 =
Σ5

2
√−Σ2sΣ2c

, P ′6 = − Σ7

2
√−Σ2sΣ2c

, P ′8 = − Σ8√−Σ2sΣ2c

.

Experimentally, these observables are measured in binned data cut in regions
of q2, the dilepton invariant mass. Hence, working without any loss of generality
in the basis of Refs. [91, 94–96], the following convention has to be applied in
order to define the experimentally binned observables starting from the analytic
expressions:

〈P1〉 =
〈Σ3〉

2 〈Σ2s〉
, 〈P2〉 =

〈Σ6s〉
8 〈Σ2s〉

, 〈P3〉 = − 〈Σ9〉
4 〈Σ2s〉

,
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〈P ′4〉 =
〈Σ4〉√
−〈Σ2sΣ2c〉

, 〈P ′5〉 =
〈Σ5〉

2
√
−〈Σ2sΣ2c〉

,

〈P ′6〉 = − 〈Σ7〉
2
√
−〈Σ2sΣ2c〉

, 〈P ′8〉 = − 〈Σ8〉
2
√
−〈Σ2sΣ2c〉

, (4.84)

where it should be noted that the relevant quantity is the ratio of binned angular
coefficients rather than the binned ratios, since:

〈Σi〉 =

∫ q2max

q2min

Σ(q2)dq2 . (4.85)

Furthermore, the binned Branching Fraction, FL and AFB are defined as:

〈Γ′〉 = 〈Σ1c + 4Σ2s〉 , 〈FL〉 =
〈3Σ1c − Σ2c〉

4 〈Γ′〉 , 〈AFB〉 = −3 〈Σ6s〉
4 〈Γ′〉 . (4.86)

It is now important to stress that the theory definitions of these observables
are not the same as the ones used for the experimental measurements, due to the
difference in the definitions of the kinematic variable between the two cases; the
numerical results between the two definitions are connected by [97, 98]:

PExp
2 = −PT

2 , P ′Exp
3 = −P ′T3 , P ′Exp

4 = −1

2
P ′T4 and P ′Exp

8 = −1

2
PT

8 , (4.87)

where the superscript Exp implies experimental definitions, while the subscript
T implies theory ones. While the sign difference is due to the change in the
definition of the kinematic variables, the factors of two come from the difference
in the definitions of the variables themselves.

Finally, it is possible to define the connection between the two different sets of
observables.

P1 = A
(2)
T =

2S3

1− FL
, P2 = −2

3

AFB
1− FL

, P3 = − S9

1− FL
P ′4 =

2S4√
FL(1− FL)

, P ′5 =
S5√

FL(1− FL)
, P ′6 = − S7√

FL(1− FL)
,

P ′8 = − 2S8√
FL(1− FL)

. (4.88)

In the above relations, both the left and the right hand sides refer to the definitions
of the kinematic variables used in theory computations.
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4.5 On (Non-)Factorizable Contributions to the

Hadronic Hamiltonian

Before concluding the theoretical study of the B → V `+`− decays, it is mandatory
to further analyze the factorizable and non-factorizable corrections to the ∆B = 1
Hamiltonian H∆B=1

eff in Eq. (4.1).
Concerning the semi-leptonic part of the Hamiltonian, Hsl+γ

eff in Eq. (4.3), such
contribution clearly factorizes into the product of hadronic form factors and lep-
tonic tensors to all orders in strong interactions. However, the hadronic part
described by the matrix elements of Hhad

eff in Eq. (4.2) factorize only in the infinite
mb limit below the charm threshold [100–102]. Moreover, working in the infinite
mass limit one can exploit the heavy quark symmetry in order to reduce the num-
ber of independent form factors from seven to two soft form factors [103–105].
Therefore, in this limit, the amplitudes have simpler expressions that guided the
community towards the definition of the aforementioned optimized observables,
dominated by short distance physics [89, 95, 106]. However, it is mandatory to
try to understand how important are the departures from the infinite mass limit,
with particular care to the q2 ' 4m2

c region (which is where, as we will see in the
next chapter, most of the anomalies have been found).

Figure 4.2: Non-factorizable contribution due to a soft gluon exchange in the
B0 → K∗γ∗ matrix element. The circled cross represents the insertion of the four
quark local operator Qc

1,2. Figure taken from Ref. [99].
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Concerning factorized amplitudes, these can be described using the full set of
form factors, which have been estimated using QCD sum rules at low q2 [87, 88,
107–109]. Such computations, and in particular the latest results from Ref. [88]
providing the full correlation matrix, show a reasonably accurate estimate of low
q2 values, with an high compatibility with the lattice estimate at high q2 [110]. It
is interesting to note that using full QCD form factors reintroduces some hadronic
uncertainties into optimized observables; however, such uncertainties have been
estimated in refs. [91, 94, 96, 111–117].

On the other hand, particular care has to be taken when considering the
non-factorizable contribution present in the matrix element of the Hamiltonian
in Eq. (4.2) involving a cc̄ loop, as shown in Fig. 4.2. Working in the infinite
mass limit, the QCD factorization approach can be exploited in order to compute
such term, up to O(αs) corrections [101, 118]. However, if one is interested in
corrections beyond the leading power, the contribution of Qc

1,2 to the B̄ → K̄∗γ∗

amplitude has been estimated using light-cone sum rules only at q2 ∼ 1 GeV2, in
the single soft-gluon approximation [99]. While this is a seminal contribution, it
is important to stress the fact that additional soft-gluon exchanges are suppressed
by a factor 1/(q2 − 4m2

c), hence worsening the approximation as q2 increases and
eventually breaking it down at q2 ∼ 4m2

c . In Ref. [99] the authors proposed also a
model to extend their results in the whole low-q2 phenomenological region, based
on an extrapolation of their result at q2 ∼ 1 GeV2 with a description of the res-
onant region based on dispersion relations. While this model is reasonable, it is
nevertheless spoiled by the large uncertainties present in the transition region from
q2 ∼ 4 GeV2 to m2

J/ψ.
It is interesting to notice that the community is well aware of this issue, which

might reduce the reliability of the theoretical computation carried out for these
decay channel and put at stake the claim of NP [8–11, 97, 114, 117, 119–122].
However, new efforts have been lately carried out in order to fully grasp the ef-
fects lying beyond such non-factorizable contributions, even though a conclusive
computation is still lacking [123, 124].

4.6 Amplitudes for Other Decay Channels

Starting from the computations of previous sections, it is now straightforward to
obtain analogous results for the B → V γ and B → P`+`− decays, with P being a
pseudoscalar meson (e.g., a K).

Regarding the radiative decay, it’s easy to observe that it is described by a
simple subset of the amplitudes of the semileptonic one. The exact relation is the

48



following:

A(B̄ → V (λ)γ(λ)) = lim
q2→0

q2

e
HV (q2 = 0;λ)

=
iNm2

B

e

[
2m̂b

mB

(C7T̃λ(0)− C ′7T̃−λ)(0)− 16π2hλ(q
2 = 0)

]
,

(4.89)

where the helicity can be only ±1.
In a similar fashion, the amplitude for the B → P`+`− decay can be obtained

considering only the subset of helicity-0 amplitudes. It is worth to mention that,
for a pseudoscalar, we have the following relations between the helicity and the
transverse form factors [108]:

V0(q2) = if+(q2) , (4.90)

T0(q2) = i
2mB

(mB +mP )
fT (q2) , (4.91)

S(q2) =
1 + ms

mb

1− ms
mb

m2
B −m2

M

ρ1/2
f0(q2) . (4.92)
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Chapter 5

Review of b→ s Anomalies and
Their Interpretations

The recent years of experimental results in B physics have been characterized by
the emergence of a striking pattern of anomalies, observed in multiple independent
studies of some rare b→ s transitions [125].

The first part of this chapter will be devoted to reviewing the present status
of the anomalies: I will first discuss the measurements of the angular analysis of
the B → K∗µ+µ− decay [74, 78, 80, 82, 126], followed by an analysis of the mea-
surements of the B → φµ+µ− [77] and B → Kµ+µ− [75, 81] Branching Fractions.
Subsequently, I will describe the measurement of RK [76] and RK∗ [83], the ratios
between the muonic Branching Fraction and the electronic one in the B → K`+`−

and the B → K∗`+`− channels, respectively.
After this review, I will focus on the possible comprehensive interpretations

of such a striking pattern of anomalies. Many early studies showed how a rather
simple and fascinating explanation could be achieved advocating NP effects in the
muonic vectorial operator Qµ

9V [66, 98, 117, 127, 128]: the results of the fits showed
that the introduction of a BSM correction ∆Cµ

9 ' −1 is enough to account for
all the anomalies, offering an appealing systematic explanation of the ∆B = 1
anomalies.

However, the global picture might not be as simple as that. In the final part
of this chapter I will describe the work that we have done on the subject, trying
to cast some light on what might be the real origin of these anomalies. Indeed,
we first focused on the angular analysis of the B → K∗µ+µ− decay alone, show-
ing how the size of the anomaly is directly connected with the treatment of the
non-factorizable hadronic contribution: the widely used estimate of such term is
based on a LCSR computation [99], which however lacks of some potentially-non-
negligible contributions, as explained in Sec. 4.5; therefore, we allowed for larger
(but in the same ballpark) effects, obtaining that this SM effect could indeed be the
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reason behind the experimental discrepancies, without however being able to rule
out the NP explanation [8–10]. On the other hand, once the RK and RK∗ ratios
are taken into account, a SM-only explanation is no longer viable; nevertheless,
allowing once again for larger hadronic effects in the B → K∗µ+µ− decay unveils
the possibility of a new BSM explanation, requiring NP effects in the electronic
axial operator Qe

10A [11].

5.1 Anomalies in B → K∗µ+µ− Angular Analysis

The first element in this pattern of anomalies occurred with the measurement of
the angular analysis of the B → K∗µ+µ− decay. The first partial angular measure-
ment was carried out in 2013 by LHCb, with an analysis based on a data sample
corresponding to an integrated luminosity of 1.0fb−1 [74]1. The data was divided
in 6 q2 bins, where q2 is the invariant lepton mass, with a total of 24 independent
measurements. Agreement with the SM was observed for 23 of the 24 measure-

1Due to the limited number of signal candidates, i.e. 883, it was not possible to fit the data
to the full differential distribution: consequently, the data was “folded” in order to reduce the
number of parameters in the fit, resulting with a measurement of only 4 of the 8 independent
angular observables.
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Figure 5.1: Measured values for the P ′5 observable (black points) performed by
LHCb, based on a data sample corresponding to an integrated luminosity of
1.0fb−1 [74], to be compared with SM predictions from Ref. [95] (blue bands).
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ments, with a 3.7σ local discrepancy observed in the 4.30 < q2 < 8.68 GeV2/c4

bin of the P ′5 observable compared with the SM prediction in Ref. [95], as shown
in Fig. 5.1.

The anomaly was subsequently confirmed by the 2015 analysis of the full Run
1 LHCb dataset, corresponding to an integrated luminosity of 3.0fb−1 [78]. The
larger amount of signal candidates (equal to 2398± 57 events) allowed for the first
time for a full angular analysis, with each angular observable subdivided in 7 q2

bins. Once again, a local discrepancy was found in the “central” bins of the P ′5
observable, namely 4.0 < q2 < 6.0 GeV2/c4 and 6.0 < q2 < 8.0 GeV2/c4, with a
global discrepancy showing a 3.4σ significance compared to the SM predictions of
Ref. [116].

The following year, also the Belle collaboration performed a measurement of
the P ′5 observable, for the first time both for the muonic and the electronic chan-
nel [79, 80]. Due to the very limited number for signal candidates (127 ± 15 for
the electron channel and 185± 17 for the muonic one), only two bins per observ-
able where measured, with a bigger relative uncertainty compared to LHCb ones.
Nevertheless, while the electron channel was found in agreement with the SM pre-
dictions in Ref. [129], the muonic one displayed a 2.6σ discrepancy in the highest
bin, namely 4.0 < q2 < 8.0 GeV2/c4, in the same direction of the one found by
LHCb.

To corroborate even more the picture of the “P ′5 anomaly”, two new indepen-
dent measurements of this angular observable have been released at the beginning
of 2017 by ATLAS [82] and CMS [126] collaborations, showing in the former a 2.7σ
tension in the 4.0 < q2 < 6.0 GeV2/c4 bin between data and the SM prediction in
Ref. [116], while a perfect agreement was found in the latter.

A summary of all the latest experimental measurements, compared to SM
predictions from Refs. [116, 128], can be found in Fig. 5.2.2 It is worth to stress
again that these SM predictions, however, suffer from a possible under-estimation
of the hadronic contribution: in fact, their treatment of such contribution is based
on the LCSR computation of Ref. [99], which lacks some potentially non-negligible
contributions, namely the consideration of multiple soft-gluon emissions. Hence,
this observable cannot be viewed as a theoretically “clean” one. Therefore, due to
lack of a firm control of QCD power corrections in this channel, the discrepancies
obtained comparing experimental results to SM predictions on this decay channel
should be taken cum grano salis.

2https://twiki.cern.ch/twiki/pub/LHCbPhysics/RareDecayConferenceMaterial/
P5p Including ATLAS CMS Belle.pdf
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Figure 5.2: Latest measured values for the P ′5 observable performed by LHCb [78]
(black points), Belle [79, 80] (red points), ATLAS [82] (blue points) and CMS [126]
(green points), to be compared with SM predictions from Ref. [116] (orange bands)
and Ref. [128] (purple bands).

5.2 Anomalies in Branching Fractions: the B →
Kµ+µ− and the Bs → φµ+µ− cases

The second anomaly in the context of b → s transitions is dated 2014, when
the Branching Fraction of the B → Kµ+µ− decay was first measured [75]. The
analysis was carried out on the complete LHCb Run 1 dataset, with the observable
being subdivided in 17 q2 bins. While each measurement is in agreement with its
SM prediction from Ref. [130], in the low-q2 region they consistently show lower
values compared to the theory computation, as shown in Fig. 5.3. Although this
measurement would not be particularly appealing to NP hunters by itself, the fact
that the (small) discrepancy between theory and data was found in the same q2

region as the P ′5 one induced some authors to also take this measurement into
account, as an hint of an underling NP picture affecting the b → s transitions
scenario.

This possibility was further corroborated in 2015, when the LHCb collaboration
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made available the measurements of the Branching Fraction for the Bs → φµ+µ−

decay, making use of the complete Run 1 dataset [77]. The observable was mea-
sured in 6 q2 bins, and compared with the SM predictions from Ref. [130]. Once
again, data showed lower values relatively to the theory computation in the low-q2

region, with a local discrepancy of about 3σ in the 2.0 < q2 < 5.0 GeV2/c4 bin,
as can be seen looking at Fig. 5.4.

It is worth noting that the latter mode suffers from the same “pollution” coming
from hadronic physics as the one affecting the angular analysis of the B →
K∗µ+µ− decay, and hence this observable might not be viewed as a totally “clean”
one; on the other hand, the theoretical computation of the hadronic part for the
former channel seems to be under control [131], hence pointing to NP as the only
possible explanation of such an experimental behavior, in the case that future
experiments will further confirm the present trend.
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Figure 5.3: Measured values of the differential Branching Fraction of the B+ →
K+µ+µ− decay (black points) performed by LHCb, based on a data sample corre-
sponding to an integrated luminosity of 3.0fb−1 [75], to be compared with the SM
predictions from Ref. [130] (green/orange bands).
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Figure 5.4: Measured values of the differential Branching Fraction of the B0
s →

φµ+µ− decay (black points) performed by LHCb, based on a data sample corre-
sponding to an integrated luminosity of 3.0fb−1 [77], to be compared with the SM
predictions from Refs. [88, 128] (blue bands).

5.3 Anomalies in Branching Fraction Ratios: the

RK and the RK∗ Observables

One of the most intriguing measurements came out in 2014, when the LHCb
collaboration presented for the first time the measurement of the ratio between
the muonic Branching Fraction and the electronic one in the B+ → K+`+`−

channel [76]:

RK[1,6]
≡ Br(B+ → K+µ+µ−)

Br(B+ → K+e+e−)
(5.1)

= 0.745+0.090
−0.074 ± 0.036 ,

where the subscript refers to the q2 bin of the measurement, i.e. 1.0 < q2 <
6.0 GeV2/c4. This experimental value shows a deviation of about 2.6σ with re-
spect to the standard theoretical prediction: indeed, the SM value of RK in the
bin provided by the LHCb collaboration is expected to be equal to unity beyond
the percent level of accuracy [132, 133]. Moreover, contrary to most of the ob-
servables analyzed so far, RK is the first one to be regarded as insensitive to QCD
effects [132]: hence, it can be really viewed as a “clean” observable, and used as
a genuine probe for NP effects in b → s transitions. It was the first real smoking
gun for NP, and further confirmation of its deviation compared to the SM value
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by future experiments would definitely point towards the presence of BSM physics
in rare B decays.

The most fascinating measurement, however, came out only in 2017, when
the measurement of the ratio between the muonic Branching Fraction and the
electronic one in the B → K∗µ+µ− channel was first announced by the LHCb
collaboration [83]:

RK∗[0.045,1.1] ≡
Br(B → K∗µ+µ−)

Br(B → K∗e+e−)
(5.2)

= 0.660+0.110
−0.070 ± 0.024 ,

RK∗[1.1,6] = 0.685+0.113
−0.069 ± 0.047 . (5.3)

These measurements have been performed in two separate bins, namely 0.045 <
q2 < 1.1 GeV2/c4 and 1.1 < q2 < 6.0 GeV2/c4, in order to isolate in the first
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Figure 5.5: Measured values of the RK∗0 ratio between the differential branch-
ing fractions of the B → K∗µ+µ− and the B → K∗e+e− decays (black points)
performed by LHCb, based on a data sample corresponding to an integrated lumi-
nosity of 3.0fb−1 [83], to be compared with SM predictions from Refs. [133] (orange
points), [121] (blue points), [134] (green points), [135] (red points) and [117] (purple
points).
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bin the effects coming from the proximity to the di-muon threshold. The results
confirmed the RK pattern, showing again a discrepancy of about 2σ with respect
to the expected SM predictions from Refs. [117, 121, 133–135], which are in turn
all agreeing between each other and predicting a value close to unity to a very
good accuracy for the central-q2 bin and close to 0.9 for the low-q2 one (due to the
aforementioned threshold effects). Once again, this measurement can be viewed
as “clean” relatively to hadronic effects, and an explanation in terms of NP effects
is the only viable one in case of a further confirmation by future experiments.

5.4 A Comprehensive Phenomenological Inter-

pretation: the CNP
9µ ' −1 Case

After the first few anomalies started to arise, the desire to find a comprehensive
interpretation of such a pattern drove several phenomenological and theoretical
studies towards this common goal.

From the model building point of view, the measurements of RK and RK∗ were
definitely the most informative ones: they indeed hint at UV completion of the SM
displaying a very characterizing Lepton Flavour Universality violation (LFUV).
The most promising of such models capable of accounting for the experimental
deviations involve the presence of either leptoquarks and/or Z ′ gauge bosons,
through diagrams such as the ones depicted in Fig. 5.6. Such models were already
analyzed after the first few anomalies came out, as can be easily observed looking
at the literature [136–166]. However, once the RK∗ measurement was announced,
this field attracted many researchers with a flourishing production of papers within
just a few months [167–213].

On the phenomenological point of view, a first viable scenario was already
pointed out when the first NP fits were performed after the measurements of the
first anomalies [66, 98, 117, 127, 128]: remarkably simple and straightforward,

b s b s

µ µ µ µ

b s

µ µ

Z ′ LQ LQ

Figure 5.6: Examples of possible NP mediators responsible for the b→ s anomalies:
a Z ′ gauge boson (left), a scalar leptoquark (center) and a vector leptoquark
(right).
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it requires just the introduction of NP effects in the vector semi-muonic current
Qµ

9V . Indeed, the results of all these studies evidenced how the introduction of a
CNP

9µ ' −1 was enough to account for all the anomalies, and as new measurements
came out this scenario kept being reinforced: this can be easily seen looking at
Fig. 5.7, summarizing the results of most of the latest global fits performed after the
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Figure 5.7: Some results for CNP
9µ and CNP

10µ obtained from the global fit of all
present b→ s anomalies. In panel (a) are shown the results from Ref. [214]; panel
(b) reports the results from Ref. [215]; in panel (c) are displayed the results from
Ref. [216] and in panel (d) are reported the results from Ref. [217].
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announcement of the RK∗ measurements, involving all the present experimental
data [214–217]. It is worth to mention that this NP solution has been found out
also by the two remaining global fits performed on that very same day: apart from
the one I carried out with my collaborators [11] and that I am going to thoroughly
describe in the following section, it was pointed out also by the authors of Ref. [218],
who however carried out most of their analysis in a SU(2) × U(1) basis. I will
review their work in the following chapter, devoted to SMEFT interpretation of
the anomalies.

All the aforementioned global fits investigated also less simple scenarios, where
pairs of NP WC were taken in consideration with specific connection between the
BSM couplings, guided by specific UV completions. The most promising results
(i.e. the best fitting ones) were obtained on two scenarios: the first one involves
both vectorial and axial semi-muonic currents, related according to the prescription
CNP

9µ = −CNP
10µ, while the second one relies on both left-handed an right-handed vec-

torial semi-muonic currents, following the requirement that CNP
9µ = −C ′NP

9,µ. Both
scenarios fit well the experimental data, even though goodness-of-fit tests pointed
towards the CNP

9µ -only scenario as the best fitting one. It is interesting to notice
that all these global fits allowed for several viable NP scenarios, induced by differ-
ent UV models; however, all of the scenarios definitely agree on the requirement
of a CNP

9µ 6= 0 in order to explain the anomalies.

5.5 An Alternative Interpretation: the Axial So-

lution

After the P ′5 anomaly was first measured and the first NP fits started to appear, my
collaborators and I decided to start investigating this matter. In particular, we no-
ticed that regarding the treatment of non-perturbative hadronic power corrections,
all the community relied on the phenomenological model of Ref. [99]. However,
as already stressed in Sec. 4.5, this model misses potentially relevant contribu-
tions stemming from the inclusion of multiple soft gluons emissions. Therefore,
we decided to perform the analysis reported in Ref. [8] and subsequently updated
in Refs. [9, 10]: the goal was to extract the size of such contributions directly
from experimental information, employing the LCSR results from Ref. [99] only in
the reliable q2 region, i.e. q2 ≤ 1 GeV2, while allowing this contribution to grow
approaching the cc̄ threshold.

In order to do so, we performed a Bayesian analysis where the main focus was
put on the hadronic parameters hλ appearing in Eq. (4.39), describing the non-
factorizable power corrections. Following the definition introduced in Refs. [114],
we generalized such corrections parametrizing them by means of the following

59



Taylor expansion:

hλ(q
2) =

ε∗µ(λ)

m2
B

∫
d4xeiqx〈K̄∗|T{jµem(x)Hhad

eff (0)}|B̄〉

= h
(0)
λ +

q2

1 GeV2h
(1)
λ +

q4

1 GeV4h
(2)
λ . (5.4)

The choice of such an expansion, where we decided to keep terms up to the quartic
order, was motivated by looking at the shape of Eq. (4.39): indeed, the first two
terms of this expansion can be reinterpreted as a (NP) modification of C7 and

C9 respectively3, while the term h
(2)
λ , introduced in order to allow for a growth

of non-perturbative power corrections approaching the cc̄ threshold, cannot be
reinterpreted as a BSM effect.

It is now mandatory to stress the following point regarding NP searches in this
kind of processes: until a more accurate theoretical estimate of hλ(q

2) over the
full kinematic range is known, it is not possible to disentangle long-distance, SM
contributions such as h

(0,1)
λ from possible NP ones affecting the size of C7,9. This

means that, if the result of a SM fit points to a solution with h
(0,1)
λ producing a

non-factorizable contribution compatible in size with the one extracted in Ref. [99]
by means of dispersion relations, it is not possible to determine whether the effect
is indeed a SM one, or a NP-induced one.

With this caveat in mind, we first performed a SM fit letting the complex
parameters h

(0,1,2)
λ vary in the range |h(0,1,2)

λ | < 2× 10−3, with no constrain on the
phase and using flat priors. We imposed for q2 ≤ 1 GeV2 the results from Ref. [99],
given in terms of the quantities g̃Mi which are related to the hλ as follows:

g̃M1 = − 1

2C1

16m3
B(mB +mK∗)π

2√
λ(q2)V (q2)q2

(
h−(q2)− h+(q2)

)
, (5.5)

g̃M2 = − 1

2C1

16m3
Bπ

2

(mB +mK∗)A1(q2)q2

(
h−(q2) + h+(q2)

)
, (5.6)

g̃M3 =
1

2C1

[
64π2m3

BmK∗
√
q2(mB +mK∗)

λ(q2)A2(q2)q2
h0(q2)

−16m3
Bπ

2(mB +mK∗)(m
2
B − q2 −m2

K∗)

λ(q2)A2(q2)q2

(
h−(q2) + h+(q2)

)]
. (5.7)

The results for the parameters defining the non-factorizable power corrections
hλ are reported in Fig. 5.8: it is interesting to notice that |h(2)

− | is different from

3Rigorously speaking, h
(0,1)
λ should be first multiplied by q2-dependent form factors, if one

want to exactly perform such reinterpretation; however, as can be easily checked looking at
Ref. [88], the q2 dependance of such form factors is so mild that they won’t spoil the identification
with the current level of precision.
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zero at more than 95.45% probability, thus disfavouring the interpretation of the
hadronic correction as NP effects to the operators Q7,9. In order to compare such
results for hλ with the results for g̃Mi from Ref. [99], the reader may look at
Fig. 5.9. It is easy to check that the contribution increases while approaching the
cc̄ threshold, as it should given the growing effect of multiple soft-gluon emissions,
displaying an appreciable q2 dependence induced by |h(2)

− |. However, the results
are still in the same ballpark as the ones from Ref. [99], hence potentially not
beyond the expected size within the SM.

It is now interesting to take a look at the observables obtained including such
hadronic contributions. In Fig. 5.10 we show the results for the angular observ-
ables in the S basis of the full fit to the LHCb measurements from Refs. [72, 78]
reported in Tab. 5.1. The corresponding numerical results are reported in the “full
fit” column of Tab. 5.1. It’s easy to check that, with the hadronic contributions
obtained by our fit, it is possible to generate an S5 (and hence a P ′5) compatible
with experimental data.

Aside from the full fit, we also produced predictions for each observable on
each bin, and the relative p-value. For uncorrelated observables, such as the BR’s,
this was done simply removing the experimental information on the respective
observable. On the other hand, this procedure had to be generalized for correlated
observables in order to take both theoretical and experimental correlations into
account; since the angular observables are correlated in each bin, we proceeded
removing all the experimental information in on bin at a time from the fit in order
to obtain the predictions; the fit produced a correlation matrix for such predicted
observables, which was added to the experimental one and used to compute the
corresponding log likelihood and, consequently, the p-value.

For completeness and easy comparison, in Tab. 5.1 we report also the results
and predictions for the optimized observable P ′5, which is however not independent
from the other observables in Tab. 5.1 and hence not directly used in the fit.

The bottom line of our first work in this field was therefore that, given both
the present hadronic uncertainties and the present experimental data, looking at
the B → K∗µ+µ− decay alone is not enough to determine whether NP is present
in b → s transitions. Indeed, we showed that an underestimation of hadronic
effects due to non-factorizable power corrections, which are still not under total
control in the SM, could very well be the reason behind the discrepancies between
the SM predictions of Refs. [116, 128] and the experimental measurements from
LHCb [78], Belle [79, 80] and ATLAS [82].
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Figure 5.8: Left: results of the full fit for the hλ parameters, obtained employing
the results from Ref. [99] only for q2 ' 1 GeV2. Right: p.d.f. for the absolute
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Figure 5.9: Results of the fit for |g̃1,2,3| defined in ref. [99] as a function of q2

together with the phenomenological parametrization suggested in the same paper.
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Figure 5.10: Results of the full fit and experimental results for the B → K∗µ+µ−

angular observables, obtained employing the results from Ref. [99] only for q2 '
1 GeV2. The darker (lighter) colours identify the 68% (95%) probability regions.
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q2 bin [GeV2] Observable measurement full fit prediction p− value

[0.1, 0.98]

FL 0.264± 0.048 0.275± 0.035 0.257± 0.035

0.13

S3 −0.036± 0.063 0.002± 0.008 0.002± 0.008
S4 0.082± 0.069 0.037± 0.042 −0.025± 0.047
S5 0.170± 0.061 0.271± 0.027 0.301± 0.024
AFB −0.003± 0.058 −0.102± 0.006 −0.104± 0.006
S7 0.015± 0.059 −0.049± 0.016 −0.043± 0.017
S8 0.080± 0.076 0.027± 0.048 −0.004± 0.046
S9 −0.082± 0.058 −0.002± 0.007 −0.002± 0.007

P ′5 0.387± 0.142 0.774± 0.094 0.881± 0.082 0.0026

[1.1, 2.5]

FL 0.663± 0.083 0.691± 0.030 0.688± 0.034

0.63

S3 −0.086± 0.096 0.000± 0.013 0.001± 0.013
S4 −0.078± 0.112 −0.059± 0.027 −0.070± 0.032
S5 0.140± 0.097 0.183± 0.046 0.208± 0.057
AFB −0.197± 0.075 −0.198± 0.019 −0.200± 0.022
S7 −0.224± 0.099 −0.081± 0.042 −0.056± 0.049
S8 −0.106± 0.116 −0.003± 0.031 −0.004± 0.033
S9 −0.128± 0.096 −0.002± 0.013 0.002± 0.013

P ′5 0.298± 0.212 0.410± 0.099 0.460± 0.120 0.51

[2.5, 4]

FL 0.882± 0.104 0.739± 0.025 0.729± 0.028

0.80

S3 0.040± 0.094 −0.012± 0.009 −0.014± 0.010
S4 −0.242± 0.136 −0.176± 0.020 −0.179± 0.021
S5 −0.019± 0.107 −0.055± 0.045 −0.055± 0.052
AFB −0.122± 0.086 −0.082± 0.023 −0.082± 0.025
S7 0.072± 0.116 −0.059± 0.050 −0.080± 0.055
S8 0.029± 0.130 −0.012± 0.023 −0.012± 0.023
S9 −0.102± 0.115 −0.003± 0.009 −0.003± 0.009

P ′5 −0.077± 0.354 −0.130± 0.100 −0.130± 0.120 0.89

[4, 6]

FL 0.610± 0.055 0.653± 0.026 0.661± 0.030

0.50

S3 0.036± 0.069 −0.030± 0.013 −0.030± 0.015
S4 −0.218± 0.085 −0.241± 0.014 −0.239± 0.016
S5 −0.146± 0.078 −0.183± 0.040 −0.205± 0.046
AFB 0.024± 0.052 0.050± 0.027 0.067± 0.032
S7 −0.016± 0.081 −0.034± 0.046 −0.037± 0.055
S8 0.168± 0.093 −0.015± 0.025 −0.026± 0.026
S9 −0.032± 0.071 −0.007± 0.012 −0.012± 0.014

P ′5 −0.301± 0.160 −0.388± 0.087 −0.440± 0.100 0.46

[6, 8]

FL 0.579± 0.048 0.569± 0.034 0.517± 0.070

0.82

S3 −0.042± 0.060 −0.050± 0.026 −0.006± 0.054
S4 −0.298± 0.066 −0.264± 0.016 −0.224± 0.037
S5 −0.250± 0.061 −0.241± 0.048 −0.164± 0.100
AFB 0.152± 0.041 0.146± 0.036 0.099± 0.077
S7 −0.046± 0.067 −0.031± 0.055 0.010± 0.110
S8 −0.084± 0.071 −0.017± 0.035 0.039± 0.055
S9 −0.024± 0.060 −0.011± 0.027 0.018± 0.047

P ′5 −0.505± 0.124 −0.491± 0.098 −0.330± 0.200 0.46

[0.1, 2]
BR · 107

0.58± 0.09 0.65± 0.04 0.67± 0.04 0.36
[2, 4.3] 0.29± 0.05 0.33± 0.03 0.35± 0.04 0.35

[4.3, 8.68] 0.47± 0.07 0.45± 0.05 0.47± 0.11 1.0

BRB→K∗γ · 105
4.33± 0.15 4.35± 0.14 4.61± 0.56 0.63

Table 5.1: Experimental results (with symmetrized errors) from Refs. [72, 78],
results from the full fit, predictions and p-values for B → K∗µ+µ− BR’s and
angular observables, obtained employing the results from Ref. [99] only for q2 '
1 GeV2. The predictions are obtained removing the corresponding observable from
the fit. For the angular observables, experimentally correlated in each bin, the
predictions are obtained removing from the fit all angular observables in one bin
at a time. See the text for details. The results for BR(B → K∗γ) (including the
experimental value from refs. [219–222]) and for the optimized observable P ′5 are
also reported. The latter is however not explicitly used in the fit as a constraint,
since it is not independent of FL and S5.
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However, once the experimental results for the Branching Fractions ratios are
taken into account, the situation changes: non-factorizable correction, indepen-
dent from their size, cannot be responsible of LFUV since they are completely
washed out in ratios; moreover, as already pointed out in Sec. 5.2, the hadronic
contribution in B → Kµ+µ− is under control according to Ref. [131], making
RK more clean and reliable from the theoretical point of view. Therefore, barring
experimental flukes in both LHCb measurements of RK [76] and RK∗ [83], NP has
to be the lone physical explanation underling such experimental deviations.

Nevertheless, in our following work [11] we inspected whether a more conserva-
tive approach on the size of non-factorizable power corrections could have effects
on the sensitivity to NP and, more importantly, whether it could also unveil differ-
ent NP scenarios not viable when a more “dogmatic” approach is used. In order
to do so, we tested several NP scenarios in both approaches: a Phenomenologi-
cal Model Driven (PMD) one, which relies on the phenomenological model from
Ref. [99], and a Phenomenological and Data Driven (PDD) approach, which makes
use of the results of Ref. [99] only for q2 ≤ 1 GeV2 and allows for larger values as
q2 grows.

To address the necessity to compare different scenarios and discriminate their
validity, we used the Information Criterion [223, 224], defined as

IC = −2logL+ 4σ2
logL , (5.8)

where logL is the log-likelihood average and σ2
logL is its variance. The introduction

of the second term in Eq. (5.8) is really important, since it takes into account the
effective number of parameters in the model, hence allowing for a meaningful
comparison of models with different number of parameters. This quantity is built
in such a way that smaller IC values point towards preferred models.

As a first step in our analysis, we started analyzing the most widely studied
NP scenario in both our approaches: the CNP

9µ 6= 0 scenario, where we also allowed
for a non-null CNP

10µ (indicated as the scenario (II) in Ref. [11]). The NP results
for such analyses are shown in Fig. 5.11, with the left green panel displaying the
PMD approach results while the right red panel displays the PDD ones. It is easy
to observe that the PMD results are compatible with the ones obtained by the
remaining global fits from Refs. [214–217], shown in Fig. 5.7, with an evidence for
NP at more than 5σ. On the other hand, the PDD result shows a significantly
reduced NP evidence, roughly between 3σ and 4σ, with a slightly improved IC
value due to the effect of hadronic corrections in accommodating data.

The second scenario object of our interest already drew attention in the past:
the one involving both CNP

9 and CNP
10 , with CNP

10,µ,e = −CNP
9,µ,e (indicated as the

scenario (V) in Ref. [11]); for completeness, we also allowed for a CNP
7 6= 0. The

results are shown in Fig. 5.12, for both the PMD and the PDD approach. In both
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Figure 5.11: The fit result for the scenario involving CNP
9,µ and CNP

10,µ. Here and in
the following, PMD approach results are shown in the left green panel, while PDD
ones are in the right red panel. In the 1D distributions we show the 16th, 50th and
84th percentile, marked with the dashed lines, while in the correlation plots (where
the correlation is also reported) we show the 1, 2 and 3σ contours, in decreasing
degrees of transparency. The blue square and lines identify the SM limit. We also
report IC values for the two approaches (see Eq. (5.8)).
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Figure 5.13: The fit result for the scenario involving CNP
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the approaches we obtained values compatible with zero for both CNP
7 (which is

mainly constrained by the inclusive B → Xsγ Branching Fraction, as shown in
Ref. [225]) and for CNP

9,e = −CNP
10,e, since the anomalies in the angular observables

for B → K∗µ+µ− require NP effects in the muonic sector: therefore, all the
evidence of NP resides in CNP

9,µ = −CNP
10,µ, which is found to be different from zero

at 3σ, with allowed values compatible with the ones found in Refs. [214, 216].
Once again, as expected, the PDD approach softens the evidence for NP (the WC
now sits only 2σ away from the null value), with a sizably lower value for the
IC. It is worth to mention that, while the PDD IC value is compatible with the
ones obtained for both approaches in the previous scenario, this is not the case
for the PMD approach: this implies that, while under the PDD approach both
scenarios are equally preferred by data, this is not the case for the PMD approach,
where the “uncorrelated” scenario is preferred in comparison with the one where
the condition CNP

9,µ = −CNP
10,µ is required.

As a third scenario, we decided to test a set of NP WCs that had not yet
been taken in consideration by previous global fits, since it does not involve the
presence of CNP

9,µ : indeed, we performed a fit for a NP scenario involving only
CNP

7 and CNP
10,µ,e (indicated as the scenario (IV) in Ref. [11]). The results for

this scenario are shown in Fig. 5.13, as usually for both the PMD and the PDD
approach, and are very informative. NP effects in the dipole operator and in the
axial semi-leptonic currents cannot address at the same time both the BF ratios
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Figure 5.14: The fit result for the scenario involving CNP
7 , CNP

9,µ , CNP
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10,µ and
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RK,K∗ and the angular observable P ′5, without allowing for large non-factorizable
power corrections. Indeed, the fit does not perform well in the PMD scenario, as
can be easily inferred by looking at the IC value and comparing it with the ones
obtained for the previous scenarios. Most likely this is the reason why this scenario
have not been tested by any other collaboration so far, given its bad performance.
However, the situation dramatically changes once a more conservative handling
of hadronic power correction is employed, following the prescriptions of the PDD
approach. In fact, allowing for a larger size for the non-factorizable contribution, it
is possible to rely upon them to reproduce the B → K∗µ+µ− angular observables
data, as was shown in our previous work [8]. Therefore, once the muonic angular
observables are taken into account, it is possible to accommodate for the BF
ratios RK and RK∗ by means of NP effects in the axial semi-electronic current.
We therefore obtained evidence for a CNP

10,e at ∼ 2σ, but most importantly an IC
value of the same order of the ones obtained for the previous scenarios, hence
showing that also this axial solution is viable, under the PDD approach.

As a final scenario, we also performed a fit with all 5 NP WCs switched on,
without imposing any relation between them: this is the scenario indicated as
(VI) in Ref. [11], and the results of the fit are shown in Fig. 5.14. The IC
values for the two scenarios are compatible both among themselves and with the
previous well-fitting cases. It is interesting to notice that current experimental
data are informative enough to constrain, at the same time, all the NP WCs in
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both approaches. Moreover, the PDD approach employed in this scenario, thanks
to a nontrivial interplay among the NP effects encoded both in CNP

9,µ and CNP
10,e and

the hadronic contributions, produces the weakest NP evidence provided by our
global analysis – sitting between 2σ and 3σ level – while allowing for a very good
description of the entire data set.

The numerical values for the mean and standard deviation for the NP WCs
together with the absolute values of hλ can be found in Tabs. 5.2–5.3 for the PMD
and PDD approach respectively, for all the scenarios analyzed above4. Analo-
gously, the results for the observables of main interest, i.e. the BF ratios RK

and RK∗ and the angular observable P ′5, are reported in Tabs. 5.4–5.5 for all the
NP scenarios, along with the experimental measurements, for the PMD and PDD
approach respectively.

4Since h0 enters the decay amplitude of Eq. (4.39) with an additional factor of
√
q2 with

respect to h± due to Eq. (4.49), we dropped h
(2)
0 in all our analysis in Ref. [11].

Par. (II) (IV) (V) (VI)

CNP
7 − −0.011± 0.013 0.003± 0.013 0.015± 0.014

CNP
9,µ −1.53± 0.25 − −0.54± 0.17 −1.64± 0.29

CNP
9,e − − 0.09± 0.25 −1.6± 1.0

CNP
10,µ 0.03± 0.16 −0.12± 0.22 0.54± 0.17 0.009± 0.200

CNP
10,e − −1.22± 0.37 −0.09± 0.25 −0.91± 0.76

|h(0)
0 | · 104 2.0± 1.2 1.8± 1.2 1.3± 1.0 2.0± 1.3

|h(0)
+ | · 104 0.079± 0.067 0.083± 0.069 0.086± 0.072 0.076± 0.064

|h(0)
− | · 104 0.54± 0.19 0.56± 0.20 0.60± 0.21 0.52± 0.19

|h(1)
0 | · 104 0.30± 0.22 0.45± 0.26 0.32± 0.24 0.28± 0.22

|h(1)
+ | · 104 0.22± 0.19 0.21± 0.19 0.26± 0.22 0.22± 0.19

|h(1)
− | · 104 0.23± 0.19 0.30± 0.21 0.32± 0.22 0.23± 0.19

|h(2)
+ | · 104 0.053± 0.045 0.046± 0.042 0.064± 0.053 0.050± 0.044

|h(2)
− | · 104 0.046± 0.039 0.092± 0.050 0.070± 0.047 0.045± 0.038

Table 5.2: Results from the fit for NP WCs and hadronic contributions in the
PMD approach, for the 4 NP scenarios analyzed in the text.
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Par. (II) (IV) (V) (VI)

CNP
7 − 0.008± 0.014 0.011± 0.014 0.014± 0.014

CNP
9,µ −1.17± 0.46 − −0.43± 0.23 −1.43± 0.64

CNP
9,e − − 0.21± 0.29 −1.2± 1.2

CNP
10,µ 0.26± 0.23 0.27± 0.26 0.43± 0.23 0.20± 0.25

CNP
10,e − −0.86± 0.4 −0.21± 0.29 −0.60± 0.99

|h(0)
0 | · 104 2.3± 1.4 1.7± 1.3 1.7± 1.3 2.6± 1.6

|h(0)
+ | · 104 0.081± 0.070 0.086± 0.075 0.087± 0.075 0.077± 0.067

|h(0)
− | · 104 0.55± 0.22 0.60± 0.23 0.59± 0.23 0.53± 0.21

|h(1)
0 | · 104 0.41± 0.34 0.50± 0.36 0.46± 0.37 0.40± 0.33

|h(1)
+ | · 104 0.42± 0.30 0.39± 0.29 0.42± 0.30 0.41± 0.30

|h(1)
− | · 104 0.52± 0.38 0.82± 0.46 0.73± 0.43 0.50± 0.37

|h(2)
+ | · 104 0.160± 0.099 0.139± 0.094 0.160± 0.100 0.145± 0.095

|h(2)
− | · 104 0.126± 0.098 0.190± 0.100 0.170± 0.110 0.124± 0.094

Table 5.3: Results from the fit for WCs and hadronic contributions in the PDD
approach, for the 4 NP scenarios analyzed in the text.

Obs. Exp. value (II) (IV) (V) (VI)

RK [1,6] 0.753± 0.090 0.703± 0.047 0.781± 0.055 0.740± 0.061 0.724± 0.067

RK∗ [0.045,1.1] 0.680± 0.093 0.881± 0.016 0.839± 0.024 0.858± 0.019 0.843± 0.030

RK∗ [1.1,6] 0.707± 0.102 0.786± 0.049 0.713± 0.065 0.740± 0.060 0.717± 0.067

P5
LHCb
[4,6] −0.301± 0.160 −0.427± 0.061 −0.556± 0.063 −0.587± 0.053 −0.431± 0.061

P5
LHCb
[6,8] −0.505± 0.124 −0.607± 0.061 −0.677± 0.066 −0.704± 0.057 −0.61± 0.06

P5
ATLAS
[4,6] −0.26± 0.39 −0.427± 0.061 −0.556± 0.063 −0.587± 0.053 −0.431± 0.061

P5
CMS
[4.3,6] −0.955± 0.268 −0.447± 0.061 −0.572± 0.063 −0.603± 0.053 −0.451± 0.061

P5
CMS
[6,8.68] −0.660± 0.220 −0.626± 0.061 −0.688± 0.067 −0.711± 0.058 −0.63± 0.06

P5
Belle
[4,8] −0.025± 0.318 −0.524± 0.059 −0.620± 0.063 −0.649± 0.053 −0.528± 0.059

P5,e
Belle
[4,8] −0.510± 0.272 −0.794± 0.039 −0.536± 0.063 −0.710± 0.044 −0.42± 0.23

Table 5.4: Experimental results (with symmetrized errors) and results from the fit
for key observables in the PMD approach, for the 4 NP scenarios analyzed in the
text.
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Obs. Exp. value (II) (IV) (V) (VI)

RK [1,6] 0.753± 0.090 0.714± 0.064 0.775± 0.057 0.740± 0.062 0.719± 0.073

RK∗ [0.045,1.1] 0.680± 0.093 0.873± 0.016 0.842± 0.024 0.861± 0.019 0.847± 0.030

RK∗ [1.1,6] 0.707± 0.102 0.777± 0.053 0.714± 0.066 0.755± 0.059 0.722± 0.069

P5
LHCb
[4,6] −0.301± 0.160 −0.405± 0.068 −0.435± 0.065 −0.421± 0.068 −0.417± 0.068

P5
LHCb
[6,8] −0.505± 0.124 −0.521± 0.083 −0.521± 0.080 −0.508± 0.082 −0.545± 0.083

P5
ATLAS
[4,6] −0.26± 0.39 −0.405± 0.068 −0.435± 0.065 −0.421± 0.068 −0.417± 0.068

P5
CMS
[4.3,6] −0.955± 0.268 −0.420± 0.068 −0.447± 0.066 −0.434± 0.068 −0.433± 0.068

P5
CMS
[6,8.68] −0.660± 0.220 −0.531± 0.086 −0.529± 0.084 −0.514± 0.085 −0.556± 0.086

P5
Belle
[4,8] −0.025± 0.318 −0.467± 0.072 −0.481± 0.070 −0.467± 0.072 −0.486± 0.072

P5,e
Belle
[4,8] −0.510± 0.272 −0.664± 0.095 −0.424± 0.063 −0.570± 0.066 −0.41± 0.22

Table 5.5: Experimental results (with symmetrized errors) and results from the fit
for key observables in the PDD approach, for the 4 NP scenarios analyzed in the
text.
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Chapter 6

A Systematic Analysis of the
b→ s Anomalies Employing the
SMEFT Framework

In Chapter 5 I have reviewed the status of the anomalies affecting the b → s
transitions and the mainstream NP interpretation advocated to address such a
pattern. Moreover, I have also shown how a cautious handling of the hadronic
uncertainties might yield to a broader range of viable NP scenarios. All these
studies have been carried out in a WET framework. The goal of the final chapter
of this Part is therefore to reinterpret these results within the SMEFT framework,
trying to constrain in the most systematic way the SU(2)×U(1) WCs.

The first part of this chapter will be devoted to identifing the SMEFT operators
involved in b→ s transitions, and matching them to the WET ones. Subsequently,
the global fit discussed in Sec. 5.5 will be performed again, after the change of
basis has been applied. Finally, an analysis of the results is shown, with an eye on
possible future generalizations.

6.1 The Operators Involved

The list of SMEFT operators that can affect the dynamics of b → s transitions
has already been known for a few years [136, 226]. It contains operators coming
from three of the eight classes defined in Sec. 3.2.1, and can be therefore cata-
logued accordingly. Here and in the following, the chiral fermions subscripts will
indicate their flavour content in the basis where the down-type quark mass matrix
is diagonal. It is obviously possible to choose a different basis, but given that the
observables of interest involve down-type quarks this choice minimize the number
of operators involved.
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The first sub-list of operators comes from class 6, containing the dipole opera-
tors:

QdW = (q̄sσ
µνdb)τ

IϕW I
µν , (6.1)

Q′dW = ϕ†τ I(d̄bσ
µνqs)W

I
µν , (6.2)

QdB = (q̄sσ
µνdb)ϕBµν , (6.3)

Q′dB = ϕ†(d̄bσ
µνqs)Bµν . (6.4)

The second sub-list of operators stems from class 7, and includes operators
involving a fermion current and an Higgs current:

Q
(1)
Hq = (ϕ†i

←→
D µϕ)(q̄sγ

µqb) , (6.5)

Q
(3)
Hq = (ϕ†i

←→
D I

µϕ)(q̄sτ
Iγµqb) , (6.6)

QHd = (ϕ†i
←→
D µϕ)(d̄sγ

µdb) . (6.7)

The final sub-list is by far the largest one, and is a sub-set of the class 8, four-
quark operators; this is the only sub-list not blind to lepton content, and therefore
these operators can be further divided in according to the lepton involved. The
electron operators are:

Q
(1), e
lq = (l̄eγ

µle)(q̄sγ
µqb) , (6.8)

Q
(3), e
lq = (l̄eγ

µτ I le)(q̄sγ
µτ Iqb) , (6.9)

Qe
qe = (q̄sγ

µqb)(ēeγ
µee) , (6.10)

Qe
ld = (l̄eγ

µle)(d̄sγ
µdb) , (6.11)

Qe
ed = (ēeγ

µee)(d̄sγ
µdb) , (6.12)

Qe
ledq = (ēele)(q̄sdb) , (6.13)

Q′
e
ledq = (l̄eee)(d̄sqb) , (6.14)

while the analogous muonic operators are:

Q
(1), µ
lq = (l̄µγ

µlµ)(q̄sγ
µqb) , (6.15)

Q
(3), µ
lq = (l̄µγ

µτ I lµ)(q̄sγ
µτ Iqb) , (6.16)

Qµ
qe = (q̄sγ

µqb)(ēµγ
µeµ) , (6.17)

Qµ
ld = (l̄µγ

µlµ)(d̄sγ
µdb) , (6.18)

Qµ
ed = (ēµγ

µeµ)(d̄sγ
µdb) , (6.19)

Qµ
ledq = (ēµlµ)(q̄sdb) , (6.20)

Q′
µ
ledq = (l̄µeµ)(d̄sqb) . (6.21)
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Now that we have all the ingredients needed to address the anomalies, it is
necessary to perform the matching at the scale MW between the SMEFT and the
WET [136, 226]. For the dipole operator O7, blind to lepton indices, the matching
reads

C
(′)
7 =

8π2

ybλt

v2

Λ2

(
C

(′)
dB − C

(′)
dW

)
, (6.22)

where yb is the bottom Yukawa coupling and the presence of the CKM factor λt is
induced by going from the flavour basis to the mass one in the SMEFT. For the
current-current operators, one obtains

C`
9 =

4π2

e2λt

v2

Λ2

(
C`
qe + C

(1), `
`q + C

(3), `
`q − (1− 4s2

W )(C
(1)
Hq + C

(3)
Hq)
)
, (6.23)

C`
10 =

4π2

e2λt

v2

Λ2

(
C`
qe − C(1), `

`q − C(3), `
`q + (C

(1)
Hq + C

(3)
Hq)
)
, (6.24)

C ′
`
9 =

4π2

e2λt

v2

Λ2

(
C`
ed + C`

`d − (1− 4s2
W )CHd

)
, (6.25)

C ′
`
10 =

4π2

e2λt

v2

Λ2

(
C`
ed − C`

`d + CHd
)
, (6.26)

where ` can be either an electron or a muon. Finally, for the scalar and tensor
operators one gets

C`
S = −C`

P =
4π2

e2λts

v2

Λ2
C`
`edq , (6.27)

C ′
`
S = C ′

`
P =

4π2

e2λts

v2

Λ2
C ′

`
`edq , (6.28)

C`
T = C`

T5 = 0 , (6.29)

where again ` can be either an electron or a muon. It is interesting to notice
that the requirement of U(1) invariance prevents on the one hand the presence
of tensorial operators (in this channel) also in the SMEFT, while imposes on the
other hand precise relations between the scalar and pseudo-scalar WET operators.

A few observations are now in order. A WET global fit taking into account all
possible NP contributions to WCs would allow for 18 different free parameters1,
while a SMEFT requires 21 free ones. However, as we have already said, the
inclusive radiative Branching Fraction of B → Xsγ severely constraints the C

(′)
7

WCs [225]: hence, it is safe to remove the operators in Eq. (6.22) from a fit meant
to address the anomalies, reducing the number of relevant free parameters to 16

1The tensor operators are usually neglected in these kind of analysis, since they are not even
present in the SM.
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in the WET, and to 17 in the SMEFT. Moreover, the operators in Eqs. (6.5)-(6.7)
are lepton-blind, and therefore not able to address a set of anomalies involving
LFUV processes. In addition, they would be heavily correlated to the hadronic
contributions hλ, since they would appear in all the analysed processes on the same
footing. For this reason, it is reasonable to exclude also these operators from the fit,
reducing the number of SMEFT free parameters to 14. Finally, looking at the way
Q

(1), `
lq and Q

(3), `
lq contribute to the matching, it is easy to infer a 100% correlation

between the two operators, with no possibility to disentangle their contribution
with a tree-level matching. It is therefore acceptable to merge the two operators
into a single one, Q`

lq, with a reduction of the total SMEFT free parameters to 12.
Summarizing, the nature of the problem we are interested in, together with the

present status of theoretical and experimental uncertainties, allows us to simplify
the matching conditions from Eqs. (6.22)-(6.29) to the following set:

C`
9 =

4π2v2

e2λt

(
C`
qe + C`

`q

)
, (6.30)

C`
10 =

4π2v2

e2λt

(
C`
qe − C`

`q

)
, (6.31)

C ′
`
9 =

4π2v2

e2λt

(
C`
ed + C`

`d

)
, (6.32)

C ′
`
10 =

4π2v2

e2λt

(
C`
ed − C`

`d

)
, (6.33)

C`
S = −C`

P =
4π2v2

e2λt
C`
`edq , (6.34)

C ′
`
S = C ′

`
P =

4π2v2

e2λt
C ′

`
`edq , (6.35)

where we have absorbed the NP scale Λ2 in the definition of the SMEFT WCs.
In conclusion, in the current-current sector we have 8 free parameters both in the
WET and in the SMEFT, while in the scalar sector we have 8 free ones for the
former and only 4 for the latter.

6.2 Previous Studies

We have now all the ingredients needed to perform a SMEFT analyses. How-
ever, it is worth to mention that two analysis have already been performed in
this framework: the first one appeared right after the announcement of the RK∗
anomaly [218], while a second one was performed a few days later [167]. Therefore
I will first describe these two works, before going into the details of our analysis
and its differences compared to these previous studies.
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Regarding the analysis from Ref. [218], it consisted in a global fit performed in
a basis analogous to the SMEFT one, except for a different normalization. How-
ever, only the eight current-current operators were taken into account. As a first
step of their analysis, they performed a fit involving only “clean” observables (i.e.
Branching Fraction ratios) and considering one coefficient at a time. Those fits
showed that viable candidates to accomodate for the anomalies where the WC
corresponding to the SMEFT Cµ

`q, C
e
`q, C

e
qe and Ce

ed. However, once the “dirty”,
angular observables where taken into account, only the scenario involving Cµ

`q pro-
duced a feasible fit. This was easily predictable, given their handling of hadronic
uncertainties along the lines of the phenomenological model of Ref. [99]: the elec-
tron WCs are not capable to account for the B → K∗µ+µ− angular anomalies,
hence ruling them out as viable candidates to address the global anomalies pattern.
Analogously, once a global fit was performed with all WCs taken in consideration,
Cµ
`q was the only coefficient showing a significant evidence.

On the other hand, the analysis from Ref. [167] was mainly focused on the
explanation of the “clean” anomalies. The starting point consisted in deriving ap-
proximate phenomenological formule for RK and RK∗ as functions of differences be-
tween muonic and electronic NP WC, with all SM parameters fixed. Subsequently,
they performed a scan using one coefficient at a time and investigated which co-
efficient was capable to address the ratios anomalies simultaneously. Analogously
to Ref. [218], the only difference between muonic and electronic WCs capable to
account for the anomalies consisted in the one involving Cµ−e

`q ; they also performed
scans involving couple of (differences of) WCs, and once again the only way for the
anomalies to be addressed involved the presence of Cµ−e

`q in the couple of param-
eters scanned. Therefore, in the spirit of addressing the whole set of anomalies,
they focused on the scenario where most of the NP content came from Cµ

`q and
obtained bounds on this coefficient using the results from the global fit performed
in Ref. [214].

In conclusion, the two studies already performed in the SMEFT framework
agree on the need for a Cµ

`q different from zero in order to be able to consistently
address the anomalies pattern. However, if only branching fraction ratios are
taken into account, Ref. [218] showed how solutions involving electronic coefficients
are viable as well; those solutions are no longer viable once the B → K∗µ+µ−

angular observables are included in the fit, if one sticks to the dispersion relation
of Ref. [99] in order to describe the effect of hadronic contributions in the whole
phenomenological region. Nevertheless, a more conservative approach along the
lines of the PDD approach employed in Ref. [11] could preserve the viability of the
electronic solutions as well, once a global fit is performed. Therefore, in the next
section I will study all the SMEFT scenarios allowed by a more careful treatment
of hadronic uncertainties and capable of addressing the current experimental data.
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6.3 Constraining the Couplings by Means of a

Bayesian Analysis

We can now proceed to perform the global fits in the SMEFT basis. As I have
already said at the end of the previous section, these fits have been carried out
following the guidelines of the PDD approach employed in Ref. [11] and explained
in Sec. 5.5. The main feature of this approach consists in a conservative treatment
of hadronic uncertainties, relying on the LCSR computations from Ref. [99] only
at low q2 and allowing for larger effects approaching the cc̄ threshold.

As a first step, I have performed global fits where only one SMEFT WC at a
time was included. Out of the twelve operators individuated at the end of Sec. 6.1,
only four were found to be capable of addressing the anomalies producing a good
fit: namely, the ones relative to Cµ

`q, C
e
`q, C

e
qe and Ce

ed. This result is consistent with
what was already found in Ref. [218]. However, in that analysis those coefficients
were found viable only when angular observables were not included in the fit;
once a global fit was performed, all the electron solutions had to be discarded,
given their inability to address the “dirty” observables. On the other hand, as was
already pointed out in Ref. [11], once the PDD approach is employed this is no
longer the case: an hadronic contribution larger than, but in the same ballpark of,
the one predicted by dispersion relations applied to LCSR computations is indeed
capable of accounting for the angular anomalies, allowing electronic solutions to
be able to explain the ratio anomalies.

Let us now take a closer look to this four viable scenarios.

- Cµ
`q

This first case has already been studied in the literature [167, 218], as I have
already reviewed in Sec. 6.2. Moreover, it corresponds to the CNP

9,µ = −CNP
10,µ

scenario in the WET basis, already advocated in several analysis [11, 214–
217]. The fit is well-behaving, producing results for the anomalous observ-
ables compatible with experimental data. The fitted value for the WC is

Cµ
`q = (0.86± 0.22) · 10−3 TeV−2 , (6.36)

expressed in terms of mean and s.t.d extracted from the probability distri-
bution function (p.d.f.) produced by the fit. Going from the SMEFT basis
to the WET basis, this solution can be read as

CNP
9,µ = −CNP

10,µ = −0.54± 0.14 , (6.37)

in agreement with the results obtain in Refs. [11, 214–217].

In order to allow for a model comparison, the IC (defined at Eq. (5.8)) for
this model is 157. The p.d.f. for Cµ

`q, showing the 1 σ, 2σ and 3σ regions,
can be found in the left panel of Fig. 6.1
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- Ce
`q

This is the first case where all the NP content stems from an electron oper-
ator. It corresponds to the CNP

9,e = −CNP
10,e scenario in the WET basis, and

is first studied here thanks to the features of the PDD approach. The fit is
again well-behaving, with all the anomalous observables showing compati-
bility with experimental data. The fitted value for the WC is

Ce
`q = −(0.99± 0.31) · 10−3 TeV−2 , (6.38)

expressed in terms of mean and s.t.d extracted from the fit-produced p.d.f..
Rotating from the SMEFT basis to the WET basis, this solution can be read
as

CNP
9,e = −CNP

10,e = 0.63± 0.20 . (6.39)

The IC for this model is 158, perfectly compatible with the one produced for
the previous case. The p.d.f. for Ce

`q, showing the 1σ, 2σ and 3 σ regions,
can be found in the right panel of Fig. 6.1

- Ce
qe

This is the second case where all NP effects are induced by means of an
electron operator, and it corresponds to the CNP

9,e = CNP
10,e scenario in the

WET basis. Also this fit is well-behaving, displaying high compatibility
between the results for the anomalous observables and the experimental data.
The fitted value for the WC is

Ce
qe = (2.22± 0.84) · 10−3 TeV−2 , (6.40)

Figure 6.1: Left: p.d.f. for Cµ
`q from a single-coefficient global fit. Here and in the

following, the green zone is the 1 σ region, the yellow zone is the 2σ region and
the red one is the 3σ region. Right: p.d.f. for Ce

`q from a single-coefficient global
fit.
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expressed in terms of mean and s.t.d extracted from the fit-produced p.d.f..
It is interesting to notice that a second, (very) small mode can be found for
Ce
qe ' −5 · 10−3: the byproduct of this second mode is the presence of a

(again very small) second mode in the results for the BELLE P ′5 observables,
relatively to the electron channel. However, since the main Ce

qe mode is
the one producing the value for the electronic P ′5 compatible with BELLE
measurements, we will focus only on this mode disregarding the other one.
Rotating from the SMEFT basis to the WET basis, this solution can be read
as

CNP
9,e = CNP

10,e = −1.41± 0.53 . (6.41)

The IC for this model is 161, compatible with the ones previously produced.
The p.d.f. for Ce

qe, showing the 1σ, 2σ and 3σ regions, can be found in the
left panel of Fig. 6.2

- Ce
ed

This is the last case featuring NP contributions in the electron sector, and it
is the only one involving right-handed quarks. It corresponds to the C ′NP9,e =

C ′NP10,e scenario in the WET basis. This fit, too, is well-behaving, with results
for the anomalous observables compatible with experimental data. The fitted
WC value is

Ce
ed = −(2.9± 1.3) · 10−3 TeV−2 , (6.42)

expressed in terms of mean and s.t.d extracted from the fit-produced p.d.f..
Similarly to the previous case, a second small mode is present at Ce

ed '
3.5 · 10−3; once again, it produces a second mode in the results for the

Figure 6.2: Left: p.d.f. for Ce
qe from a single-coefficient global fit. Right: p.d.f.

for Ce
ed from a single-coefficient global fit. Coloring follows the prescriptions of

Fig. 6.1.
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BELLE electron P ′5 observables distant from the experimental measurement.
Therefore, we will focus again only on the main mode. Rotating from the
SMEFT basis to the WET basis, this solution can be read as

C ′
NP
9,e = C ′

NP
10,e = 1.85± 0.83 . (6.43)

The IC for this model is 158, perfectly compatible with all the ones obtained
in the previous case. The p.d.f. for Ce

ed, showing the 1σ, 2σ and 3σ regions,
can be found in the right panel of Fig. 6.2

In conclusion, these single-coefficient global fits pointed out different NP sce-
narios able to address the anomalies pattern. According to the IC they are all
equally-compatible, with no reason to prefer a muonic solution instead of an elec-
tronic one if one follows the conservative prescriptions of the PDD approach.

As a second step of this analysis, it is interesting to perform a global fit allowing
for NP effects in all the relevant SMEFT operators, i.e. a global fit with a total
of 12 floating WCs. Such a fit has never been carried out before in the literature,
and in particular within the PDD approach. The output of the fit, in the form
of p.d.f. for all the NP WCs and correlation plots for all pairs of WCs, can be
found in Figs. 6.3-6.7. As a first observation, it is worth to notice that there is
enough experimental data to constrain all the 12 WCs at the same time. Given the
high non-triviality of the decays under scrutiny, this was not easily predictable a
priori. Starting from the muonic sector, the main NP evidence among the current-
current operators is found in Cµ

`q; regarding the scalar operators, they are strictly
correlated due to the anatomy of the Bs → µµ branching fraction, as was already
observed in Ref. [136]. On the other hand, in the electron sector evidence for
NP can be found in Ce

`q and Ce
ed; moreover, these coefficients display a really

peculiar correlation, induced by the BELLE electron P ′5 in a similar fashion as
what happened for the single-coefficient global fits. However, contrarily to what
happened in those scenarios, here we are not in presence of a multimodality, where
a particular mode can be preferred due to specific reasons: as it is manifest looking
at the 2D correlation plot, we are in the presence of a broad, continuous mode. It
is reasonable to assume that such a situation is due to the limited data present
in the electron channel; therefore, it will be interesting to check if the electron
sector will behave in a similar fashion as the muon one, once an amount of data
comparable with the one relative to the muonic case will be available in the future.

Concluding, it is interesting to notice that, analogously to what was observed
for the scenario (VI) of Ref. [11], a global fit performed allowing for NP effects
in all the relevant WCs displays a larger evidence of NP contributions in the
muonic sector, although the presence of NP in the electronic sector is still possible
thanks to the conservative handling of hadronic uncertainties induced by the PDD
approach.
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of Fig. 6.1.
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Figure 6.6: p.d.f. for Ce
`edq and C ′e`edq, and relative correlations. Coloring follows

the prescriptions of Fig. 6.1.
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Figure 6.7: p.d.f. for the correlations between the muonic current-current opera-
tors (Cµ

`q, C
µ
qe, C

µ
`d and Cµ

ed, from left to right) and the electronic ones (Ce
`q, C

e
qe,

Ce
`d and Ce

ed, from top to bottom).

6.4 Future Perspectives

In the final section of this chapter, I want to spend a few words describing what
could be the possible future perspectives in this research field.

A first, possible generalization would consist in the addition of the other ∆B =
1 anomalies, namely the ones affecting b→ c transitions. Indeed, RK and RK∗ were
not the only anomalous branching fraction ratios measured in the last few years:
the RD and the R∗D ratios, defined as the ratio between the tauonic and the sum
of the electronic and muonic branching fraction of B → D(∗)`ν, have been found
above the SM prediction of 2.2σ and 3.3σ, respectively [227–230]. Moreover, also
t2 recent measure of the analogously defined RJ/ψ ratio was found ∼ 2σ above the
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SM prediction2. Given the different kind of WET operators involved in the b→ c
transition, they have generally be addressed separately by global fits. However, the
operator Q

(3)
lq can give raise to both neutral and charged currents, depending on

the Pauli matrix considered. Therefore, it is possible to perform a SMEFT global
fit that addresses all the present ∆B = 1 anomalies in a coherent framework.

A second, natural generalization for this kind of SMEFT global fits would be
the inclusion of dimension 6 loop induced effects, i.e. including the running for
the WC from the NP scale Λ to the matching scale of the WET, MW . However,
this analysis could not only consider flavour observables: the mixing between the
various dimension 6 operators showed in Refs. [4–7] implies the presence of sev-
eral new operators that do not contribute to b→ s transitions at tree-level, while
they might give raise to tree-level contributions in other channels. Therefore, a
large quantity of high energy physics phenomena should be taken into account in
order to properly constrain all the WC involved in such an analysis. Nevertheless,
the outcome of this analysis could be highly unpredictable: on the one hand, the
inclusion of all the relevant processes might generate problems with the conver-
gence of the fit, resulting in numerically unstable results which might therefore be
unreliable on the physical point of view. On the other hand, assuming a feasible
computation, there is no guarantee that such an analysis could yield to meaning-
ful constrains on all the considered WC. A possible solution would again be the
requirement of some kind of symmetry to reduce the number of operators under
scrutiny; however, such a choice would put at stakes the Bottom-Up approach
proper of the SMEFT framework, hence potentially invalidating the validity of
such an approach for this kind of analysis.

2https://indico.cern.ch/event/658856/contributions/2686351/attachments/1522412/2379024/
talk LHCb MFontana.pdf
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Part III

Is the EFT Approach the Only
Way?
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The Higgs boson observed at the Large Hadron Collider (LHC) [1, 2] behaves
in accordance with the SM predictions, i.e., it is a scalar CP-even state whose
coupling to the other known particles has a SM-like structure and a strength
proportional to their masses [231–233]. Presently, the analysis based on the com-
bination of the 7 and 8 TeV LHC data sets [233] shows that the couplings with the
vector bosons are found to be compatible with those expected from the SM within
a ∼ 10% uncertainty; on the other hand, concerning the heaviest SM fermions (the
top and the bottom quarks, and the τ lepton) the compatibility is found with a
slightly greater uncertainty, equal to ∼ 15 − 20%. The situation is going to get
better in the future, with the best present estimates [234–236] indicating that at
the end of the LHC Run 2 at

√
s = 13 − 14 TeV center-of-mass-energy and with

a 300 fb−1 integrated luminosity, the measurement of the couplings between the
Higgs boson and the vector bosons is expected to reach a few percent precision,
while the corresponding ones for the fermions, with the exception of the µ lep-
ton, can reach ∼ 8 − 12% precision. Moreover, looking at the end of the High
Luminosity phase, we can expect a reduction of these numbers by a factor ∼ 2.

However, similar levels of precision will not be reached regarding the study
of the Higgs self interactions, stemming from the scalar potential in the SM La-
grangian. In the SM, the Higgs potential in the unitary gauge reads

V (φ1) =
m2

H

2
φ2

1 + λ3vφ
3
1 +

λ4

4
φ4

1 , (IV.1)

where the Higgs mass (mH) and the trilinear (λ3) and quartic (λ4) interactions are
linked by the relations λSM

4 = λSM
3 = λ = m2

H/(2 v
2), where v = (

√
2Gµ)−1/2 is the

vacuum expectation value, and λ is the coefficient of the (Φ†Φ)2 interaction, with
Φ being the Higgs doublet field.

The experimental verification of these relations relies on the measurements of
processes featuring at least two Higgs bosons in the final state. However, due
to the smallness of the cross section for this kind of processes, constraining the
Higgs self couplings with a relative uncertainty of a few hundreds of percents is
already extremely challenging. In particular, information on λ3 can be obtained
from Higgs pair production; however, the bounds on this decay channel, stemming
from 8 TeV data, allowed us to constrain λ3 only within O(±(15− 20)λSM

3 ) [237–
240]. At

√
s = 13 TeV, the SM Higgs pair production cross section is around

35 fb in the gluon-fusion channel [241–243] and even smaller in other production
mechanisms [244, 245]: the present 13 TeV data allows to restrict the allowed
values for λ3 in the range λ3 < −8 λSM

3 and λ3 > 15 λSM
3 [246], and the most

updated estimates predict that, at the end of the High Luminosity Phase, it will
be possible to exclude at the LHC only values in the range λ3 < −0.8 λSM

3 and
λ3 > 7.7 λSM

3 via the bb̄γγ signatures [247, 248] or λ3 < −4 λSM
3 and λ3 > 12 λSM

3

including also bb̄τ τ̄ signatures [249]. Moreover, concerning the quartic Higgs self-
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coupling λ4, the abysmal smallness of the triple Higgs production cross section
(around 0.1 fb) [242] suggests that its measurement seems beyond the reach of the
LHC [250, 251].

Given these premise, one might wonder if the EFT approach is viable to study
NP effects in the Higgs self couplings. Following the approach of Ref. [252], it is
possible to parametrize such effects at the weak scale via a single parameter κλ,
i.e. the rescaling of the SM trilinear coupling λSM

3 , so that the φ3
1 interaction in

the potential is given by

Vφ31 = λ3 v φ
3
1 ≡ κλλ

SM
3 v φ3

1 , λSM
3 ≡ Gµ√

2
m2

H . (IV.2)

On the other hand, working in the SMEFT framework, the modified Higgs
potential looks like [253, 254]

Vφ31 = V SM +
c6

v2
(φ†1φ1)3 , (IV.3)

meaning that it is possible to write the following relation between the two for-
malisms:

κλ = 1 +
2v2

m2
H

c6 . (IV.4)

However, requiring that φ1 = v/
√

2 is still a global minimum of the potential
constrains κλ < 3 [255]. This means that the EFT framework is, presently, not
interesting from a phenomenological point of view, given the bound that can be
imposed on κλ, both now and in the near future.

However, given the large room for NP effects in the Higgs self-coupling sector,
trying to constrain such interactions can be a really interesting probe for the search
of BSM effects. This is the reason why, during my PhD experience, I decided to
devote some time to the study of possible new ways to put bounds on the Higgs
trilinear self-coupling. The results of such studies, summarized in Ref. [12], are
illustrated in the following chapter.
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Chapter 7

Constraining the Trilinear Higgs
Self-Coupling by Means of
Precision Electroweak
Measurements

As I have stated in the introduction of this section, constraining the Higgs self
coupling by means of direct searches, i.e. by measuring processes featuring at
least two Higgs bosons in the final state, is a quite challenging task [244]. As

LO QCD

NNLO QCD

NLO QCD

NLO QCD
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Figure 7.1: Left: total cross section for Higgs pair production at LHC in the main
channels as a function of the center-of-mass-energy [244]. Right: sensitivity of
the total cross section for the various production channels to the trilinear Higgs
self-coupling, at a center-of-mass-energy equal to

√
s = 8 GeV [244].
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shown in the left panel of Fig. 7.1, the total cross section for Higgs pair production
at LHC will not be higher than a few tens of fb in the gluon-fusion channel (and
even smaller in other production mechanisms), hence questioning the observation
itself of such decay channels. However, as can be inferred looking at the right panel
of Fig. 7.1, the size of the trilinear Higgs self-coupling heavily affects such cross
sections. Therefore, setting bounds on the observation of decay channels stemming
from double Higgs production can be translated into constrains on the trilinear
Higgs self-coupling, subsequently reinterpreted in the light of the κλ formalism
introduced in Eq. (IV.2).

Nevertheless, given the present bounds stemming from Run 1 data, this ap-
proach allowed the community to constrain κλ only withinO(±(15−20)) [237–240],
as can be seen looking e.g. at Fig. 7.2. Moreover, even at the end of the High
Luminosity Phase, it will be possible to exclude at the LHC only values in the
range κλ < −0.8 and κλ > 7.7 via the bb̄γγ signatures [247, 248] .

Therefore, in the latest years arose the need for a complementary strategy in
order to further constrain the trilinear self-coupling. A new idea was developed
in 2013 by M. McCullough [256]. In this approach, the focus was set to elec-
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Figure 7.2: Observed and expected 95% CL upper limits on the product of cross
section and the branching fraction σ(pp→ HH)×B(HH → γγbb̄), performed by
the CMS collaboration [239].
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troweak corrections to precise measurements of single Higgs production and decay
processes: in fact, if the channel of interest is measured with a sufficient precision,
it can be sensitive to the effects induced by the presence of an anomalous trilinear
self-coupling, introduced by loop corrections to Higgs propagators1. This strategy,
first applied to ZH production at an e+e− collider in Ref. [256] and later on to
Higgs production and decay modes at the LHC [252–254], was capable to obtain
constrains on κλ comparable with the ones stemming from direct searches.

In this chapter I will review my contribution to the field, consisting of applying
the κλ formalism to the computation of the W boson mass, mW , and the effective
sine, sin2 θlep

eff , and obtaining bounds on the anomalous self-coupling stemming by
the loop-induced effects on such electroweak precision observables [12].

7.1 λ3-dependent Contributions in mW and sin2 θlep
eff

The MS formulation of the radiative corrections [257–259] prescribes that the
theoretical predictions ofmW and sin2 θlep

eff are expressed in terms of the pole mass of

the particles, the MS Weinberg angle θ̂W (µ) and the MS electromagnetic coupling
α̂(µ), defined at the ’t-Hooft mass scale µ, usually chosen to be equal to mZ. In
this formulation it is possible to define the radiative parameters ∆r̂W , ∆α̂, YMS

through the following relations (sin2θ̂W (mZ) ≡ ŝ2) [260]:

Gµ√
2

=
πα̂(mZ)

2m2
W ŝ

2 (1 + ∆r̂W ) , α̂(mZ) =
α

1−∆α̂(mZ)
,

ρ̂ ≡ m2
W

m2
Z ĉ

2 =
1

1− YMS

, (7.1)

with ĉ2 = 1 − ŝ2. It is now possible to define mW starting from the definition of
mZ, α and Gµ via the following relation,

m2
W =

ρ̂ m2
Z

2

1 +

[
1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2
 , (7.2)

where Â = (πα̂(mZ)/(
√

2Gµ))1/2, while the effective sine is similarly related to ŝ2

via the relations

sin2 θlep
eff = k̂`(m

2
Z)ŝ2, k̂`(m

2
Z) = 1 + δk̂`(m

2
Z), (7.3)

1 It is worth to note that this approach builds on the assumption that NP couples to the
SM via the Higgs potential in such a way that only the Higgs self-coupling is sizably affected,
while the remaining couplings to the other fields of the SM (and in particular to the top quark
and vector bosons) are either still given by the SM prescriptions or, equivalently, affected in a
negligible way in the loop effects one is considering.
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where k̂`(q
2) is an electroweak form factor2 (see Ref. [261]) and

ŝ2 =
1

2

1−
[

1− 4Â2

m2
Z ρ̂

(1 + ∆r̂W )

]1/2
 . (7.4)

Our modified Higgs potential induces modifications to the radiative parameters
∆r̂W and YMS at the two-loop level, while ∆α̂ and δk̂`(m

2
Z) are going to be affected

only at three loops. Given that the present knowledge of mW and sin2 θlep
eff in the

SM includes the complete two-loop corrections, while the three-loops corrections
are not fully known yet, we are going to discuss only the effects induced by the
anomalous trilinear self-coupling in ∆r̂W and YMS. The two-loop contribution to
these observables can be expressed as [260]

∆r̂
(2)
W =

ReA
(2)
WW (m2

W )

m2
W

− A
(2)
WW (0)

m2
W

+ . . . (7.5)

Y
(2)

MS
= Re

[
A

(2)
WW (m2

W )

m2
W

− A
(2)
ZZ(m2

Z)

m2
Z

]
+ . . . (7.6)

where AWW (AZZ) is the term proportional to the metric tensor in the W (Z)
self energy with the superscript indicating the loop order, and the dots represent
additional two-loop contributions that are not sensitive to a modification of the
scalar potential.

For the reader convenience, it is possible to translate the additional contribu-
tions induced in ∆r̂

(2)
W and Y

(2)

MS
to the ones one would obtain for the On-Shell

(OS) scheme [262] radiative parameters ∆r and κe(m
2
Z). The former, entering the

interdependence between mW and mZ, can be written as

∆r(2) = ∆r̂
(2)
W −

c2

s2
Y

(2)

MS
, (7.7)

where c2 ≡ m2
W/m

2
Z, s2 = 1− c2, while for the latter, relating the effective sine to

s2 in the OS scheme via sin2 θlep
eff = κe(m

2
Z)s2, one can write

κ(2)
e (m2

Z) = 1− c2

s2
Y

(2)

MS
. (7.8)

Employing the κλ formalism described at the beginning of this Part in Eq. (IV.2),
it is now possible to compute the NP contributions to the self energies present in

2In our MS formulation the top contribution is not decoupled. Then k̂ is very close to 1 and
sin2 θlep

eff can be safely identified with ŝ2 [261].
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Figure 7.3: Unitary gauge two-loop λ3-and-λ4-dependent diagrams in the W self-
energy. The grey blob represent the insertion of the modified diagrams in the
one-loop Higgs self energy, shown in the second row, or in the mass counterterm.
The black point represents either an anomalous λ3 or λ4.

Eqs. (7.5)-(7.6) due to the anomalous self-coupling. In order to correctly iden-
tify the effects related to the φ3

1 interaction we followed Ref. [252] and worked
in the unitary gauge. I’ll now discuss the procedure we used to compute the W
self energy, which can be also applied for the Z self energy, following the same
guidelines.

In Fig. 7.3 we report the W self energy two-loop diagrams that are affected
by a modification of the Higgs self-couplings. The grey blob in diagrams 7.3a)
and 7.3d) represents the insertion of the NP terms present in the one-loop Higgs
self energy, stemming from the unitary gauge diagrams in fig. 7.3e), or in the
correspondent one-loop Higgs mass counterterm. The analytical computation pro-
ceeded as follows: first, the amplitudes of the diagrams in fig. 7.3 were generated
using the Mathematica package FeynArts [56]; subsequently, the obtained ten-
sorial integrals were reduced to scalar Master Integrals using both private codes
and the packages FeynCalc [263, 264] and Tarcer [265], in order to cross-check
our results. After the reduction to scalar integrals we were left with two kind
of contributions to evaluate: two-loop vacuum integrals and two-loop self-energy
diagrams with external momenta different from zero. The former integrals were
evaluated analytically using the results of Ref. [266], while the latter ones were
further reduced to the set of loop-integral basis functions introduced in Ref. [267]
and then numerically evaluated by means of the C program TSIL [268]. Our Higgs
mass counterterm was fixed expressing our results in terms of the OS Higgs mass.

Before closing this section, a few remarks may be useful to the reader:

- since the observables of interest involve only differences of self energies, (see
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Eqs. (7.5)-(7.6)), the contribution given by the diagram 7.3d) always vanishes
in such differences;

- contributions proportional to the quartic Higgs self-couplings (on which we
did not make any assumption) arise once the diagram 7.3e2) is inserted in
diagrams 7.3a) and 7.3d). However, this contribution is exactly cancelled
by the corresponding Higgs mass counterterm diagram, in such a way that
the final result does not depend on λ4. It is important to stress that this
is a general finding, not dependent on the particular scheme used to define
the Higgs mass. Using a different Higgs mass definition, like, e.g., the MS
Higgs mass m̂H , an explicit λ4 dependence will appear in the expression for
the W self-energy. However, an analogous dependance on λ4 will appear in
m̂H as well (when the latter is extracted from a physical quantity like the
OS mass), resulting in a global cancellation of such dependences;

- further contributions, proportional to interaction between more than 4 φ1

fields (e.g. quintic, sextic, etc. interactions), may arise from our modified
potential. However, none of these interactions is going to contribute to the
W self energy at the two-loop level3. Hence, the new contributions induced
by our BSM scalar potential at the two-loop level are indeed only functions
of κλ.

Analogously to what was obtained in the case of single Higgs processes [252],
the anomalous contributions can be divided into two parts for both observables:
a first one, linearly proportional to κλ and given by diagrams 7.3b), 7.3c); and a
second one, quadratically dependent on κλ, due to the insertion of diagrams 7.3e1)
and of its corresponding Higgs mass counterterm in diagram 7.3a).

7.2 Analytic Expressions

Here I report the analytic expressions for the additional contributions induced in
∆r̂

(2)
W and Y

(2)

MS
by an anomalous λ3. In the formulae below

ζW =
m2

H

m2
W

, ln(x) = log

(
x

µ

)
, (7.9)

with µ the ’t-Hooft mass scale. We find for the κλ contributions

∆r̂
(2,κλ)
W =

(
α̂

4πs2

)2
{[

1

64
ζW
(
−12ζ2

W + 49ζW + 18
)

+ ζW
4ζ2

W − 7ζW + 6

16 (ζW − 1)
ln
(
m2

W

)
3A quintic self interaction does give rise to a two-loop tadpole; however, tadpole contributions

cancel in Eqs. (7.5,7.6).
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+

(
10− 13ζW
16 (ζW − 1)

ζ2
W +

−2ζ4
W + 9ζ3

W − 46ζW + 60

32 (ζW − 1)2 ζW ln
(
m2

W

))
ln
(
m2

H

)
+

2ζ4
W − 9ζ3

W + 46ζW − 60

64 (ζW − 1)2 ζW ln
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and
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=
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where we have defined the functions f1, f2 as
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In Eqs. (7.10)-(7.13)

φ (x) = 4

√
x

1− x Im(Li2(ei2 arcsin(
√
x))) , (7.14)

and, following Refs. [267, 268], we define the d-dimensional functions

B0(s, x, y) = lim
ε→0

[
B(s, x, y)− 1

ε

]
= −

∫ 1

0

dtln[tx+ (1− t)y − t(1− t)s] , (7.15)

S0(s, x, y, z) = lim
ε→0

[
S(s, x, y, z) +

x+ y + z

2ε2
+

s
2
− x− y − z

2ε
− A(x) + A(y) + A(z)

ε

]
,

(7.16)

T0(s, x, y, z) = − ∂

∂x
S0(s, x, y, z) , (7.17)

U0(s, x, y, z, u) = lim
ε→0

[
U(s, x, y, z, u) +

1

2ε2
− 1

2ε
− B(s, x, y)

ε

]
, (7.18)

M0(s, x, y, z, u, v) = lim
ε→0

[M(s, x, y, z, u, v)] , (7.19)

with d = 4− 2ε and

A(x) = −i(2πµ)2ε

π2

∫
ddk1(
k2

1 − x
) , (7.20)

B(s, x, y) = −i(2πµ)2ε
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∫
ddk1(

k2
1 − x

)(
k2

3 − y
) , (7.21)
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(
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)(
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)(
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) ,

(7.24)

where we introduced the notation

k3 = k1 − p , k4 = k2 − p , k5 = k1 − k2 , (7.25)

with p2 = s.
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7.3 Resulting Bounds on the Trilinear Higgs Self-

Coupling

Given the results obtained in the previous section and summarized in Eqs. (7.10)-
(7.11), it is now possible to investigate their effect on the SM predictions for mW

and sin2 θlep
eff via Eqs. (7.1)-(7.4).

Denoting as O either mW or sin2 θlep
eff one can write

O = OSM
[
1 + (κλ − 1)C1 + (κ2

λ − 1)C2

]
, (7.26)

with the values of the coefficients C1 and C2 reported in Tab. 7.1. The validity
of such equation is due to the fact that the computation has been carried out
at the two-loop level. This implies that, at this order, only finite contributions
stemming from an anomalous trilinear Higgs coupling will affect the precision ob-
servables (check Tab. 7.1 or Eqs. (7.10)-(7.11)); moreover, these contributions are
not sensitive to the NP scale Λ associated with the modification of the potential.
This behavior is analogous to what happens when new contributions induced by
an anomalous λ3 coupling are considered in single Higgs processes at NLO [252].
In a similar fashion compared to NNLO effects in single Higgs processes, once
tree- or more-loops diagrams are included in the computation, the modified po-
tential is going to induce contributions not only proportional to the trilinear Higgs
self-interactions, but also to the quartic, quintic etc. ones; moreover, these contri-
butions will be also sensitive to the NP scale.

Before starting to analyse the bounds that can be obtained on κλ, a further clar-
ification regarding our approach is necessary: throughout our study, we assumed
the validity of the perturbative approach. Therefore, we assume that any high-
order contribution should be subdominant with respect to the ones we considered
in this analysis: hence, we expect that these higher-order contributions should not
contain any large amplifying factor related to the scale Λ, which can be in turn in-
terpreted as the requirement that Λ cannot be too far from the Electroweak scale.
An estimate of this scale can be obtained by looking when perturbative unitarity
is lost in processes like e.g. the annihilation of longitudinal vector bosons into n
Higgs bosons, VLVL → nφ1 [269]. A preliminary study on this subject indicates
that Λ ∼ 1− 3 TeV [270].

C1 C2

mW 6.27× 10−6 −1.72× 10−6

sin2 θlep
eff −1.56× 10−5 4.55× 10−6

Table 7.1: Values of the coefficients C1 and C2.
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Moreover, following the same reasoning as the one at the end of Sec. 7.1, it is
correct to assume that at the three-loop level the precision observables will obtain
anomalous contributions up to order κ4

λ: hence, in order to not spoil the perturba-
tive approach, a restricted range of κλ should also be imposed. Following Ref. [252]
we therefore considered |κλ| . 20 as a range of validity of our perturbative ap-
proach. However, it is worth to notice that the subsequent study of [271], based
both on the partial-wave unitarity of the hh → hh scattering and on the loop
corrections to tree-level vertices, restricted the above range to |κλ| . 6.

We are now ready to study the bounds set on κλ from the analysis of precision
observables. In order to accomplish such task, we performed the following sim-
plified fit: the best value for κλ has been defined as the one that minimizes the
χ2(κλ) function defined as

χ2(κλ) ≡
∑ (Oexp −Othe)

2

(δ)2
, (7.27)

where Oexp refers to the experimental measurement of the observable O, Othe is
its theoretical value obtained from Eq. (7.26) and δ is the total uncertainty, set
to be equal to the sum in quadrature of the experimental and theory errors. The
goodness of our fit was ascertained by also computing the p-value as a function of
κλ:

p-value(κλ) = 1− Fχ2
(n)

(χ2(κλ)) , (7.28)

where Fχ2
(n)

(χ2(κλ)) is the cumulative distribution function for a χ2 distribution

with n degrees of freedom, computed at χ2(κλ).
This procedure is analogous to the one employed by my collaborators in their

previous study on signal strength parameter for single Higgs production [252]. In
that analysis, the most promising set of observables consisted of the signal strength
parameters in gluon fusion (ggF) and vector boson fusion (VBF): indicated as the
P2 set in Ref. [252], it was shown that it was the scenario providing the most
stringent bound on κλ. Therefore, we decided to include these observables in
our fits as well, studying a total of three different scenarios, differentiated by the
considered set of data:

• The P2 set in Ref. [252], using the experimental results presented in Tab. 8
of Ref. [233].

• The W mass and the effective sine. For the W mass we decided to use the
latest result by the ATLAS collaboration mW = 80.370 ± 0.019 GeV [272].
This number, albeit showing a slightly larger uncertainty with respect to the
world average mW = 80.385± 0.015 GeV [273], was chosen because closer to
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Figure 7.4: Left: χ2 for two different sets of observables (electroweak precision
observables, in purple, and signal strength parameter for single Higgs production,
in red) and their combination (in black); the two horizontal dashed lines represent
∆χ2 = 1 and ∆χ2 = 3.84. Right: corresponding p-value, following the same colour
scheme; the horizontal line is p = 0.05.

the SM prediction mW = 80.357 ± 0.009 ± 0.003, with the errors referring
to the parametric and the theoretical uncertainties [260]. Regarding the
effective sine, we use the average of the CDF [274] and D0 [275] combinations
sin2 θlep

eff = 0.23185 ± 0.00035 [273], to compare to the SM result sin2 θlep
eff =

0.23145± 0.00012± 0.00005, where again the errors refer to parametric and
theoretical uncertainties respectively [260, 276].

• The combination of these two sets of data.

The χ2(κλ) for the three scenarios are reported in the left panel of Fig. 7.4, while
the p-value functions are shown in the right one. In particular, in the third scenario
(i.e. the combination of electroweak precision observables and signal strength
parameter for single Higgs production) we found the following bounds:

κbest
λ = 0.5 , κ1σ

λ = [−4.7, 8.9] , κ2σ
λ = [−8.2, 13.7] , (7.29)

where the κbest
λ is the best value and κ1σ

λ , κ2σ
λ are respectively the 1σ and 2σ

intervals, identified assuming a χ2 distribution. It is interesting to compare the
results obtained in Eq. (7.29) with the corresponding ones for the P2 set of [252],
where no precision observables was included. Recalling that such results where

κbest
λ = −0.24 , κ1σ

λ = [−5.6, 11.2] , κ2σ
λ = [−9.4, 17.0] , (7.30)

it is straightforward to observe that the inclusion of the precision observables
reduces the allowed range for κλ, resulting in a better constrain on the Higgs
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trilinear self-coupling. Similarly, looking at the solid black line in the right panel
of Fig. 7.4, we can now exclude at more than 2σ models with κλ in the regions
κλ < −13.3 and κλ > 20.0.

These results are already comparable in size with the ones obtained by direct
search, showing the utility of this alternative approach as a further way to constrain
the Higgs trilinear self-coupling. Therefore, when more accurate measurements
will be available in the future, the combination on mW and sin2 θlep

eff with single
Higgs processes could be very powerful in constraining the allowed region for κλ,
in particular the region of positive κλ.

7.4 On the Equivalence with a (Φ†Φ)n Theory

The closing section of this chapter is devoted to showing that the results presented
in Sec. 7.1 and obtained in the unitary gauge, with no specific assumption on the
BSM scalar potential (and, in particular, no EFT assumption either), can be
obtained starting from the SM Lagrangian, with a scalar potential of the form

V NP =
N∑
n=1

c2n(Φ†Φ)n , Φ =
1√
2

( √
2φ+

v + φ1 + iφ2

)
. (7.31)

The series can be either finite or infinite, with the requirement that in the latter
case we assume it to be convergent. This is the only constraint we require from
the c2n coefficients: hence, an EFT scaling, i.e. c2n+2 ∼ c2n/Λ

2, is not required.
Eq. (7.31) can be used also to describe the SM, setting N = 2 and defining c2 =
−m2 and c4 = λ, where −m2 is the Higgs mass term in the SM Lagrangian in the
unbroken phase.

Defining φ2u = φ+φ− + 1
2
φ2

2 the n-th term in the series can be written as

(Φ†Φ)n =
n∑
k=0

k∑
j=0

j∑
h=0

(
n

k

)(
k

j

)(
j

h

)
φn−k2u

(
v2

2

)k−j (
φ2

1

2

)j−h
(vφ1)h , (7.32)

with (
n

k

)(
k

j

)(
j

h

)
=

n!

(n− k)!(k − j)!(j − h)!h!
. (7.33)

It is therefore possible to identify the contribution from the potential to any Higgs
self-interaction by means of the triplet {k, j, h}. For example, the minimum of the
potential can be obtained looking at the triplet {n, 1, 1}, which is the one that
identifies the term of the potential linear in φ1:

d V NP

d φ1

∣∣∣∣
φ1=0

= v
N∑
n=1

c2n n

(
v2

2

)n−1

= 0 . (7.34)
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Following the same reasoning, the Higgs mass is given by the two triplets {n, 1, 0}
and {n, 2, 2}, since these are the triplets that identify the term of the potential
quadratic in φ1. However the first triplet yields a vanishing term, since it is
proportional to the minimum condition from Eq. (7.34), so that only the second
triplet contributes to the definition

m2
H = v2

N∑
n=1

c2n n(n− 1)

(
v2

2

)n−2

. (7.35)

Starting from this general potential, it is possible to write down the potential V NP

up to quartic interactions as

V NP
4φ =

m2
H

2v2

[
φ+φ−(φ+φ− + φ2

2) +
1

4
φ4

2

]
+

(
m2

H

2v2
+ dλ4

)
1

4
φ4

1

+

(
m2

H

2v2
+ 3 dλ3

)
φ2

1

[
φ+φ− +

1

2
φ2

2

]
+

(
m2

H

2v
+ v dλ3

)
φ3

1

+
m2

H

2v
φ1

(
φ2

2 + 2φ+φ−
)

+
1

2
m2

H φ
2
1 , (7.36)

where the following relations are implied:

dλ3 =
1

3

N∑
n=3

c2n n(n− 1)(n− 2)

(
v2

2

)n−2

, (7.37)

dλ4 =
2

3

N∑
n=3

c2n n
2(n− 1)(n− 2)

(
v2

2

)n−2

. (7.38)

One remarkable feature of Eq. (7.36) is that only few couplings are modified with
respect to their SM values. In particular, concerning the unphysical scalars, the
only modified coupling is the one relative to the φ2u φ

2
1 interaction, with a defor-

mation that is related to the deformation of λ3.
We have now all the necessary ingredients to show that the result for the two-

loop W self energy obtained in Sec. 7.1, assuming an anomalous λ3 and working
in the unitary gauge, is equal to the one that can be obtained using V NP (and
analogously for the Z self-energy). In order to do so, we have to analyze the
two-loop diagrams that are modified with respect to their SM result working in
a generic Rξ gauge. Therefore, besides computing the diagrams in Fig. 7.3 in an
Rξ gauge, new diagrams will have to be taken into account. First, one should also
consider the diagrams containing unphysical scalars: such diagrams are shown in
Fig. 7.5, where the grey blob represents the insertion of the relevant one-loop self
energy or the corresponding mass counterterm. Moreover, new diagrams (involving
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again unphysical scalars) will be included in the various self energies as well: such
diagrams (along with the tadpole one), affected by the modification with respect
to their SM result due to the new scalar potential V NP , are shown in Fig. 7.6.

Similarly to what was observed for diagram 7.3e2), the cactus diagrams 7.6a)
are cancelled against the corresponding Higgs counterterms once inserted in di-
agrams 7.3a), 7.3d) or 7.5a). Furthermore, both the sum of diagrams 7.3a) and
7.5a) and the sum of diagrams 7.3b), 7.3c), 7.5b), and 7.5c) are gauge invariant:
hence, going from the unitary gauge to a generic Rξ gauge and adding the dia-
grams 7.5a)–7.5c) and 7.6a) does not add further, gauge-dependent terms to the
result. Therefore, in order to complete our equivalence proof, we have to show
that the additional contributions with respect to the SM results in the diagrams
7.5d)–7.5h) and in the corresponding counterterm diagrams must vanish.

Diagram 7.5d) is automatically zero, while all the remaining diagrams display
an insertion of a self energy of an unphysical scalar, or of the correspondent coun-
terterm. According to Eq. (7.36), diagrams 7.6c1) and 7.6d1) are the only modified
contributions in the one-loop self energies of the unphysical scalars. The countert-
erm associated to the renormalization of the mass of an unphysical scalar contains
two terms: the first one is related to the mass of the corresponding vector bo-
son, while the second one is related to the renormalization of the vacuum. The
former is not affected by our modified scalar potential, while the latter, when v
is identified with the minimum of the radiatively corrected potential, is given by
the tadpole contribution [277]. Therefore, the only modified contribution in the

φ1 φ1
W W W WW W W W

W W W W W W

φ2, φ+ φ2, φ+

W W

φ1 φ1 φ1 φ1φ1 φ1 φ1 φ1

φ+

a) b) c) d)

Wφ+ φ+ φ+ φ+ φ+

φ+ φ+ φ+ φ+ φ2 φ2

γ, Z φ1, φ2 φ+

h)g)f )e)

Figure 7.5: Two-loop diagrams in the W self-energy, involving unphysical scalars
where modified couplings (black points) from V NP

4φ appear. The grey blob rep-
resents the insertion of the modified diagrams in the one-loop self energy (see
fig. 7.6), or in the mass counterterm.
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Figure 7.6: One-loop self energy and tadpole diagrams that contain modified cou-
plings with respect to the SM.

mass renormalization of the unphysical scalars is given by the tadpole diagram
7.6b1). Observing now Eq. (7.36), it is easy to notice that the modification to the
vertices 7.6c1) and 7.6d1) are related by a factor 3/v to the one of the vertex 7.6b1).
Remarkably, when the Feynman rule for the latter vertex is computed, a factor of
3 is generated due to combinatorics. Therefore, one obtains that diagrams 7.5d)–
7.5h) are equal if one inserts either a self-energy or a counterterm: hence, once the
differences of the two are taken into account, the total contribution vanishes.

This concludes our equivalence proof: a theory with a scalar potential given by
Eq. (7.31) modifies the two-loop W self energy in a gauge-invariant way. Therefore,
directly computing such modification in the unitary gauge does not introduce
gauge-dependent terms: the results obtained in the two methods are equivalent,
once the identification κλ = 1 + 2v2/m2

H dλ3 is made.
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Conclusions

The Standard Model has been providing an excellent description of all available
data in particle physics for a few decades. Yet, we have several reasons to believe
that it is only a low energy effective theory valid up to the TeV scale, with Beyond
Standard Model physics still hidden at higher scales. However, the amazing efforts
put in the LHC still have to succeed in the production of BSM particles, and hence
we have no particular clue on what the UV completion of the SM could look like.
In such a context, the SMEFT framework can be particularly useful, given its
peculiar feature to describe BSM effects in a model-independent way. The BSM
fields can in fact be integrated out of the theory in such a way that, at the EWSB
scale, their effects appear in the couplings of the SMEFT. Performing global fits of
experimental data in this framework allows to bound such couplings; subsequently,
these bounds can be reinterpreted as bounds on the NP scale and masses once the
SMEFT is mapped on the desired UV completion of the theory. Given this context,
my PhD thesis was carried out employing the SMEFT framework.

As a first step in my PhD program, I recomputed several of the entries of the
SMEFT AD from Refs. [4–7], namely all those stemming from 1PI diagrams. This
computation was performed since a systematic cross-check of such computation
was lacking in the literature, and it involved only the 1PI diagrams because a
complete check of the AD would have been lengthy, and beyond the scope of this
thesis. All the obtained results were found in perfect agreement with the ones
from Refs. [4–7].

Subsequently, I devoted most of my time to flavour Physics. The recent years of
experimental results in B physics have been indeed characterized by the emergence
of a striking pattern of anomalies, observed in multiple independent studies of
some rare b → s transitions [125]. The main characters of such a pattern are the
angular observables of the B → K∗µ+µ− decay [74, 78, 80, 82, 126], the Branching
Fractions of the B → φµ+µ− [77] and B → Kµ+µ− [75, 81] decays, and the
Branching Fraction ratios RK [76] and RK∗ [83]. As I have argued in Refs. [8–10],
the “pollution” induced by a non-perfect knowledge of the hadronic contribution
in the angular observables produces an entanglement between these contributions
and NP effects (usually advocated in the muonic vector current), in such a way
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that it is not possible to ascertain the presence of BSM physics looking at the
angular observables only. However, the emergence of LUV in Branching Fraction
ratios points toward an ineluctable requirement for NP effects in b→ s transitions,
if these anomalies are indeed to stay in future measurements. Nevertheless, as
I have illustrated in Ref. [11], a careful treatment of the hadronic contribution
could yield to a parallel, equally viable NP scenario involving BSM effects in the
electronic axial current. Moreover, I have reinterpreted all my findings in the
SMEFT framework, being able to put bounds on several NP WCs by means of a
Bayesian global fit. Hopefully, Run 2 results from LHCb will help to shed some
light on the NP shape, but most likely we will have to wait until the first results
from Belle II to clarify the experimental situation.

Last but not least, I have spent some time working on the study of the trilinear
Higgs self-coupling as well. Given the large room for NP effects in this coupling,
compatible with the present status of the experimental constraints, the SMEFT
framework is, presently, not interesting from a phenomenological point of view.
Nevertheless, trying to constrain such interactions can be a really interesting probe
for the search of BSM effects: hence, I decided to devote some time to the study
of possible new ways to put bounds on the Higgs trilinear self-coupling. The
results of such studies, summarized in Ref. [12], are obtained employing the κλ
formalism [256] to electroweak precision observables, namely the W boson mass
and the effective sine. Indeed, we were able to obtain bounds on the anomalous
self-coupling stemming by the loop-induced effects on such electroweak precision
observables; such bounds turned out to be comparable with the ones obtained
from direct searches, therefore proving that this can be a complementary tool in
a combined effort to constrain the last SM coupling allowing for large NP effects.

106



Bibliography

[1] CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716
(2012) 30–61, [1207.7235].

[2] ATLAS collaboration, G. Aad et al., Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC, Phys.Lett. B716 (2012) 1–29, [1207.7214].

[3] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six
Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085,
[1008.4884].

[4] C. Grojean, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization
Group Scaling of Higgs Operators and Γ(h→ γγ), JHEP 04 (2013) 016,
[1301.2588].

[5] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators I: Formalism
and lambda Dependence, JHEP 10 (2013) 087, [1308.2627].

[6] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators II: Yukawa
Dependence, JHEP 01 (2014) 035, [1310.4838].

[7] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization
Group Evolution of the Standard Model Dimension Six Operators III:
Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159,
[1312.2014].

[8] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini
et al., B → K∗`+`− decays at large recoil in the Standard Model: a
theoretical reappraisal, JHEP 06 (2016) 116, [1512.07157].

107

http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
http://dx.doi.org/10.1007/JHEP04(2013)016
https://arxiv.org/abs/1301.2588
http://dx.doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
http://dx.doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
http://dx.doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
http://dx.doi.org/10.1007/JHEP06(2016)116
https://arxiv.org/abs/1512.07157


[9] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini
et al., B → K∗`+`− in the Standard Model: Elaborations and
Interpretations, PoS ICHEP2016 (2016) 584, [1611.04338].

[10] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini
et al., Knowns and Unknowns in the Predictions for B → K∗µ+µ−, Nucl.
Part. Phys. Proc. 285-286 (2017) 45–49.

[11] M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini
et al., On Flavourful Easter eggs for New Physics hunger and Lepton
Flavour Universality violation, Eur. Phys. J. C77 (2017) 688,
[1704.05447].

[12] G. Degrassi, M. Fedele and P. P. Giardino, Constraints on the trilinear
Higgs self coupling from precision observables, JHEP 04 (2017) 155,
[1702.01737].

[13] P. W. Higgs, Broken symmetries, massless particles and gauge fields,
Phys.Lett. 12 (1964) 132–133.

[14] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons,
Phys.Rev.Lett. 13 (1964) 508–509.

[15] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons,
Phys.Rev. 145 (1966) 1156–1163.

[16] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys.Rev.Lett. 10
(1963) 531–533.

[17] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable
Theory of Weak Interaction, Prog.Theor.Phys. 49 (1973) 652–657.

[18] L.-L. Chau and W.-Y. Keung, Comments on the Parametrization of the
Kobayashi-Maskawa Matrix, Phys.Rev.Lett. 53 (1984) 1802.

[19] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix,
Phys.Rev.Lett. 51 (1983) 1945.

[20] A. J. Buras, Weak Hamiltonian, CP violation and rare decays, in Probing
the standard model of particle interactions. Proceedings, Summer School in
Theoretical Physics, NATO Advanced Study Institute, 68th session, Les
Houches, France, July 28-September 5, 1997. Pt. 1, 2, pp. 281–539, 1998.
hep-ph/9806471.

108

https://arxiv.org/abs/1611.04338
http://dx.doi.org/10.1016/j.nuclphysbps.2017.03.009
http://dx.doi.org/10.1016/j.nuclphysbps.2017.03.009
http://dx.doi.org/10.1140/epjc/s10052-017-5270-2
https://arxiv.org/abs/1704.05447
http://dx.doi.org/10.1007/JHEP04(2017)155
https://arxiv.org/abs/1702.01737
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.53.1802
http://dx.doi.org/10.1103/PhysRevLett.51.1945
https://arxiv.org/abs/hep-ph/9806471


[21] G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl.Phys. B44 (1972) 189–213.

[22] G. ’t Hooft, Dimensional regularization and the renormalization group,
Nucl.Phys. B61 (1973) 455–468.

[23] E. Fermi, An attempt of a theory of beta radiation. 1., Z. Phys. 88 (1934)
161–177.

[24] K. G. Wilson, Nonlagrangian models of current algebra, Phys.Rev. 179
(1969) 1499–1512.

[25] K. Wilson and W. Zimmermann, Operator product expansions and
composite field operators in the general framework of quantum field theory,
Commun.Math.Phys. 24 (1972) 87–106.

[26] S. Weinberg, Baryon- and lepton-nonconserving processes, Physical Review
Letters 43 (1979) 1566–1570.

[27] A. de Gouvea, J. Herrero-Garcia and A. Kobach, Neutrino Masses, Grand
Unification, and Baryon Number Violation, Phys. Rev. D90 (2014) 016011,
[1404.4057].

[28] A. Kobach, Baryon Number, Lepton Number, and Operator Dimension in
the Standard Model, Phys. Lett. B758 (2016) 455–457, [1604.05726].

[29] P. Minkowski, µ→ eγ at a Rate of One Out of 109 Muon Decays?, Phys.
Lett. 67B (1977) 421–428.

[30] T. Yanagida, HORIZONTAL SYMMETRY AND MASSES OF
NEUTRINOS, Conf. Proc. C7902131 (1979) 95–99.

[31] S. L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser.
B 61 (1980) 687.

[32] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified
Theories, Conf. Proc. C790927 (1979) 315–321, [1306.4669].

[33] B. Henning, X. Lu and H. Murayama, How to use the Standard Model
effective field theory, JHEP 01 (2016) 023, [1412.1837].

[34] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New
Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621–653.

[35] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The
Strongly-Interacting Light Higgs, JHEP 06 (2007) 045, [hep-ph/0703164].

109

http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/0550-3213(73)90376-3
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1007/BF01878448
http://dx.doi.org/10.1103/PhysRevLett.43.1566
http://dx.doi.org/10.1103/PhysRevLett.43.1566
http://dx.doi.org/10.1103/PhysRevD.90.016011
https://arxiv.org/abs/1404.4057
http://dx.doi.org/10.1016/j.physletb.2016.05.050
https://arxiv.org/abs/1604.05726
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1007/978-1-4684-7197-7_15
http://dx.doi.org/10.1007/978-1-4684-7197-7_15
https://arxiv.org/abs/1306.4669
http://dx.doi.org/10.1007/JHEP01(2016)023
https://arxiv.org/abs/1412.1837
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1088/1126-6708/2007/06/045
https://arxiv.org/abs/hep-ph/0703164


[36] K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy
effects of new interactions in the electroweak boson sector, Phys. Rev. D48
(1993) 2182–2203.

[37] R. F. Dashen, E. E. Jenkins and A. V. Manohar, The 1/N(c) expansion for
baryons, Phys. Rev. D49 (1994) 4713, [hep-ph/9310379].

[38] R. F. Dashen, E. E. Jenkins and A. V. Manohar, Spin flavor structure of
large N(c) baryons, Phys. Rev. D51 (1995) 3697–3727, [hep-ph/9411234].

[39] E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic
CP Violation Operator, Phys. Rev. Lett. 64 (1990) 1709.

[40] G. Boyd, A. K. Gupta, S. P. Trivedi and M. B. Wise, Effective Hamiltonian
for the Electric Dipole Moment of the Neutron, Phys. Lett. B241 (1990)
584–588.

[41] C. Arzt, M. B. Einhorn and J. Wudka, Effective Lagrangian approach to
precision measurements: The Anomalous magnetic moment of the muon,
Phys. Rev. D49 (1994) 1370–1377, [hep-ph/9304206].

[42] K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson
production and decay, Phys. Lett. B318 (1993) 155–162, [hep-ph/9308347].

[43] S. Alam, S. Dawson and R. Szalapski, Low-energy constraints on new
physics revisited, Phys. Rev. D57 (1998) 1577–1590, [hep-ph/9706542].

[44] F. Borzumati, C. Greub, T. Hurth and D. Wyler, Gluino contribution to
radiative B decays: Organization of QCD corrections and leading order
results, Phys. Rev. D62 (2000) 075005, [hep-ph/9911245].

[45] A. J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous
dimensions of flavor changing four quark operators within and beyond the
standard model, Nucl. Phys. B586 (2000) 397–426, [hep-ph/0005183].

[46] Z. Han and W. Skiba, Effective theory analysis of precision electroweak
data, Phys. Rev. D71 (2005) 075009, [hep-ph/0412166].

[47] G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to
the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005)
044, [hep-ph/0510137].

[48] J. Gao, C. S. Li and C. P. Yuan, NLO QCD Corrections to dijet Production
via Quark Contact Interactions, JHEP 07 (2012) 037, [1204.4773].

110

http://dx.doi.org/10.1103/PhysRevD.48.2182
http://dx.doi.org/10.1103/PhysRevD.48.2182
http://dx.doi.org/10.1103/PhysRevD.51.2489, 10.1103/PhysRevD.49.4713
https://arxiv.org/abs/hep-ph/9310379
http://dx.doi.org/10.1103/PhysRevD.51.3697
https://arxiv.org/abs/hep-ph/9411234
http://dx.doi.org/10.1103/PhysRevLett.64.1709
http://dx.doi.org/10.1016/0370-2693(90)91874-B
http://dx.doi.org/10.1016/0370-2693(90)91874-B
http://dx.doi.org/10.1103/PhysRevD.49.1370
https://arxiv.org/abs/hep-ph/9304206
http://dx.doi.org/10.1016/0370-2693(93)91799-S
https://arxiv.org/abs/hep-ph/9308347
http://dx.doi.org/10.1103/PhysRevD.57.1577
https://arxiv.org/abs/hep-ph/9706542
http://dx.doi.org/10.1103/PhysRevD.62.075005
https://arxiv.org/abs/hep-ph/9911245
http://dx.doi.org/10.1016/S0550-3213(00)00437-5
https://arxiv.org/abs/hep-ph/0005183
http://dx.doi.org/10.1103/PhysRevD.71.075009
https://arxiv.org/abs/hep-ph/0412166
http://dx.doi.org/10.1088/1126-6708/2005/11/044
http://dx.doi.org/10.1088/1126-6708/2005/11/044
https://arxiv.org/abs/hep-ph/0510137
http://dx.doi.org/10.1007/JHEP07(2012)037
https://arxiv.org/abs/1204.4773


[49] H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Effective Field
Theory of Precision Electroweak Physics at One Loop, Phys. Lett. B724
(2013) 259–263, [1304.1789].

[50] C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light
quark at next-to-leading order in QCD, Phys. Rev. D88 (2013) 054005,
[1305.7386].

[51] H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on
Electroweak Effective Operators at One Loop, Phys. Rev. D88 (2013)
015028, [1306.3380].

[52] J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs
couplings to the third generation, JHEP 11 (2013) 180, [1310.1385].

[53] F. J. Gilman and M. B. Wise, Effective Hamiltonian for ∆S = 1 Weak
Nonleptonic Decays in the Six Quark Model, Phys. Rev. D20 (1979) 2392.

[54] H. Georgi, Weak Interactions and Modern Particle Theory. 1984.

[55] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks,
FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput.
Phys. Commun. 185 (2014) 2250–2300, [1310.1921].

[56] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3,
Comput. Phys. Commun. 140 (2001) 418–431, [hep-ph/0012260].

[57] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+e−

annihilation into µ+µ− in the Weinberg Model, Nucl. Phys. B160 (1979)
151.

[58] R. K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop
calculations in quantum field theory: from Feynman diagrams to unitarity
cuts, Phys. Rept. 518 (2012) 141–250, [1105.4319].

[59] L. Lehman, Extending the Standard Model Effective Field Theory with the
Complete Set of Dimension-7 Operators, Phys. Rev. D90 (2014) 125023,
[1410.4193].

[60] L. Lehman and A. Martin, Low-derivative operators of the Standard Model
effective field theory via Hilbert series methods, JHEP 02 (2016) 081,
[1510.00372].

111

http://dx.doi.org/10.1016/j.physletb.2013.06.021
http://dx.doi.org/10.1016/j.physletb.2013.06.021
https://arxiv.org/abs/1304.1789
http://dx.doi.org/10.1103/PhysRevD.88.054005
https://arxiv.org/abs/1305.7386
http://dx.doi.org/10.1103/PhysRevD.88.015028
http://dx.doi.org/10.1103/PhysRevD.88.015028
https://arxiv.org/abs/1306.3380
http://dx.doi.org/10.1007/JHEP11(2013)180
https://arxiv.org/abs/1310.1385
http://dx.doi.org/10.1103/PhysRevD.20.2392
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/j.physrep.2012.01.008
https://arxiv.org/abs/1105.4319
http://dx.doi.org/10.1103/PhysRevD.90.125023
https://arxiv.org/abs/1410.4193
http://dx.doi.org/10.1007/JHEP02(2016)081
https://arxiv.org/abs/1510.00372


[61] B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456,
11962, 261485, ...: Higher dimension operators in the SM EFT,
1512.03433.

[62] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians:
expanding the phenomenologist’s toolbox, Phys. Rev. D91 (2015) 105014,
[1503.07537].

[63] R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the
Validity of the Effective Field Theory Approach to SM Precision Tests,
JHEP 07 (2016) 144, [1604.06444].

[64] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as
of summer 2016, 1612.07233.

[65] A. J. Buras, Climbing NLO and NNLO Summits of Weak Decays,
1102.5650.

[66] F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis
of rare (semi)leptonic and radiative B decays, Eur.Phys.J. C74 (2014)
2897, [1310.2478].

[67] T. Blake, G. Lanfranchi and D. M. Straub, Rare B Decays as Tests of the
Standard Model, Prog. Part. Nucl. Phys. 92 (2017) 50–91, [1606.00916].

[68] S. L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with
Lepton-Hadron Symmetry, Phys. Rev. D2 (1970) 1285–1292.

[69] Belle collaboration, T. Saito et al., Measurement of the B̄ → Xsγ
Branching Fraction with a Sum of Exclusive Decays, Phys. Rev. D91
(2015) 052004, [1411.7198].

[70] Belle collaboration, A. Abdesselam et al., Measurement of the inclusive
B → Xs+dγ branching fraction, photon energy spectrum and HQE
parameters, in Proceedings, 38th International Conference on High Energy
Physics (ICHEP 2016): Chicago, IL, USA, August 3-10, 2016, 2016.
1608.02344.

[71] BaBar collaboration, J. P. Lees et al., Precision Measurement of the
B → Xsγ Photon Energy Spectrum, Branching Fraction, and Direct CP
Asymmetry ACP (B → Xs+dγ), Phys. Rev. Lett. 109 (2012) 191801,
[1207.2690].

112

https://arxiv.org/abs/1512.03433
http://dx.doi.org/10.1103/PhysRevD.91.105014
https://arxiv.org/abs/1503.07537
http://dx.doi.org/10.1007/JHEP07(2016)144
https://arxiv.org/abs/1604.06444
https://arxiv.org/abs/1612.07233
https://arxiv.org/abs/1102.5650
http://dx.doi.org/10.1140/epjc/s10052-014-2897-0, 10.1140/epjc/s10052-014-3179-6
http://dx.doi.org/10.1140/epjc/s10052-014-2897-0, 10.1140/epjc/s10052-014-3179-6
https://arxiv.org/abs/1310.2478
http://dx.doi.org/10.1016/j.ppnp.2016.10.001
https://arxiv.org/abs/1606.00916
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevD.91.052004
http://dx.doi.org/10.1103/PhysRevD.91.052004
https://arxiv.org/abs/1411.7198
https://arxiv.org/abs/1608.02344
http://dx.doi.org/10.1103/PhysRevLett.109.191801
https://arxiv.org/abs/1207.2690


[72] LHCb collaboration, R. Aaij et al., Differential branching fraction and
angular analysis of the decay B0 → K∗0µ+µ−, JHEP 08 (2013) 131,
[1304.6325].

[73] LHCb collaboration, Angular analysis of the B0 → K∗0µ+µ− decay,
LHCb-CONF-2015-002, CERN-LHCb-CONF-2015-002 (2015) .

[74] LHCb collaboration, R. Aaij et al., Measurement of
Form-Factor-Independent Observables in the Decay B0 → K∗0µ+µ−,
Phys.Rev.Lett. 111 (2013) 191801, [1308.1707].

[75] LHCb collaboration, R. Aaij et al., Differential branching fractions and
isospin asymmetries of B → K(∗)µ+µ− decays, JHEP 06 (2014) 133,
[1403.8044].

[76] LHCb collaboration, R. Aaij et al., Test of lepton universality using
B+ → K+`+`− decays, Phys. Rev. Lett. 113 (2014) 151601, [1406.6482].

[77] LHCb collaboration, R. Aaij et al., Angular analysis and differential
branching fraction of the decay B0

s → φµ+µ−, JHEP 09 (2015) 179,
[1506.08777].

[78] LHCb collaboration, R. Aaij et al., Angular analysis of the
B0 → K∗0µ+µ− decay using 3 fb−1 of integrated luminosity, JHEP 02
(2016) 104, [1512.04442].

[79] Belle collaboration, A. Abdesselam et al., Angular analysis of
B0 → K∗(892)0`+`−, in Proceedings, LHCSki 2016 - A First Discussion of
13 TeV Results: Obergurgl, Austria, April 10-15, 2016, 2016. 1604.04042.

[80] Belle collaboration, S. Wehle et al., Lepton-Flavor-Dependent Angular
Analysis of B → K∗`+`−, Phys. Rev. Lett. 118 (2017) 111801,
[1612.05014].

[81] LHCb collaboration, R. Aaij et al., Measurement of the phase difference
between short- and long-distance amplitudes in the B+ → K+µ+µ− decay,
Eur. Phys. J. C77 (2017) 161, [1612.06764].

[82] ATLAS collaboration, Angular analysis of B0
d → K∗µ+µ− decays in pp

collisions at
√
s = 8 TeV with the ATLAS detector, Tech. Rep.

ATLAS-CONF-2017-023, CERN, Geneva, Apr, 2017.

[83] LHCb collaboration, R. Aaij et al., Test of lepton universality with
B0 → K∗0`+`− decays, JHEP 08 (2017) 055, [1705.05802].

113

http://dx.doi.org/10.1007/JHEP08(2013)131
https://arxiv.org/abs/1304.6325
http://dx.doi.org/10.1103/PhysRevLett.111.191801
https://arxiv.org/abs/1308.1707
http://dx.doi.org/10.1007/JHEP06(2014)133
https://arxiv.org/abs/1403.8044
http://dx.doi.org/10.1103/PhysRevLett.113.151601
https://arxiv.org/abs/1406.6482
http://dx.doi.org/10.1007/JHEP09(2015)179
https://arxiv.org/abs/1506.08777
http://dx.doi.org/10.1007/JHEP02(2016)104
http://dx.doi.org/10.1007/JHEP02(2016)104
https://arxiv.org/abs/1512.04442
https://arxiv.org/abs/1604.04042
http://dx.doi.org/10.1103/PhysRevLett.118.111801
https://arxiv.org/abs/1612.05014
http://dx.doi.org/10.1140/epjc/s10052-017-4703-2
https://arxiv.org/abs/1612.06764
http://dx.doi.org/10.1007/JHEP08(2017)055
https://arxiv.org/abs/1705.05802


[84] K. G. Chetyrkin, M. Misiak and M. Munz, Weak radiative B meson decay
beyond leading logarithms, Phys.Lett. B400 (1997) 206–219,
[hep-ph/9612313].

[85] A. J. Buras and M. Munz, Effective Hamiltonian for B → Xse
+e− beyond

leading logarithms in the NDR and HV schemes, Phys.Rev. D52 (1995)
186–195, [hep-ph/9501281].

[86] M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading
QCD corrections to B → Xsγ: Standard model and two Higgs doublet
model, Nucl.Phys. B527 (1998) 21–43, [hep-ph/9710335].

[87] P. Ball and R. Zwicky, Bd,s → ρ, ω,K∗, φ decay form-factors from light-cone
sum rules revisited, Phys.Rev. D71 (2005) 014029, [hep-ph/0412079].

[88] A. Bharucha, D. M. Straub and R. Zwicky, B → V `+`− in the Standard
Model from Light-Cone Sum Rules, 1503.05534.

[89] F. Kruger and J. Matias, Probing new physics via the transverse amplitudes
of B0 → K∗0(→ K−π+)l+l− at large recoil, Phys.Rev. D71 (2005) 094009,
[hep-ph/0502060].

[90] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub et al.,
Symmetries and Asymmetries of B → K∗µ+µ− Decays in the Standard
Model and Beyond, JHEP 0901 (2009) 019, [0811.1214].

[91] J. Matias, F. Mescia, M. Ramon and J. Virto, Complete Anatomy of
B̄d → K̄∗0(→ Kπ)l+l− and its angular distribution, JHEP 1204 (2012)
104, [1202.4266].

[92] LHCb collaboration, R. Aaij et al., Measurement of the B0 → K∗0e+e−

branching fraction at low dilepton mass, JHEP 05 (2013) 159, [1304.3035].

[93] LHCb collaboration, R. Aaij et al., Angular analysis of the B0 → K∗0 e+

e− decay in the low-q2 region, JHEP 04 (2015) 064, [1501.03038].

[94] S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from
clean observables for the binned analysis of B → K∗µ+µ− at large recoil,
JHEP 1301 (2013) 048, [1207.2753].

[95] S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis
of B → K∗`+`− observables in the full kinematic range, JHEP 1305 (2013)
137, [1303.5794].

114

http://dx.doi.org/10.1016/S0370-2693(97)00324-9
https://arxiv.org/abs/hep-ph/9612313
http://dx.doi.org/10.1103/PhysRevD.52.186
http://dx.doi.org/10.1103/PhysRevD.52.186
https://arxiv.org/abs/hep-ph/9501281
http://dx.doi.org/10.1016/S0550-3213(98)00244-2
https://arxiv.org/abs/hep-ph/9710335
http://dx.doi.org/10.1103/PhysRevD.71.014029
https://arxiv.org/abs/hep-ph/0412079
https://arxiv.org/abs/1503.05534
http://dx.doi.org/10.1103/PhysRevD.71.094009
https://arxiv.org/abs/hep-ph/0502060
http://dx.doi.org/10.1088/1126-6708/2009/01/019
https://arxiv.org/abs/0811.1214
http://dx.doi.org/10.1007/JHEP04(2012)104
http://dx.doi.org/10.1007/JHEP04(2012)104
https://arxiv.org/abs/1202.4266
http://dx.doi.org/10.1007/JHEP05(2013)159
https://arxiv.org/abs/1304.3035
http://dx.doi.org/10.1007/JHEP04(2015)064
https://arxiv.org/abs/1501.03038
http://dx.doi.org/10.1007/JHEP01(2013)048
https://arxiv.org/abs/1207.2753
http://dx.doi.org/10.1007/JHEP05(2013)137
http://dx.doi.org/10.1007/JHEP05(2013)137
https://arxiv.org/abs/1303.5794


[96] J. Matias and N. Serra, Symmetry relations between angular observables in
B0 → K∗µ+µ− and the LHCb P ′5 anomaly, Phys.Rev. D90 (2014) 034002,
[1402.6855].

[97] J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD
or new physics in b→ s`+`−?, 1406.0566.

[98] S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of
b→ s`` anomalies, JHEP 06 (2016) 092, [1510.04239].

[99] A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop
effect in B → K(∗)`+`− and B → K∗γ, JHEP 1009 (2010) 089,
[1006.4945].

[100] M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to
light B meson form-factors at large recoil, Nucl.Phys. B592 (2001) 3–34,
[hep-ph/0008255].

[101] M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive
B → V l+l−, V γ decays, Nucl.Phys. B612 (2001) 25–58, [hep-ph/0106067].

[102] M. Beneke, G. Buchalla, M. Neubert and C. Sachrajda, Penguins with
Charm and Quark-Hadron Duality, Eur.Phys.J. C61 (2009) 439–449,
[0902.4446].

[103] N. Isgur and M. B. Wise, Relationship Between Form-factors in
Semileptonic B̄ and D Decays and Exclusive Rare B̄ Meson Decays,
Phys.Rev. D42 (1990) 2388–2391.

[104] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Heavy to light
form-factors in the heavy mass to large energy limit of QCD, Phys.Rev.
D60 (1999) 014001, [hep-ph/9812358].

[105] B. Grinstein and D. Pirjol, Symmetry breaking corrections to heavy meson
form-factor relations, Phys.Lett. B533 (2002) 8–16, [hep-ph/0201298].

[106] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables
in the decay mode B̄d → K̄∗0l+l−, JHEP 0811 (2008) 032, [0807.2589].

[107] P. Colangelo, F. De Fazio, P. Santorelli and E. Scrimieri, QCD sum rule
analysis of the decays B → K`+`− and B → K∗`+`−, Phys.Rev. D53
(1996) 3672–3686, [hep-ph/9510403].

[108] P. Ball and R. Zwicky, New results on B → π,K, η decay form factors from
light-cone sum rules, Phys.Rev. D71 (2005) 014015, [hep-ph/0406232].

115

http://dx.doi.org/10.1103/PhysRevD.90.034002
https://arxiv.org/abs/1402.6855
https://arxiv.org/abs/1406.0566
http://dx.doi.org/10.1007/JHEP06(2016)092
https://arxiv.org/abs/1510.04239
http://dx.doi.org/10.1007/JHEP09(2010)089
https://arxiv.org/abs/1006.4945
http://dx.doi.org/10.1016/S0550-3213(00)00585-X
https://arxiv.org/abs/hep-ph/0008255
http://dx.doi.org/10.1016/S0550-3213(01)00366-2
https://arxiv.org/abs/hep-ph/0106067
http://dx.doi.org/10.1140/epjc/s10052-009-1028-9
https://arxiv.org/abs/0902.4446
http://dx.doi.org/10.1103/PhysRevD.42.2388
http://dx.doi.org/10.1103/PhysRevD.60.014001
http://dx.doi.org/10.1103/PhysRevD.60.014001
https://arxiv.org/abs/hep-ph/9812358
http://dx.doi.org/10.1016/S0370-2693(02)01601-5
https://arxiv.org/abs/hep-ph/0201298
http://dx.doi.org/10.1088/1126-6708/2008/11/032
https://arxiv.org/abs/0807.2589
http://dx.doi.org/10.1103/PhysRevD.53.3672, 10.1103/PhysRevD.57.3186, 10.1103/PhysRevD.53.3672 10.1103/PhysRevD.57.3186
http://dx.doi.org/10.1103/PhysRevD.53.3672, 10.1103/PhysRevD.57.3186, 10.1103/PhysRevD.53.3672 10.1103/PhysRevD.57.3186
https://arxiv.org/abs/hep-ph/9510403
http://dx.doi.org/10.1103/PhysRevD.71.014015
https://arxiv.org/abs/hep-ph/0406232


[109] A. Khodjamirian, T. Mannel and N. Offen, Form-factors from light-cone
sum rules with B-meson distribution amplitudes, Phys.Rev. D75 (2007)
054013, [hep-ph/0611193].

[110] R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice
QCD form factors, PoS LATTICE2014 (2015) 372, [1501.00367].

[111] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach
of the decay mode B̄ → K̄∗0`+`−, JHEP 1010 (2010) 056, [1005.0571].
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