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Abstract

Nowadays the demand of 3D models for the documenta-

tion and visualization of objects and environments is con-

tinually increasing. However, the traditional 3D modeling

techniques and systems (i.e. photogrammetry and laser

scanners) can be very expensive and/or onerous, as they of-

ten need qualified technicians and specific post-processing

phases. Thus, it is important to find new instruments, able

to provide low-cost 3D data in real time and in a user-

friendly way.

Range cameras seem one of the most promising tools to

achieve this goal: they are low-cost 3D scanners, able to

easily collect dense point clouds at high frame rate, in a

short range (few meters) from the imaged objects.

Such sensors, though, still remain a relatively new 3D mea-

surement technology, not yet exhaustively studied. Thus it

is essential to assess the metric quality of the depth data

retrieved by these devices.

This thesis is precisely included in this background: the

aim is to evaluate the potentialities of range cameras for

geomatic applications and to provide useful indications for

their practical use.



Therefore the three most popular and/or promising low-

cost range cameras, namely the Microsoft Kinect v1, the

Micorsoft Kinect v2 and the Occipital Structure Sensor,

were firstly characterized from a geomatic point of view

in order to assess the metric quality of the depth data re-

trieved by them.

These investigations showed that such sensors present a

depth precision and a depth accuracy in the range of some

millimeters to few centimeters, depending both on the op-

erational principle adopted by the single device (Structured

Light or Time of Flight) and on the depth itself.

On this basis, two different models were identified for preci-

sion and accuracy vs. depth: parabolic for the Structured

Light (the Kinect v1 and the Structure Sensor) and lin-

ear for Time of Flight (the Kinect v2) sensors, respectively.

Then the effectiveness of such accuracy models was demon-

strated to be globally compliant with the found precision

models for all of the three sensors.

Furthermore, the proposed calibration model was validated

for the Structure Sensor: with calibration, the overall RMSE,

decreased from 27 to 16 mm.

Finally four case studies were carried out in order to eval-

uate:

� the performances of the Kinect v2 sensor for monitor-

ing oscillatory motions (relevant for structural and/or

industrial monitoring), demonstrating a good ability



of the system to detect movements and displacements;

� the integration feasibility of Kinect v2 with a classical

stereo system, highlighting the need of an integration

of range cameras into 3D classical photogrammetric

systems especially to overpass limitations due to ac-

quisition completeness;

� the potentialities of the Structure Sensor for the 3D

surveying of indoor environments, showing a more than

sufficient accuracy for most applications;

� the potentialities of the Structure Sensor to docu-

ment archaeological small finds, where metric accu-

racy seems to be rather good while textured models

shows some misalignments.

In conclusion, although the experimental results demon-

strated that range cameras have the capability to give good

and encouraging results, the performances of traditional 3D

modeling techniques in terms of accuracy and precision are

still superior and must be preferred when the accuracy re-

quirements are restrictive.

But for a very wide and continuously increasing range of

applications, when the required accuracy can be at the level

from few millimeters (very close-range) to few centimeters,

then range cameras can be a valuable alternative, espe-

cially when non expert users are involved. Furthermore,

the technology on which these sensors are based is continu-

ally evolving, driven also by the new generation of AR/VR



reality kits, and certainly also their geometric performances

will soon improve.
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Chapter 1

Introduction

Today 3D modeling is a subject of great interest in very different fields

such as industry, robotics, medicine, cultural heritage, civil engineer-

ing, architecture, where the demand of 3D models for the documen-

tation and visualization of objects and environments is continually in-

creasing. However, the traditional 3D modeling techniques and sys-

tems (i.e. photogrammetry and laser scanners) can be very expensive

and/or onerous, as they often need qualified technicians and specific

post-processing phases.

Thus, it is important to find new instruments, able to provide low-

cost 3D data in real time and in a user-friendly way, at least for some

applications, which may also be suitable to be developed in the frame

of volunteered geographic information (VGI) generation, whereas a

reasonable (if not low) cost is an important feature.

Range cameras seem one of the most promising tools to achieve

this goal: they are active imaging sensors, low-cost and easy to use,

able to natively measure the distances of several points at high frame

1
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rate (30 - 60 Hz).

Thanks to these characteristics, nowadays this technology can play

an important role in close-range 3D modeling: range cameras can be

used as 3D scanners to easily collect dense point clouds practically in

real time. In addition such sensors are continually evolving and they

will be soon integrated in consumer grade smart devices, allowing their

use along with other sensors and becoming available to a wider and

not expert audience.

Range cameras, though, still remain a relatively new 3D measure-

ment instrument, not yet exhaustively studied. Thus it is essential to

assess the metric quality of the depth data retrieved by these devices.

This work is precisely included in this background: the aim is to

evaluate the potentialities of range cameras for geomatic applications

and to provide useful indications for their practical use.

In particular this thesis proposes specific models to represent ran-

dom and systematic errors of depth measurements (dependent on the

operational principle adopted by the single sensor and on the distance

from the captured object) for the considered range cameras, thus de-

scribing their precision and accuracy, and proves the effectiveness of

such models for the calibration of these sensors. Furthermore some

investigations about the registration process of depth and color images

are also described. Finally some case studies are presented in order

to provide some insights into the practical usage of range cameras in

different fields.

This thesis is therefore structured in the following chapters:

� chapter 2: a brief overview of the most used techniques and

systems for close-range 3D modeling is given; basics and func-
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tioning of range cameras are recalled, focusing on both Time of

Flight (ToF) and Structured Light (SL) operational principles;

� chapter 3: the main features of the investigated sensors are

firstly introduced; then their geomatic characterization is de-

scribed, together with the models identified to represent their

random and systematic errors, which are proven adequate for

calibration; some investigations regarding the registration pro-

cess of depth and color images are also presented;

� chapter 4: four case studies illustrating the practical use of

range cameras are discussed;

� chapter 5: some conclusions are outlined, together with poten-

tial prospects for future investigations;

� appendix A: the libraries available to retrieve the depth data

from range cameras are described; further algorithms and soft-

ware for 3D model reconstruction are also presented;

� appendix B: the applications implemented to carry out the re-

search are shortly illustrated, after a brief overview of the IT

facilities used.
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Chapter 2

Close-range 3D modeling

and range cameras

Three dimensional (3D) modeling is an intensive and durable research

problem in 3D graphics, computer vision and photogrammetry.

It consists in the complete process that, starting from data col-

lection, generates a three dimensional mathematical representation of

the geometry (shape and dimensions) of an object/environment. The

obtained numerical description of the object is then stored in a digital

form and can be interactively visualized as 3D virtual model on the

screen of a computer.

Today many tools are available to produce 3D models of objects

and scenes. Hereafter a brief overview of the most used technique

and systems for close-range applications is given. The available litera-

ture is wide and continuously increasing, and the interested reader can

refer to it for 3D modeling methods and techniques already existing

before/other than range camera.

5
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The most general classification of 3D object measurement and re-

construction techniques can be divided into contact methods (for ex-

ample, using coordinate measuring machines, callipers, rulers and/or

bearings) and non-contact methods (X-ray, SAR, photogrammetry,

laser scanning). Nowadays the generation of a 3D model is mainly

achieved using non-contact optical systems based on electromagnetic

waves, in particular using passive or active sensors (Fig. 2) [91].

Fig. 2.1: Three-dimensional acquisition systems for object measurement
using non-contact methods based on light waves [34].

Passive range sensing refers to 3D distance measurement by way

of radiation (typically, but not necessarily, in the visible spectrum)

already present in the scene; photogrammetry is a classical example
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of this family of methods. Active sensing refers, instead, to 3D dis-

tance measurement obtained by projecting in the scene some form of

radiation as made, for instance, by range cameras and laser scanners

[34].

Active sensors directly provide depth data containing the 3D co-

ordinates necessary for the mesh generation phase. Passive sensors

provide images that need further processing to derive the 3D object

coordinates [91].

2.1 Close-range 3D modeling before range

cameras

3D modeling of close-range objects is traditionally achieved with a

standard topographic/photogrammetric survey or, more recently, with

laser scanners. Today range cameras are a relative new technology

but they can represent a very promising alternative for many kinds of

close-range surveying and 3D modeling applications. In the following

sections a brief description of the photogrammetric technique and the

laser scanner systems is given, with a particular focus on their most

challenging limits. As regards range cameras, their functioning will be

illustrated in greater detail in Sec. 2.2. For now it sufficient to say

that, to a certain extent, they are very similar to laser scanners, less

accurate and capable of acquiring less points, but at the same time

cheaper and easier to use.
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2.1.1 Photogrammetry

Photogrammetry is a survey technique able to derive the shape and

the position of physical objects and environments through the mea-

surement and the interpretation of photo images. In particular, for

close-range surveys, the so-called terrestrial photogrammetry technique

is adopted, where the photo images are captured with cameras located

on the earth surface. They may be handheld, mounted on tripods, or

suspended from towers or other specially designed mounts.

Specifically, to extract metric data from two-dimensional (2D) im-

ages, photogrammetry adopts central projection imaging as its funda-

mental mathematical model (Fig. 2.2a) [70].

(a) (b)

Fig. 2.2: (a) Principle of photogrammetric measurement [70]; (b) perspec-
tive projection from the 3D object space to the 2D image plane [69].

Shape and position of an object are thus determined by recon-

structing bundles of rays in which, for each camera, every image point

P ′, together with the corresponding perspective center C, defines the
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spatial direction of the ray to the corresponding object point P . Pro-

vided the imaging geometry within the camera and the location of the

imaging system in object space are known, then every image ray can

be defined in 3D object space. From the intersection of at least two

corresponding (homologous) spatially separated image rays, an object

point can be located in three dimensions. In stereo-photogrammetry

two images are used to achieve this. In multi-image photogrammetry

the number of images involved is, in principle, unlimited [70].

The interior orientation parameters describe the internal geomet-

ric model of a camera, represented as a pinhole camera for which the

most important reference location is the perspective center C, through

which all image rays pass. The interior orientation parameters define

the position of the perspective center C relative to the image coordi-

nate system, namely the reference system fixed in the camera, as well

as departures from the ideal central projection (image distortion) [70].

They include the camera principal distance c and the photogrammetric

principal-point location (xp, yp). The principal distance, which equals

the camera focal length for a camera focused at infinity, is the per-

pendicular distance from the perspective center to the image plane,

whereas the photogrammetric principal-point is where a perpendicular

line from the perspective center intersects the image plane [69]. Due

to lens distortion and refraction of the medium where electromagnetic

waves propagate from the imaged object to the camera, however, per-

turbation to the imaging process leads to departure from collinearity

that can be represented by the shifts δx and δy of the image point from

its ’ideal’ position on the image plane [69].

The exterior orientation parameters specify the spatial position and

orientation of the camera in the global coordinate system in which the
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object is placed. The exterior orientation is described by the coordi-

nates of the perspective center (XC , YC , ZC) in the global system and

the three suitably defined angles (ω, φ, k), expressing the rotation of

the image coordinate system with respect to the global system. The ex-

terior orientation parameters are calculated indirectly, after measuring

image coordinates of well identified object points,namely the Ground

Control Points (GCP), with fixed and known global coordinates [70].

In particular the collinearity equations provide the perspective pro-

jection relationship between the 3D coordinates (X, Y, Z) in the object

space and the corresponding 2D coordinates in the image plane (x, y)

[69]:

x− xp − δx = −cr11(X −Xc) + r12(Y − Y c) + r13(Z − Zc)
r31(X −Xc) + r32(Y − Yc) + r33(Z − Zc)

(2.1a)

y − yp − δy = −cr21(X −Xc) + r22(Y − Y c) + r23(Z − Zc)
r31(X −Xc) + r32(Y − Yc) + r33(Z − Zc)

(2.1b)

where rij(i, j = 1, 2, 3) are the elements of the rotation matrix

R = R(k)R(φ)R(ω) = [rij] that are functions of the Euler orientation

angles (ω, φ, k).

Therefore the collinearity equations allow to compute the 3D co-

ordinates of the object captured in the images, but only after having

determined the camera interior and exterior orientation parameters, as

well as the lens distortion parameters.

The classical close-range photogrammetric workflow thus consists

of several steps, including: image acquisition (images of the same view

have to be captured at least from two different points of view), cam-

era calibration (computation of the interior and distortion parameters)

and orientation (computation of the exterior parameters), image point



2.1 Close-range 3D modeling before range cameras 11

measurements (matching: identification of the homologous points), 3D

point cloud generation (computation of the 3D coordinates of the ob-

ject), surface generation and texturing. Today reliable software pack-

ages are available allowing the management of the complete scene mod-

eling process. After the tie point measurement, that can be manual,

semi-automated or automated, and bundle adjustment phases, these

software allow to calibrate and orientate the sensor, to compute the

3D object point coordinates, as well as to generate the wireframe or

textured 3D models [92].

Anyway recovering a complete, detailed, accurate and realistic 3D

model from images is still a difficult task, in particular for large and

complex sites and in case of uncalibrated or widely separated images

are used. The wrong recovery of the parameters may indeed lead to

inaccurate and deformed results [91]. Finally the processing time can

be very long, especially when the number of the captured images is

noticeable.

For all these reasons, photogrammetry remains a specialized disci-

pline that requires extensive knowledge and great experience in order

to obtain high-quality and complete 3D models; moreover, it is also

shows limits in performing real-time applications.

2.1.2 Laser scanners

Recently, advances in laser scanner technology have created much inter-

est in the utilization of terrestrial laser scanning (TLS) for close-range

3D modeling [87]. Laser scanners are indeed very expensive tools (typ-

ically between 50000 e and 200000 e), but able to accurately measure

the positions of millions of 3D points (mm level accuracy) with a very
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high point density in a short time (up to 1 million points per second).

These features make them a valuable alternative or complementary

technique for classical topographical measurements based on total sta-

tion or digital photogrammetry [103]. Different commercial solutions

are actually available on the market, based on triangulation, time-of-

flight, continuous wave or reflectivity measurements [92], [22], [24].

Although laser scanners can obtain high levels of geometric detail

with high degree of accuracy, intensive work, experience and time are

still needed for data acquisition and processing [87, 24]. Indeed, to

obtain a complete 3D model, laser scanners must capture the object in

different positions and a crucial registration process of the acquisitions

from different points is thus required in order to generate the entire 3D

model. Furthermore they are bulky and heavy tools, features that limit

their flexibility of use. Meanwhile, laser scanners cannot by themselves

acquire textural information. Integration and registration with digital

camera images is necessary [24, 87]. This increases not only the cost,

but also the complexity of the data processing pipeline [87].

2.2 Range cameras

Range cameras are active imaging sensors able to natively measure the

distances of several points at high frame rate (30 - 60 Hz).

At every acquisition, they produce the so called depth map of the

scene, an image in which each pixel contains its own distance from

a specific reference, normally associated to the sensor itself. Start-

ing from this depth map, range cameras generate a dense point cloud

of the environment scanned, a collection of an elevate number of 3D
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coordinates in a given reference system.

Thus it is straightforward to understand how this technology plays

an increasing role in close-range 3D modeling: these devices can be

used as 3D scanners to easily capture the 3D geometry (shape and

dimensions in metric units) of a scene practically in real time.

In particular the depth sensor is the heart of the technology, since

it is designed specifically to capture the depth data. Although its

function is equivalent for all the range cameras, it is worth noting that

the underlying working principle can be different, depending on the

technique adopted by the specific range camera.

Indeed, to generate the depth map, range cameras can use two

different operational principles: it is possible to distinguish between

the Time of Flight (ToF) range cameras and the Structured Light

(SL) range cameras.

ToF range cameras generate the depth map by measuring the time

of flight taken by an electromagnetic wave to travel from the sensor

itself to the object and back. For this family of devices the depth

sensor consists of a matricial collection of emitters and receivers.

Differently, SL range cameras emit a bi-dimensional light pattern

directly on the surface of the object to be measured and generate the

depth map by evaluating the deformation between the pattern emitted

and the one back-projected by the object itself. In this case the depth

sensor consists of a projector and a frequency-matched camera.

Hereafter these two working principles are just shortly recalled, and

the interested reader can find more details within [34], [50], [52] and

[93]. In particular, for each of the two categories, the principal error

sources of the most used sensors, namely the continuous wave ToF

range cameras and the infrared SL range cameras, are described.
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2.2.1 Time of Flight range cameras

ToF range cameras illuminate the environment with a modulated ra-

diation (e.g. light) and observe the component reflected by the scene

onto the receiver [56]. Typically, the illumination unit is a solid-state

laser or a LED operating in the near-infrared (NIR) range (about 850

nm), invisible to the human eyes, and the receiver is an imaging sensor

responding to the same spectrum, designed to convert the photonic

energy to electrical current [67].

By measuring the flight time of the signal, ToF range cameras es-

timate the distance d to the objects of the scene framed through the

following well known equation:

d =
c τ

2
(2.2)

where c denotes the speed of light and τ is the time of flight.

In particular, at least two different methods can be adopted in

order to evaluate the time of flight: the direct method and the indirect

method (see Fig. 2.3).

Fig. 2.3: Time of flight methods for distance measurement. The direct and
the indirect method [56].
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In the first case, the light emitted is modulated by a single pulse and

the difference between the departure and arrival times of the pulsed

signal is directly measured by high precision clock circuits.

In the latter, the light emitted is modulated by a continuous-wave

source and the time of flight is measured indirectly by evaluating the

phase shift between the reference signal generated by the emitter and

the one reflected by the target and received by the detector.

It is therefore possible to identify two families of ToF range cameras:

the pulsed ToF range cameras and the continuous wave ToF range

cameras. The former ones, based on the direct ToF measurement, can

measure distances up to 1500 m, whereas the latter ones, based on the

phase shift measurement, usually show a more limited working range

(up to 10 m), but they have higher accuracy and thus they are more

suitable for close-range 3D modeling applications [83].

2.2.1.1 Pulsed ToF range cameras

Pulsed modulation can be achieved by integrating photoelectrons from

the light of the reflected signal, or by starting a fast counter at the first

detection of the reflection [67].

In the first approach, the light source illuminates the scene for a

short period (∆t), and the reflected energy is sampled at every pixel in

parallel, using two out-of-phase windows, C1 and C2, with the same ∆t.

The electrical charges accumulated during these samples, Q1 and Q2,

are measured and used to compute the distance through the following

formula [67] (see Fig. 2.4):

d =
1

2
c ∆t

(
Q2

Q1 +Q2

)
(2.3)
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Fig. 2.4: Pulsed method by integrating photoelectrons from the reflected
light [67].

Concerning the time counting method, it is more complex from

an hardware point of view, as it requires fast electronics and a high

precision clock to derive an accurate distance measurement using the

following relation:

d =
c

2
(tSTOP − tSTART ) (2.4)

where c is the speed of light, tSTART is the starting time of the

light pulse synchronization signal and tSTOP is the arrival time of the

reflected pulse in the detector. This equation clearly shows that the dis-

tance accuracy depends on the accuracy of the time of flight measure-

ment: in order to obtain an accuracy of 1 mm, it is necessary to mea-

sure a pulse of 6.6 picoseconds in duration. Single-photon avalanche

diodes (SPADs) are one of the few detectors capable of capturing in-

dividual photons with the level of accuracy needed, even if it is nearly

impossible to achieve this standard in silicon at room temperature [29].

2.2.1.2 Continuous wave ToF range cameras

Most of the commercially available ToF range cameras, such as the

Microsoft Kinect v2, use the phase shift measurement principle and
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thus the continuous wave modulation technique.

In particular, the emitter of the continuous wave ToF range cameras

illuminates the scene with a NIR optical signal sE(t) of amplitude AE

modulated by a sinusoid of frequency fmod [34]:

sE(t) = AE (1 + sin(2πfmodt)) (2.5)

The signal sE(t) is then reflected by the object surface and trav-

els back towards the sensor receiver, ideally co-positioned with the

emitter. The signal round trip together with the non-instantaneous

propagation of NIR radiation generate the phase delay ∆ϕ that in-

trinsically contains the distance information. The signal received is

also shifted in amplitude of an offset BR due to the presence of ad-

ditional background radiation at the NIR wavelength of the emitted

signal. Furthermore, its amplitude AR is attenuated because of all the

optical losses associated to the reflection such as energy absorption and

free-path propagation attenuation [26], [34]. On the basis of all these

considerations, the signal reaching the receiver sR(t) can be expressed

as follows (see Fig. 2.5):

sR(t) = AR (1 + sin(2πfmodt+ ∆ϕ)) +BR (2.6)

The quantity AR (from now on denoted with A) is the amplitude of

the useful signal. The quantity AR+BR (from now on denoted with B)

is called intensity or offset, and it is the average of the received signal.

According to this notation, Eq. 2.6 can be rewritten as a harmonic

function describing a photon flux [34], [99]:

sR(t) = A sin(2πfmodt+ ∆ϕ) +B (2.7)
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Fig. 2.5: The emitted signal sE(t) and received signal sR(t) [34].

Eq. 2.7 shows three unknowns: A, B and ∆ϕ, where A and B

are IR radiation amplitudes and therefore measured in volt [V] and

∆ϕ is a pure number representing a phase value. The most important

unknown is the phase shift ∆ϕ since continuous wave ToF cameras infer

distance d from it, whereas A and B are important for signal-to-noise

ratio (SNR) considerations [34]. These quantities can be estimated

by demodulating the incoming signal through a technique commonly

known as four-bucket sampling [42] (see Fig. 2.6), according to which

the received signal is sampled at four sample points of quarter phase

interval of the modulated source frequency [75]:

SRi = SR(ti) = Ai sin(2πfmodti + ∆ϕ) +B, ti = i · π
2ω
, i = 0, 1, 2, 3

(2.8)

Anyway, since phase lock-in TOF sensors are digital devices, in-

stantaneous measurement or ideal sampling of the received signal is

not possible. In practice a measurement is made by integrating over a

time period ∆t. The sampling does not effect the phase measurement
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Fig. 2.6: A signal with a modulation frequency fmod of 20Mhz and a
background offset I0 is sampled four times A0, A1, A2, A3 with a short
integration time ∆t to calculate amplitude A, phase shift ∆ϕ and intensity
I[75].

as long as the integration time ∆t is less than the modulation period of

the sampled signal, but, however, it attenuates the amplitude. There-

fore each sample corresponds to the integration of the photo-generated

charges over a fraction of the modulation period [75].

Out of the four samples A0, A1, A2 and A3, the phase shift ∆ϕ,

the amplitude A and the offset B can be computed as:

∆ϕ = arctan

(
A3 − A1

A0 − A2

)
(2.9)

A =

√
(A3 − A1)2 + (A0 − A2)2

2
(2.10)

B =
A1 + A2 + A3 + A4

4
(2.11)

Another approach adopted by continuous wave range camera to es-
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timate the ∆ϕ is instead based on the on-chip correlation (or mixing)

of the incident optical signal sR, coming from the modulated NIR illu-

mination and reflected by the scene, with a reference signal sG emitted

by the generator, possibly with an internal phase offset τ [61]:

C(τ) = sR ⊗ sG = lim
T→∞

∫ T/2

−T/2
sR(t) · sG(t+ τ) dt (2.12)

Also in this case a sinusoidal modulation of constant frequency fmod

is used; in particular the sG signal can be expressed in the following

way:

sG(t) = cos(2πfmod t) (2.13)

With some trigonometric calculus it is therefore possible to explicit

the correlation function C as a harmonic function too [61]:

C(τ) =
A

2
cos(fmod τ + ∆ϕ) + I (2.14)

where the amplitude of the incident optical signal A, the intensity

offset I due to the background illumination and the phase shift ∆ϕ

proportional to the object distance are once again the unknowns to be

estimated, in this case by demodulating the correlation function C.

Again this can be achieved through the four-bucket technique, thus

four sequential phase images Qi (also called correlation images) with

different phase offset τ [61] are obtained by sampling the correlation

function C four times per modulation period with each sample shifted

by 90 degrees [26]:

Qi = C(τi) = C
(
i · π

2

)
, i = 0, 1, 2, 3 (2.15)
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The unknowns are computed applying the Eq. 2.9, Eq. 2.10 and

Eq. 2.11 to the samples of the correlation function.

Anyway, once the phase shift ∆ϕ has been computed, the corre-

sponding distance d can be calculated through the following equation:

d =
λmod

2

∆ϕ

2π
=

c

2fmod

∆ϕ

2π
(2.16)

where λmod is the modulation wavelength, c is the speed of light and

the quantity c
2fmod

is the ambiguity distance, that is the maximum

distance that can be measured without ambiguity. In fact, since this

measurement is based on phase, which wraps around every 2π, an

ambiguity effect can occur.

To extend the measurable distance, the modulation frequency could

be decreased, but at the cost of a reduced resolution. Instead of accept-

ing this compromise, advanced ToF systems deploy multi-frequency

techniques to increase the distance without reducing the modulation

frequency [67]. Multi-frequency techniques work by using one or more

modulation frequencies, as it is standard within the electromagnetic

distance measurement for a while [94].

2.2.1.2.1 Error sources

Real continuous wave ToF range cameras are rather more complex than

ideal systems. First of all, the theoretically required sinusoidal signal

is not achievable in practice, since it is obtained through a low-pass

filter on the squared wave-forms emitted by LEDs. Therefore the mea-

sured distance shows a systematic error, also called wiggling effect [61],

which introduces an harmonic distortion which depends on the mea-
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sured distance [34]. Secondly, they use standard optics to focus the

reflected active light onto the chip. Thus, classical intrinsic calibration

is required to compensate effects like shifted optical centers and lateral

distortion [61]. In particular, ToF range cameras can be considered

as an array of range finders [93] in which each pixel is associated to a

finite area of the observed scene. The ideal situation in which a single

pixel of the sensor measures exclusively the distance of the correspond-

ing object point is indeed valid only if the scanned area has an almost

constant reflectivity, that is absence of reflectivity discontinuity. If not,

or to make matters worse whether the area related to the considered

point crosses not only a reflectivity discontinuity but also a depth dis-

continuity, the resulting depth estimate presents severe artefacts [34].

In this case the mixing process results in a super imposed signal caused

by the light reflected from different depths, leading to wrong distance

values [98]. The pixels associated to such depth estimates are com-

monly called flying pixels and can be regarded as outliers in the depth

measurement [34].

In addition to this problem, there is also the multipath propagation

related to the scattering, i.e. reflection in multiple directions. Although

the incident direction is the more likely path for the back reflected ray,

the presence of other rays cannot be neglected, especially the specu-

lar ray to the incident one. In fact the light may additionally travel

indirect paths, i.e. being scattered by highly reflective objects in the

scene or within the lens systems or the housing of the camera itself

[34]. These multiple responses of the active light are superimposed in

each pixel, leading to an altered signal and thus a wrong distance. In

the context of computer graphics this effect is known as global illu-

mination [98]. Since multi-path is a scene-dependent error, it is very
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hard to model [34].

Furthermore ToF range cameras need a pre-heating time before

they can acquire stationary depth measurements. This kind of sensors

are indeed made of semiconductor materials, highly responsive to tem-

perature changes. In the first minutes after the start-up, the device

internal temperature can increase (or decrease, if cooling is available)

and then should eventually stabilize [83]. Thus the retrieved distances

vary during the warm-up time and the sensor may take several minutes

before measuring stable depth values [30], [83] [98], [63].

Finally ToF cameras can suffer from ambient background light that

can lead to over saturation in case of too long exposure times in rela-

tion to the object distance and/or reflectivity [98]. Anyway most of the

current ToF range cameras support Suppression of Background Inten-

sity (SBI), thanks to which the intensity mainly reflects the incident

active light and outdoor applications are facilitated [61]. In fact, since

this kind of devices are active sensors using the infrared spectrum, all

the infrared light sources, such as sun light or other active IR devices,

can potentially interfere with their correct functioning. For the same

reason these sensors can show difficulties to reconstruct surfaces that

do not perfectly reflect the incident NIR light, as, for example dark,

shiny or transparent objects.

2.2.2 Structured Light range cameras

SL range cameras are active triangulation systems that exploit the

structured light technique to capture the 3D geometry of the scene.

A structured light device is similar to a classical stereoscopic sensor

with a camera replaced by a light source, commonly a laser or a special
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slide projector, as shown in Fig. 2.7.

In its simplest implementation, now almost obsolete, the projector

is a laser beam projecting a single dot onto the scene. Since only one

point is projected, the correspondence is direct, but, however, scanning

along both axes is required [41].

A second solution consists of using a projector that emits a stripe

(plane) of light and a camera placed at an angle with respect to the

projector. At each point in time, the camera obtains 3D positions for

points along a 2D contour traced out on the object by the plane of

light. In order to obtain a full depth map, it is necessary to sweep

the stripe along the surface (as is done by many commercial single-

stripe laser range) by physically moving the projector. Correspondence

solving is quite simple: the 3D positions of points on the object are

determined from the intersection between the camera ray and the plane

of light produced by the illumination source, this ensures a single and

unambiguous matching [95].

Fig. 2.7: Schematic layout of a single-camera, single-stripe-source triangu-
lation system [95].

In order to avoid a time consuming mechanical scanning, the last
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and most used solution consists in projecting a bidimensional pattern,

such as a multi-stripe pattern, a grid or multiple dots. For this kind of

patterns, a correspondence problem occurs, but it is solved by coding

the pattern, in a way that each token of light is easily distinguishable

from the others [41]. In this way the 3D position of each surface point

is identified by searching correspondences between points in the cam-

era image and points in the a priori known pattern emitted by the

projector (pattern decoding). Therefore there is no need for geometri-

cal constraints, as instead it happens in passive triangulation systems,

where the problem is solved by searching the same object point along

epipolar lines (geometric constraint) of two (or more) images [46] (see

Fig. 2.8).

Fig. 2.8: Comparison between a passive triangulation system (a) and the
structured light system (b) [46].

In general the term structured light mainly refers to the third

method, which is the one implemented by SL range cameras. It ex-

tracts the 3D data by evaluating the distortion of the 2D spatially

varying intensity pattern generated by the projector and captured by

an imaging sensor. If the scene is a planar surface and thus without

any 3D surface variation, the pattern shown in the acquired image is
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very similar to that of the projected structured-light pattern. How-

ever, when the scene surface is not planar, the geometric shape of the

surface distorts the projected structured-light pattern as seen from the

camera [45].

In the specific case of SL range cameras, an infrared speckle pattern

is used: an infrared laser projector emits a pattern of thousands of

invisible infrared dots on the surface of the object/s to be modelled

and a frequency-matched infrared camera records how the environment

deforms the pattern, thereby obtaining the 3D geometry (shape and

dimensions in metric units) of the objects.

2.2.2.1 Active triangulation

Triangulation is one of the oldest and most used ranging technique.

In the form of stereo vision along with the depth from focus system,

it is indeed at the core of human depth perception. Triangulation

is based on a geometrical approach: the point to be measured is a

vertex of a triangle whose two remaining vertexes are known parts of

the measurement system. For passive triangulation, the two remaining

points of the triangle are two imaging devices, in case of active systems

they consist, instead, of a light source and a camera. In particular,

the target distance can be determined by measuring the angles of the

triangle or the triangulation base [64]. From this moment on, the

discussion will be focused on the active triangulation devices.

In the first case, the target distance d can be computed by measur-

ing the viewing angles α and θ with respect to the baseline b between



2.2 Range cameras 27

the light projector and the camera (Fig. 2.9) [45]:

d = b
sin(θ)

sin(α + θ)
(2.17)

Fig. 2.9: Triangulation by angles measurement [45].

Rather than measuring angles directly, the second method exploits

the similarity of two triangles, as Fig. 2.10 shows. The first triangle is

constituted by the target point, the projector and the camera whereas

the second one is fully defined by the optical axis of the imaging device,

the focal length f of the system and the detector image plane [64]

By knowing the baseline b between the light source and the imaging

device, the depth z of the target can be determined as follows:

z =
f b

δ
(2.18)

where the disparity δ denotes the shift between the horizontal position

of the object point pixel in the camera image plane and in the emitted

pattern, respectively. In other words the projection/acquisition process
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Fig. 2.10: Triangulation by disparity measurement [64].

introduces an horizontal shift δ proportional to the inverse of the depth

z. Disparity shift δ is the most important quantity and since it carries

the 3D geometry information relative to the considered scene, it needs

to be carefully estimated [34] by finding accurately the tie points (also

called conjugate points), namely the projection of the same object

point in the camera image plane and the projector pattern plane.

In particular SL range cameras adopt a procedure called matricial

active triangulation, which computes the disparity for every pixel of

the depth map. In this case the major difficulty is keeping the corre-

spondence problem as simple as for a single point. This issue can be

handled by designing the pattern emitted by the projector through the

light coding strategies described in the next paragraph.

2.2.2.2 Structured Light coding strategies

To identify conjugate points in order to apply triangulation, each pixel

of the emitted pattern needs to be associated to a code-word, i.e. a

specific local configuration of the projected pattern [34]. In this way it
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is possible to establish a direct mapping from the code-words detected

in the camera image to the corresponding coordinates of the pixel in

the projected pattern. However, what really is important it is to select

code-words that are highly and effectively decodable. This is why the

pattern design is fundamental to the correct operation of structured

light devices.

2.2.2.2.1 Code-Words

The patterns of structured light sensors are specially designed to as-

sign code-words to pattern pixels. The codewords are numbers, which

are mapped in the pattern by using grey levels, color or geometrical

representations. The larger the number of points that must be coded,

the larger the codewords are and, therefore, the mapping of such code-

words to a pattern is more difficult [97]. Furthermore the more the

code-words are different the more robust is the coding against distur-

bances and self-interferences [34]. Anyway, given a certain cardinality

of possible code-words, the smaller is the number of used code-words

the greater is the difference between them.

A code-words alphabet can be implemented through a light pro-

jector considering that it can produce np = 2bit(s) different illumina-

tion values called pattern primitives [34]. For example, a binary black

/white projector has np = 21, whereas for a 8-bit gray-scale or RGB

projector np is respectively 28 and 224. Then, this alphabet is used to

build proper local distribution patterns – namely code-words – for each

pixel pP of the projector using the illumination values of the pixels in a

window nW around the given pixel. Therefore, the number of possible

pattern configurations is nnW
p and from this set N configurations need
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to be chosen as code-words [34].

The pattern projected onto the scene and then acquired by the

camera derives from the fusion of code-words relative to all the pixels

of the projected pattern. However, there are several factors transform-

ing it and introducing artefacts which must be taken into considera-

tion [34]. For example perspective distortion could map not accurately

neighbouring pixels because of difference in depth z. Secondly, there

are color distribution and reflectivity distortions. The appearance of

the pixels on the camera depends on the scene reflectance, which is

strongly related to color properties. Strong absorption because of low

reflectance can distort high intensity pixels making them appear much

darker. This is a very important issue, since it might completely change

the projected code-words [34]. Furthermore, also external illumination

influences the acquired color because the light – artificial one or sun-

light – falling on the scene surfaces acts as a noise source added to the

information of the signal emitted [34]. In addition, the 3D geometry

of the scene with its occlusions might determine the possibility that

some pixels are not acquired by the camera, causing a not biunivo-

cal association. Those pixels have to be identified and discarded in

order to avoid wrong correspondences. Lastly, projector and camera

non-idealities and noise should be taken into account.

Now it is more evident as the above listed transformations or distor-

tions can do an acquired code-word very different from the projected

one and, to make matters worse, due to occlusions some pixels of the

acquired image may not correspond to any pixel of the projected pat-

tern [34]. It is luckily possible to mitigate these potentially disruptive

effects during the correspondences estimation process. To do this two

decisions are fundamental:
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� what code-word assign to each pixel pP of the projected pattern,

namely the pattern to be projected on a window centred at pP ;

� what code-word assign to each pixel pC of the camera image,

equivalently how to detect the code-word most similar to the

local pattern distribution around pC .

2.2.2.2.2 Coding Schemes

The key for triangulation-based 3D imaging is the technique used to

differentiate a single projected light spot from the acquired image under

a 2D projection pattern. Various schemes have been proposed for this

purpose, and this section will provide an overview of various methods

based on the structured-light illumination [45]. There are principally

four possibilities, the three main ones illustrated in Figure 2.11:

Fig. 2.11: The three main coding schemes: a) direct coding; b) time-
multiplexing coding; c) spatial-multiplexing coding [34].

1. Direct coding represents the case in which the entire code-word

is contained in a unique pixel (nW = 1): the code-word is the
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pattern value at the pixel itself (gray or color level). Only one im-

age of the object under the pattern illumination is thus needed to

compute the full frame of the depth image [97] and the maximum

code-words cardinality is nP ;

2. Time–multiplexing coding is characterized by a sequence of T

patterns projected at T subsequent times. The code-word for a

given pattern pixel is formed by the sequence of illuminance val-

ues for that pixel across the sequence of the T projected patterns

and thus there may be up to nP
T code-words [34];

3. Spatial–multiplexing coding for which the code-word that iden-

tifies a certain point of the pattern is obtained from a spatial

neighborhood of the points around it [97], precisely a window

of nW pixels centred around pP . This option might have up to

nP
nW code-words. Note that neighbouring pixels share parts of

their code-words, thus making their coding interdependent [34].

This technique concentrates all the coding scheme in a unique

pattern (single shot pattern);

4. Hybrid techniques based on the combination of time–multiplexing

with spatial–multiplexing methods: they project several pat-

terns, but at the same time they also consider the information of

spatial neighborhood in the decoding process.

In particular, two groups of methods belong to the category of

direct coding strategies:

1. codification based on grey levels: a spectrum of grey levels is

used to encode the pattern pixels [27];
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2. color based codification: techniques that exploit a large spectrum

of colors, such as the Rainbow 3D camera [44] which projects a

spatially varying wavelength illumination onto the object surface.

(a) (b)

Fig. 2.12: Examples of direct codification patterns: (a) direct codification
based on grey levels [27]; (b) Rainbow 3D camera [44].

As regards the time–multiplexing methods, they include:

1. techniques based on binary codes : black and white stripes are

projected to form a sequence of projection patterns, such that

each point on the object surface shows a unique binary code, dif-

ferent from the codes of the other points. In general, N patterns

can code 2N stripes [46];

2. techniques based on Gray Code encoding: this method works

in a similar way as the binary encoding previously described,

however it ensures that there is only one bit difference between

consecutive patterns [53], [89];

3. techniques based on n-ary codes : in order to effectively reduce

the number of the patterns needed to obtain a high resolution
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Fig. 2.13: (a) Binary encoding of the columns for an 8× 8 pixels area. (b)
Gray encoding corresponding to the same columns of the area in (a) [53].

depth map, a basis of n primitives is adopted to generate the

code-words, i.e. n distinct levels of intensity (instead of only

two in the binary code) are used to encode the pattern stripes

[45], [97]. In this case, N patterns can code nN stripes, more

than the 2N patterns needed by ordinary binary/Gray encoding

techniques (Fig. 2.14) [97];

4. techniques based on phase shift : a well-known fringe projection

method (see Fig. 2.15) that projects a set of phase shifted sinu-

soidal patterns onto the object surface [45];

5. techniques based on the combination of Gray code encoding with

the phase shift method : the same Gray code pattern is projected

several times, shifted in a certain direction in order to increase

resolution [97].
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Fig. 2.14: Example of n-ary codes: three levels of intensity (n = 3) are
used to encode 33 stripes with three patterns (N = 3) [45].

Fig. 2.15: Example of a fringe image [45].

Finally the spatial-multiplexing methods can be classified as fol-

lows:

1. strategies based on non formal codification: techniques (such as

stripes indexing using colors, segment pattern or repeated gray-

scale pattern) in which the pattern is divided into a certain num-

ber of regions in order to generate a different code-word intu-

itively, without using any mathematical coding theory [97];

2. strategies based on De Bruijn sequences : the spatial neighbor-

hood window is defined using pseudorandom sequences. A De
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(a) (b)

Fig. 2.16: Example of patterns based on non-formal codification [97]: a)
slits randomly cut [72]; b) periodic pattern [37].

Bruijn sequence of order m over an alphabet of n symbols is a

circular string of length nm that contains each substring of length

m exactly once (Fig. 2.17a). Similarly, a pseudorandom sequence

or a m-sequence has a length of nm−1 because it does not contain

the substring formed by all zeros [38]. Pseudorandom sequences

have been used to encode patterns based on column (Fig. 2.17b)

or row lines and grid patterns (see next point) [97];

3. strategies based on M-arrays (also called pseudorandom arrays),

the extension of the pseudorandom theory to the 2D case. A M-

array is an r× c array, with r× c = 2nm− 1, where each nonzero

n×m sub-matrix appears exactly once as a window in the array

and each element is taken from an alphabet of k symbols [38].

M-arrays can be constructed through a pseudo-random binary

sequence and are used to generate a 2D grid pattern that unam-

biguously labels every subwindow, such that any sub matrix is
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(a) (b)

Fig. 2.17: De Bruijn sequences: (a) sequence with n = 2 (the alphabet is
{0, 1}) and m = 3 that generates 23 not repeating three-digit code-words
(000, 001, 011, 111, 110, 101, 010, 100); (b) binary R, G, and B patterns
generated using a De Bruijn sequence (n = 5 and m = 3): each three
consecutive color transitions are unique [108].

unique and fully identifiable with respect to its 2D position in the

pattern array [45]. The main differences between the techniques

included in this group is the way in which the elements of the

M-array, namely the k symbols, are represented in the pattern.

Some authors prefer to define the pattern as an array of colored

spots (Fig. 2.18a) or colored dots, other authors prefer to define

different shapes for each symbol (mini-patterns, Fig. 2.18b) in

order to obtain a multivalued pseudo-random array or to encode

a grid pattern (Fig. 2.18c) where each cross-point represents an

element of the M-array [97]

It is worth noting that each one of the four coding schemes de-

scribed above has advantages and drawbacks. First of all, it is evident

how direct coding methods are the easiest to implement. Furthermore,

both direct coding and spatial–multiplexing coding strategies are suit-
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(a)

(b)

(c)

Fig. 2.18: M-array based patterns examples: (a) M-array based on three
shape primitives (mini-patterns) representing the symbols of the alphabet
{1,2,3} [48]; (b) M-array with colored spots [73]; (c) A 31×33 M-array with
a subwindow of 5× 2 [66].
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able to capture dynamic scenes, since they require the projection of a

single pattern. Anyway, although time–multiplexing methods are not

appropriate for dynamic situations, they can create arbitrarily different

code-words for each pixel adopting a very small set of pattern primi-

tives, like a binary set [34]. Finally, what makes the difference between

direct coding schemes and spatial–multiplexing ones is that the latter

are more robust with respect to projector and camera non-idealities

and less sensitive to color or gray-level distortion due to scene color

distribution, reflectivity properties and external illumination [34] as

well. However, difficulties with occlusions and perspective distortion

remain because of the finite size of the window. In fact, the choice of

the window size (nW ) is crucial and should derive from a trade-off be-

tween robustness against perspective distortion (smaller windows) and

robustness against non-idealities, noise and color distortions (greater

windows). In conclusion, it is important to point out that all the meth-

ods just described work by using a visible light pattern/s, but nothing

prevents to adopt the same methods with other wavelengths of the

electromagnetic spectrum, as the next paragraph illustrates.

2.2.2.3 Infrared structured light: PrimeSense reference de-

sign

SL range cameras differ from traditional structured light systems since,

instead of projecting a visible stream of changing shapes or bands of

light, they illuminate the scene to be modeled with a NIR pattern.

The majority of SL cameras, for example the older ASUS devices

(Xtion, Xtion PRO, Xtion PRO LIVE), the Microsoft Kinect v1 and
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the newer Occipital Structure Sensor, Intel RealSense F200 and SR3001,

are based on the technology developed by PrimeSense Ltd., a former

Israelian company acquired by Apple Inc. on November 2013, or a very

similar system [36], [54], [59]. Their architecture is thus comparable to

the PrimeSense reference design (see Fig. 2.19), with different choices

for optional internal components and form factors, and thus it can be

considered representative for describing their operation principle.

Fig. 2.19: PrimeSense depth sensor architecture [84].

In this design, the System on Chip (SoC) plays a fundamental role:

it controls the IR light source that illuminates the scene with the IR

light coded pattern and executes in parallel the algorithms that de-

code the image captured by the standard CMOS IR imaging sensor,

computing a VGA depth map (640 × 480) of the scene at 30 fps. In

1The Intel RealSense R200, designed for a wider operative range, is an active
stereo camera based on a different technology.
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order to acquire the depth of dynamic scenes with such a high frame

rate, the reference design exploits a PrimeSense proprietary technology

called Light CodingTM, which implements an active triangulation pro-

cess based on the spatial-multiplexing approach. The implementation

details are unique. The laser source emits a single beam which is split

into multiple rays by a diffraction grating1 to create a constant pattern

of speckles [60] in the NIR light spectrum (830 nm) analogous to that

shown in Fig. 2.20.

(a) (b)

Fig. 2.20: (a) PrimeSense speckle pattern as designed in the PrimeSense
patent [101] and (b) the specific implementation of Kinect v1 [34].

The resulting pattern is characterized by an uncorrelated distri-

bution across each row, feature used by several spatial–multiplexing

methods to solve effectively the correspondence problem. Once the

pattern is projected, for every frame the light response of the illumi-

nated scene is captured by the infrared camera and it is correlated

1The Intel RealSense F200 projector consists of an IR laser diode, a line lens
and a MEMS resonant micro mirror device. The last one moves thousands of times
per second to scan the infrared light beam, painting an invisible grid on objects in
front of it [36].
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against the image of a reference pattern stored in the sensor memory.

The reference image is obtained when the device is assembled through

a calibration procedure in which the infrared camera acquires a planar

surface oriented orthogonally to its optical axis, subject to the pattern

illumination and most importantly placed at a known distance (depth)

ZREF from the sensor. Then this image, characterized by a constant

and known disparity, is used in place of the emitted pattern for the tie

points research that is carried out by means of correspondence algo-

rithms. They consider a measure of the similarity (covariance) between

a window centered around the specific pixel pC in the acquired image

of the scene and all the possible conjugates pixels in the same row

of the pattern reference image. The algorithms simply select the pair

{pC(uC , v), pREF (uREF , v)} that maximizes the covariance [34].

It is important to point out that the efficiency of PrimeSense Light

Coding technique is based on the reference pattern image: it allows to

register significant covariance values, by overcoming the issues caused

by the distortions of the projection process and avoiding the non-

idealities of both projector and camera models. In this way the device

chip can robustly compute the 3D coordinates of scene points starting

from the horizontal shifts of the speckles in the image of the pattern

projected onto the scene with respect to the corresponding ones in the

reference image [43]. These shifts are measured for each speckle by the

simple image correlation procedure described above that generates a

640 × 480 raw disparity image, using a 9 × 9 or 9 × 7 pixels window

[62].

However, at least for the Kinect v1 sensor, this method creates a

band of 8 pixels on the right of the image in which disparity cannot

be computed, as shown in Fig. 2.21. The infrared camera has indeed
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Fig. 2.21: Null band on the right area of the raw disparity image of the
Kinect v1 sensor.

a wider vertical resolution (height) than the raw disparity image, but

the same width. So there is no space on the imager to calculate more

disparity information in the horizontal direction. On the contrary the

vertical direction does not show the null band.

Anyway the computed disparities are essential since they carry out

the depth information. Indeed the depth of a generic point K is in-

versely proportional to the observed disparity and it can be computed

by exploiting the similarities of triangles (see Fig. 2.22) as follows [60]:

ZK =
ZREF

1 + ZREF

fb
δ

(2.19)

where ZK denotes the depth of the point K from the sensor image

plane in the object space, ZREF is the known distance at which the

reference pattern was captured, b is the length of the baseline between

the infrared projector and the infrared camera, f is the focal length

of the infrared camera and δ is precisely the observed disparity in the
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Fig. 2.22: Relation between relative depth and measured disparity [58].
The blue circle shows the location of the IR camera at a distance b from
the IR projector, the red circle. The target point (black dot) is projected
at depth Z on a plane farther from the reference pattern plane (green dot).

image plane, namely the displacement in pixels between the position

of the point K in the scene image (uC) and in the pattern reference

image (uREF ):

δ = uC − uREF (2.20)

In conclusion it is worth noting that the adoption of the infrared

spectrum has given a new impulse to the structured light technique.

In fact, while this method is not conceptually new, the use of infrared

patterns has made such sensors accessible to all, by allowing to build

compact and low-cost devices, characterized by high frame rate and a

relatively good accuracy. Furthermore, the projection of the IR light

does not alter the texture of the captured object.
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2.2.2.3.1 Error sources

As already described in the previous paragraph, there are several error

sources that can potentially affect the depth estimation process of the

SL range cameras. Some of these errors are due to the camera and/or

projector, some to the adopted correspondence estimation algorithm

and some to the geometry of the acquired scene [34].

For example, in the case of low reflectivity objects and/or excessive

background illumination, the camera is unable to acquire any infor-

mation about the reflected pattern and the correspondence algorithm

cannot estimate the depth. The same effect occurs with very slanted

surfaces in which the perspective distortion is too strong [34].

Furthermore, occlusion may happen at object boundaries where

parts of the scene are not illuminated by the infrared pattern which

results in a lack of depth information in those regions (invalid pixels)

[98].

Finally, also the SL range cameras are active sensors working with

the infrared spectrum and thus they show the same interference issues

of ToF range cameras (see Section 2.2.1.2.1) in presence of other in-

frared light sources. Thus they cannot be used outdoor in a sunny

day and the simultaneous use of several active IR devices may lead to

multi–device interference. For the same reason these sensors can show

difficulties to model black (they reduce the power of the pattern signal,

absorbing the infrared light), shiny (they show a too high amplification

of the reflected pattern signal) and transparent surfaces.

Moreover also SL sensors are affected by an instability of depth

measurements during the warm-up time [32], [98] even if, generally,

they do not produce as much heat as ToF cameras. Indeed they usually
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require less illumination power to cover the scene with a relatively

sparse point-based pattern than the ToF cameras to get a sufficient

SNR for the emitted IR signal [98].

2.2.3 Software libraries for 3D modeling with range

cameras

Specific drivers are needed to concretely turn the raw signals coming

out of range cameras into usable 3D data, such as depth maps and/or

point clouds.

Furthermore, in order to perform 3D modeling applications, it is

essential to have available efficient Simultaneous Localization And Map-

ping (SLAM) algorithms that, by continuously tracking the position

of range cameras, allow to use them as veritable 3D scanners. In fact,

multiple scans from different points of view are usually required to col-

lect complete information about the whole surface of the target object

[20]. By exploiting the depth data and the high frame rate that range

cameras offer, algorithms like KinectFusion [55, 78] are indeed able

to continually reconstruct the six Degrees of Freedom (DoF) pose of

the moving sensor and fuse the object depth maps captured from new

view points as soon as they are acquired, merging them into an over-

all 3D model in real time. Such tracking process1 is the fundamental

stage to the 3D model generation and it can be carried out in different

ways using the various implementations available in several software

libraries. It is worth noting that the availability of this kind of algo-

1In this context the term tracking identifies the process by which a 3D scanner
is able to lock onto and reliably track its own motion in relation to the object being
scanned.
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rithms has been precisely the key for the success of range cameras in

the 3D modeling field.

The interested reader can find more details about the drivers, the

algorithms and the software actually available for 3D modelling with

range cameras in appendix A.
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Chapter 3

Analysis of the geometric

potential of low-cost range

cameras

In this chapter the 3D modeling capabilities of the three most popu-

lar and/or promising low-cost range cameras, namely the Kinect v1,

the Kinect v2 and the Occipital Structure Sensor, are investigated and

compared. The specific aim is to evaluate their potentialities for geo-

matic applications and to provide useful indications for their practical

use. Thus it is necessary to assess the metric quality (precision and

accuracy) of the depth data retrieved by these sensors.

The chapter is organized as follows. In Sec. 3.1 the main features

of the investigated sensors are described. In Sec. 3.2 the used reference

systems are presented. In Sec. 3.3 the geomatic characterization of the

three considered devices is illustrated and the models to represent their

random and systematic errors are introduced and proven adequate for

49
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calibrating the sensors. Finally, in Sec. 3.4 some investigations about

the registration process of depth and color images are described.

3.1 Sensor features

As is well known, the first Microsoft Kinect has opened the way to a

new generation of range cameras, although it was primarily designed

as motion sensing input peripheral for Xbox 360 game console. In fact,

both the Kinect v1 and the Kinect v2 are webcamstyle, add-on devices

which enable users to interact with the game console without using a

traditional hand-held joystick. Players can indeed control play, action

and movement of their on-screen characters only using body gestures,

through a NUI. Gesture recognition is made possible by the devices

depth sensor which provides a real time depth map. Therefore the

Kinect depth sensor is, to all intents and purposes, a range camera.

On the other side, the Occipital Structure Sensor has been con-

ceived from the beginning to be the first range camera for mobile de-

vices: characterized by compact dimensions and an internal battery, it

can be quickly and securely connected to an iOS device through a spe-

cific bracket accessory. It was launched on Kickstarter in September

2013, raising almost 1.3 millions of dollars in 45 days of campaign.

Therefore, the technical specifications of the three investigated sen-

sors are very different, although their principal hardware components

(see Fig. 3.1), namely the IR camera, the IR projector (for SL sensors:

the Kinect v1 and the Structure Sensor) or the IR emitters (for the

ToF sensor, that is the Kinect v2) and the color camera, if present,

fulfill the same function: the first two make up the depth sensor, that
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acquires the depth data, whereas the latter captures the texture infor-

mation. Thus also the characteristics of the data captured by them

are diverse.

(a) The Kinect v1. (b) The Kinect v2.

(c) The Structure Sensor.

Fig. 3.1: The internal components of the three investigated sensors.

As regards the depth stream, the Kinect v1 supports three different

resolutions: 640×480 pixels, 320×240 pixels, and 80×60 pixels, all at

30 frames per second (fps). The Kinect v2 sensor provides instead

a 512×424 16-bit depth stream, again at the same 30 fps acquisition

rate. The bit-depth layout is exactly the same as Kinect v1 sensor,

with 13 bits representing the pixel depth, and the remaining 3 bits

used as segmentation mask [102].

Furthermore, the Kinect v2 sensor uses an active infrared stream,

lighting independent, characterized by a 512×424 resolution, at 30
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frames per second. Thanks to USB3 connection, the infrared stream

can be used simultaneously with the colour stream, whereas for the

Kinect v1 this is not possible because of USB2 low bandwidth and

infrared data (640×480 resolution - 30 fps) can be retrieved only dis-

abling the colour stream. Moreover, the Kinect v2 sensor presents a

wider field of view (70◦×60◦), without needing a tilt motor, as it hap-

pens for Kinect v1 (57◦×43◦), where the motorized base can move the

sensor bar 27◦ up and down.

In addition to the depth sensor, the bar of both the two Kinect

sensors houses also the colour camera, an accelerometer and an array

of four microphones (see Fig. 3.1a and Fig. 3.1b). The colour camera

does not participate in the depth sensing process, but it has the purpose

to collect the texture of the scene for applications like face tracking.

The Kinect v1 colour camera is a 8-bit resolution VGA camera which

supports different resolutions at different frame rates [28]: 640×480

pixels at 30 fps using RGB1 format; 1280×960 pixels at 12 fps using

RGB format; 640×480 pixels at 15 fps using YUV2 (or raw YUV)

format. Instead, the Kinect v2 colour camera is a full HD camera,

with a resolution of 1920×1080 pixels returned at 30 fps in the YUY23

raw image format (the acquisition rate drops to 15 fps in case of low

light). The microphones are needed for speech recognition: they can

record audio as well as find the location of the sound source and the

1The RGB format is a 32-bit format that uses a linear X8R8G8B8 formatted
colour in a standard Red Green Blue colour space: each component can vary from
0 to 255, inclusively.

2The YUV format is a 16-bit, gamma-corrected linear UYUY-formatted colour
bitmap.

3YUY2 format packs two pixels as four 8-bit components: Y1, U, Y2, V where
Y1 and Y2 are individual pixel luminance values, and U and V are shared chromi-
nance values for the two pixels.
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direction of the audio wave. Finally the tri-axis accelerometer (a Kionix

KXSD9 for v1, a Kionix KXUD9 [31] for v2) is used to determine the

orientation of the sensor (for Kinect v2 accelerometer APIs are no

longer exposed in the official Microsoft SDK).

Concerning the Structure Sensor, it can stream depth data at two

different depth resolutions: 320×240 pixels at both 30 fps and 60 fps

and 640×480 pixels at 30 fps. As regards the infrared stream, the

device provides two streams: one at 320×248 at 30 fps and one at

640×488 at 30 fps. However Structure Sensor does not have an own

color camera, but it can retrieve the RGB data from the iOS device at

which is connected. The depth streams at 30 fps can be aligned to the

iOS device colour camera through the Structure SDK.

The technical specifications of the investigated sensors are summa-

rized in Table 3.1.

KINECT v1 KINECT v2 STRUCTURE SENSOR

Technology Structured Light Time of Flight Structured Light

Official Depth Range 0.4−4 m 0.5−4.5 m 0.4−3.5 m

Depth Field of View (H×V) 57◦×43◦ 70◦×60◦ 58◦×45◦

Colour Stream
640×480 @ 30 fps 1920×1080 @ 30 fps n.a.
1280×960 @ 12 fps

Depth Stream
80×60 @ 30 fps 320×240 @ 30 fps

320×240 @ 30 fps 512×424 @ 30 fps 320×240 @ 60 fps
640×480 @ 30 fps 640×480 @ 30 fps

Infrared Stream
640×480 @ 30 fps 512×424 @ 30 fps 320×248 @ 30 fps

640×488 @ 30 fps

Audio stream 4-mic array 16kHz 4-mic array 48kHz n.a.

SDK Officially
Supported OSs

Windows 7 Windows 8
Windows 8 Windows 8.1 iOs

Windows 8.1

Cost 150 $ 150 $ 379 $

Tab. 3.1: Technical specifications of the investigated sensors.
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3.2 Reference System and coordinate cal-

culation

With respect to reference systems, a main distinction has to be done

between the image reference systems and object reference system.

The former systems are associated to the images captured respec-

tively by the IR camera, the depth sensor and the color camera of the

considered device (for the Sructure Sensor, the color camera of the iOS

device at which it is connected).

The latter system is the one related to the sensor itself and in which

the depths are measured.

3.2.1 Image reference systems

The image reference systems are three as the number of the streams

retrieved by the range cameras: the infrared image system IIR, the

depth image system IDEPTH and the color image system IRGB can be

distinguished. Anyway, since the depth image derives from calcula-

tions executed over the IR image, IIR and IDEPTH coincide. Instead,

considering that the object geometry and the texture are captured by

the depth sensor and the color camera from two different points of

view, the depth image and the color image are placed in two diverse

image reference systems. Therefore, in order to overlap them, it is

theoretically necessary to estimate the roto-translation transform (and

the intrinsic parameters) that brings one system to the other (see Sec.

2.1.1). Luckily the SDKs of the three used sensors provide specific

mapping methods that allow to easily map a color pixel into the cor-
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responding position of the depth map or viceversa (for the Structure

Sensor the calibration must be previously performed).

In particular, the image reference systems are planar and their co-

ordinates are always positive. The origin is located in the top-left

corner of the respective image, the x axis is directed rightwards and

the y axis is downward.

(a) IR image. (b) Depth image.

(c) Color image.

Fig. 3.2: The same scene in the three images captured by the Kinect v2.

For example, in the case of the Kinect v2 (see Fig. 3.2), the coor-

dinates of the pixel on the top-left corner shows a value of zero in all
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of the three image reference systems:

xIR = xDEPTH = xRGB = 0 (3.1a)

yIR = yDEPTH = yRGB = 0 (3.1b)

while for the pixel on the bottom-right corner, the x and y coordi-

nates in the IR and depth image are respectively equal to the values of

the IR width and IR height both decreased by one, and to the values

of the RGB width and RGB height again decreased by one in the color

image:

xIR = xDEPTH = 511 xRGB = 1919 (3.2a)

yIR = yDEPTH = 423 yRGB = 1079 (3.2b)

3.2.2 Object reference system

To express the 3D coordinates of points in the object space, a local

reference system, sensor–centred, is used for all of the three devices.

Indeed, although the value of each depth image pixel corresponds im-

mediately to a physical distance, the x and y positions of the pixels

in the depth image do not map directly to a physical location in the

object space [34]. In the following paragraphs, the methods adopted to

compute the point cloud starting from the depth image are described

for each sensor. It is important to notice that in this way the obtained

point cloud counts a number of points equal to the resolution of the

depth map.
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3.2.2.1 Kinect v1

For the Kinect v1, a 3D reference system with the origin in the cen-

tral pixel of the depth/infrared image (xIR = 320 and yIR = 240) is

considered. The Z axis is orthogonal to the image plane and oriented

towards the object, while the X axis is oriented leftwards and the Y

axis is oriented upwards (see Figure 3.3).

Fig. 3.3: The local Kinect reference system.

Obviously the Z coordinate for an acquired point is already known

since it corresponds to the depth value, expressed in millimeters, stored

in the depth map. To obtain the desired point cloud, it is necessary to

compute the dimension of the pixels in the object space, respectively

along the X axis and Y axis, through the following equations:

dpX =
2Z tan

(
α
2

)
HR

(3.3a)

dpY =
2Z tan

(
β
2

)
V R

(3.3b)

where dpX and dpY are the metric pixel dimensions respectively along

the X axis and Y axis, expressed in mm; Z is the Z coordinate of the

pixel, expressed in mm and corresponding to its depth value; HR and
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V R are the horizontal and vertical resolution of the depth image and

finally α and β denote the Kinect v1 horizontal and vertical field of

view. In this way, multiplying the x and y coordinates of the pixels

by the metric pixel dimensions, the X and Y coordinates can be easily

calculated:

X =

(
x− HR

2

)
dpX (3.4a)

Y =

(
−y +

V R

2

)
dpY (3.4b)

where X is the X coordinate, expressed in mm; Y is the Y coordinate,

expressed in mm; x and y are the horizontal and vertical positions of

the pixel in the depth image.

3.2.2.2 Kinect v2

The Kinect for Windows SDK 2.0 provides a method (MapDepthFram-

eToCameraSpace) that directly maps the depth image reference system

to the object space.

Fig. 3.4: The Kinect v2 reference system.

In particular, the 3D coordinate system used by the Kinect v2 (see

Fig. 3.4) has its origin in the center of the IR/depth sensor, the X axis
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oriented leftwards, the Y axis oriented upwards, whereas this direction

is based on the sensor tilt, and the Z axis increases along the direction

in which the sensor is pointed. In this case the 3D coordinates are

retrieved in meters.

3.2.2.3 Structure Sensor

For the Structure Sensor, a 3D reference system with its origin in the

principal point (cx, cy) of the IR/depth image is taken into account.

The Z axis is orthogonal to the image plane and oriented towards the

object, whereas the X axis is rightward and the Y axis is upward. In

this case the X and Y coordinates are computed through the perspec-

tive projection relationship [34]:

X = Z

(
x− cx
fx

)
(3.5a)

Y = Z

(
cy − y
fy

)
(3.5b)

where X and Y are the coordinates of the pixel in the object space,

expressed in mm; Z denotes the coordinate of the pixel, expressed in

mm and corresponding to its depth value; cx and cy are the coordinate

of the principal point in the depth image; fx and fy are the focal lengths

along the x and y axes.
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3.3 Models for depth precision and depth

accuracy

In this work one Kinect v1, one Kinect v2 and one Structure Sensor

were considered and characterized from a geomatic point of view. A

specific test field was thus implemented in order to analyze the behav-

iors of the random and systematic errors of the depth measurements

for the three investigated sensors.

In particular, the planar opaque surface of a cabinet (see Fig. 3.5b)

was acquired by each sensor at several known distances, taking care to

place each sensor as parallel as possible to the target plane. For each

distance, the Kinect v1, the Kinect v2 and the Structure Sensor were

set together on top of the same tripod (see Fig. 3.5a).

(a) (b)

Fig. 3.5: The experimental setup. (a) From top to bottom: the Structure
Sensor, the Kinect v1, a spirit level and the Kinect v2 mounted on the
tripod. (b) The tripod with the three sensors in front of the reference
planar surface.
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Moreover, in order to carefully measure the reference geometry with

a total station, three targets were fixed onto the back side of the sen-

sors. The parallelism between each sensor and the planar surface was

achieved assuring that the horizontal distances of the three targets

measured with the total station were equal (with an accuracy better

than 1 mm) at each distance. In this way the tripod was moved for a

total of nine steps from 90 to 400 cm from the planar surface. Lower

distances were not investigated since in that case the Kinect v2 depth

maps were affected by a too strong backscattering signal that compro-

mised the measures.

The procedure was identically repeated twice for each device, al-

ways considering the corresponding warm-up time [32], [98], [63]. For

each position/step, 150 consecutive depth maps were acquired by each

sensor, but, in order to exclusively investigate the area well within

the reference planar surface, only the central 50×50 pixel window was

considered.

3.3.1 Depth resolution analysis

To evaluate the depth resolution of the three sensors, the depth his-

tograms were computed considering a sample of 375000 observations

(the depth of 50×50 pixels in the window for the 150 frames) for each

distance from the reference surface (in our test case equivalent to the

depth). Fig. 3.9 and Fig. 3.10 show the results obtained and clearly

highlight two different behaviors, depending on the operational princi-

ple (SL or ToF) of the single sensor.

In particular, the resolution of the SL devices (Fig. 3.6 and Fig.

3.8) worsens following a parabolic trend (R2 of 1.00 for both the Kinect
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v1 and the Structure Sensor) when the distance/depth from the target

increases (dR); on the other side, the Kinect v2 resolution shows a

constant value of 1 mm for every distance (Fig. 3.7).

Fig. 3.6: Kinect v1 resolution.

Thus, the depth data acquired by the Kinect v2 are characterized by

a substantially continuous distribution with a resolution of a millimiter

level, independently from the distance from the reference plane; on the

contrary, for Kinect v1 and Structure Sensor the depth data present

a discrete distribution, with a resolution dependent from the distance

itself. This behaviour can be explained considering that, for the SL

range cameras, the resolution depends on the minimum measurable

disparity ∆δ, so that, starting from Eq. 2.19, by finite differentiation,

the resolution ∆Zk at distance (or depth) Zk results:

∆Zk =
Zk

2

fb
∆δ (3.6)
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displaying a parabolic dependence over distance, as it is expected

by a triangulation system.

Fig. 3.7: Kinect v2 resolution.

Fig. 3.8: Structure Sensor resolution.
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Fig. 3.9: Distributions at different depths/distances of the 50×50 depth
values over the 150 frames for the first test.
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Fig. 3.10: Distributions at different depths/distances of the 50×50 depth
values over the 150 frames for the second test.



66 Analysis of the geometric potential of low-cost range cameras

3.3.2 Depth precision analysis

Considering the previous resolution analysis, the precision was evalu-

ated through two different methods.

For the Kinect v1 and the Structure Sensor, the half of the reso-

lution was considered representative of their precision (Fig. 3.11 and

Fig. 3.12).

Fig. 3.11: Kinect v1 precision vs. depth.

Differently for the Kinect v2, whose resolution is independent from

the distance and equal to 1 mm, the global standard deviation was

calculated over the sample of 375000 depth observations for each dis-

tance from the reference surface. In details, the equation of the cabinet

planar surface was least squares estimated for each distance and the

dispersion around this plane in terms of standard deviation was con-

sidered as the precision (Fig. 3.13); the obtained results clearly show

that also for the Kinect v2 the depth precision is getting coarser as the
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Fig. 3.12: Structure Sensor precision vs. depth.

distance from the target (dR) increases. In particular, the precision

varies linearly with the measured distance (R2 of 0.96), as already re-

ported by [82]. It is also evident (note that the scale along the vertical

axis in Fig. 3.13 is magnified 6 times with respect to the scales of the

corresponding axes in Fig. 3.11 and Fig. 3.12) that Kinect v2 is the

most precise sensor: the dispersion reaches the value of only 5 mm at

4 meters, clearly better than the 22 mm of Kinect v1 and 27 mm of

Structure Sensor.

In addition, to globally visualize the depth measurement noise, the

depth standard deviation over the 150 frames of each pixel inside the

analysed 50×50 window is shown in Fig. 3.14 and Fig. 3.15 for the

two tests respectively.

In general the results show that SL depths are noisier than ToF

ones; however the latter are much more sensitive to the scanned ob-
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Fig. 3.13: Kinect v2 precision vs. depth.

ject material: highly glossy surfaces and color differences may produce

different depth estimates, as reported in [51]. For each sensor, the sta-

tistical features (standard deviation for rows and columns and global

standard deviation) are stable in the two tests, and also the cross cor-

relation between the two tests at the same distance are very low (0.21

at the most), indicating that there are not stable patterns highlight-

ing biases in the sensor behaviours, as also the figures show. Only in

the case of the Kinect v1 [81] and the Structure Sensor, some evident

permanent features (vertical bands) remain.

In the end, concerning the dependence of the depth random errors,

that is precision, on the depth itself, the simple parabolic (for the

Kinect v1 and the Structure Sensor) and linear (for the Kinect v2)

models (Fig. 3.11, Fig. 3.13 and Fig. 3.12; Tab. 3.2) appear effective,

at least under good reflective surface conditions.
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Fig. 3.14: Depth standard deviation (expressed in mm) for each pixel of
the 50×50 window over the 150 frames for the first test.
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Fig. 3.15: Depth standard deviation (expressed in mm) for each pixel of
the 50×50 window over the 150 frames for the second test.
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3.3.3 Depth accuracy assessment

The aim of the accuracy assessment is to compare the reference depth

values with the same depth measured with the three sensors. This test

is meant to show the geomatic potential of the investigated sensors

in modeling a known surface (here represented by the cabinet planar

surface) through a close-range survey.

So, for each depth/distance from the reference surface, the global

mean was computed over the sample of 375000 depth observations.

In this way it was possible to compute the differences between the

observed values (dO) and the reference depths (dR) measured with the

total station.

Due to its high precision of few millimeters, for the Kinect v2 the

reference depths dR were corrected in order to consider the possible

residual inclination between the sensor and the reference plane surface.

Only the inclination angle along the vertical direction was considered,

since for the installation features it was the most critical to control, and

their parameters (Y = aZ + c) were least squares estimated; then the

effect of this vertical inclination was removed in the following compar-

ison between the observed and reference depths. Moreover, the depth

mean over the 150 frames of the depth map central pixel was used as

observation for each distance from the reference plane surface.

The results are reported in Fig. 3.16, Fig. 3.17 and Fig. 3.18.

A visible trend of the accuracy vs. the depth/distance is evident for

all the sensors, pointing out the presence of systematic errors, which

increase with the distance from the reference surface. In particular the

Kinect v2 is once again the best sensor, showing the lowest system-

atic error range: 0.019 m between the shortest and longest distance
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Fig. 3.16: Kinect v1 accuracy vs. depth.

Fig. 3.17: Kinect v2 accuracy vs. depth.

versus 0.044 m of the Kinect v1 and 0.078 m of the Structure Sensor.

As previously done for the precision, these accuracy trends were mod-
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Fig. 3.18: Structure Sensor accuracy vs. depth.

eled differently depending on the sensor operational principle (see Sec.

2.2): a linear model for the Kinect v2 and a quadratic model (with the

minimum constrained at dR = 0) for the Kinect v1 and the Structure

Sensor were chosen; the zero order parameter (error at dR = 0) repre-

sents the contribution of more offsets, precisely the offset of the total

station distancemeter and the internal offset relative to the nominal

reference of the depth measurement with respect to each sensor body

(Fig. 3.19a, Fig. 3.19b, Fig. 3.19c). The weighted least squares were

used to estimate the model parameters, with the weights based on the

previously computed precisions.

Even if the regression coefficient R2 shows lower values than before,

respectively of 0.48, 0.43 and 0.89 for the Kinect v1, the Kinect v2

and the Structure Sensor, the effectiveness of such accuracy models for

calibration was tested by correcting the measured depths. In particular
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(a) The Kinect v1. (b) The Kinect v2.

(c) The Structure Sensor.

Fig. 3.19: The internal offsets of the investigatd sensors.

it was checked if the residual errors after calibration were compliant and

represented by the precision vs. depth models previously determined

(Fig. 3.11, Fig. 3.13 and Fig. 3.12; Tab. 3.2).

Fig. 3.20: Kinect v1 residual errors.
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Fig. 3.21: Kinect v2 residual errors.

Fig. 3.22: Structure Sensor residual errors.

All the residual errors are within the (−3σ,+3σ) range for each

sensor and each depth (with the exception of just one residual for

Kinect v2), being sigma the precision derived from these models (Fig.
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3.20, Fig. 3.21 and Fig. 3.22), so that it is reasonable to conclude that

the calibration has been effective by far.

Therefore the estimated models of the accuracy vs. depth can be

used to correct the measured depths in such a way as to calibrate

the sensors, thus enabling their use in geomatic applications. Any-

way, before effectively adopting them, a more accurate estimate of the

constant representing the internal offset of the sensor is necessary, as

described in the next paragraph.

Resolution [m] Precision [m] Accuracy [m]

Kinect v1 0.0027 d2 (R2=1.0) 0.0013 d2 (R2=1.0) 0.0015 d2 - 0.0681 (R2=0.48)
Kinect v2 0.001 0.0012 d (R2=0.96) 0.0036 d - 0.0572 (R2=0.43)
Structure Sensor 0.0032 d2 (R2=1.0) 0.0016 d2 (R2=1.0) 0.0048 d2 - 0.0615 (R2=0.89)

Tab. 3.2: Models for depth resolution, precision and accuracy (depth d in
meters).

3.3.4 Validation of the proposed calibration mod-

els

To validate the found calibration models, further tests were performed

with the Structure Sensor. The aim was to compare the six known

distances among the four external vertexes of a rectangular checker-

board grid, with the same distances measured with the sensor, before

and after having applied the depth calibration model.

Specifically, nine validation tests were performed and the grid was

captured by the Structure Sensor at various distances and with dif-

ferent orientations, both perpendicular and tilted. In particular, in

test 3 (Fig. 3.25) and test 4 (Fig. 3.26) the sensor was approximately

perpendicular to the grid surface, which was acquired respectively at
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about 2 m and 4 m. In the first case the checkerboard occupied almost

the whole width of the depth image, whereas in the latter it covered

a smaller area. In the remaining tests the checkerboard was slightly

or strongly inclined in relation to the sensor image plane, covering

different parts of the depth map.

The 28×4 grid corners were automatically detected on the color

image acquired by the iPad air 2 at which the range camera was con-

nected, developing a specific iOS application (see Sec. B.3.2). The

depth image and the color image were thus co-registered using the

aligned depth stream provided by the Structure SDK, in such a way

that the 2D corners locations were the same on both images. Obviously

the Structure Sensor was previously calibrated using the Occipital Cal-

ibrator App. In this way, it was possible to retrieve the 3D coordinates

of the grid points with the Eq. 3.5 and to compute the euclidean dis-

tances among them.

(a) Color image. (b) Depth image.

Fig. 3.23: Test 1.
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(a) Color image. (b) Depth image.

Fig. 3.24: Test 2.

(a) Color image. (b) Depth image.

Fig. 3.25: Test 3.
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(a) Color image. (b) Depth image.

Fig. 3.26: Test 4.

(a) Color image. (b) Depth image.

Fig. 3.27: Test 5.
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(a) Color image. (b) Depth image.

Fig. 3.28: Test 6.

(a) Color image. (b) Depth image.

Fig. 3.29: Test 7.
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(a) Color image. (b) Depth image.

Fig. 3.30: Test 8.

(a) Color image. (b) Depth image.

Fig. 3.31: Test 9.
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However, before applying the found accuracy vs. depth calibration

model, the zero order parameter c was re-estimated since its role is

essential to describe the systematic error err that affects the depth

measurement:

err = 0.0048 Z2
O + c (3.7)

In fact this kind error has to be removed from the depths observed

ZO by the sensor in order to properly calibrate the device:

ZCAL = ZO − err (3.8)

More precisely, the c parameter was estimated in a single test,

by calculating the value that minimizes the Root Mean Square Er-

ror (RMSE) of the differences between the six calibrated dCAL and

reference dREF distances acquired:

RMSE =

√√√√1

6

6∑
i=1

(dCAL,i − dREF,i)2 (3.9)

The found value for c is 31 mm, and it was then used in the nine

validation tests to calibrate the Structure Sensor.

Results are reported in Tab. 3.3: with the calibration, the overall

RMSE, computed over the 9×6 distances, decreases from 27 to 16 mm.

The proposed calibration model thus seems to improve effectively the

accuracy of the Structure Sensor, at least for this limited number of

tests.
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ID point ID point dREF dO dCAL dO − dREF dCAL − dREF

[-] [-] [mm] [mm] [mm] [mm] [mm]

Test 1

107 81 1880 1878 1877 -2 -3
0 26 1880 1881 1880 1 0
81 0 221 222 225 1 4
107 26 221 220 220 -1 -1
81 26 1892 1895 1894 3 2
0 107 1893 1890 1889 -3 -4

Test 2

107 81 1880 1938 1916 58 36
0 26 1880 1961 1938 81 58
81 0 221 222 224 1 3
107 26 221 226 225 5 4
81 26 1892 1971 1949 79 57
0 107 1893 1954 1931 61 38

Test 3

107 81 1880 1851 1865 -29 -15
0 26 1880 1852 1866 -28 -14
81 0 221 219 221 -2 0
107 26 221 217 219 -4 -2
81 26 1892 1869 1882 -23 -10
0 107 1893 1860 1874 -33 -19

Test 4

107 81 1880 1889 1876 9 -4
0 26 1880 1897 1883 17 3
81 0 221 225 224 4 3
107 26 221 222 220 1 -1
81 26 1892 1906 1892 14 0
0 107 1893 1907 1893 14 0

Test 5

107 81 1880 1966 1876 -14 -4
0 26 1880 1883 1893 3 13
81 0 221 223 224 2 3
107 26 221 220 222 -1 1
81 26 1892 1878 1888 -14 -4
0 107 1893 1897 1906 4 13

Test 6

107 81 1880 1893 1886 13 6
0 26 1880 1887 1882 7 2
81 0 221 224 231 3 10
107 26 221 223 224 2 3
81 26 1892 1902 1897 10 5
0 107 1893 1904 1898 11 5

Test 7

107 81 1880 1932 1903 52 23
0 26 1880 1898 1870 18 -10
81 0 221 223 225 2 4
107 26 221 224 222 3 1
81 26 1892 1906 1878 14 -14
0 107 1893 1950 1921 57 28

Test 8

107 81 1880 1914 1884 34 4
0 26 1880 1925 1896 45 16
81 0 221 221 223 0 2
107 26 221 226 225 5 4
81 26 1892 1931 1902 39 10
0 107 1893 1935 1905 42 12

Test 9

107 81 1880 1895 1866 15 -14
0 26 1880 1892 1862 12 -18
81 0 221 222 224 1 3
107 26 221 223 222 2 1
81 26 1892 1910 1881 18 -11
0 107 1893 1902 1874 9 -19

MEAN 11 4
STD 24 16

RMSE 27 16

Tab. 3.3: Validation results.
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3.4 Investigations in color–depth alignment

To provide a complete description of an object, both the 3D geom-

etry and the texture information are necessary. For range cameras

these data are though captured from two different point of views. The

alignment of color and depth images is therefore an important process

in order to obtain a final 3D model characterized by high geometric

accuracy and good quality texture.

In the following sections two different investigations about this pro-

cess are shortly described, respectively for the Kinect v1 and the Struc-

ture Sensor devices.

3.4.1 Kinect v1 RGB–IR shift

For the Kinect v1, the Microsoft SDK provides a specific object, the

CoordinateMapper, able to map a color pixel into the correspond-

ing position of the depth map. The point is that this mapper could

be affected by errors and thus it is necessary to investigate its in-

ner behaviour [35]. In particular, the MapColorFrameToDepthFrame

method, by knowing the format of both color and depth image, maps

the information contained in depthPixels into depthPoints. The former

is an array of 640×480 elements where the depth information is stored,

whereas the latter is an array long as the number of color image pixels,

depending on the resolution (usually 1280×960).

In order to study the coordinate mapper, it was necessary to by-

pass it somehow, developing a specific application (see Sec. B.2) The

solution was found in the infrared image. In fact, one of the formats

of the color stream is the infrared with 640×480 resolution (see Fig.
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3.32).

(a) (b)

Fig. 3.32: In (a) there is the IR image, while in (b) there is the same view
but in the RGB format.

Since depth image and infrared image coincide (see Sec. 3.2.1), they

are already aligned and, in order to retrieve the depth of a point on the

IR image, it is sufficient to calculate its pixel index, i.e. x+(y · width),

and to use it to access the correspondent element in depthPixels array,

where the depth information is contained.

Notice that, to allow the automatic corner detection on the IR

image, the emitter has to be disabled and afterwards activated again

to allow to get depth information.

It was decided to refer directly to the image coordinates, in pixel

units. For the IR image it was straightforward thanks to the unique

correspondence of the images. On the other hand, to obtain compa-

rable image coordinates for the color image, it was necessary to pass

through the depthPoints array, which means through the mapper. In

fact, depthPoints elements have the .x and .y properties which give

back the image coordinates of the corresponding element (relatively to
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Fig. 3.33: The installation used to perform the shift tests varying the
distance.

the pixel index) on the depth image.

At this point, several tests were performed. First of all, it was

necessary to check if the mapper applied on the infrared image gives

the same result obtained by-passing it. Secondly, it was decided to

verify that the mapper works well on both color image resolution. Also

with a 640×480 color image the results where acceptable. Then, the

possibility to oversample the infrared image was also evaluated in order

to make the automatic collimation easier. Magnification factor of ×2,

×4, ×6, and ×8 were investigated and they all show the same results,

unless of numeric approximation. Notice that it was necessary to divide

the corners location by the resize factor to obtain the correct image

coordinates.

All these tests showed an evident shift between image coordinates

obtained with or without going through the mapper. According to the

previous assumptions, it was therefore decided to study the shift when
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Test A Test B
Distance ∆x ∆y ∆x ∆y
[cm] pixel pixel pixel pixel
50 3.872 -6.318 3.842 -6.251
100 3.725 -6.458 3.628 -6.206
150 4.031 -6.600 4.150 -6.370
200 3.782 -6.609 3.689 -6.418
250 3.205 -6.656 3.393 -6.423
300 2.575 -6.770 missing missing

Tab. 3.4: Test A, artificial light on and Test B, only sunlight.

the distance from the target increases. Initially the sensor was located

at the nominal distance of 50 cm from the target, and moved in 50 cm

steps up to 300 cm. For each position, the collimation was performed

first on the infrared image and afterwards on the color image, without

moving the Kinect v1 device.

Test A was performed with artificial light, while test B with only

sunlight. All the other conditions where unchanged. A 6×9 checker

board with 35.04 mm step was used. For every distance the ∆x and

∆y (RGB – IR) was calculated for every point, and then the average

values were recorded. The results are shown in Tab. 3.4. A negative

shift means that the IR–coordinate is bigger than the RGB–coordinate,

and as a result there is a collimation error towards the left (x-direction)

and towards up (y-direction) with respect to the color image. On the

other hand, if the shift is positive, the collimation error on the color

image is towards right and down respectively. From data in the Tab.

3.4 it is possible to see an almost constant negative shift of around 6

pixels in the y-direction and a positive shift of around 4 pixels in the

x-direction.
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3.4.2 Stereo calibration of the Structure Sensor

Since the Structure Sensor does not have its own colour camera, the

3D scanning apps leverage the iPad camera in order to retrieve the

color information of the objects being scanned. Therefore, considering

that the 3D geometry and the texture are captured from two differ-

ent points of view, it is necessary to calibrate the precise alignment

(reconstruct the geometric relationship) between the Structure Sensor

and the iOS device camera in order to accurately overlap the 3D and

colour data. The Occipital Calibrator app, the unique calibration app

actually available on the Apple Store, can achieve this goal. It supplies

already good calibration results, but its code is not open and it is de-

signed specifically to work with the bracket accessory, which imposes

a constraint for the baseline length and orientation. Furthermore it

does not share the computed calibration parameters and requires the

user to refine manually the calibration quality (only for the horizontal

component), by touching and dragging the depth map over the colour

image until they are perfectly superimposed.

For all of these reasons, it was decided to develop a specific cal-

ibration application (see Sec. B.3.1), exploiting the capabilities of

the OpenCV library [79]. It implements a stereo vision calibration

approach, allowing the user to automatically acquire, from different

positions, several pairs of images of a chessboard grid, both with the

Structure Sensor infrared camera and the iPad color camera.

In particular, the calibration grid was captured from different an-

gles of view and in a range of distances that would have been used

later for the depth map acquisition. Particular attention was paid in

measuring the size of the grid squares providing the geometry scale.
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The grid corners, whose 2D positions on both the IR and color images

are automatically detected by the OpenCV algorithms, act as ground

control points: their positions are known both in object space and

image space.

In this way the application is able to compute the interior and

the distortion parameters of two cameras, together with the rotation

matrix and the translation vector that relate the color image to the

IR/depth image (for an explanation about these parameters see Sec.

2.1.1).

Fig. 3.34: Calibration results on simple geometry objects.

The accuracy of the calibration was measured through the repro-

jection error, that is the sum of squared 2D distances between the

observed feature points (the 2D location of the corners) detected in

the calibration images and the corresponding world points projected

(using the found values for camera parameters and the poses) into the

same images. The reprojection error was always lower than one pixel

(it is respectively 0.32, 0.32 and 0.34 for the IR interior parameters,

the color interior parameters and the stereo parameters).

Finally the computed calibration parameters were further tested

to check if they were effectively able to register the depth and colour

images captured by the Structure Sensor and the iPad camera. Re-
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(a) (b)

(c) (d)

Fig. 3.35: Calibration results: (a) the captured depth image; (b) the
color image; (c) the aligned depth image; (d) the color and depth images
superimposed.

(a) Depth/color alignment
before calibration

(b) Depth/color alignment
after calibration

Fig. 3.36: Calibration results on a wide scene.
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(a) Depth/color alignment
before calibration

(b) Depth/color alignment
after calibration

Fig. 3.37: Calibration results on a wide scene.

sults are reported in Fig. 3.34, Fig. 3.35, Fig. 3.36, Fig. 3.37 and

show a good alignment between the two images, at least from a visual

inspection.
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Chapter 4

Case studies

Nowadays range camera technology is ripe for playing an important

role in close-range 3D modeling. Their characteristics make these de-

vices a suitable tool for measurement and modeling in several fields.

Anyway, only the specific knowledge of the geometric quality of these

sensors, investigated in the previous chapter, allows to consciously and

efficiently use them in geomatic applications such as architectural sur-

veys, documentation of cultural heritage, monitoring applications, an-

thropometric survey (static and dynamic), security issues related to

movement recognition or target extraction, crime scene reconstruction

and many more.

In this chapter four examples of the practical use regarding two of

the three range cameras previously characterized are presented in the

form of case studies, carried out in order to evaluate:

� the performances of the Kinect v2 sensor for monitoring oscilla-

tory motions;

� the integration feasibility of Kinect v2 with a classical stereo

93
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system;

� the potentialities of the Structure Sensor for the 3D surveying of

indoor environments;

� the potentialities of the Structure Sensor to document archaeo-

logical small finds.

4.1 Performance of Kinect v2 for small

amplitude oscillatory motion monitor-

ing

The case study [19] described in this paragraph analyzes the perfor-

mances of the Kinect v2 sensor for monitoring oscillatory motions char-

acterized by small challenging amplitudes (0.02 m and 0.03 m) and

different oscillation frequencies (in the range of 1.5–3 Hz). Amplitude

and frequency accuracies for the detected positions, velocities and ac-

celerations were evaluated with respect to the reference data provided

by a Mikrotron EoSens high-resolution camera.

Although the Kinect v1 and the Kinect v2 are specifically designed

for body motion tracking, the object tracking is not yet a deeply stud-

ied topic. At present, the Kinect v1 sensor has been already used

for real time tracking of moving objects reaching the accuracy of few

millimeters in 3D position detection ([40], [77]), whereas no particular

attention was paid to both velocity and acceleration measurements.

On the other hand, [85] investigated the use of Kinect v1 for moni-

toring the deflection of reinforced concrete beams subjected to cyclic
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loads, measuring vertical displacements. Moreover, to our knowledge,

the Kinect v2 sensor was never tested for object tracking up to now.

This case study is organized as follows. In Sec. 4.1.1, the main

features of the tracking software are shortly presented, together with

details about the vibrating table and experimental design. In Sec. 4.1.2

the data processing approach is illustrated and the obtained results are

discussed. Finally, in Sec. 4.1.3 some conclusions and future prospects

are outlined.

4.1.1 Experiments: devices and tools

The equipment involved in the experimental investigations consists of

one Microsoft Kinect v2 range camera and one Mikrotron EoSens high-

resolution camera as reference. Several tests were performed using a

one-direction vibrating table at which a chessboard target was con-

nected in order to allow both cameras to track the moving object (see

Fig. 4.1).

In particular, a dedicated software tool (see Sec. B.2) was devel-

oped with the Microsoft Kinect for Windows SDK v2.0 to retrieve data

from the sensor. It is based on both the depth and color video streams,

and it makes possible to capture in real-time the 3D position of the

edges of a moving chessboard grid target (see Fig. 4.1) for each frame,

while preserving the native acquisition rate (30 Hz). It is worth noting

that a good visibility is needed to capture satisfying texture, but at

the same time direct sunlight must be avoided since depth data cannot

be acquired in these conditions.

Reference data were provided by an acquisition system consisting

of a high-speed, high-resolution camera (Mikrotron EoSens) equipped
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with a Nikon 50-mm focal length lens capturing gray-scale images at

up to 500 fps with a resolution of 1280×1024 pixels (for the present

set of measurements, images were acquired at 250 fps and 100 fps)

and a high-speed Camera Link digital video recorder operating in Full

configuration (IO Industries DVR Expressr Core) to manage data ac-

quisition and storage.

The native kinematic parameters retrieved by the sensors are the

same: displacements for both the Mikrotron EoSens camera and the

Kinect v2. However the acquisition rates are remarkably different:

up to 250 Hz for Mikrotron EoSens camera and 30 Hz for Kinect v2.

In Table 4.1 the acquisition rate used during the tests, the kinematic

parameter supplied by each sensor and its paid cost are summarized.

Kinect v2 Mik. EoS. camera
Acquisition rate (Hz) 30 100-250
Native kinematic parameter Displacements Displacements
Cost (e) 200 10000

Tab. 4.1: Acquisition rate and kinematic parameter captured by each
sensor.

Both the Kinect v2 range camera and the Mikrotron EoSens cam-

era were placed at a distance of about one meter from the table, with

the optical axis of both cameras orthogonal to the target. The orthog-

onality was checked with a laser pointer. Both sensors were connected

to a lap-top for storing the acquired observations.

Two oscillation amplitudes (0.02 m and 0.03 m) were tested. For

each amplitude, four oscillations frequencies (f1 ' 1.7 Hz, f2 '2.0

Hz, f3 '2.2 Hz, f4 '2.7 Hz) were set, each kept constant for approx-

imately 15 seconds. Oscillation frequencies were roughly set through

the vibrating table controller (potentiometer). The values of those fre-
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quencies were determined by analysing the high temporal resolution

data acquired with the Mikrotron camera.

Fig. 4.1: Vibrating table equipped with target and sensors.

4.1.2 Analysis of results: methodology and dis-

cussion

Displacements, velocities and accelerations of the vibrating table moni-

tored by the Microsoft Kinect v2 range camera were compared to those

recorded by the Mikrotron EoSens high-resolution camera.

The images acquired by the Mikrotron EoSens camera were post-

processed using a Lagrangian Particle Tracking technique named Hy-
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brid Lagrangian Particle Tracking (HLPT) [100], which selects image

features and tracks them from frame to frame.

Once the trajectories are reconstructed, displacements, velocities,

and accelerations are computed via central differences. Displacement,

velocity and acceleration components belonging to the same frame are

arithmetically averaged to compute their time history. To characterize

the reference signal, the standard deviations of its amplitude were com-

puted by averaging the detected amplitudes for the entire signal. The

mean amplitude for 0.02 cm amplitude test turned out to be 0.0199

m with a standard deviation of 0.0001 m; for 0.03 cm amplitude the

mean is equal to 0.0299 m with a standard deviation of 0.0002.

The Fast Fourier Transform (FFT) was then employed to identify

the four different oscillation frequencies of the vibrating table on dis-

placement data. It is evident that the vibrating table is only roughly

a harmonic oscillator, so the frequency peaks are identifiable but they

are not perfectly separated from each other.

The same procedure was also applied to the raw data acquired by

the Kinect v2. Results are presented in Fig. 4.2 and Fig. 4.3 and show

that the range camera failed in the test at the fourth frequency with

amplitude 0.03 m.

In particular, to study the four main peaks, the spectra acquired

by the Kinect v2 was divided into four intervals (hereinafter subtests)

and for each interval a passband filter was applied in order to better

analyse the kinematic parameters of each subset; the band width was

selected analysing the peaks of the Mikrotron EoSens high-resolution

camera power spectra. Successively, the filtered results were resampled

at 100 Hz through cubic splines to facilitate the comparison and the

synchronization with reference data. It is worth noting that the results
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Fig. 4.2: Power spectrum of the results related to the test with 0.02
m oscillation amplitude: velocities for the Mikrotron EoSens camera and
displacements for the Kinect v2 range camera.

Fig. 4.3: Power spectrum of the results related to the test with 0.03
m oscillation amplitude: velocities for the Mikrotron EoSens camera and
displacements for the Kinect v2 range camera.
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obtained by processing the Mikrotron EoSens camera data at 100 Hz

and 250 Hz were comparable. For these reasons only the results at 100

Hz are presented. Fig. 4.4 shows the results obtained for the lowest

frequency (f1) and 0.02 m oscillation amplitude in the displacement

domain.

Fig. 4.4: Displacements retrieved with the Kinect v2 sensor in comparison
with the Mikrotron EoSens camera for the lowest frequency (f1) and 0.03
m oscillation amplitude.

The quantitative measure of the similarity among the kinematic

parameters of the Kinect v2 sensor and reference data is the RMSE

defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(kpK2,i − kpref,i)2 (4.1)

where N is the amount of data available within each subtest, kpK2

is the kinematic parameter monitored by the Kinect v2 sensor, kpref

is the kinematic parameter detected with the Mikrotron camera.
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To compute the RMSE, it was necessary to synchronize the time

scales, that were approximately aligned through cross-correlation. Then

the synchronization was improved using a linear interpolation, whose

slope coefficient was calculated by comparing the zero-crossing times of

the Mikrotron EoSens high-resolution camera with the corresponding

zero-crossing times of Kinect v2 sensor. The RMSE was not calculated

for all the differences, but only on the LE95 population.

Fig. 4.5: RMSE trend of the kinematic parameters retrieved by Kinect v2
in the performed tests.

Results are summarized in Tab. 4.2 and Tab. 4.3 where mean and

standard deviations of the residuals were reported as well. Fig. 4.5

shows the RMSE trend of the kinematic parameters retrieved by the

Kinect v2 range camera as a function of the vibrating table oscillation

frequency and amplitude. The RMSE shows a generally increasing

trend where, as expected, the maximum value is reached in the test

with oscillation amplitude of 0.03 m and frequency f4, which was not

properly identified (see Fig. 4.3); in addition, both Table 4.3 and Fig.
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4.3 show that Kinect v2 failed during the second frequency test with

0.03 m amplitude, probably due to tracking algorithm errors.

Tab. 4.2 and Tab. 4.3 show also the results of the correlation

analysis aimed at obtaining the R2 parameter, computed with the

least squares regression method. To do so, for each amplitude and

frequency, kinematic parameters detected or derived from Kinect v2

sensor acquisitions were drawn in a 2D plot vs. reference data. In

particular, Fig. 4.6 shows the results for the 0.03 m amplitude test at

the lowest frequency and the high R2 values are representative of the

effectiveness of the adopted synchronization strategy.

Fig. 4.6: Cross correlation between displacements retrieved with the Kinect
v2 and the Mikrotron EoSens camera for the lowest frequency (f1) and 0.03
m oscillation amplitude.

The Kinect v2 displays a rather stable noise across all the tests, but

it is characterized by a high stability (lower bias) on displacements.

The accuracy (RMSE) of displacements is indeed within 4 - 5% of the

reference solution, except for the already mentioned two failures.

4.1.3 Conclusions and future prospects

The results obtained are promising in the prospective of employing

the Kinect v2 in the field of oscillatory motions monitoring. The ap-

plication fields are manifold (structural monitoring, industrial control

system development, ground monitoring and so on).
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a [m/s2] v [m/s] s [m]
RMSE MEAN STD R2 RMSE MEAN STD R2 RMSE MEAN STD R2

f1 0.415 -0.014 0.415 0.93 0.017 0.000 0.017 0.98 0.0009 -0.0005 0.0008 0.99

f2 0.651 -0.005 0.651 0.89 0.023 0.001 0.023 0.98 0.0010 0.0000 0.0010 0.99

f3 0.660 0.016 0.660 0.92 0.023 0.000 0.023 0.97 0.0009 0.0001 0.0009 0.99

f4 1.218 0.002 1.218 0.89 0.031 0.001 0.031 0.98 0.0009 0.0000 0.0009 0.99

Tab. 4.2: Accuracy (RMSE), Bias (Mean) and Noise (Standard deviation) in test with 0.02 m amplitude.

a [m/s2] v [m/s] s [m]
RMSE MEAN STD R2 RMSE MEAN STD R2 RMSE MEAN STD R2

f1 0.517 0.000 0.517 0.94 0.019 0.003 0.019 0.99 0.0012 0.0000 0.0012 1.00

f2 0.619 0.018 0.619 0.96 0.021 0.002 0.020 0.99 0.0037 -0.0003 0.0037 0.93

f3 0.758 -0.002 0.758 0.96 0.025 -0.001 0.025 0.99 0.0011 0.0001 0.0011 0.99

f4 2.569 0.980 2.375 0.82 0.071 0.032 0.064 0.94 0.0049 -0.0015 0.0047 0.24

Tab. 4.3: Accuracy (RMSE), Noise (Standard deviation) and Bias (Mean) in test with 0.03 m amplitude.
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As regards future prospects and possible improvements, some items

can be addressed:

� the upgrading of the Kinect v2 tracking tool, improving the tar-

get automatic collimation by optimizing real-time data manage-

ment in order to avoid failures (as happened for the f2 and f4

frequencies of the test at 0.03 m amplitude);

� the possibility of tracking different targets simultaneously with

the Kinect v2 must be considered, together with the possibility

to use the Kinect v2 reference frame with axes directed indepen-

dently from the object to be monitored (in our tests the optical

axis was aligned orthogonally to the object motion direction);

� the repetition of the tests over longer periods, in order to in-

vestigate the effectiveness of the synchronization procedure and

possibly to refine it.

4.2 Kinect v2 and RGB stereo cameras

integration for point cloud enhance-

ment: a first test

This second case study [90] was performed to evaluate the integration

feasibility of range camera technology with a classical stereo system.

In fact, the integration between these two methods can offer many

advantages since they are characterized by complementary features.

On the one side, range cameras are low-cost and easy to use imaging

sensors, able to measure distances of the scanned scene at high frame
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rate and to easily collect dense point clouds practically in real time.

At the same time, though, these devices show issues with transparent

and very reflective surfaces. Furthermore, the depth maps obtained

are generally noisy and the finer details of the resulting 3D models are

often smoothed.

On the other side, stereo vision is an established technique, but

the resulting 3D models are mostly incomplete in low texture regions.

In addition, the processing needs an external scale that the user must

provide and it is often computationally onerous and time consuming.

Therefore the leading idea, which will be developed in future works,

is that a preliminary depth map of the investigated object can be

obtained in real-time through a low-cost range camera. This depth map

will be employed as a coarse 3D model for classical stereo processing,

which will add the details coming from the stereo images acquired

through standard cameras.

In details, the coarse depth map acquired by the range camera will

be the geometrical constraint for the subsequent Semi Global Matching

(SGM) algorithm that will compute the stereo disparity map. In this

way the efficiency of the dense matching algorithm will be increased.

This case study is organized as follows. In Sec. 4.2.1 a short review

of the state-of-the art is illustrated; in Sec. 4.2.2 this first test is

described and its results are discussed in Sec. 4.2.3. Finally some

conclusions are outlined in 4.2.4.

4.2.1 Related works

The topic of integration between products from range and RGB cam-

eras has been investigated for several years and a substantial literature
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is available [76], mainly considering middle to high cost professional

sensors. The goal of this case study is to reconsider the already ob-

tained methodological results under the light of new available low-cost

sensors that can be integrated in a flexible solution. [109] combines a

professional ToF sensor with two CCD cameras, introducing a method

for improving the range camera manufacturer calibration. [107] pro-

poses a system formed by a professional three stereo camera and a

low-cost SL range camera and suggests an accuracy improvement of

the resulting 3D model through a stereo visual odometry integration.

[39] presents a high-resolution stereo matching algorithm guided by

low-resolution depth data, that helps the algorithm to compensate for

its difficulty in estimating disparities over weakly textured areas.

4.2.2 Discussion

For the purposes of this study, a 3D model of a DUPLOTM bricks

construction was reconstructed both with the Kinect v2 range camera

and by processing one stereo pair acquired with a Canon EoS 1200D

DSLR camera. The two 3D models were then fused, obtaining the

integrated model.

A specific software tool (see Sec. B.2) was developed to download

the 3D data with the Microsoft SDK and the model point cloud was

reconstructed from the depth map (see Fig. 4.7) acquired in a single

frame, since the final aim is the near real time integration.

Regarding the stereo model, one stereo pair was acquired with a

proper stereo baseline (base-to-height ratio of about 0.3) and it was

processed with the Agisoft PhotoScanTM photogrammetric software

[15]. The approximated model scale was estimated by imposing the
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Fig. 4.7: Depth map acquired by the Kinect v2 range camera.

values of the coordinates measured by the Kinect v2 to eight points

collimated on both images (see Fig. 4.8).

(a) First image (b) Second image

Fig. 4.8: Acquired stereo pair.

The fusion of the Kinect v2 and the photogrammetric models was

performed trough the CloudCompare [47] 3D point cloud and mesh

processing software. Since the two points clouds were already in the

same reference system, the co-registration was only refined using the

Iterative Closest Point (ICP) algorithm [21], which estimated the pa-

rameters of the residual roto-translation (with scale) transformation.
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4.2.3 Results

To assess the metric quality of the results obtained, both the integrated

model and the models reconstructed with the single 3D modeling tech-

nique were compared with the reference model of the DUPLO bricks

construction.

The dimensions of bricks were measured with a vernier caliper and

the reference mesh model (see Fig. 4.9) was reconstructed with a

standard CAD software.

Fig. 4.9: CAD reference model.

In particular, precision and accuracy were evaluated in terms of

signed distances (positive inside and negative outside the reference

mesh surface) of the 3D model points from the reference mesh.

Concerning the completeness assessment, it was based on the crite-

rion of 2D grid occupancy: the point cloud was projected onto a regular

grid mesh (with a posting of 0.004 m × 0.004 m) and the completeness
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index was computed as the ratio of the non empty cell number to the

grid total size.

Model Distance mean Distance std Completeness
[m] [m] [-]

Photogrammetric 0.000 0.002 38%
Kinect v2 0.004 0.015 67%
Integrated 0.001 0.003 69%

Tab. 4.4: Distance statistics.

The photogrammetric model is the most accurate and precise, as

the statistics of distances show (see Tab. 4.4), and it is reported in

Fig. 4.10a. Anyway the borders between the bricks are reconstructed

very well, thanks to the high texture variation, but the model is not

complete in correspondence of the areas with uniform texture (single

bricks).

As regards the model reconstructed by the Kinect v2, it is less

accurate and less precise: the mean and the standard deviation of

distances from the reference mesh model reach the values of 0.004 m

and 0.015 m respectively. The details of the bricks are generally less

recognizable (see Fig. 4.10c) and the model shows some inaccuracies

(flying pixels) on the edge of the DUPLO construction, where there

are high depth variations.

Finally the integrated model (see Fig. 4.10e) preserves the accuracy

and the precision of the photogrammetric model, but it also presents

the greatest level of completeness, provided by the contribution of the

Kinect v2 sensor.
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(a) Photogrammetric model results (b) Photogrammetric model distance his-
togram

(c) Kinect v2 model results (d) Kinect v2 model distance histogram

(e) Integrated model results (f) Integrated model distance histogram

Fig. 4.10: Results.
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4.2.4 Conclusions and further developments

The obtained results are encouraging and show that this integrated

approach leads to higher metric accuracy of the final 3D model with

respect to that obtained by only using a range camera and to an higher

level of completeness respect to that obtained by only processing a

stereo image pair.

Future works will deeply investigate the effects of distance from

the object to be scanned and automate the processing procedure by

implementing the method previously described.

4.3 Near real time indoor mapping with

the Structure Sensor

The case study illustrated in this paragraph analyzes the potentialities

of the Structure Sensor for the 3D surveying of indoor environments.

The specific aim is to evaluate its accuracy in reconstructing near real-

time planimetric maps of interiors of buildings [86]. The Room Capture

application (see Sec. A.3.5.1) was therefore used to acquire the 3D

models of the ceilings of three rooms (Aula piccola, Aula tesisti and

Aula grande) with different shapes and sizes.

4.3.1 Data collection

First of all it was necessary to identify a general procedure to be fol-

lowed in order to obtain good quality 3D models of the rooms with the

Structure Sensor.
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In fact the tracking process can fail, causing an incorrect estimation

of the sensor motion during the scanning. The incremental alignment

of successive frames can indeed generate a progressive accumulation of

distortions along the scan path which results in a wrong estimation of

the sensor trajectory. When, at the end of the scanning, previously

visited areas are re-captured, they are placed in the wrong global lo-

cation, and the estimated trajectory does not close. This may lead

to a severe corruption of the final 3D model, whose reconstructed 3D

geometry does not correspond in this case to the actual shape of the

scanned scene (see Fig. 4.11).

(a) Uncorrect tracking (b) Correct tracking

Fig. 4.11: 3D model.

It is therefore indispensable to limit all the unnecessary sensor

movements that can bother the tracking process. The 3D models were

thus acquired with the operator seated on a swivel chair placed in the

middle of the room, with the sensor maintained as close as possible to

the rotation axis of the chair. In this way the translation movements

were minimized, and the path traveled by the device was mostly cir-

cular, as Occipital itself recommends. Finally the dimensions of the
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scanning volume were set in such a way as to allow the maximum cov-

erage of the upper part of the walls with a minimum upward tilt of the

sensor in order to collect ceiling information.

4.3.2 Processing of the 3D models

All of the three rooms were captured with the circular scanning ap-

proach described in the previous paragraph. The resulting 3D models

were then processed to obtain a planimetric map allowing to uniquely

measure the principal quantities (sides, perimeter and area) of the

scanned rooms. The aim was to compare them with the ones obtained

through a traditional survey performed with a measuring tape. Sev-

eral 3D models were acquired for the same room. In particular each 3D

model was cut through the Slic3r open source software along a section,

parallel to the ceiling plane, and very close to the ceiling itself (see Fig.

4.12).

Fig. 4.12: Cutting of the model.

Fig. 4.14, Fig. 4.15 and Fig. 4.16 show an example of the obtained

planimetric maps for the three rooms.
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To evaluate the accuracy, for each room model, the differences be-

tween the lengths of the sides measured with the Structure Sensor and

those obtained through the traditional survey were firstly computed.

Successively the mean and the standard deviation of the residuals were

computed over all the sides. In this way it was possible to calculate the

RMSE for each model, representing its accuracy. The obtained results

are reported in Fig. 4.13 and in Tab. 4.5. The RMSE varies in the

range of 3 - 10 cm, very low values if compared to the dimensions of

the sides of the room. The achievable degree of accuracy is therefore

better than 10 cm. Furthermore, results highlight a slight trend as a

function of the dimensions of the rooms, generating better 3D models

for smaller rooms.

Fig. 4.13: RMSE over the length of the sides for the obtained planimetric
maps.

The obtained results thus show that it is effectively possible to use

the Structure Sensor in order to compute planimetric maps of rooms

in scale 1:200. In fact the reconstructed planimetric layouts show a

mean accuracy of 5 cm, 10 cm in the worst case, and thus the error is
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RMSE [m]
Aula Piccola Aula Tesisti Aula Grande

Model 1 0,03 0,06 0,05
Model 2 0,05 0,05 0,07
Model 3 0,03 0,07 0,05
Model 4 0,05 0,07 0,10
Model 5 0,04 – –
Model 6 0,03 – –
Model 7 0,03 – –

Mean 0,04 0,06 0,06

Tab. 4.5: RMSE over the length of the sides for the obtained planimetric
maps.

still acceptable for many applications not demanding for centimetric

accuracy.

(a) Structure Sensor: Perimeter =
14.61 m; Area = 13.20 m2

(b) Reference: Perimeter = 14.65 m;
Area = 13.26 m2

Fig. 4.14: Planimetric maps of Aula piccola room.
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(a) Structure Sensor: Perimeter =
19.29 m; Area = 23.19 m2

(b) Reference: Perimeter = 19.37 m;
Area = 23.36 m2

Fig. 4.15: Planimetric maps of Aula tesisti room.

(a) Structure Sensor: Perimeter =
20.94 m; Area = 26.84 m2

(b) Reference: Perimeter = 21.01 m;
Area = 26.96 m2

Fig. 4.16: Planimetric maps of Aula grande room.
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4.4 Archaeological applications: catching

small finds in 3D

It is well known that small finds1 provide a variegated myriad of data

of crucial importance to the study of their finding contexts. Therefore,

the production of reliable documentation of small finds is a crucial

process during archaeological excavations. Nowadays archaeologists

usually document them in 2D by proper representations, but the full

comprehension of their multiple functions is strictly dependent on the

possibility of a close all-around examination. It is for this reason that

the small finds documentation during excavation can be still considered

an open problem.

Range cameras seem one of the most promising tools to solve this

issue: they can be used to reconstruct accurate and reliable 3D mod-

els of small finds, with a reasonable little effort, making possible their

systematic application on the field. Their capability to immediately

capture the model in metric units, without the need of providing an

external scale during the scanning, is an essential feature to document

the archaeological small finds quickly, effectively and in a comprehen-

sive way. In this section, the first applications of the Structure Sensor

for scanning archaeological small finds are shortly described.

1Small finds is an archaeological term for artifacts discovered on excavations
which are somewhat special compared with the common finds for that type site.
The special nature of the find is given by the information the artifact can provide
to interpret that particular site.
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4.4.1 Data collection and elaboration

The Structure Sensor was used to scan several small finds coming from

the excavations of the University of Rome La Sapienza directed by

Prof. Lorenzo Nigro in the island of Motya, a Phoenician city in West-

ern Sicily. The Scanner app was selected among all the 3D scanning

apps actually available for the Structure Sensor since it is free, very

easy to use and furthermore its code is open, thus customizable ac-

cording to the specific requirements of the application.

For concave objects such as vases, if the size of the vase opening is

big enough, it is possible to scan also interior part in order to model also

the inner volume. In particular the target objects were mounted on a

sort of pedestal placed on a smooth and flat surface in order to facilitate

the tracking. A suitable pedestal should be thin in order to cover a

minimum surface of the target object but at the same time it should

be sufficiently stable to assure the object safety. Once the object was

scanned, following the procedure described in Sec. A.3.1, the pedestal

was removed from the final mesh for all the models and the related

hole filled with a standard 3D mesh/point cloud processing software,

such as CloudCompare [47]. Indeed with the Interactive Segmentation

Tool it is possible to remove the points (or triangles) falling inside (or

outside) the border of the 2D polygon defined interactively by the user.

Then, to close the base of the model, the user can cut a thin section in

correspondence of the pedestal hole with the Cross Section Tool. This

operation generates a remaining cloud on which a planar mesh can be

fitted with the Delaunay 2.5D Mesh Tool. Sometimes it is necessary

to refine the results by translating downwards the mesh obtained with

the Translate/Rotation Tool. Finally the closing mesh can be merged
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to the object model.

Some of the obtained models are reported in Fig. 4.17 and Fig.

4.18.

(a) Wireframe visualization. (b) Color visualization.

Fig. 4.17: The obtained 3D model for vase T177/2.

In order to evaluate the quality of the 3D geometry reconstruction,

the 3D model of a Phoenician vase captured by the Structure Sensor

was compared to the 3D model of the same object obtained by pro-

cessing 91 images with the Agisoft photogrammetric software [15] [65].

Since it was not possible to provide an external scale while acquiring

the images, a non-scaled photogrammetric model was firstly produced.

Then the scale factor was estimated by computing the ratio between

the length of the same well identifiable detail measured on both the

photogrammetric model and the one captured by the Structure Sensor.

In particular, the length of a crack was measured in both models, and

the scaling factor resulted equal to 0.068.

Once the photogrametric model was scaled, the meshes were reg-
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(a) (b)

Fig. 4.18: The wireframe visualization of the obtained 3D models for vase
(a) T180/4 and and vase (b) T181/2.

istered through the Iterative Closest Point (ICP) algorithm [21] im-

plemented in the CloudCompare [47] software. In this way it was

possible to evaluate the precision and the accuracy in terms of signed

distances (positive inside and negative outside) of the points of the

photogrammetric model from the mesh of the Structure Sensor model.

The computed distances and the related histogram are reported in Fig.

4.19a and Fig. 4.19b.

The distance mean and standard deviation are equal to 1.0 mm

and 2.4 mm, respectively. From what is visible in Fig. 4.19a, the most

different areas are located in correspondence of the handles and of the

base, while the remaining surfaces are generally quite similar. For what

regards the base, the higher distances values are probably caused by

errors in the post processing phase necessary to close the model.



4.4 Archaeological applications: catching small finds in 3D 121

(a) (b)

Fig. 4.19: (a) Distances between the points of the photogrammetric vase
model and the mesh of the Structure Sensor model; (b) related histogram.

Concerning the texture reconstruction, it is instead less accurate,

since occasionally the colour is not perfectly aligned to the 3D geometry

in some areas of the model, in particular for those captured at end of

the scanning process (at the end of the 360◦ path). This behaviour

can be explained with a not perfect outcome of the calibration and/or

residual tracking errors. Finally the colouring approach used by the

Scanner app (the only 3D scanning app tested so far) of Occipital tends

to smooth the texture details.

4.4.2 Possible applications of the obtained 3D mod-

els

The 3D model provides all the necessary information to completely

describe the archaeological small finds. Furthermore it allows to take

in depth a posteriori measurements, such as the volume computation

and section visualization. It is important to notice that all these mea-
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surements are expressed in metric units because, as mentioned above,

the Structure Sensor generates 3D models that belong intrinsically to

a metric space. In particular, with the CloudCompare software it is

possible to cut the model in one and/or several slices through the

Cross Section Tool (see Fig. 4.20) and then to measure the principal

quantities (see Fig. 4.21).

(a) Sections. (b) Diameter measure-
ment.

Fig. 4.20: Elaboration performed on the model T177/2.

Fig. 4.21: Vertical sections on model BL1536.



4.4 Archaeological applications: catching small finds in 3D 123

Instead, to compute the volume, the Compute Geometric Measures

(Quality, Measure and computation Filter) Tool of the Meshlab soft-

ware can be used. Anyway it is essential to underline that only the

volume of closed model (watertight mesh) can be computed. For ex-

ample to compute the volume of a vase, the user must close also the

higher opening, using the same procedure adopted for the pedestal

hole.
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Chapter 5

Conclusions

Range cameras are low-cost 3D scanners; thanks to their high frame

rate they can easily collect dense point clouds in a short range (few

meters) from the imaged objects. The aim of this thesis was to eval-

uate the potentialities of these sensors for geomatic applications and

to provide useful indications for their practical use. The leading idea

that guided this work is to supply a feasible and effective procedure

for the calibration of range cameras, enabling their use for close-range

3D modeling of objects and environments.

Therefore the three most popular and/or promising low-cost range

cameras, namely the Microsoft Kinect v1, the Micorsoft Kinect v2

and the Occipital Structure Sensor, were firstly characterized from a

geomatic point of view in order to assess the metric quality of the depth

data retrieved by them.

These investigations showed that such sensors present a depth pre-

cision and a depth accuracy depending both on the operational princi-

ple adopted by the single device (Structured Light or Time of Flight)

125
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and on the depth itself.

On this basis, two different models were identified for precision and

accuracy vs. depth: parabolic for the Structured Light (the Kinect v1

and the Structure Sensor) and linear for Time of Flight (the Kinect v2)

sensors, respectively. Then the effectiveness of such accuracy models

for calibration was tested by correcting the measured depths through

the estimated parameters. The residual errors were globally compliant

with the found precision models for all of the sensors. Overall, the

best performances, at an accuracy level of very few millimeters, were

supplied by the Kinect v2 Time of Flight sensor. In fact, for the

Kinect v2 the residuals are always below 5 mm, independently from

the depth/distance, while for the Kinect v1 and the Structure Sensor

they are within 19 mm and 15 mm respectively, thus leading to an

accuracy level around 1 cm.

Furthermore, in order to validate the found calibration models, nine

additional tests were performed with the Structure Sensor. First of all,

the value of the constant representing the internal offset in the accuracy

model was re-estimated. Then the six known distances among the four

external vertexes of a rectangular checkerboard grid were measured

through the sensor, before and after having applied the depth calibra-

tion model. With calibration, the overall RMSE, computed over the

9×6 distances, decreased from 27 to 16 mm. The proposed calibration

model thus seems to improve effectively the accuracy of the Structure

Sensor, at least for this limited number of tests.

Successively, some investigations about the registration process of

depth and color images were also performed. Specifically, for the

Kinect v1 some tests were carried out in order to evaluate the effect

and the performances of the aligning/mapping algorithm (provided by
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the Microsoft SDK) between the two images. The goal was to investi-

gate if the coordinates collimated on the RGB image were affected by

the mapping algorithm, therefore leading to wrong depth values. As

a result, an almost constant negative shift of around 6 pixels in the y

direction and a positive shift of around 4 pixels in the x direction was

observed at several distances from the captured object.

For the Structure Sensor, instead, a stereo calibration was carried

out in order to reconstruct the geometrical relationship between the

depth sensor and the color camera of the device at which it was con-

nected. The estimated calibration parameters were effectively able to

register the depth and color images captured by the Structure Sensor

and the color camera.

Finally four case studies were analyzed.

In the first one, the performances of the Kinect v2 sensor for mon-

itoring oscillatory motions characterized by small challenging ampli-

tudes (0.02 m and 0.03 m) and different oscillation frequencies (in the

range of 1.5–3 Hz) were evaluated. The Kinect v2 displayed a rather

stable noise across all the tests, but it was characterized by a high

stability (lower bias) on displacements. The accuracy (RMSE) of dis-

placements was generally within 4 - 5% of the reference solution. The

results obtained are thus promising in the prospective of employing

the Kinect v2 in the field of oscillatory motions monitoring, such as

structural monitoring, industrial control system development, ground

monitoring and so on.

The second case study was performed to evaluate the integration

feasibility of range camera technology with a classical stereo system.

For this purpose, a 3D model of a DUPLO bricks construction was

reconstructed both with the Kinect v2 and by processing one stereo
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pair acquired with a Canon Eos 1200D DSLR camera. The scale of the

photogrammetric model was retrieved from the coordinates measured

by the Kinect v2. The results are encouraging and show that this

integrated approach leads to higher metric accuracy of the final 3D

model with respect to that obtained by only using a range camera

and to an higher level of completeness respect to that obtained by

exclusively processing a stereo image pair.

The third case study analyzed the potentialities of the Structure

Sensor for the 3D surveying of indoor environments. The specific aim

was to evaluate its accuracy in reconstructing near real-time plani-

metric maps of building interiors. The obtained results show that the

reconstructed planimetric layouts are characterized by a mean accu-

racy of 5 cm, 10 cm in the worst case, and thus they are suitable

for collecting 2D maps at a scale 1:200 and several applications not

demanding for centimetric accuracy.

Finally in the last case study the first applications of the Structure

Sensor for scanning archaeological small finds were described. In fact

cultural heritage documentation can be one of the natural field of ap-

plication of range camera technology, where speed and ease of use are

predominant with respect to accuracy. A general procedure was there-

fore identified in order to allow not expert users to reconstruct a 3D

model of archaeological small finds with a range camera. In particular

several small finds were acquired with the Structure Sensor, which was

able to capture well the geometry of these objects.

In conclusion, although the experimental results demonstrated that

range cameras have the capability to give good and encouraging results,

the performances of traditional 3D modeling techniques in terms of ac-

curacy and precision are still superior and must be preferred when the
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accuracy requirements are restrictive. But for a very wide and con-

tinuously increasing range of applications, when the required accuracy

can be at the level from few millimeters (very close-range) to few cen-

timeters, then range cameras can be a valuable alternative, especially

when non expert users are involved. Furthermore, the technology on

which these sensors are based, driven also by the new generation of

AR/VR reality kits (see for example [80]), is continually evolving and

certainly also their geometric performances will soon improve.

Finally future work should be directed towards improving the cal-

ibrations results and studying the integration with other 3D modeling

techniques. Summarizing, further developments could be devoted to:

� refine the precision and accuracy models for the Kinect v1 and

the Kinect v2;

� develop similar functional and stochastic models for other low-

cost range cameras as soon as they come on the market;

� analyze the effectiveness of the proposed calibration procedure

in practical applications, where possible non-optimal reflection

conditions may also arise

� apply the calibration models in the 3D modeling software.
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Appendix A

Software libraries for 3D

modeling with range cameras

In this appendix an overview of the drivers, algorithms and software

available for 3D modeling with range cameras is given, with a particular

focus on the most used and/or promising proprietary and open source

software.

A.1 Drivers and libraries

There are many libraries which allow to gain access to the data streamed

by the range cameras. In the following sections the most popular

among them will be briefly described.

A.1.1 OpenNI

OpenNI (Open Natural Interaction) was established in November 2010

as an industry-led non-profit consortium and today it is an open source
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software project focused on promoting, standardizing and improving

the compatibility and interoperability of depth sensing devices [14].

The original aim was to help developers implementing device inde-

pendent applications based on natural interfaces1, but, starting from

version 2.0, the NUI functionalities (gestures and skeleton detection

and tracking, see Fig. A.1) have been eliminated from the SDK core

and transferred to an additional and optional layer of middleware.

Fig. A.1: The OpenNI skeleton tracking functionality [14].

OpenNI has been the largest 3D sensing development framework

and community until it was closed by Apple Inc. when it acquired

PrimeSense Ltd., one of the founding member of the original OpenNI

consortium2, on November 24, 2013 [17]. Since then, Occipital and

1A natural interface, also called natural user interface (NUI) is a human-
machine interface that feels natural to its users, based on an evolving model for
human-computer interaction that is context-appropriate and adaptive. Because
the NUI exploits the existing skills and expectations of its users, it is easy to learn:
the user transition from novice to expert is quickly. A NUI might incorporate
speech, gesture, touch, or location, depending upon the application and the user
environment.

2The original members of the OpenNI consortium were: PrimeSense; Willow-
Garage, experts in personal robotics applications; OpenPerception, the makers of
the Point Cloud Library (PCL); ASUS; Side-Kick, a leading production house for
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other former partners of PrimeSense are still keeping a forked version

of OpenNI 2.0 operative as an open source software project, but it is

no longer active as it used to be [8].

Anyway OpenNI framework still defines a device-independent C++

API (Fig. A.2 shows the OpenNI 2.0 SDK Architecture) that gives

access to the raw data provided by OpenNI compatible depth sensors,

providing a uniform interface that third party developers can use to

interact with such devices. It supports PrimeSense reference design

sensors, the Asus Xtion, the Microsoft Kinect v1 (the Microsoft SDK

is also needed) and also other types of range cameras such as Microsoft

Kinect v2 and Occipital Structure Sensor.

Fig. A.2: The OpenNI 2.0 SDK Architecture [14].

In particular, getting access to the depth streams requires the use of

motion control games.
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four main classes that allow developers to initialize the selected sensor

and receive depth, RGB, and IR video streams from it [8]:

1. openni::OpenNI class provides a single static entry point to the

API. It also provides access to devices, device related events,

version and error information;

2. openni::Device class provides an interface to a single device con-

nected to the system, giving access to the streams captured by

the sensor;

3. openni::VideoStream class abstracts a single video stream (depth,

IR or RGB). Obtained from a specific device, it is required to gain

access to the frame data;

4. openni::VideoFrameRef is the basic class used to read each new

frame from a video stream. It provides access to the underlying

array that contains the frame data, as well as any metadata that

are required to work with the video stream.

In addition, various supporting classes and structures are provided

for holding specific types of data. A Recorder class can store OpenNI

video streams to files, whereas the Listener Classes handle the events

that Stream classes generate [8]. Finally video streams can be read

using one of two basic methods: loop based (polling) and event based.

A.1.2 OpenKinect: libfreenect1 and libfreenect2

OpenKinect is a community of over 2000 members interested in devel-

oping free, open source libraries enabling the two versions of Microsoft
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Kinect to be used on platforms other than just the Xbox [7], in order

to allow a wider and more general adoption of these devices in different

fields of application. Indeed, as is well known, the Microsoft Kinect v1

and the Microsoft Kinect v2 sensors were primarily designed as motion

sensing input peripheral, respectively for the Xbox 360 and the Xbox

One game consoles. The libfreenect project, developed by the OpenK-

inect community, was the first open source and cross platform driver

available for the Kinect v1, whose USB connection was decoded and

reverse-engineered.

Anyway when the OpenNI framework was released, several projects

swapped their libfreenect dependencies for the OpenNI ones because

they offered more flexibility when replacing the Kinect with other hard-

ware, as well as a more robust set of features to build applications on

top of. That said, many developers still adopt the libfreenect drivers

since they are easy to redistribute without requiring users to download

dependent software [59].

In particular, the libfreenect library includes all code necessary to

activate, initialize, and communicate data with the Kinect v1 (libfreenect1)

and the Kinect v2 (libfreenect2) sensors [7]. They include drivers and

a cross-platform API that runs on Windows, Linux, and OS X sys-

tems. The libfreenect1 API support bindings and extensions for C,

C++, .NET (C#/VB.NET), Java, Python, and C Synchronous Inter-

face languages/platforms, whereas for libfreenect2 only C++ API is

actually available [23]. Both the APIs provide access to the three

main sets of data from Kinect sensors in the form of video streams:

the depth image, the RGB image and the IR image. In addition to

the image based sensor data, Libfreenect also gives access to the au-

dio stream. However, Libfreenect does not supply a skeleton tracking
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feature [59].

A.1.3 Microsoft Kinect for Windows SDKs

The Kinect for Windows SDKs (version 1.8 for Kinect v1 and version

2.0 for Kinect v2) supply the tools and APIs, both native (C++) and

managed (C#/VB.NET), needed to develop Kinect enabled applica-

tions for Microsoft Windows platform with the Microsoft Visual Studio

IDE. The Kinect SDKs provide support for the features of the Kinect

v1 and Kinect v2, including color, depth and infrared images, audio

input, and skeletal data. Both the SDKs consist of a sophisticated soft-

ware library that allows developers to exploit the rich form of Kinect

based natural input, which senses and reacts to real-world events. In

addition they also provide the implementation of the KinectFusion al-

gorithm (see Sec. A.2.1 and Sec. A.3.2) that turns the Kinect range

cameras into veritable 3D scanners.

Fig. A.3: Hardware and software interaction with an application [4].

As shown by Fig. A.4, the Kinect for Windows SDK v1.8 includes

the following components [4]:

1. Kinect hardware components, including the Kinect v1 device and

the USB hub through which the sensor is connected to the com-

puter;
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2. Kinect for Windows drivers supporting: microphone array, audio

and video streaming controls, device enumeration functions that

enable an application to use more than one Kinect v1;

3. audio and video components, i.e. Kinect v1 NUI for skeleton

tracking, audio, and color, infrared and depth imaging and ac-

celerometer data;

4. DirectX Media Object (DMO) for microphone array beamform-

ing and audio source localization;

5. Windows standard APIs.

Fig. A.4: Microsoft Kinect for Windows SDK v1.8 architecture [4].

As regards the depth and player data, they can be retrieved in either

of two formats: packed depth information and full depth information.

The packed depth information is the older format, for which each pixel

is represented by one 16-bit value: the 13 high-order bits contain the
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depth value and the 3 low-order bits contain the player index. Any

depth value outside the reliable range is replaced with a special value

to indicate that it was too near, too far, or unknown. Full depth

information is the newer format, introduced in version 1.6. In this

case each pixel is represented by a structure with two fields: a 16-bit

depth and a 16-bit player index. All detected depth values, including

those outside the reliable range, are reported. Pixels whose depth could

not be detected are reported with a depth value of 0 [4].

Concerning the Kinect for Windows SDK 2.0, it provides three

different API sets that can be used to create Kinect v2 enabled ap-

plications. A set of Windows Runtime APIs support the development

of Windows Store applications. A set of .NET APIs enable the de-

velopment of WPF applications. And a set of native APIs allow to

write applications that require the performance advantages of native

code [5]. With these APIs it is possible to retrieve both low-level data,

such as infrared and color, as well as processed data, like depth and

body (commonly referred to as skeleton) from the Kinect v2 sensor.

Each stream has its own reader, but they all share the same basic

functionalities.

In particular, the KinectSensor Class is required to configure the

Kinect v2 device and access sensor data. Only one device is supported,

and the data delivered from the sensor are then stored temporarily in a

frame in order to avoid memory allocation. An application should get

the data out of each frame and close/dispose it as quickly as possible

to free up the underlying handle and make sure that the system does

not keep allocating new items to store incoming frame data [5].

Moreover the DepthFrame Class is the central class for 3D modeling

applications, since it contains the depth data. They are stored as
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Fig. A.5: Microsoft Kinect for Windows SDK v2.0 architecture [5].

16-bit unsigned integers, where each value represents the distance in

millimeters of the closest object observed by that pixel. The maximum

depth distance is 8 meters, although reliability starts to degrade at

around 4.5 meters [5].

Finally, although the Microsoft Kinect for Windows SDKs can be

used exclusively with the Kinect v1 and the Kinect v2 hardware and

only on Windows platforms, they are very popular, at least among

inexperienced developers, because they are very easy to install and to

use.

A.1.4 Occipital Structure SDK

The Structure SDK is the Occipital proprietary framework that defines

a stable, easy to use, flexible and constantly improving Objective-C

interface for developing applications leveraging the Structure Sensor

on iOS devices. It is split in two parts [13]:

1. a low-level Sensor Controller layer, exposing raw depth and color

stream access along with sensor information and status;
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2. a high-level SLAM Engine, including 3D mapping, tracking and

scanning features.

Developing applications for the Structure Sensor requires Xcode 6

or above. The APIs can be called also through Swift programming

language and the resulting application can integrate Objective-C++

libraries (for example OpenCV), too. Furthermore the Structure SDK

contains source code for useful sample apps such as 3D scanning and

indoor mapping [13] (see Sec. A.3.5).

Anyway the Structure SDK is compatible only with iOS devices.

Thus, to build applications able to run on not iOS platforms, Occipital

maintains OpenNI 2.0 (see Sec. A.1.1), which allows developers to

create applications for Structure Sensor on Windows, Linux, macOS,

and Android.

A.1.5 Intel RealSense SDK For Windows

The Intel RealSense SDK is a Windows library that implements pat-

tern detection and recognition algorithms, exposed through standard-

ized interfaces. The library aims to help developers to build innovative

applications for the next generation of human computer experience.

The 2016 version (R3) of the SDK supports the SR300 and F200

sensors and a few popular languages, frameworks and game engines

like C++, C#, Unity and C# Universal Windows Platform (UWP).

The SDK allows developers to easily integrate several functionalities

in their applications, such as [3]:

� hand tracking, gesture recognition and cursor mode;
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� face tracking and recognition, for which the presence of faces in

the field of view of the sensor, or facial features on an individual

face, can be easily identified. It supports 78 landmark points

for 3D face detection as well as face orientation (roll, pitch, and

yaw);

� 3D scanning of stationary objects, faces, bodies and heads. The

resulting 3D models are stored through standard mesh formats

and can be used for inspection, rendering, editing, or printing;

� background removal: it allows to segment the captured scene to

remove the background and to create a digital green screen.

A.1.6 Intel RealSense Cross Platform API: libre-

alsense

The librealsense project [1] is a cross-platform C++ library (Linux,

Windows, Os X) for capturing data from the Intel RealSense F200,

SR300, R200, LR200 and the ZR300 sensors. In particular, it provides

support for retrieving native depth, color and infrared streams, syn-

thetic streams for rectified images, calibration information and multi-

camera capture. Anyway this library only encompasses camera capture

functionality without additional computer vision algorithms, imple-

mented instead in the official Intel RealSense SDK for Windows plat-

forms. This effort was initiated to better support researchers, creative

coders, and app developers in fields such as robotics, virtual reality

and the internet of things [1].
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A.1.7 Point Cloud Library (PCL)

Although it cannot be used for gaining access to the range cameras

data, the Point Cloud Library (PCL) is however a powerful tool to

process the 3D data collected by these devices.

PCL is indeed a collection of state of the art algorithms and tools

for 2D/3D image and point cloud processing. It is a modern, fully

templated and open source C++ library, licensed under Berkeley Soft-

ware Distribution (BSD) terms and, therefore, free for commercial and

research use [96]. Furthermore it is cross-platform and it has been

successfully compiled and deployed on Linux, MacOS, Windows, and

Android [9].

Fig. A.6: The Point Cloud Library logo [9].

The PCL core is structured in smaller libraries (see Fig. A.7), that

can be compiled separately. They implement algorithms and tools for

specific areas of 3D processing, which can be combined to efficiently

solve common problems such as 3D object recognition and 6 Degrees

of Freedom (DoF) pose estimation, registration and segmentation of

point clouds, surface reconstruction [16]:

� libpcl filters: implements data filters such as downsampling, out-

lier removal, indices extraction, projections, etc;

� libpcl features: implements many 3D features such as surface

normals and curvatures, boundary point estimation, moment in-

variants, principal curvatures, PFH and FPFH descriptors, spin
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images, integral images, NARF descriptors, RIFT, RSD, VFH,

SIFT on intensity data, etc;

� libpcl io: implements I/O operations such as writing to/reading

from Point Cloud Data (PCD) files;

� libpcl segmentation: implements cluster extraction, model fit-

ting via sample consensus methods for a variety of parametric

models (planes, cylinders, spheres, lines, etc), polygonal prism

extraction, etc;

� libpcl surface: implements surface reconstruction techniques, mesh-

ing, convex hulls, Moving Least Squares, etc;

� libpcl registration: implements point cloud registration methods

such as Iterative Closest Point (ICP) [21] algorithm, etc;

� libpcl keypoints: implements different keypoint extraction meth-

ods, that can be used as a preprocessing step to decide where to

extract feature descriptors;

� libpcl range image: implements support for range images created

from point cloud datasets.

Each set of algorithms is defined via base classes that attempt

to integrate all the common functionality used throughout the entire

pipeline, thus keeping the implementations of the actual algorithms

compact and clean. The basic interface for such a processing pipeline

in PCL is the following [96]:

� create the processing object (e.g., filter, feature estimator, seg-

mentation);
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Fig. A.7: PCL architecture [9].

� use setInputCloud to pass the input point cloud dataset to the

processing module;

� set some parameters;

� call compute (or filter, segment, etc) to get the output.

Most mathematical operations are implemented with and based on

Eigen, an open source template library for linear algebra. In addition,

PCL provides support for OpenMP , Intel Threading Building Blocks

(TBB) library for multi-core parallelization, CUDA for GPU acceler-

ation and VTK for rendering 3D point cloud and surface data. The

backbone for fast k-nearest neighbor search operations is provided by

FLANN (Fast Library for Approximate Nearest Neighbors). All the

modules and algorithms in PCL pass data around using Boost shared

pointers, thus avoiding the need to re-copy data that is already present

in the system [96].

The PCL project brings together individuals from all around the

world, universities and companies such as, among others, NVIDIA,

Google, Toyota, Trimble, Honda Research Institute, Sandia, Dinast,

Optronic, Ocular Robotics, Velodyne, Fotonic and Leica Geosystems,



A.2 Algorithms for 3D modeling with range cameras 145

and it has become a reference for anyone interested in 3D processing,

computer vision, and robotic perception [16].

A.2 Algorithms for 3D modeling with range

cameras

With the advent of the new generation of range cameras, the use of

three dimensional data has become increasingly popular. As these sen-

sors are commodity hardware and sold at low-cost, a rapidly growing

group of people can acquire 3D data cheaply and in real time. Anyway

multiple scans, even hundreds, captured from many different points

of view, are usually required to collect information about all sides of

the target object. Indeed the obtained individual depth maps have to

be brought into a common reference system, a process that is usually

called alignment or registration, so that they can be integrated into a

complete and single 3D model, representing the whole surface of the

object. This entire process, going from the single depth map acquisi-

tion to the overall 3D model generation, is usually known as the 3D

scanning pipeline [20]. Today there are several algorithms that allow

to carry out this process in real time. The following sections describe

the most popular of them.

A.2.1 KinectFusion

KinectFusion [55, 78] was firstly developed as a research project at the

Microsoft Research laboratory in Cambridge, U.K. Today it is included

in the official Kinect for Windows SDKs.
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KinectFusion is an algorithm for accurate real time, dense volu-

metric mapping and reconstruction of complex and arbitrary indoor

scenes, using only a moving low-cost range camera, originally a hand-

held Kinect v1 device. All of the depth data streamed from the sensor

are fused into a single global surface representation of the observed

scene [78]. Note that to generate a complete 3D model, different view-

points of the physical scene must be captured [55]. Even small motions,

caused for example by camera shake, result in new viewpoints of the

scene and hence refinements to the model. This creates an effect similar

to image super resolution [55].

KinectFusion is the result of the evolution of both algorithms for

estimating camera pose and extracting geometry from images and cam-

era technologies. In fact, newer range cameras based either on ToF or

SL sensing offer dense measurements of depth in an integrated device.

Moreover such technology has now reached consumer level accessibility

[78].

Fig. A.8: KinectFusion in action, taking the depth image from the range
camera (here a Kinect v1) with lots of missing data and within a few seconds,
producing a realistic smooth 3D reconstruction of a static scene by moving
the sensor around [6].

In particular, users can simply pick up and move a range camera

to generate a continuously updating, smooth, fully fused 3D surface
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reconstruction. This can be accomplished either by moving the sen-

sor around the object or environment or by moving the object being

scanned in front of the sensor. Using only depth data, the KinectFu-

sion algorithm continually tracks the six DoF pose of the camera and

merges live data from the camera into a single global 3D model in real

time. As the user explores the space, new views of the physical scene

are revealed and these are fused into the same model. The reconstruc-

tion therefore grows in detail as new depth measurements are added.

Holes are filled (see Fig. A.8), and the model becomes more complete

and refined over time [55]. A strong point by using only depth data is

that the proposed system can work in complete darkness, thus mitigat-

ing any issues concerning low light conditions, problematic for passive

camera and RGB-D based systems [78]. Real-time camera tracking

and surface reconstruction by Kinect Fusion is based on the following

processing steps [78]:

� surface measurement: a pre-processing stage, where a dense ver-

tex map and normal map (it supplies the surface normals, pro-

viding the orientation of the scanned surface) pyramid are gener-

ated from the raw depth measurements obtained from the range

camera [78];

� surface reconstruction update: the global scene fusion process,

where given the pose determined by tracking the depth data from

a new sensor frame, the surface measurement is integrated into

the scene model maintained with a volumetric, Truncated Signed

Distance Function (TSDF) representation [78];

� surface prediction: unlike frame to frame pose estimation, the
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loop between mapping and localisation is closed by tracking the

live depth frame against the globally fused model. This is per-

formed by raycasting the signed distance function into the esti-

mated frame to provide a dense surface prediction against which

the live depth map is aligned [78];

� sensor pose estimation: live sensor tracking is achieved using

a multi-scale ICP alignment between the predicted surface and

current sensor measurement. The GPU based implementation

uses all the available data at frame-rate [78].

Fig. A.9: Overview of tracking and reconstruction pipeline from raw depth
map to rendered view of 3D scene [55].

The main system 3D scanning pipeline consists therefore of four

main stages (labelled appropriately in Fig. A.9) [55]:

� Depth Map Conversion. The live depth map is converted from

image coordinates into 3D points – referred to as vertices of the

point cloud – in the coordinate space of the sensor. Although the



A.2 Algorithms for 3D modeling with range cameras 149

quality of this depth map is generally remarkable given the cost of

the device, it contains numerous holes and depth measurements

often fluctuate and are inherently noisy [55].

� Camera Tracking. In this step, a rigid 6 DoF transform is com-

puted to closely align the current oriented points with the pre-

vious frame, using a GPU implementation of the ICP [21] algo-

rithm. Relative transforms are incrementally applied to a single

transform that defines the global pose of the sensor [55]. In other

words, this second stage calculates the global/world camera pose

(its location and orientation) and tracks this pose as the sensor

moves in each frame using an iterative alignment algorithm, so

the system always knows the current sensor pose relative to the

initial starting frame [6].

� Volumetric Integration. It is performed using a volumetric sur-

face representation of the space around the sensor, instead of

fusing point clouds or creating a mesh. Given the global pose

of the camera, oriented points are converted into global coordi-

nates, and a single 3D voxel grid is updated. Each voxel stores

a running average (to reduce noise, yet handle some dynamic

change in the scene) of its distance to the assumed position of

the physical surface being scanned [55].

� Raycasting. Finally, the volume is raycasted to extract views of

the implicit surface, for rendering to the user. When using the

global pose of the camera, this raycasted view of the volume also

equates to a synthetic depth map, which can be used as a less

noisy and more globally consistent reference frame for the next
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iteration of ICP. This allows tracking by aligning the current live

depth map with the less noisy raycasted view of the model, as

opposed to using only the live depth maps frame-to-frame [55].

The KinectFusion alghorithm has an open source implementation,

PCL KinFu, realized by the developers of the Point Cloud Library. It

will briefly be described later (see Sec. A.3.3).

Finally it is worth noting that, although the KinectFusion algo-

rithm was originally developed for the Kinect v1 device, it is applicable

to all range cameras, and, in general, to all sensors able to generate

good quality real time depth maps.

A.2.2 Kintinuous: Spatially Extended KinectFu-

sion

Kintinuous, or Spatially Extendend KinectFusion, was developed as

a research project by the Department of Computer Science of Na-

tional University of Ireland Maynooth in conjunction with the Com-

puter Science, the Artificial Intelligence Laboratory (CSAIL), the Mas-

sachusetts Institute of Technology (MIT) and Cambridge. Kintinuous

[105] is an extension to the original KinectFusion algorithm that al-

lows dense mesh based mapping of extended scale environments in

real time, by virtually translating the volumetric model as the sensor

moves. This is achieved through:

i. altering the original version such that the region of space being

mapped by the KinectFusion algorithm can vary dynamically

[105];
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ii. extracting a dense point cloud from the regions that leave the

KinectFusion volume due to this variation [105];

iii. incrementally adding the resulting points to a triangular mesh

representation of the environment [105].

Fig. A.10: Kintinuous map reconstruction of an outdoor dataset captured
from a moving car [105].

The system is implemented as a set of hierarchical multi-threaded

components which are capable of operating in real-time. The archi-

tecture facilitates the creation and integration of new modules with

minimal impact on the performance of the dense volume tracking and

surface reconstruction modules. Experimental results demonstrate the

ability of the system to map areas considerably beyond the scale of the

original KinectFusion algorithm, including a two story apartment and

an extended sequence taken from a car at night (see Fig. A.10) [105].

What is more, Kintinuous has an open source version implemented by

the PCL programmers and its name is KinFu Large Scale (see A.3.3).

Finally, a second version of Kintinuous [106] algorithm was also

developed. Being the first version an open loop process, it inevitably

suffers from unbounded drift. The second version presents a method
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for dealing with this problem which takes advantage of camera pose

graph optimisation and non-rigid space deformation for map correction

during loop closures. The result is a visual SLAM system which cap-

tures high fidelity dense maps in real time with the local reconstruction

quality of KinectFusion, and also the advantages of global consistency

given by camera pose graph optimisation [106].

A.2.3 OmniKinect

OmniKinect [57], developed by the Institute for Computer Graphics

and Vision of the Graz University of Technology, is an extension to

the KinectFusion algorithm as well. It allows to produce high quality

volumetric reconstructions from multiple Kinect v1 devices and in real

time, whilst overcoming systematic errors in the depth measurements.

Fig. A.11: Overall system work flow for the modified KinectFusion algo-
rithm to support multiple simultaneous Kinects with different inaccuracies.
The additional step is marked as red center square [57].

To work properly with simultaneous uncorrected input streams

from multiple Kinect v1 devices, an additional step is added to the

original KinectFusion algorithm (see Fig. A.11). In particular Om-

niKinect uses a smoothed histogram volume of truncated signed dis-

tance functions to filter outlier measurements of the signed distance

field before a temporal smoothing. This approach uses only an initial
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extrinsic pose estimation of the cameras. In this way, persistent out-

liers due to variations in the registered pose or depth accuracies are

removed, yielding a more robust estimate of the surface generating a

complete and accurate reconstruction of the observed volume.

The OmniKinect system also combines element from the Shake’n’

Sense technique. It is a simple method that mitigates the interfer-

ence caused when multiple structured light depth cameras point at the

same part of a scene. Simultaneous multiple depth cameras can extend

the coverage of the single device, overcome occlusions and create com-

plete 360◦ 3D representations of environments and objects contained.

However, the depth signal severely degrades when multiple cameras are

pointing the same scene. In fact, there is a crosstalk when dot patterns

of devices interfere with one another [25]. Shake’n’Sense consists only

in a mechanical augmentation, thus being non-destructive and does

not impact depth values or geometry. The key behind this technique

is to minimally vibrate a Kinect camera unit using an offset-weight vi-

bration motor and thereby artificially introduce motion blur. Both the

structured light diffractive optical element emitter and the IR camera

of structured light sensor will move together, which means that depth

sensor works as normal, albeit with a little induced blur [25]. The

qualitative results shows that by vibrating each structured light device

independently, interference is dramatically reduced and the number of

holes improved.
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A.3 Publicly available 3D modeling tools

for range cameras

Today, many tools are available to digitize a scene/object in 3D with

range cameras. Through these tools, this kind of sensors can be eas-

ily used as ordinary video cameras, simply moving them around the

object to be captured, but, instead of recording a video, they recon-

struct a complete 3D model of the scene in real time. In addition, it

is worth noting that, thanks to the range cameras, the entire scanning

process is performed in metric space. After a brief overview of the

common features of the 3D modeling tools, the following sections de-

scribe the most important 3D scanning tools for range cameras, whose

main characteristics are resumed in Tab. A.1.

A.3.1 General features of 3D modeling tools

Most of the 3D modeling tools for range cameras share generally several

features. First of all, the object/scene must be captured from different

points of view in order to reconstruct a complete 3D model. Therefore

the user must slowly move around the target object, following a 360◦

path and not forgetting to scan all of its sides (including the top and

the bottom). In most cases the needed scanning time is about a few

minutes, depending on the object shape and complexity.

Furthermore, virtually all the 3D scanning tools for range cameras

implement the Augmented Reality (AR) functionality for which the

preview of the 3D model appears in real time on top of the object

on the screen of the computing device to which they are connected.
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Therefore it is possible to coordinate the movements of the sensor with

the live view and check the model quality immediately, during the very

same scan. In this way the operator can improve the results instantly,

by scanning again the problematic areas and filling the model holes.

Moreover, most of the 3D scanning tools, especially the commer-

cial ones, permit to move the scanning volume over the object to be

modelled. Usually this function is carried out automatically, leverag-

ing specific features of the scene surface. Anyway the operator should

always check the dimensions of the scanning volume. Indeed, the scan-

ning volume can be usually restricted or enlarged in relation to the

target object size. In order to obtain a most accurate 3D model, it is

strongly recommended not to waste resolution and thus the scanning

volume should be just a little bit wider than the object within it.

Finally it is relevant to notice that the 3D scanning tools can lose

the tracking of the object. The tracking loss can happen, for example,

when the user moves too fast or when the object to be scanned is too

small. This case is handled differently depending on the 3D scanning

application used. For example, with some tools, the operator should

try to overlap again the model to the object by re–scanning an already

captured part or restart the scan. However it is also important to con-

sider the possibility that the object could not be suitable for scanning

with range cameras (for example if it has too tiny particulars, or a

dark/shiny surface).



156 Software libraries for 3D modeling with range cameras

A.3.2 Microsoft for Windows SDKs KinectFusion

Samples

The Microsoft Kinect for Windows SDKs provide the implementation

of KinectFusion algorithm in several samples, both for the Kinect v1

and Kinect v2 devices. The basic samples demonstrate the fastest way

to get started and minimum code required for KinectFusion operation,

whereas the Explorer samples expose many of the API parameters

as editable controls in the graphical user interface of the application,

allowing more exploration of the KinectFusion capabilities [6].

The source code is an integral part of the SDK and it can be built

with Visual Studio. Anyway some of the inner functions are not ac-

cessible to the user since they are placed in closed dlls. The Microsoft

implementation can process data either on a DirectX 11 compatible

GPU with C++ AMP, or on the CPU, by setting the reconstruction

processor type during reconstruction volume creation. The CPU pro-

cessor is best suited for offline processing as only modern DirectX 11

GPUs will enable real time and interactive frame rates during recon-

struction. Typical volume sizes that can be scanned are up to around

8 m3. Typical real world voxel resolutions can be up to around 1 − 2

mm per voxel. However, it is not possible to obtain both of these

simultaneously [6].

In particular the KinectFusionExplorer sample provides more con-

figurability over the algorithm parameters. For instance, the user can

specify the size of the desired scanning volume. The number of vox-

els that can be created depends on the amount of memory available

to be allocated on the used computer, and typically up to around

640× 640× 640 = 262144000 voxels can be created in total on devices
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with 1.5GB of memory or more [6].

Fig. A.12: A FIAT 500 car model collected with the KinectFusion sample
of the Microsoft for Windows SDK v1.8.

The aspect ratio of this volume can be arbitrary; however, the user

should try to match the volume voxel dimensions to the shape of the

area in the real world. The voxelsPerMeter member scales the size that

1 voxel represents in the real world, so a cubic 384× 384× 384 volume

can either represent a 3 m cube in the real world if the voxelsPerMeter

parameter is set to 128 vpm (as 384/128 = 3, where each voxel is

3m/384 = 7.8mm3), or a 1.5 m cube if it is set to 256 vpm (384/256 =

1.5, where each voxel is 1.5m/384 = 3.9 mm3). The combination of

voxels in the x, y, z axis and voxels per meter enables to specify a

volume with different sizes and resolutions, but it is worth to notice

that, with a fixed number of voxels, there is a tradeoff between the

resolution and the size of the volume [6].
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A.3.3 PCL KinFu and KinFu Large Scale, KinFu

remake

As told before, KinFu and KinFu Large Scale are respectively the open

source PCL implementation of the Microsoft KinectFusion and Kintin-

uous algorithms. Anyway they are difficult to install, at least for not

expert users. Indeed they require Boost (multithread), eigen3 (Matrix

operation), FLANN (classification), VTK (3D visualization), OpenNI

(range cameras data I/O), CUDA (GPU acceleration) and obviously

PCL.

Fig. A.13: A room model captured with the PCL KinFu Large Scale
software [9].

KinFu, originally shared in PCL in 2011, was the first open im-

plementation of the KinectFusion algorithm. Today KinFu code is

old, deprecated and probably it will be soon removed from PCL li-

brary. However a KinFu remake has been already developed: it is a

lightweight, reworked and optimized version of the original KinFu [18].

This new version still requires OpenNI, CUDA, OpenCV and VTK

libraries, but it is now independent from OpenCV GPU module and
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PCL library, making the building process easier, and the code size is re-

duced drastically, with a great readability improvement. Furthermore

the performance has been enhanced by 1.6x factor (Fermi-tested) and

the algorithm parameters are no longer hardcoded: all of them can be

changed at runtime (volume, size, ...) [18].

With respect to the Microsoft implementation, KinFu has the ad-

vantage that it can be used with all the devices compatible with OpenNI

(see Sec. A.1.1) and not only with Microsoft Kinect sensors. Further-

more every part of the code is open and can be customized by the

developers. Anyway KinFu, depending on CUDA, runs only on com-

puter with NVIDIA graphic cards, while the Microsoft implementation

can run on all DirectX 11 compatible GPUs, and it is easier to install.

A.3.4 Intel RealSense SDK Scan3D sample

The Scan3D sample is a C# application that shows the 3D scanning

capabilities of the Intel RealSense F200 and SR300 sensors. The sample

is part of the 3D scan module of the Intel RealSense SDK for Windows.

It adopts an object detection method to automatically set the size

and shape of the scanning volume around the target object, that must

be placed on a flat surface, like a table. Once the scan starts, the

system automatically removes the flat surface from the accumulated

data and the resulting mesh. During the scan, the user needs to either

turn the object in front of the sensor, or to move the sensor around

the object so that the algorithm can scan the object from all angles.

Anyway the first is the better scanning modality for the F200 and

SR300 sensors, being them user facing cameras. The sample also warns

the user when the object is too far/close to the sensor [2].
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The mesh data output formats are OBJ, STL or PLY. If texture

mapping option is enabled, the final 3D model is stored in the OBJ

format preserving the color features of the target object. Otherwise

color information is stored through per vertex format (PLY), that sup-

plies low quality color rendering. Furthermore the user can also enable

the solidification option to generate a closed mesh (e.g. for printing or

simulation): it extends the color and surface curvature to close holes

in areas that were not visible to the sensor during the scanning process

[2].

A.3.5 Occipital applications

Occipital provides three different iOS scanning apps for its Structure

Sensor, the first 3D sensor for mobile devices. Two of them, the Scan-

ner and Room Capture apps, are an integral part of the Structure

SDK: their source code is available in the form of samples and can be

customized by the developers. The last one, the Canvas app, can be

downloaded from the App Store and it is a closed source commercial

application.

Since the Structure Sensor does not have its own colour camera, all

of the 3D scanning apps developed for it, not only those provided by

Occipital, exploit the iOS device colour camera at which the sensor is

connected in order to retrieve also the color information of the target

object/scene. Therefore, considering that the object geometry and the

texture are captured from two different points of view, it is necessary

to calibrate the precise alignment (reconstruct the geometric relation-

ship) between the Structure Sensor infrared camera and the iOS device

camera in order to accurately overlap the geometry and colour data in



A.3 Publicly available 3D modeling tools for range cameras 161

the final 3D model.

The Calibrator app provided by Occipital can achieve this goal.

Specifically designed for the Structure Sensor bracket accessory, it is

the unique calibration app actually available on the Apple Store.

A.3.5.1 Scanner and Room Capture

The Scanner application is a powerful mobile 3D scanner, covering

a majority of the Structure framework functionalities (high and low

level) [13]. Simple and easy to use, it allows to capture 3D models

of objects and people by simply walking around them with an iOS

device (preferably a modern iPad) connected to the Structure Sensor.

The Scanner app automatically places the scanning volume, visualized

on the iOS device screen by exploiting the AR potentialities of the

Structure Sensor, over flat surfaces such as floors or walls and allows the

user to adjust its size in order to fit over the target object dimensions

using the typical ”pinch” gesture of the iOS devices.

Concerning the Room Capture application, it demonstrates the ac-

quisition of larger, textured environments [13]. Also in this case the

size of the scanning volume can be adjusted in relation to the real di-

mensions of the room/environment, this time by simply moving the

position of a slider placed in the lower right corner of the graphical

interface (the values are already in meters). The model is built in real

time, and it appears in the form of AR on the iOS device screen. To

achieve the best quality scan, the user should try to turn slowly in a

circle, not moving around too much. Once the acquisition is completed,

the resulting mesh can be measured in metric scale.

For both the applications, the final 3D models can be explored on
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the iOS device screen with natural touch gestures and exported for

free via email in the OBJ format. The calibration is fundamental to

improve the tracking process and the texture quality. The user can

choose to use either the Old Tracker, that only leverages geometry

information, or the New Tracker that also exploits color data to keep

track of the object being scanned. Obviously it is hard or impossible

to model uniform objects with few geometric details using the Old

tracker.

A.3.5.2 Canvas

Released on November 2016, Canvas is a new iPad application for the

Structure Sensor that allows to instantly capture a scale accurate 3D

model of an apartment, one room at a time. Thus it is very similar to

the Room Capture application, but if the sample is exclusively meant

to show the Structure Sensor potentialities, Canvas is a commercial,

closed source application.

The app guides the user through the scan, overlaying already scanned

zones with a paint like filter that shows the missing areas. For the best

quality scans Occipital recommends its optional 20$ wide angle attach-

ment for the iPad camera. Once the scan is completed, a raw 3D model

of the scene appears on the iPad screen and the distances between the

objects in the apartment can be virtually measured on the final 3D

model, that can be inspected from any angle and revisited at any time

[74].

The most innovative feature of the Canvas app is the Scan To CAD

service that semi-automatically converts the raw 3D scans into clean

CAD files for a 29$ fee per scan. The CAD files take up to 48 hours
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to create and get emailed back to the user account [74]. Anyway it

is always possible to export the raw 3D model for free by connecting

the iPad to a Mac computer and downloading it from the Canvas app

document directory.

A.3.6 itSeez3D

Itseez3D was developed by Itseez Inc., a Russian company leader in

implementing Computer Vision (CV) algorithms for embedded and

specialized hardware and the main developer of the renowned open

source computer vision library OpenCV. Itseez Inc. was acquired by

Intel on 26 May 2016.

Designed to work with the Occipital Structure Sensor or the Intel

RealSense R200 through an iPad or a Windows tablet respectively,

the itseez3D application allows to reconstruct a 3D model of a person,

object or environment simply by walking around it.

For object scanning, the tablet must be held in landscape mode

and the object must be placed on a flat surface, like a table or a

floor. The tracking process uses both shape and color information, so

it is a good practice to put the target object on a surface with many

color or contrast details. The AR functionality guides users to capture

the highest quality scan possible drawing the virtual preview mesh on

the object and an 360◦ indicator shows the overall progress. The flat

surface is automatically detected and it does not appear in the preview

model [68].

As regards the environment scanning, it is still an experimental

feature, introduced by version 4.0, and designed to model small areas.

The user experience is similar to object scanning [68]. The dimensions
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of the volume can be selected by scaling the scanning cube with pinch

gesture.

Once the scanning is completed, itseez3D delivers the data to the

cloud and returns with a complete 3D model within minutes. The cloud

processing permits to retrieve high resolution color and high quality

geometry data, generally better than those obtained with the Occipital

Scanner app for the Structure Sensor. Anyway, to export the models

via mail in .ply or .obj formats, it is necessary to pay 7 $ per model

(free Individual subscription) [68].

A.3.7 SCANDY

Founded in 2014, Scandy is an American start-up focused on the use of

the 3D scanning technology for simplifying the 3D printing process of

high fidelity color models of objects and/or landscape. Their Scandy

mobile app allows users to model objects (Scandy objects mode) or

landscapes in the form of panoramas (Scandy spheres mode) and then

have them 3D printed by the Scandy 3D printing service.

In particular, Scandy (objects mode) is a 3D scanning application

specifically designed for iPad that leverages the Structure Sensor capa-

bilities to generate a 3D model of a person or object in real time and

in a user-friendly way. The Structure Sensor retrieves the depth data

while the iPad camera is used to overlay the colour data. Together

they generate the full 3D scan. The AR bounding box controls permit

to easily resize the scanning volume. The obtained 3D model can be

then uploaded to the Scandy cloud that will make it watertight and

3D printable [11].

Furthermore, in August 2016 Scandy launched a beta program for
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its own 500$ 3D scanning sensor, specifically designed to work with

Android mobile devices. The company is using the 3D technology

from PMD in order to obtain high precision 3D models.

A.3.8 SKANECT

Skanect was developed by ManCTL, a French-American company founded

in late 2011 by Nicolas Tisserand and Nicolas Burrus, acquired by Oc-

cipital in 2013. Since then, Skanect Pro has been redesigned by the

Occipital team to work seamlessly with the Structure Sensor. In ad-

dition, it supports also Kinect v1 device, Asus Xtion Pro Live and

PrimeSense Carmine 1.08 and 1.09. Skanect is an easy to use software

tool that allows users to capture a full color 3D model of an object, a

person or a room in real time. It actually runs on Windows PCs and

Mac [12].

Fig. A.14: A chair model created with the Skanect software [12].

The software can use either the GPU than the CPU reconstruc-

tion. The GPU reconstruction requires a top-end NVidia graphics card
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with CUDA support. Thanks to the massive amount of computational

power of these devices, a precise and smooth fusion can be performed

in real time. The main limitation of this technique, a part from the

GPU requirement, is its sensitivity to the geometry of the scene. So the

user should avoid flat walls and other scenes with little geometry. On

the other hand, the CPU reconstruction does not require a powerful

graphics card, but usually gives lower quality results. It has a number

of advantages though. It can work with little geometry, as long as

there is enough texture information in the color image. For example,

an homogeneous wall will not work, but a wall with paintings will. It

also does not require to predefine the volume of the scene, and it is

thus suitable for open spaces. For commercial use the PRO version

has to be purchased, while the free version is available for a personal

and hobbyist use.

A.3.9 ReconstructMe

ReconstructMe is an easy to use real time 3D scanning system. The

scanning results are 3D models of everyday objects that can be accessed

in memory or exported to various CAD format like STL, OBJ, 3DS and

PLY. The software supports a growing selection of modern sensors such

as Microsoft Kinect v1, Asus Xtion (Pro and Pro Live), PrimeSense

Carmine, Intel RealSense (F200, R200) and Occipital Structure Sensor.

As long as the used sensor provides the necessary color stream, the

texture of the object being scanned can be processed and merged to

the final 3D model [10].

ReconstructMe is split into an SDK and applications built upon

this library (see Fig. A.16). The SDK supplies methods and types
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Fig. A.15: A FIAT 500 car model captured with the ReconstructMe soft-
ware [10].

to control the real time 3D reconstruction process. It successfully ab-

stracts the complexity of communicating with sensors and automati-

cally utilizes high performance devices such as GPUs or CPUs for the

reconstruction process.

Fig. A.16: The ReconstructMe architecture [10].

In particular, the SDK offers a pure C-based API without addi-

tional compile time dependencies. The API is designed to provide a

maximum performance for a smooth reconstruction experience. Re-

constructMe currently runs on Windows 32 bit and 64 bit operating

systems and it is available for free for non-commercial projects, but,

for this last case, a commercial license must be purchased (179 e) [10].
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3D scanning
software

Platforms Depends on Sensors

PCL KinFu and
KinFu Large
Scale

Windows PCL, Boost, eigen3, OpenNI
Mac Os FLANN,VTK compliant
Linux OpenNI, CUDA sensors

Kinfu remake

Windows CUDA (>5), OpenNI
Linux OpenCV 2.4.9 with compliant

Viz module sensors
enabled,

OpenNI v1.5.4

ReconstructMe

Intel RealSense
(R200 and F200),

PrimeSense
(1.08 and 1.09),

information Microsoft Kinect v1,
Windows not Occipital

available Structure Sensor,
Orbbec Astra

(S and L),
Asus Xtion

(Pro and Pro Live)

Skanect

Asus Xtion,
information Occipital

Windows not Structure Sensor,
Mac OS X available PrimeSense Carmine,

Microsoft Kinect v1
Microsoft for
Windows SDKs
KinectFusion
Samples

Windows Kinect for Windows
SDK v1.8 (Kinect v1) Kinect v1

or v2 (Kinect v2) Kinect v2

Intel RealSense
SDK Scan3D
sample

Intel RealSense SDK Intel RealSense
Windows for Windows F200 and

2016 R3 SR300
Occipital Struc-
ture SDK sam-
ples

Occipital
iOS Structure SDK Structure

Sensor

Tab. A.1: Available 3D scanning software for range cameras.
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3D scanning
software

Remarks

PCL KinFu and
KinFu Large
Scale

BSD license, source code completely available,
Tracking based exclusively on 3D geometry.

difficult to build for not expert users.

Kinfu remake

BSD3 license, source code completly available,
less difficult to build than the original PCL version
anyway still complex to build for not expert users.

Tracking based exclusively on 3D geometry.

ReconstructMe Commercial closed source,
free for non commercial use

Skanect
Two tracking possibilities: one based exclusively on

geometry, one based on both geometry and color data

Microsoft for
Windows SDKs
KinectFusion
Samples

Source code partially available, inner
functions are placed in closed dlls.

Tracking based exclusively on 3D geometry

Intel RealSense
SDK Scan3D
sample

Source code partially available, inner
functions are placed in closed dlls

Occipital Struc-
ture SDK sam-
ples

Source code available. Two tracking possibilities:
one based exclusively on 3D geometry,

one based on both geometry and color data
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3D scanning
software

Platforms Depends on Sensors

Canvas
iOS Probably Occipital

Structure SDK Structure Sensor

Itseez3D

iOS information Occipital
Windows not Structure Sensor,
(tablet) available Intel

RealSense R200

Scandy
iOS Scandy Core Occipital

Structure Sensor
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3D scanning
software

Remarks

Canvas
Commercial closed source for 3D

scanning of large environments (home)

Itseez3D

Commercial closed source, unlimited scanning
for individual subscription (0 $/month), but 7 $

per model export; considered the best by
the 3D scanning community in its price range

Scandy
Commercial closed source
for 3D printing purpose
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Appendix B

Developed software

The code development was an important activity of the PhD research,

fundamental in order to leverage all the capabilities that range cameras

offer, as described in appendix A. In this appendix the implemented

applications are shortly illustrated, after a brief overview of the IT

facilities used. Finally a brief description of the software implemented

by the author during the two Google Summer of Code programs is also

given.

B.1 IT Equipment

In the following subsections the platforms, the networks and the pro-

gramming languages used to code the developed applications are in-

troduced.

173
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B.1.1 .NET Platform and Framework

The .NET Platform is, in essence, a new development framework that

provides a fresh application programming interface (API) to the ser-

vices and APIs of classic Windows operating systems, while bringing

together a number of disparate technologies that emerged from Mi-

crosoft during the late 1990s. The platform consists of four separate

product groups [49]:

� a set of languages, including C# and VB .NET; a set of devel-

opment tools, including Visual Studio .NET; a comprehensive

class library for building web services and web and Windows ap-

plications; as well as the Common Language Runtime (CLR) to

execute objects built within this framework;

� a set of .NET Enterprise Servers;

� an offering of commercial web services, called .NET My Services;

� new .NET-enabled non-PC devices.

Microsoft .NET supports not only language independence, but also

language integration that means you can take advantage of polymor-

phism across different languages. The .NET Framework makes this

possible with a specification called the Common Type System (CTS)

that all .NET components must obey. Additionally, .NET includes a

Common Language Specification (CLS), which provides a series of basic

rules that are required for language integration. The CLS determines

the minimum requirements for being a .NET language. Compilers that

conform to the CLS create objects that can interoperate with one an-

other [49].
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B.1.2 C sharp (C#)

C sharp (C#) is a relatively new programming language, announced

by Microsoft in July 2000. The goal of C# is to provide a simple, safe,

modern, object-oriented, Internet-centric, high-performance language

for .NET development. Although C# is a new language, it draws on

the lessons learned over the past three decades. In fact, it is easy to

see in C# the influence of Java, C++, Visual Basic (VB), and other

languages. C# is learned specifically to create .NET applications and

therefore this language is firmly placed in the context of Microsoft’s

.NET platform and in the development of desktop and Internet ap-

plications [49]. The C# language has only about 80 keywords and a

dozen built-in data types, but C# is highly expressive when it comes

to implementing modern programming concepts.

At the heart of any object-oriented language is its support for defin-

ing and working with classes. Classes define new types1, allowing you

to extend the language to better model the problem you are trying to

solve. C# contains keywords for declaring new classes and their meth-

ods and properties, and for implementing encapsulation, inheritance,

and polymorphism, the three pillars of object-oriented programming.

It provides component-oriented features, such as properties, events,

and declarative constructs (called attributes).

B.1.3 Windows Presentation Foundation

The Windows Presentation Foundation (WPF) is a graphical display

system for Windows, and it means WPF applications cannot run on

1A type represents a thing. In C# a type is defines by a class, while the
individual instances of that class are known as objects.
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other operating systems. What is more, it is available only for C#

language. WPF is designed for .NET, influenced by modern display

technologies such as HTML and Flash, and hardware accelerated. It

is also the most radical change to hit Windows user interfaces since

Windows 95 [71].

In WPF, the underlying graphics technology is not GDI/GDI+, but

it is DirectX. Remarkably, WPF applications use – and work through

– DirectX no matter what type of the selected user interface. In simple

words, rich effects such as transparency and anti-aliasing can be used

even in the most mundane application. What is more, the user inter-

face can also benefit from hardware acceleration, which simply means

DirectX hands off as much work as possible to the graphics processing

unit (GPU), which is the dedicated processor on the video card.

The goal of WPF is to off-load as much work as possible on the video

card, so that complex graphics routines are render-bound (limited by

GPU) rather than processor-bound (limited by CPU). The CPU is

therefore kept free for other work and the best use of the video card

and their performance increases is accomplished.

If the only thing WPF offered was hardware acceleration through

DirectX, it would be a compelling improvement but not a revolution-

ary one. But WPF actually includes a basket of high-level services

designed for application programmers. The most interesting to be

mentioned here is the declarative user interface. Although you can

construct a WPF window with code, Visual Studio takes a different

approach. It serializes the content of each window to a set of XML tags

in a XAML1 document. In other words, XAML documents define the

1XAML is short for Extensible Application Markup Language
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arrangement of panels, buttons and controls that make up windows in

a WPF application. The advantage is that user interface is completely

separated from code, and graphic designers can use professional tools

to edit XAML files and refine the front end of the application.

B.1.4 Emgu CV and OpenCV

Emgu CV is a cross platform .NET wrapper to the OpenCV image

processing library and it allows OpenCV functions to be called from

.NET compatible languages such as C# , VB, VC++, IronPython etc.

B.1.5 Meta.Numerics

Meta.Numerics is a library for advanced scientific computation in the

.NET Framework. It can be used from C# , Visual Basic, F], or

any other .NET programming language. The Meta.Numerics library

is fully object-oriented and optimized for speed of implementation and

execution.

It is a math and statistics library that offers an API for matrix

algebra, advanced functions of real and complex numbers, signal pro-

cessing and data analysis

B.1.6 Objective C

Objective−C is a general-purpose, object-oriented programming lan-

guage that adds Smalltalk-style messaging to the C programming lan-

guage. It is the main programming language used by Apple for the

OS X and iOS operating systems, and their respective application pro-

gramming interfaces (APIs), Cocoa and Cocoa Touch [33].
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The programming language Objective−C was originally developed

in the early 1980s. It was selected as the main language used by NeXT

for its NeXTSTEP operating system, from which OS X and iOS are

derived. Portable Objective-C programs that do not use the Cocoa

or Cocoa Touch libraries, or those using parts that may be ported or

reimplemented for other systems, can also be compiled for any system

supported by GCC or Clang. Objective-C source code implementation

program files usually have .m filename extensions, while Objective-C

header-interface files have .h extensions, the same as C header files.

Objective-C++ files are denoted with a .mm file extension [33].

B.2 Kinect Measurement Tool

The Kinect Measurement Tool was developed in order to evaluate the

precision and accuracy of the Kinect v1 and Kinect v2 sensors. Based

on the APIs of the Kinect for Windows SDK (v1.8 e v2.0), it is a WPF

application developed in C# with the Microsoft Visual Studio 2013

IDE. It exploits the functionalities of parallel computing (background

worker) available in the C# libraries.

The Kinect Measurement Tool is based on a Graphical User Inter-

face (GUI), which allows to:

� display in real time on the PC screen the depth, RGB or/and IR

data captured by the Kinect (v1 or v2), respectively as a gray

depth map and classical color images (see Fig. B.1);

� manually select some interest points or complete portions of the

depth map;
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� automatically collimate the corners of one or more checkerboard

grids (thanks to the EmGU capabilities), both static and dy-

namic (on the color or the infrared image);

� compute and collect 3D coordinates (X, Y, Z) of the selected

points in the local reference system of the Kinect (v1 or v2);

� automatically measure the distances between the selected points;

� collect and store a number n (decided by the user) of depth maps;

Fig. B.1: The application interface with the AR effect enabled: the depth
image on the left side and the RGB image on the right side.

The two images were aligned using the CoordinateMapper method:

in this way the depth data can be retrieved at every RGB pixel which

is inside the overlapping region of the two images. So, clicking with

the mouse left button on the RGB/depth image, two circles are drawn

at the same time on the two images. At the same time, the circle
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identification number is also drawn in a textblock under its own cir-

cle, assigned in chronological order of selection. The circles point out

the selected points: clicking on them with the mouse right button, a

popup appears showing the relative coordinate of the point at the given

depth frame number. Once the points have been selected (manually

or automatically), data capture begins pushing the red checkbox: the

coordinates of the selected points and the distances them are saved in

two different text files. The program presents also some additional fea-

tures: the display of the depth data in a textblock next to the mouse

pointer icon, the control of the Kinect elevation angle, the display of

the accelerometer data (for the Kinect v1) and an augmented reality

(AR) sub-application. The first shows the depth value of the pixel

pointed by the mouse on the depth or on the RGB image in real time.

The second allows to increase and/or to decrease the Kinect v1 eleva-

tion angle, in order to frame better the object to measure. The third

shows the values of the three accelerometer coordinates in a textblock

under the depth image and, by checking the accelerometer checkbox,

it allows them to be saved in a textfile. The latter draws red and blue

stripes on the RGB image in real time, checking the blue AR checkbox:

they are perpendicular to the X axis, therefore they are vertical if the

X axis is horizontal and so on (see Fig. B.1).

The application runs on Windows 7 (only Kinect v1) and Windows

8 and Window 10 operative systems.

B.2.1 Software architecture

To retrieve frame data from the Kinect streams, the polling model was

used: a fast application was needed and, also if polling is more com-
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plicated to implement, it removes the innate overhead associated with

events, allowing performance gains [104]. Indeed, polling is a process by

which an application manually requests a frame of data from a stream.

Each Kinect data stream has a method named OpenNextFrame. When

calling the OpenNextFrame method, the application specifies a time-

out value, which is the amount of time the application is willing to

wait for a new frame. The timeout is measured in milliseconds. The

method attempts to retrieve a new frame of data from the sensor before

the timeout expires. If the timeout expires, the method returns a null

frame [104]. However, by using only the polling, the application re-

mains tied to WPF’s UI1 thread: any long-running data processing or

poorly chosen timeout for the OpenNextFrame method can cause slow,

choppy, or unresponsive behaviour in the application, because it exe-

cutes on the UI thread. So it was decided to implement all polling and

data processing on a secondary thread, using the background worker

class, which allows to work with threads in an easy way [104]. There-

fore, the Backgroundworker’s DoWork event handler contains the two

main methods of the application: the DiscoverKinectSensor method,

which initializes the sensor, and the PollImageStream, which is the

core of the application.

B.3 Structure Sensor applications

Two different applications were developed for the Structure Sensor:

the Structure Sensor Calibration App and the Structure Sensor Mea-

surement tool. Based on the APIs of the Structure SDK, they are iOS

1The WPF’s User Interface thread is the thread which physically draws the
application window on the pc screen.



182 Developed software

applications developed in Objective-C++ with the XCODE IDE. Both

integrate the functionalities of OpenCV 3.1 library and run only on

iOS devices.

B.3.1 Structure Sensor Calibration App

The Structure Sensor Calibration App was specifically designed to

carry out the calibration of the Structure Sensor through the auto-

matic detection and collimation of the corners of a generic chessboard

on both IR and color images.

It is a simple and easy to use application that displays the color

camera view and IR view, in order to allow the user to frame the cali-

bration grid with both the cameras. The App returns the values of the

interior and distortion parameters of IR and RGB cameras and roto-

translation parameters of the sensor and display on the iPad screen the

calibration reprojection errors. In this way the user can immediately

understand if the error committed is below 1 pixel so as to carry out

a better data collection phase.

B.3.2 Structure Sensor Measurement Tool

Very similar to Kinect Measurement Tool, but implementing less func-

tionalities, the Structure Sensor Measurement Tool was specifically de-

veloped in order to evaluate the precision and accuracy of the Struc-

ture Sensor. On the left side there is the color image (up view) and

the depth map (down view), whereas on the right side the collimated

image is visualized, with a 640×480 resolution at 30 fps (see Fig. B.2).

The two images were aligned using STStreamConfigDepth640×480
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Fig. B.2: Main layout of the developed application.

method, which exploits the calibration parameters saved in the sensor

by the Occipital calibrator App. Also displayed on the interface there

are the controls to change the size of the grid to be acquired and the

nr. of frame that will be captured.

The application allows to automatically collimate the corners of a

chessboard grid and to measure the distances between them. Finally

the counter below the button ”Take Photo” keeps count of the number

of acquired frames, since it is possible to collect and store up to 100

depth frames.

B.4 Google Summer of Code

During the summers of 2014 and 2015 the author was involved in the

GSoC 2014 and GSoC 2015 programs. GSOC is an annual program
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in which Google awards stipends to students who propose projects for

free and open source software.

In particular, the LiDAR roof extraction Plug-In for Opticks and

the porting of 3D UNDERWORLD-SLS algorithm inside OpenCV were

respectively developed during the GSoC 2014 and the GSoC 2015.

Both projects were developed using the C++ programming languages.

Being part of such important open source projects has enhanced the

author expertise and has contributed in fostering the doctoral research

activities.

B.4.1 GSoC 2014: LiDAR roof extraction Plug-In

for Opticks

This Plug-In implements a RANSAC-based technique for extracting

roof planes of buildings from LiDAR point clouds. It consists of three

different stages: raw LiDAR data are first interpolated over a grid with

the nearest neighbor interpolation method, in order to generate a DEM

raster; then the watershed segmentation algorithm and the connected

components approach, which rispectively find and classify the DEM

pixels which belong to the buildings, are applied (the DEM must be

first divided into a rectangular grid of n × m tiles in order to improve

the results of the segmentation process); finally, the extraction of roof

planes is obtained by recursively applying the RANSAC algorithm.

Fig. B.3, Fig. B.4, Fig. B.5 show into details the results for some

identified buildings: we can see that LiDAR Roof Extraction Plug-In

works well on some buildings (for example buildings 128 and 230),

but it doesn’t work on others (for example building 171). So further

developments are needed to improve the results, for example to use
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different RANSAC thresholds for every building, to improve the seg-

mentation results (trees and also airplanes are classified as buildings).

Moreover, the Plug-In works enough well on this sample point cloud,

but it doesn’t work so well on others: a generalization of the thresh-

old selection in the watershed algorithm must be also done. Further

information can be found at [88].

Fig. B.3: LiDAR Roof Extraction Plug-In results for the building 128.

Fig. B.4: LiDAR Roof Extraction Plug-In results for the building 230.
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Fig. B.5: LiDAR Roof Extraction Plug-In results for the building 171.

B.4.2 GSoC 2015: Structured Light module for

OpenCV

The 3D UNDERWORLD-SLS algorithm [53], an open source structured-

light scanning system for rapid geometry acquisition, was ported inside

the OpenCV library, developing the structured-light module.

(a) Disparity map. (b) Dense point cloud with tex-
ture.

Fig. B.6: A cardboard modelled with the OpenCV implementation of the
3D UNDERWORLD-SLS algorithm.
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In particular this algorithm implements a stereo approach where:

� the generation of the pattern images is performed with Gray

encoding using the traditional white and black colors;

� the information about the two image axes x, y is encoded sepa-

rately into two different pattern sequences (one for the columns

and one for the rows);

� the generated pattern sequence consists of both regular color and

color-inverted images: effective method for easily determining

the intensity value of each pixel when it is lit (highest value) and

when it is not lit (lowest value);

� each pixel in the captured images is decoded into its correspond-

ing decimal numbers, respectively representing the projector col-

umn and row;

� mapping between the pixels in the captured images which corre-

spond to the same projector pixel (disparity computation);

� the acquired pattern images must be previously rectified: 3D

reconstruction is performed using OpenCV reprojectImageTo3D

method.

Fig. B.4.2 show some results. More details can be found in [89].
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