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Abstract

Most molecular cancer therapies act on protein targets but data
on the proteome status of patients and cellular models for
proteome-guided pre-clinical drug sensitivity studies are only
beginning to emerge. Here, we profiled the proteomes of 65
colorectal cancer (CRC) cell lines to a depth of > 10,000 proteins
using mass spectrometry. Integration with proteomes of 90 CRC
patients and matched transcriptomics data defined integrated CRC
subtypes, highlighting cell lines representative of each tumour
subtype. Modelling the responses of 52 CRC cell lines to 577 drugs
as a function of proteome profiles enabled predicting drug sensi-
tivity for cell lines and patients. Among many novel associations,
MERTK was identified as a predictive marker for resistance
towards MEK1/2 inhibitors and immunohistochemistry of 1,074
CRC tumours confirmed MERTK as a prognostic survival marker.
We provide the proteomic and pharmacological data as a resource
to the community to, for example, facilitate the design of innova-
tive prospective clinical trials.
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Introduction

Owing to the high molecular heterogeneity of human cancers, profil-

ing technologies such as genomics and transcriptomics have been

employed for some time to identify entity-specific molecular

subtypes of tumours that can be used for diagnostic refinement,

prediction of disease prognosis or to stratify patients for therapy

(McDermott et al, 2011). More recently, this concept has been

extended to the measurement of cancer proteomes and their post-

translational modification status as exemplified by the NCI’s Clinical

Proteomic Tumor Analysis Consortium (CPTAC; Mertins et al, 2016;

Zhang et al, 2016). The first published CPTAC study was on the

proteome of colon and rectal cancer (CRC; Zhang et al, 2014), for

which extensive transcriptional profiling data had previously been

used to define consensus molecular subtypes (CMS) of CRC

(Guinney et al, 2015). The comparison of subtype information at

both transcript and proteome level showed general concordance but

also significant discrepancies, with many features only detectable at

the protein level. In parallel with molecular profiling of cancers,

phenotypic drug screening campaigns in large panels of (mostly)

genomically well-characterised cancer cell lines representing many

tumour entities have been performed (Barretina et al, 2012; Medico

et al, 2015; Iorio et al, 2016; Rees et al, 2016). These studies aimed

at identifying effective drugs or combinations thereof in cellular

model systems that recapitulate the genomic alterations found in

human tumours and may thus also show efficacy in humans.

However, although genomics might play a role in determining drug
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sensitivity, given that the majority of drugs act on protein targets, it

appears logical to correlate protein expression with drug sensitivity.

Recent proteome profiling of the NCI60 cancer cell line panel and a

panel of 20 breast cancer cell lines showed that protein signatures

predicting drug sensitivity or resistance can be found (Gholami

et al, 2013; Lawrence et al, 2015). Despite these previous efforts,

the number of cell lines for any given cancer entity in these panels

was limited, impairing the analysis of drug sensitivity for tumour

subtypes and possible translation to human patients. Using

published transcriptomics data, Medico et al (2015) assigned 151

CRC cell lines to different molecular subtypes of CRC patients, in

order to identify model systems amenable for drug sensitivity

screens in CRC but to date, no comprehensive proteomic dataset on

CRC cell lines has been published that would allow for the direct

discovery of proteomic signatures of drug sensitivity and resistance

in different CRC subtypes.

In this study, we measured the proteomes of a panel of 65 well-

characterised human colorectal cancer cell lines (Emaduddin et al,

2008) to a depth of > 10,000 proteins and integrated this data with

the proteome profiles of 90 CRC patients (Zhang et al, 2014) and

matched transcriptome profiles (Appendix Supplementary Methods)

to define integrated proteomic subtypes of CRC. Integration with

drug sensitivity data available for 52 CRC cell lines allowed us to

predict the drug sensitivity of cell lines and patients towards 577

drugs or combinations thereof. The analysis revealed that, for exam-

ple, high MAP2K1 (MEK1) expression renders small-molecule EGFR

inhibitors less effective and also identified the kinase MERTK to

confer partial resistance to MEK1/2 inhibitors. Analysis of 1,074

CRC patients from the QUASAR 2 trial (Kerr et al, 2016) proved that

high MERTK expression is a prognostic marker for poor survival,

defining this receptor tyrosine kinase as an attractive potential target

for therapeutic intervention. We are making the proteomic data and

our full analysis available to the scientific community to provide a

rich resource for aiding in the design of future prospective clinical

studies in CRC based on multi-omics molecular tumour data and

phenotypic drug sensitivity data.

Results

Proteome profiles of CRC cell lines and patients

We devised a multi-omics data integration strategy to determine

integrated proteomic subtypes of human colorectal cancer cell lines

and patient samples in order to predict their sensitivity towards a

variety of clinical and pre-clinical drugs and combinations thereof

(Figs 1A and EV1, Appendix Supplementary Methods). To accom-

plish this, we first used LC-MS/MS-based shotgun proteomics to

measure the proteomes of 65 CRC lines and to quantify their

expressed kinomes using Kinobeads (Bantscheff et al, 2007; Medard

et al, 2015). This led to the identification of a total of 11,796 protein

groups (median/cell line = 9,447) representing 10,951 genes (me-

dian/cell line = 9,068) and 235 human kinases (median/cell

line = 155, from Kinobeads experiments; Fig 2A; Table EV1A and

B). We next re-analysed the proteomic profiles of 90 CRC patients

published by the CPTAC (Zhang et al, 2014) using the same analysis

pipeline and identified 7,005 protein groups (median/

patient = 4,980) representing 6,727 gene groups (median/

patient = 4,901; Fig 2C; Table EV1C, Appendix Supplementary

Methods). The CRC65 data contained most proteins of the CPTAC

CRC data (Fig 2B), but we noted that gene groups unique to the

CPTAC dataset are enriched in extracellular matrix proteins and

IgGs as one might expect for tissue samples containing blood vessels

and connective tissue. For quantification of full proteomes, we used

a modified version of the intensity-based absolute quantitation

(iBAQ) approach (Schwanhausser et al, 2011) termed gene-centric

iBAQ (giBAQ, Appendix Supplementary Methods), while kinomes

were quantified using the label-free quantification (LFQ) intensities

provided by MaxQuant (Cox et al, 2014). For all subsequent data

analyses, we used the proteomic data aggregated at the gene group

level annotated with gene symbols as identifiers in order to be able

to compare proteomics and transcriptomics data (referred to as

protein expression/abundance throughout the manuscript). An

overview of the data integration pipeline is depicted in Fig EV1.

Integration of multiple mRNA datasets reveals consensus
molecular subtypes of the CRC65 panel

A number of studies have reported CRC patient subtypes based on

mRNA measurements, and these were recently consolidated into

consensus molecular subtypes (CMS) and applied to patients from

the CPTAC study (Guinney et al, 2015). On this basis, we sought to

determine the CMS membership of CRC cell lines in order to identify

cell lines representative of CRC tumour subtypes. We downloaded

10 public mRNA datasets (Appendix Supplementary Methods), eight

for the cell lines and two for the patients (Fig 1B), analysed them

from the data level closest to raw data available to us and aggre-

gated the datasets using a scheme similar to the one used by

Guinney et al. This involved the selection of a reference dataset,

followed by the selection of a probe set for each gene based on a

consistency criterion and subsequent cross-dataset normalisation

(Appendix Supplementary Methods). This resulted in a combined

expression matrix of 9,737 transcripts (7,113 after filtering for low

abundance transcripts) across 145 non-redundant cell lines (includ-

ing the CRC65 panel) and 89 tumours (Table EV1D). We adapted

the single-sample CMS classifier reported by Guinney et al to accept

gene symbols as identifiers (rather than Entrez IDs; Appendix Sup-

plementary Methods) and predicted the CMS for cell lines and

patients based on 382 of the 692 classifier genes contained in the

combined expression matrix. The correct classification of 65 out of

81 patients (80%, using the original CMS assignment as the ground

truth) provided confidence that cell lines can be placed into CMSs

with good accuracy and the resulting subtype labels for the CRC65

cell lines and the CPTAC patients are shown in Fig 1B. A subtype-

resolved evaluation of the prediction accuracy using a confusion

matrix and a table containing a variety of commonly used metrics

for evaluating classification performance can be found in

Table EV2E.

Integrated proteomic subtypes of CRC cell lines and tumours

Despite the fairly deep proteomic measurements, the quantification

of proteins across many cell lines (and patients) suffered from an

increasing number of missing values for proteins of decreasing

abundance (Fig EV2A). We addressed this frequently encountered

issue by mRNA-guided and minimum-guided missing value
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imputation on the peptide level to generate one complete protein

expression matrix consisting of 59 cell lines, 81 tumours and 6,254

proteins (Fig EV2, Table EV1E), of which 323 were contained in the

CMS classifier by Guinney et al (CMSgene in Fig 3A; see

Appendix Supplementary Methods for details). In order to estimate

protein levels from mRNA levels, we removed systematic dif-

ferences (Fig EV3A and B) between proteomics and transcriptomics

data using MComBat (Stein et al, 2015; see Appendix Supplementary

Methods). This increased the protein/mRNA correlation for both the

CRC65 and CPTAC datasets (Figs EV2B and EV3C), enabling

mRNA-guided missing value imputation. After imputing missing

values separately for both datasets (Fig EV2D and E, Appendix Sup-

plementary Methods), we accounted for differences in their

proteomic depth (Fig EV2C, Appendix Supplementary Methods)

using ComBat (Johnson et al, 2007) before we merged the two

protein expression matrices. Using the combined protein expression

matrix and consensus clustering (Appendix Supplementary Meth-

ods), we identified three integrated Full Proteome Subtypes (short:

FPSs, namely FPA, FPB and FPC; Fig 3A). Each subtype consisted of

cell lines as well as patients in a ratio of 28/34 for FPA, 22/12 for

FPB and 9/26 for FPC, indicating that indeed there are cell lines,

which are molecularly more similar to tumours than they are to

other cell lines. We measured the association of these FPSs with

previously published subtypes, as well as genomic and epigenomic

features using Fisher’s exact test (Table EV2A), and found good

overall concordance but with some differences in detail (see discus-

sion). Interestingly, FPA was associated with TP53 mutations, while

FPB was associated with ATM mutations, suggesting that p53

signalling in response to DNA damage is perturbed through distinct

mechanisms in these two subtypes. FPC showed association with

mutations in BCL9L, a transcriptional activator of b-catenin activity,

RNF43, an E3 ubiquitin-protein ligase, which acts as a negative

Figure 1. Study design, datatypes & CMS prediction for cell lines.

A Overview of the multi-omics data integration workflow followed in this study. Proteomic and transcriptomic data generated as part of this study or available from
the literature for colorectal cancer (CRC) cell lines and patients were integrated in order to identify cell lines and tumours forming proteomic subtypes. Four
published drug sensitivity datasets (abbreviated CCLE, CTRP, GDSC and cetuximab (Medico et al, 2015); one dose–response plot for each data source in shown) were
overlaid onto the proteomic data to identify protein signatures associated with sensitivity or resistance. An example of an effect-size heat map for one drug, ten
proteins and 20 cell lines is shown at the bottom-right (see main text and Appendix Supplementary Methods for details).

B Circos plot visualising the different datasets that were integrated in this study. The dendrogram in the centre hierarchically ordered tumours (violet “Dataset” label)
and cell lines (blue “Dataset” label) based on the mRNA expression of classifier genes from Guinney et al (2015). A set of rings around the dendrogram indicates which
proteomics data (full proteome, kinome), mRNA technologies (Agilent microarray, Genome-Analyser-based mRNA-Seq, HiSeq-2000-based mRNA-Seq, Affymetrix
microarrays or Illumina Beadarrays) and drug sensitivity datasets (cetuximab, CCLE, CTRP or GDSC) were included in this study. The outermost ring indicates the
membership of cell lines/tumours in a consensus molecular subtype (“CMS”). Undetermined CMS class labels or unavailable data were left white (see main text and
Appendix Supplementary Methods for details). See also Fig EV1.
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regulator of Wnt signalling, as well as with mutations in the histone

acetyltransferase EP300, all pointing towards deregulated WNT

signalling in conjunction with aberrant histone acetylation. Enrich-

ment analysis of functional classifications using MetaCore (Fig EV4,

Appendix Supplementary Methods) revealed that proteins signifi-

cantly under- or overrepresented in the different FPSs fall into speci-

fic categories. Briefly, the analysis suggests that FPA is characterised

by a “high metabolism, low cell cycle, microsatellite stable (MSI�)”

signature, FPB harbours a “high immune response, low metabolism,

microsatellite instable (MSI+)” signature and FPC shows a “low

immune response, low inflammation, low adhesion (invasion)”

signature.

Integration of drug sensitivity data reveals protein signatures of
drug response

Since the response to drug treatment cannot be determined as

quickly and as broadly as would be desirable in clinical studies, we

took advantage of the fact that CRC cell lines recapitulate the main

molecular subtypes in CRC and were recently extensively charac-

terised for drug sensitivity as part of major screening efforts. On the

basis of the proteomic data, we used elastic net regression (Zou &

Hastie, 2005) to predict the response (sensitivity/resistance) of

CPTAC patients and CRC65 cell lines to 577 drugs or combinations

thereof (Fig 3B, Appendix Supplementary Methods). Briefly,

common cell lines (52 cell lines overlap in total; median overlap per

drug is 27) between the CRC65 panel and three small-molecule drug

sensitivity screens (Barretina et al, 2012; Garnett et al, 2012; Rees

et al, 2016) and one study investigating sensitivity of CRC cell lines

towards cetuximab (Medico et al, 2015) served as the training set

(Fig 1, Appendix Supplementary Methods). We used significance

analysis of microarrays (SAM; median FDR of 0.001; Appendix Sup-

plementary Methods) to identify drugs which showed specificity for

certain FPSs and performed target space enrichment by measuring

the association between these subtypes and recurrent annotated

targets of these drugs using Fisher’s exact test (Fig 3B, Table EV2B).

Cetuximab, for example, was more effective in FPA than in the other

FPSs, with EGFR target enrichment reaching statistical significance

Figure 2. LC-MS/MS-based identifications.

A Bar charts visualising the number of unique identified and quantified peptides, protein groups and gene groups (full proteomes), as well as kinase gene groups
(Kinobeads), across the CRC65 cell line panel (n = 65 cell lines). Insets indicate the corresponding number of identifications across the entire dataset.

B Venn diagrams showing the intersection and complements with respect to identifications in the aforementioned categories across both the CRC65 cell line and CPTAC
patient dataset (n = 89 tumours). Kinase identifications in the CPTAC dataset were extracted from the full proteome data.

C Same as (A) for the CPTAC dataset. The different proteomic datasets were colour-coded (green = Kinobeads, blue = CRC65 full proteomes and purple = CPTAC full
proteomes).
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(P = 0.05). FPA was also significantly (multiple-test adjusted

P < 0.05) associated with drugs targeting the kinases MAP2K1 and

MAP2K2 (MEK1 and 2; mainly selumetinib/AZD6244 and its combi-

nations with other compounds), as well as with drugs and combina-

tions targeting the bromodomain containing protein BRDT (mainly

by the compound JQ-1), histone deacetylases or HDACs (vorinostat

among others) and the nicotinamide phosphoribosyltransferase

NAMPT (daporinad among these). Even though more drugs were

differentially effective in FPB than in FPA (205 versus 170), most of

the former did not show significant enrichment in their target space,

making it difficult to link the drug phenotype to the presumed mech-

anism of action. However, FPB did show positive association with

drugs targeting inhibitors of apoptosis (IAPs; all these compounds

are mimetics of second mitochondrial activator of caspases, SMAC)

as well as negative association with drugs targeting EGFR, while

FPC showed association with drugs targeting dihydroxyfolate reduc-

tase (DHFR, including methotrexate). The complete list of predicted

drug sensitivities for the patients and cell lines can be found in

A B

Figure 3. From integrated proteomic subtypes to drug sensitivity prediction.

A Heat map of standardised, log2-transformed and median-centred giBAQ protein quantification (z-scores) across the combined CRC65/CPTAC dataset. Cell
lines/patients are displayed as columns and proteins are shown as rows. Black bars to the left of the heat map indicate the presence of the respective protein in the
CMS classifier. Annotation bars on top of the heat map visualise the membership of the different cell lines/patients in five annotation categories.

B Elastic net regression was used to model drug sensitivity as a function of protein profile with the CCLE, CTRP, GDSC and cetuximab datasets as input. The resulting
models were used to predict the drug sensitivity of cell lines/patients (see also Appendix Supplementary Methods). In the heat map of standardised predicted AUC
values (z-scores), cell lines/patients are displayed as columns with the same annotations and ordering as in (A), while drugs or combinations thereof are shown as
rows. Coloured bars to the left of the heat map indicate drugs, which are more effective in a respective subtype (see main text and Appendix Supplementary Methods
for details). See also Figs EV2–EV4.
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Table EV3A, while mean effect sizes of all proteins from elastic net

regression can be found in Table EV3B.

High MERTK expression in CRC cell lines is predictive of
resistance to MEK1/2 inhibitors

Since many targeted cancer drugs act on kinases, we performed

independent experiments focussing on the expressed kinome of the

CRC65 cell line panel to identify kinases associated with drug sensi-

tivity or resistance. Pulling down protein kinases using immobilised

kinase inhibitors (Kinobeads; Bantscheff et al, 2007; Medard et al,

2015) led to the reproducible (average R = 0.91 between replicates;

Fig EV5A) quantification of 138 kinases by mass spectrometry

(Appendix Supplementary Methods), which correlated well

(R = 0.94; Fig EV5B) with data obtained by Western blotting and

densitometry for the kinases EPHA4 (Fig EV5C; variable expression

across the panel) and ABL1 (Fig EV5D; relatively stable expression

across the CRC65 panel). While kinase expression as measured

using Kinobeads correlated reasonably well with measurements in

full proteomes, an enrichment of kinases was clearly visible in the

Kinobeads data (Fig EV5E) and led to the identification and quan-

tification of more than 50 kinases not detected in the deep proteome

analysis (Fig EV5F). Consensus clustering identified three Kino-

beads Subtypes (KSs) KA, KB and KC (Fig EV5G) that fully recapitu-

lated the Full Proteome Subtypes and showed significant association

with other subtype classifications (Table EV2C).

By searching for differentially expressed kinases between the dif-

ferent Kinobeads Subtypes using SAM (median FDR of 0.01), we iden-

tified proteins frequently mutated in microsatellite instable (MSI+)

tumours with concomitant decrease in expression of proteins such as

ACVR2A and TGFBR2 (Kim et al, 2013), as well as the receptor tyro-

sine kinase EPHA2, which was overexpressed in KC (Table EV4).

Overexpression of EPHA2 is known to predict resistance towards

cetuximab in CRC (Strimpakos et al, 2013). Elastic net regression was

used to identify kinases associated with drug sensitivity or resistance

and confirmed the strong association of EPHA2 with resistance

towards cetuximab (Fig EV5H, Table EV3C and D). We also noted

that overexpression of MAP2K1 (MEK1) was associated with resis-

tance to two-thirds (12/18) of all inhibitors targeting EGFR (Fig 4 for

example). Activating mutations in K57 of MAP2K1 were previously

shown to be a potential mechanism of primary resistance towards

EGFR-targeted therapy (Bertotti et al, 2015), and our data suggest that

high expression can have a similar effect. SAM also identified MERTK

—a receptor tyrosine kinase correlating with disease progression in

melanoma (Schlegel et al, 2013) and not detected in the full proteome

measurements—to be differentially expressed between the different

Kinobeads Subtypes (q-value < 0.01). MERTK is down-regulated in

KRAS-mutant CRC (Watanabe et al, 2011) and up-regulated in pancre-

atic cancer cell lines resistant towards selumetinib (Beech & Kelly,

2014). Interestingly, we also recurrently found high MERTK expres-

sion associated with resistance towards MEK1/2 inhibitors as well as

other drugs from multiple drug sensitivity datasets (Figs 5A and B,

and EV6A, Appendix Supplementary Methods). To validate hypothe-

ses arising from the above predictions, we performed a series of

in vitro drug treatment experiments.

On the basis of MERTK expression, we selected three cell lines

(CC07, HDC-143 and SK-CO-1) predicted to be sensitive to two

MEK1/2 inhibitors (RDEA119 and PD-0325901) as well as three cell

lines (C10, CaCo-2 and T84) predicted to be resistant to these drugs

(Fig EV6B). Cell viability assays and nuclei counting of cells (Fig 6C

and D) showed that the predictions could be confirmed, as cell lines

expected to be resistant did not respond as well as cell lines

expected to be sensitive (P ≤ 0.05, one-sided Mann–Whitney test).

Similar results were obtained for the predicted association of

ACVR2A expression with drug sensitivity to AUY922 (an HSP90

inhibitor) and BAY 61-3606 (a designated SYK inhibitor) in LS-180,

OXCO-1 and RKO cells (sensitive) or C125-PM, HDC-111 and HT55

cells (resistant; Fig 5C and D). Since ACVR2A expression is reduced

in microsatellite instable CRC, these tumours might benefit from

treatment with these drugs.

We next asked whether knockout of MERTK in MEK1/2-inhibitor-

resistant C10 cells could re-sensitise them to treatment with RDEA119

(MEK1/2 inhibitor). A Western blot-based validation of the CRISPR/

Cas9-mediated knockout is depicted in Fig 5E. We also confirmed the

knockout by sequencing of the targeted genomic region, which

showed two insertions: one in exon 7 (FN3 domain) and one in exon

14 (kinase domain), inducing frameshifts. As depicted in Fig 5F,

C10MERTKNKO
was more sensitive to RDEA119 than the parental

C10MERTKNWT
cell line. We next tested whether the combination of

MEK (by RDEA119 or PD-0325901) and MERTK inhibition (UNC569)

could re-sensitise MEK1/2-inhibitor-resistant cell lines. As shown in

Fig EV6C–F, co-treatment indeed significantly (P ≤ 0.05, one-sided

Mann–Whitney test) reduced the viability of MEK1/2 inhibitor-

resistant cell lines to levels comparable to sensitive cell lines.

However, this reduction appeared to be mainly due to UNC569 on its

own, since both MEK1/2 inhibitor-sensitive and resistant cell lines

show comparable response to the co-treatment when treated with

UNC569 alone.

MERTK is a prognostic survival marker in CRC patients

In order to evaluate the general expression status as well as the clin-

ical impact of MERTK expression in CRC, we quantified its abun-

dance in 1,074 patients enrolled in the QUASAR 2 trial by

immunohistochemistry (IHC). After establishing cell-based positive

(CaCo-2) and negative (RKO) controls with high and low expression

of MERTK, respectively (Fig 6A and B), tissue microarrays (TMAs)

were stained for MERTK and the fraction of positive cells, as well as

the staining intensity, were quantified by pathologists. While

MERTK expression was found primarily at the membrane in CaCo-2

cells, the TMA data showed combined cytoplasmic and membrane

staining. Therefore, TMAs were categorised to have either high or

low MERTK expression (more or < 5% cytoplasm/membrane-

positive tumour cells, Appendix Supplementary Methods) without

distinguishing between these compartments. Figure 6C shows three

representative TMA samples alongside their quantification of

MERTK, also highlighting the strong variability of MERTK expres-

sion in primary tumours. Modelling the outcome variables of the

QUASAR 2 trial as a function of MERTK expression showed that

high MERTK expression was prognostic of worse 5-year overall

survival (OS), disease-free survival (DFS) and recurrence-free

survival (RFS) in both univariate and multivariate Cox proportional

hazards regression (Table EV5, Fig 6D). Notably, MERTK expres-

sion is more informative in predicting these outcome variables than

the patients’ treatment status, since its coefficient was significant in

the final multivariate Cox proportional hazards model, while the
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coefficient of the treatment variable was not (see also Appendix Sup-

plementary Methods). Comparing tumours with high versus low

MERTK expression resulted in a multivariate hazard ratio (HR) of

1.61 for OS (CI0.95 = 1.1–2.36; significant coefficient for MERTK

with P = 0.015; Wald test), 1.70 for DFS (CI0.95 = 1.24–2.33; signifi-

cant coefficient for MERTK with P = 0.00094; Wald test) and 1.77

for RFS (CI0.95 = 1.26–2.48; significant coefficient for MERTK with

P = 0.00087; Wald test), respectively. High expression of MERTK

was also significantly associated with BRAFV600E mutations (12% of

the CRC65 cell line panel and 13% of the QUASAR 2 cohort carry

the mutation, Fig EV5D) and stage T4 tumours, while low cytoplas-

mic/membranous expression was associated with wild-type BRAF

and stage T2/T3 tumours (two-sided Fisher’s exact test P < 0.05,

Table EV2D). We note that more work is needed in order to deter-

mine the direction of causality for these observations and whether

MERTK might qualify as a drug target in CRC in addition to being a

prognostic survival marker in CRC patients.

Discussion

Recent landmark studies established resources like the “Genomics

of Drug Sensitivity in Cancer” (GDSC; Iorio et al, 2016), the “Cancer

Cell Line Encyclopedia” (CCLE; Barretina et al, 2012) and the

“Cancer Therapeutics Response Portal” (CTRP; Rees et al, 2016), all

of which focus on the identification of genomic and transcriptomic

associations with drug sensitivity. However, since drugs almost

always target proteins, it appears obvious to incorporate proteome-

wide measurements into drug sensitivity association studies. Here,

we overlaid these large-scale drug sensitivity datasets and data on

Figure 4. MAP2K1 is a predictive marker for inhibitors targeting EGFR.

Effect-size heat maps of six drugs (see titles of panels) targeting EGFR. It is evident that the different drugs showed different profiles but also that high MAP2K1 expression
(blue/red gradient across cell lines) was consistently associated with drug resistance (dark blue/yellow gradient across cell lines; AUC: area under the curve; seemain text and
Appendix Supplementary Methods for details). See also Fig EV5.
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cetuximab (Medico et al, 2015) onto extensive proteomic profiles of

65 colon cancer cell lines, created as part of this study and 90

published human colon cancer proteomes (Zhang et al, 2014; re-

processed for this study) in order to identify molecular subtypes of

colorectal cancer and molecular markers of drug response with

translational potential to the human disease.

It was shown before that cell lines included in the CRC65 panel

might capture core molecular subtypes of CRC (Mouradov et al,

2014; Medico et al, 2015); however, the recently established consen-

sus molecular subtype CMS of these cell lines was not known as of

yet. By combining and re-analysing multiple public mRNA datasets

acquired using a variety of technologies across a number of

A B D

C

E F

Figure 5. MERTK is a predictive marker for inhibitors targeting MEK1/2 in CRC cell lines.

A Effect-size heat maps of two drugs (one from two different drug sensitivity screens) targeting MEK1/2 show consistent association of high MERTK expression with
drug resistance. The colour scheme is the same as in Fig 4.

B Bar chart visualising the top kinases recurrently associated (absolute effect size > 0) with drug resistance (top seven bars) and sensitivity (bottom seven bars) in the
GDSC and CCLE drug sensitivity datasets.

C Dose–response curves of two drugs for which high MERTK (left panels) or ACVR2A (right panels) expression was predicted to confer drug resistance. For each drug,
three cell lines predicted to be sensitive (dark blue) and three cell lines predicted to be resistant (yellow) were assayed for viability. The experimental data validated
that cell lines predicted to be more sensitive to a drug indeed showed this phenotype (data represent the average of three technical replicates; see
Appendix Supplementary Methods for details).

D Boxplots summarising the data shown in panel (C) using the area under the curve (AUC) as a measure for drug sensitivity. The whiskers extend to the minimum and
maximum AUC for a given drug and sensitivity prediction, while the median AUC is marked with a bold horizontal line inside a box spanning the interquartile range
(IQR) from the 25% quantile (lower horizontal line) to the 75% quantile (upper horizontal line). High AUC values indicate drug resistance. Again, it is evident that cell
lines predicted to be more resistant to a certain drug were in fact significantly (*P ≤ 0.05, one-sided Mann-Whitney test) more resistant than cell lines predicted to
be more sensitive.

E Western blot of C10MERTKNWT
and C10MERTKNKO

cells, visualising successful knockout by CRISPR/Cas9.
F Dose–response curve of RDEA119 (MEK1/2 inhibitor) in C10MERTKNWT

and C10MERTKNKO
cells. The knockout is more sensitive to MEK1/2 inhibition than the wild type. See

also Fig EV6.
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laboratories involving several different batches of cell lines culti-

vated under a diverse set of conditions, we were able to assign 42 of

them to a defined CMS subtype using the single-sample classifier

developed by Guinney et al (2015), confirming that these cell lines

indeed represent the main molecular subtypes of CRC. Dunne et al

recently noted that patients might be misclassified by the CMS clas-

sifier due to regional heterogeneity in tumours arising from stromal

contributions to measured gene expression (Dunne et al, 2016),

highlighting the need for independent unsupervised class discovery

while searching for representative cell lines. This might also explain

why the cluster in Fig 1B containing most of the CMS4 tumours did

not contain cell lines annotated as CMS4, since cell lines only

capture the epithelial component of a tumour. The transcriptional

profiles of the cell lines were consistent across the different datasets

if systematic differences between them were accounted for.

Combining the CRC65 and CPTAC datasets then enabled the identi-

fication of integrated Full Proteome Subtypes of CRC (consisting of cell

lines and patients), which were associated with previously published

mRNA-based and proteomics-based subtypes. Since the CMS repre-

sent the current consensus in the field, we note that they could only

be partially recapitulated from proteomics data. The data analysis

grouped CMS1 and CMS4 together into Full Proteome Subtype FPB,

which might be explained by the fact that mesenchymal genes over-

represented in CMS4 are mainly of stromal rather than epithelial

origin and will therefore largely evade detection in cell culture experi-

ments (Calon et al, 2015; Isella et al, 2015). Despite this loss in granu-

larity, the data identified clear proteomic signatures characterised by

“high metabolism, low cell cycle, MSI�” for FPA, “high immune

response, low metabolism, MSI+” for FPB and “low immune

response, low inflammation, low adhesion (invasive)” for FPC.

Due to the substantial overlap of our CRC65 full proteome data on

cell lines with the CPTAC patient data, we were able to predict the

drug sensitivity of both cell lines and patients towards 577 drugs or

combinations thereof as a function of protein profile. This allowed us

to confirm a number of known and suggest a number of novel promis-

ing drugs and targets specific to the integrated Full Proteome Subtypes

identified in this project. One example of a known subtype-specific

drug is cetuximab, which was more effective in FPA than in FPB or

FPC. Since FPA was associated with (i.e. is similar to) the transit-

amplifying (TA) subtype from the subtype model by Sadanandam et al

A

C

B D

Figure 6. MERTK is a prognostic marker in CRC patients.

A Western blot visualising MERTK expression in two negative (RKO and CC07) and two positive control cell lines (CaCo-2 and HT55).
B IHC staining of MERTK expression in RKO (negative control) and CaCo-2 (positive control) cells.
C IHC staining of three representative TMAs from patients enrolled in the QUASAR 2 clinical trial and the corresponding quantification of the signal by pathologists.

Arrowheads indicate tumour cells positive for MERTK.
D Kaplan–Meier plots showing worse overall, disease-free and recurrence-free survival of patients with high cytoplasmic/membranous expression of MERTK. P-values

indicate the significance of MERTK as a predictor based on the Wald statistic.
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(Table S2A), our analysis confirmed previous findings on cell lines

and patients where cetuximab sensitivity was recurrently observed in

the TA subtype (Sadanandam et al, 2013). Interestingly, modelling

drug sensitivity as a function of kinase protein expression also con-

firmed previous findings by Strimpakos et al (2013), as high expres-

sion of EPHA2 was associated with resistance towards cetuximab.

Since the Kinobeads-based expression level of EPHA2 was significantly

lower in KB/FPA than in the other subtypes, one might speculate that

treatment with EPHA2-targeted drugs might re-sensitise cetuximab-

resistant patients and cell lines to the antibody. Koch et al previously

made similar observations for non-small-cell lung cancer and proposed

a model in which EGFR and EPHA2 functionally interact to mediate

resistance to EGFR inhibition (Koch et al, 2015). Target space enrich-

ment analysis then facilitated the identification of proteins, which are

recurrently targeted by drugs specific to certain FPSs. This analysis

enabled the suggestion of target-based treatment options for each

FPS, while the drug sensitivity predictions themselves provide more

detailed information for the selection of rational treatment regimens

as part of, for example, prospective clinical trials. For example,

selumetinib (MEK inhibitor), lapatinib (EGFR inhibitor) and vorinos-

tat (HDAC inhibitor) were specific to FPA, SN-38 (topoisomerase

inhibitor) and sorafenib (a RAF inhibitor) were specific to FPB, while

AZD7762 (checkpoint kinase inhibitor) and methotrexate (DHFR

inhibitor) were specific to FPC. Together with our target space

enrichment analysis, this suggested that patients of the FPA subtype

might profit most from drugs targeting the classical MAPK signalling

cascade or acetylation-based epigenetic modifications, patients of the

FPB subtype might benefit most from drugs promoting apoptosis and

patients of the FPC subtype might be best served by DHFR-targeted

drugs.

The kinase-centric drug sensitivity analysis found high expres-

sion of MAP2K1 (MEK1) frequently associated with resistance

towards EGFR inhibitors, and high expression of MERTK recurrently

associated with resistance towards MEK1/2 inhibitors. While acti-

vating mutations of K57 in MAP2K1 are known to play a role in the

development of resistance towards EGFR-targeted treatments

(Bertotti et al, 2015), to our knowledge, MERTK was so far only

shown to be up-regulated on the mRNA level in pancreatic cancer

cell lines resistant towards the MEK1/2 inhibitor selumetinib (Beech

& Kelly, 2014). We were able to confirm the predictive potential of

MERTK protein expression for CRC cell lines in vitro. In addition,

exploration of MERTK expression levels in tumours using immuno-

histochemistry on tissue microarrays (TMAs) showed that high

MERTK expression is a biomarker for worse overall, disease-free

and recurrence-free survival in CRC patients. Aberrant expression of

MERTK was observed previously in a variety of cancers (Graham

et al, 2014). We showed that high MERTK expression was associ-

ated with stage T4 tumours. Tavazoie et al (2008) suggested that

MERTK is a target of miR-335-dependent post-transcriptional regula-

tion. Since miR-335 was shown to be down-regulated in aggressive

CRC and breast cancer (Tavazoie et al, 2008; Sun et al, 2014), one

could speculate that aberrant expression of MERTK in CRC may be

due to down-regulation of miR-335. Given that MERTK is a receptor

tyrosine kinase, the protein might also be an actionable target for

the treatment of advanced CRC, possibly in combination with

MEK1/2 inhibitors. However, further work is needed to evaluate

whether MERTK inhibition alone or combination treatments have

clinical potential in CRC. In the light of the fact that, for example,

the approved drugs crizotinib and sunitinib are also potent MERTK

inhibitors and that the designated compound MRX-2843 will soon

enter clinical trials, such investigations are becoming feasible in

future.

Materials and Methods

Cell lines

All cell lines in the CRC65 panel apart from SW480 (kind gift from

Ulrike Stein from the MDC, Berlin) were collected by the laboratory

of Prof Sir Walter Bodmer FRS at the University of Oxford and were

previously HLA-typed and characterised for other genetic changes to

determine whether they are derived from cancers of different donors

(Emaduddin et al, 2008). Information on the CRC65 cell lines and

the CPTAC tumour samples like MSI status, original sources (cell

lines) or subtype membership is compiled in Table EV6A.

Patient samples

We analysed the expression of MERTK in 1,074 patients from the

QUASAR 2 clinical trial cohort, with approval from the West

Midlands Research Ethics Committee (Edgbaston, Birmingham, UK;

REC reference: 04/MRE/11/18). All participants provided written

informed consent for treatment, and separate consent was obtained

regarding the use of tumour tissue. QUASAR 2 is a phase III interna-

tional randomised controlled trial, which collected data on toxicity,

overall survival (OS), disease-free survival (DFS) and recurrence-

free survival (RFS) for 1,941 stage II/III CRC patients, with the aim

to determine the efficacy of adjuvant capecitabine�bevacizumab

after resection of the primary tumour. A biobank comprising 1,350

FFPE blocks was established, and tissue microarrays (TMAs) were

generated from 1.2-mm cores.

Cell culture and lysis

Slightly altering the culture conditions described by Emaduddin et al

(2008), cells were grown in high glucose Dulbecco’s modified Eagle

medium (DMEM, including GlutaMAX and pyruvate; PAA) contain-

ing 1% Pen-Strep (penicillin at 100 units/ml and streptomycin at

100 lg/ml final concentration, PAA) and 10% foetal bovine serum

(FBS, SLI EU-000F Batch 503005) in a humidified incubator at 37°C

and 10% CO2 using T-175 flasks (Corning). Hereafter, this medium

composition is referred to as “culture medium” and the culture

conditions apart from the culture vessel are referred to as “standard

culture conditions”. Adherent cells were harvested at ~80–90% con-

fluency. Suspension cells (e.g. HDC-135) growing in 250 ml of

culture medium were harvested by centrifugation in 250-ml centri-

fuge tubes (Corning) at 300 ×g and 4°C for 5 min. We used RIPA100

buffer (20 mM Tris–HCl pH 7.5, 1 mM EDTA, 100 mM NaCl, 1%

Triton X-100, 0.5% sodium deoxycholate and 0.1% SDS) containing

protease (CompleteTM mini with EDTA; Roche) and phosphatase

inhibitors (Phosphatase Inhibitor cocktail 1 and 2; Sigma Aldrich) at

2× and 5× the final concentration recommended by the manufac-

turer, respectively, and lysed the cells for 30 min at 4°C. After clear-

ing the total cell lysates (TCLs) at 22,000 ×g for 30 min at 4°C, the

protein concentration was determined using a Coomassie-based
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protein assay kit (Thermo Fisher) and the TCLs were stored at

�80°C until further use.

Cell viability assays

We performed in vitro cell viability assays in order to test our in

silico predictions. Assays were performed as described previously

(Garnett et al, 2012), with minor modifications. Cell viability assays

were carried out in technical triplicates in order to generate 10-point

dose–response curves for drugs with the resistance of which either

ACVR2A or MERTK was associated. For each drug, we selected

three cell lines predicted to be resistant and three cell lines predicted

to be sensitive towards the respective drug and seeded them in

100 ll culture medium at their optimal seeding density on day zero

(C10 = 4,000, CaCo-2 = 2,000, CC07 = 4,000, HDC-143 = 12,000,

SK-CO-1 = 8,000, T84 = 11,000, RKO = 4,000, LS 180 = 2,000,

HDC-111 = 4,000, HT55 = 12,000, OXCO-1 = 8,000, C125-

PM = 11,000). Following an overnight incubation under standard

culture conditions, 50 ll of fresh medium containing either 1%

DMSO or the respective drug in a 9-point twofold dilution series in

1% DMSO was added to the corresponding wells. This resulted in a

final DMSO concentration of 0.33%, while the highest final drug

concentration was 10 lM for UNC569 (Merck), as well as 0.5 lM
for PD-0325901, 5 lM for RDEA119, 0.5 lM for AUY922 (all from

Cambridge Bioscience) and 16 lM for BAY 61-3606 (Insight Biotech-

nology), respectively. For drug co-treatments, the respective

compounds were combined at constant ratios over the entire

concentration range used for the single-agent treatments, keeping

the final DMSO concentration in the assay at 0.33%. After 72 h of

incubation time under standard culture conditions, the medium was

either replaced with 150 ll of fresh culture medium containing

1 lM of Hoechst 33342 (Thermo Fisher #H3570) or 10 ll Alamar-

Blue (Thermo Fisher #88952) added to each well (only C10MERTKNKO

and C10MERTKNWT
). Cells were incubated under standard culture

conditions for 1 h or 4 h, respectively, before they were either

imaged using an In Cell Analyzer 6000 automated confocal micro-

scope (GE Healthcare) with four fields of view (FOVs) per well or

before AlamarBlue fluorescence was quantified using a FLUOstar

Omega plate reader (BMG Labtech). The Hoechst 33342 channel of

all images was subsequently analysed with Columbus v2.6.0

(PerkinElmer) using two of the built-in algorithms “B” and “C” to

automatically segment nuclei. For each well, we then counted the

number of nuclei satisfying standard quality control criteria in all

four FOVs. Subsequently, the nuclei count or AlamarBlue fluores-

cence was normalised to the mean of the corresponding DMSO

controls, followed by dose–response modelling and parameter

extraction (Appendix Supplementary Methods).

CRISPR/Cas9 targeting of MERTK in C10 cells

Knockout of MERTK in C10 cells was installed by CRISPR/Cas9 gene

targeting as described previously (Ran et al, 2013). Guide RNA

sequences were selected by using the CRISPR Design Tool (http://

www.genome-engineering.org/crispr/?page_id=41). Three guide

RNAs targeting exons 7, 8 (encoding the FNIII domain) and 14 (en-

coding the kinase domain) of MERTK were obtained, which were

designed to induce double-strand breaks at position 982, 1,273

and 1,882 bp. The guide RNA sequences were cloned into pSpCas9

(BB)-2A-GFP (the vector was a gift from Feng Zhang; Addgene plas-

mid #48138) by standard Golden Gate Assembly using the BbsI site,

followed by transformation of chemically competent DH5a cells.

Three colonies of each sgRNA transformation were picked and the

correct insertion confirmed by sequencing. C10 cells were trans-

fected with a mixture of all three sgRNAs using Lipofectamine 3000

(Invitrogen) according to the manufacturer’s instructions. Trans-

fected cells were microscopically identified by expression of GFP

and sub-cloned 3 days post-transfection using cloning rings. After

2–4 weeks, individual cell clones were tested for successful knock-

out of MERTK by Western blot and sequencing.

Western blots

Total cell lysates were diluted to 1 mg/ml protein concentration and

1× final sample buffer concentration with 4× sample buffer (70 mM

Tris pH 6.8, 5% v/v 2-mercaptoethanol, 40% v/v glycerol, 3% w/v

SDS, 0.05% w/v bromophenol blue) and stored at �80°C until

further use. Samples were separated using 4-12% NuPAGE Bis-Tris

mini/midi gels (70 lg/14 lg per sample) and subsequently blotted

to Hybond-P PVDF (Amersham) or nitrocellulose (iBlot Transfer

Stack, Thermo Fisher) membranes according to the manufacturer’s

instructions. We used primary antibodies against EPHA4 (ab157588,

1:500, Abcam), ABL1 (OP20, 1:1,000, Merck), BRAFV600E (E19290,

1:500, Spring Bioscience) and ERK1/2 (#4695, 1:1,000, Cell Signal-

ing Technology) for PVDF and primary antibodies against MERTK

(ab52968, 1:2,000, Abcam) and ACTB (sc-47778, 1:1,000, Santa

Cruz) for nitrocellulose membranes. Membranes were incubated in

the dark with appropriate fluorophore-coupled secondary antibodies

(IRDye 800CW goat anti-mouse IgG #926-32210, IRDye 680RD

donkey anti-rabbit IgG #926-68023, IRDye 800CW goat anti-rabbit

IgG #926-32211 and IRDye 680RD goat anti-mouse IgG #925-68070).

Membranes were measured using an Odyssey near-infrared scanner

(LI-COR). Densitometry of Western blots was carried out using

ImageStudioLite v5.2.5 (LI-COR), expressing EPHA4 and ABL1

expression relative to the respective ERK1/2 signal, followed by

dividing all expression values by the expression value of OXCO-1

(present on each gel) and log2-transformation.

Immunohistochemistry

In order to evaluate MERTK expression in tissue microarrays, a

staining protocol was developed using positive and negative control

cell lines for MERTK expression, selected based on the expression

level as measured by LC-MS/MS. For each of the four control cell

lines (negative: RKO, CC07; positive: HT55, CaCo-2), we grew one

T-175 flask under standard culture conditions in culture medium to

~70% confluency, washed the cells once with 10 ml ice-cold PBS

and subsequently scraped them into 2 ml 4% PFA in PBS, followed

by centrifugation at 400 ×g for 10 min and fixation overnight. After-

wards, the cell pellets were embedded in paraffin using standard

procedures. Immunohistochemistry (IHC) of QUASAR 2 TMAs and

FFPE control cell pellets was carried out as already described

(Schlegel et al, 2013), with minor modifications. Stainings quantify-

ing MERTK expression were performed using the Bond-MAX auto-

mated IHC system (Leica Biosystems) at room temperature if not

specified otherwise. After deparaffinising and re-hydrating the slides,

heat-induced epitope retrieval (HIER) was performed for 10 min at

ª 2017 The Authors Molecular Systems Biology 13: 951 | 2017

Martin Frejno et al Pharmacoproteomics of colorectal cancer Molecular Systems Biology

11

Published online: November 3, 2017 

http://www.genome-engineering.org/crispr/?page_id=41
http://www.genome-engineering.org/crispr/?page_id=41


100°C with epitope retrieval solution 1 (AR9961, pH 6). MERTK was

detected using the Bond Polymer Refine Detection Kit (DS9800)

together with a primary antibody against MERTK (ab52968, 1:1,000,

Abcam) according to the manufacturer’s instructions, followed by

counterstaining nuclei with haematoxylin solution (< 0.1% haema-

toxylin). Slides were washed, dehydrated with an increasing alcohol

series (30 s in 50, 70, 100 and 100% EtOH), cleared with two 30-s

washes in 100% xylene and subsequently mounted using DPX

mountant (Sigma Aldrich). Finally, slides were scanned at 40×

magnification using a ScanScope (Aperio).

Sample processing for mass spectrometry

Full proteomes

Acetone precipitation and re-solubilisation TCLs were first

acetone-precipitated overnight using four volumes of pre-cooled

(�40°C) acetone to remove detergents, followed by two additional

washing steps with 1 ml fresh, cold acetone. In between precipita-

tion and washing steps, samples were centrifuged for 10 min at

13,000 ×g and 4°C. After the final washing step, the supernatant

was taken off and the samples were left to dry in a fume hood at

room temperature. Following acetone precipitation, the samples

were re-suspended in urea buffer (40 mM Tris–HCl pH = 7.6, 8 M

urea) containing protease (Complete mini without EDTA; Roche)

and phosphatase inhibitors (Phosphatase Inhibitor cocktail 1 and 2;

Sigma Aldrich) at 1× and 5× the final concentration recommended

by the manufacturer, respectively, as well as 20 nM calyculin A. In

order to ensure proper re-solubilisation of proteins, the precipitates

were first mixed thoroughly by pipetting up and down, followed by

sonication of each sample for 5 min on ice using an HF generator

GM mini20, equipped with an ultrasonic converter UW mini20 and

a microtip MS 2.5 sonotrode (Bandelin), which was set to 3-s pulses

at 30% intensity with 3-s pause in between. After re-solubilisation,

the protein concentration of the lysate was determined again using a

Coomassie-based protein assay kit (Thermo Fisher).

In-solution digestion For in-solution digestion of proteins, 3.5 mg

of TCL per sample was reduced with 10 mM DTT and subsequently

alkylated using 55 mM chloroacetamide. Afterwards, samples were

diluted with 40 mM Tris–HCl pH 7.6 to reduce the urea concentra-

tion to 1.5 M, 1.5 ll of CaCl2 was added to each sample and

proteins were digested overnight at 37°C and 700 rpm in a ther-

momixer using trypsin (Roche) at a protease-to-protein ratio of 1:50.

Desalting Desalting of peptide mixtures was carried out at room

temperature using Sep-Pak cartridges (50 mg sorbent per cartridge,

Waters) and a vacuum manifold according to the manufacturer’s

instructions. Desalted samples were stored at�80°C until further use.

hSAX chromatography For hydrophilic strong anion exchange

(hSAX) chromatography, peptide solutions were first dried down in

a Speed-Vac, re-solubilised in hSAX solvent A (5 mM Tris–HCl, pH

8.5) to a concentration of 2.73 lg/ll peptide and then centrifuged

for 30 s at 5,000 ×g to spin down insoluble debris. Chromatography

was carried out using a Dionex Ultimate 3000 HPLC system

(Thermo Fisher), which was equipped with an IonPac AG24 guard

column (Thermo Fisher), as well as an IonPac AS24 strong anion

exchange column (Thermo Fisher). Chromatography was performed

at 30°C and a flow rate of 250 ll/min. Following the injection of

100 ll sample and 3 min of equilibration with 100% hSAX solvent

A, peptides were eluted using a two-step linear gradient from 0 to

25% hSAX solvent B (5 mM Tris–HCl, pH 8.5, 1 M NaCl) in 24 min

and from 25 to 100% solvent B in 13 min. Solvent B was kept at

100% for another 4 min to flush the column before returning to 0%

in 1 min and additional 5 min of equilibration with 100% hSAX

solvent A. We started collecting 48 fractions of 250 ll after 2 min of

gradient time, which were subsequently combined to form 24 frac-

tions after consulting the 214-nm chromatography trace. For that,

fractions 5–7 were pooled to form fraction 5, fractions 24–25 formed

fraction 22, fractions 26–28 formed fraction 23 and fractions 29–48

formed fraction 24, respectively.

Post-hSAX desalting All 24 fractions were desalted using StageTips

as described earlier (Rappsilber et al, 2007), with minor modifi-

cations. Briefly, we used five C18 discs (3M Empore) of about

1.5 mm diameter in 200-ll pipette tips. After wetting (MeOH

followed by 5% TFA in 80% ACN) and equilibration of stage tips

(0.1% TFA), acidified samples (pH 2) were loaded twice onto the

StageTips to ensure proper binding. Following two washes with

0.1% TFA, samples were eluted using 200 ll 0.1% TFA in 60%

ACN. Eluates were transferred to 96-well plates, evaporated to

dryness using a Speed-Vac and subsequently stored at �20°C until

further use.

Kinobeads

Kinobeads gamma (KBc) pulldowns (biological triplicates) were

performed in 96-well filter plates (Porvair Sciences) as described

elsewhere (Medard et al, 2015), with minor modifications. For

each pulldown, 3 ml of 2.2 mg/ml TCL was cleared by ultracen-

trifugation at 167,000 ×g and 4°C for 20 min. Following washing

(CP buffer: 50 mM Tris–HCl pH 7.5, 5% glycerol, 1.5 mM MgCl2,

150 mM NaCl, 1 mM Na3VO4) and equilibration (CP buffer supple-

mented with 0.4% Igepal CA-630) of 35 ll settled KBc per TCL,

~1.8 ml (equivalent of 4 mg of protein) of each TCL was trans-

ferred to its corresponding well. After 60-min incubation at 4°C on

a head-over-end shaker, the beads were washed thrice with CP

buffer containing 0.4% Igepal CA-630 and twice with CP buffer

containing 0.2% Igepal CA-630. Subsequently, proteins were eluted

by incubating the beads for 30 min at 50°C and 700 rpm in a ther-

momixer with 60 ll of 2× NuPAGE LDS sample buffer (Thermo

Fisher) per well. After collecting eluates by centrifugation, samples

were alkylated using 55 mM chloroacetamide. Finally, detergents

and salts were removed from samples by running a short elec-

trophoresis (~0.5 cm) using 4�12% NuPAGE gels (Thermo Fisher),

followed by tryptic in-gel digestion according to the standard

procedures.

LC-MS/MS data acquisition

Full proteomes

Reverse-phase gradient Full proteome fractions were measured

using nanoflow LC-MS/MS by directly coupling an Eksigent

nanoLC-Ultra 1D+ (Eksigent) to an Orbitrap Velos mass spectrom-

eter (Thermo Fisher). Peptides were dissolved in 20 ll buffer A

(0.1% FA), injecting 5 ll per measurement. Using a flow rate of

5 ll/min, peptides were then loaded onto a 2-cm trap column
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(100 lm i.d., ReproSil-Pur 120 ODS-3 5 lm, Dr. Maisch) and

washed for 10 min with 100% buffer A. Subsequently, peptides

were separated on a 40-cm analytical column (75 lm i.d.,

ReproSil-Gold 120 C18 3 lm, Dr. Maisch) using a flow rate of

300 nl/min and a gradient from 2% buffer B (0.1% FA and 5%

DMSO in ACN) to 4% in 2 min (buffer A now also contained 5%

DMSO) and from 4 to 32% in 96 min. Buffer B was then ramped

from 32 to 80% in 1 min and the column was flushed with 80%

buffer B for 4 min, before returning to 2% buffer B in 2 min and

a final equilibration step with 2% buffer B for 5 min. This

resulted in a turnaround time of 120 min per full proteome frac-

tion, totalling 130 days of measurement time for the entire CRC65

cell line panel.

Acquisition parameters The eluate from the analytical column

was sprayed via stainless steel emitters (Thermo) at a source

voltage of 2.6 kV towards the orifice of the mass spectrometer; a

transfer capillary heated to 275°C. The Orbitrap Velos was set to

data-dependent acquisition in positive ion mode, automatically

selecting the top 10 most intense precursor ions from the preced-

ing full MS (MS1) spectrum with an isolation width of 2.0 Th

for fragmentation using higher-energy collisional dissociation

(HCD) at 30% normalised collision energy and subsequent

identification by MS/MS (MS2). MS1 (360–1,300 m/z) and MS2

(precursor-dependent m/z range, starting at m/z 100) spectra

were acquired in the Orbitrap using a resolution of 30,000 and

7,500 at m/z 400, with an automatic gain control (AGC) target

value of 1 × 106 and 3 × 104 charges and a maximum injection

time of 100 and 200 ms, respectively. Dynamic exclusion was

set to 60 s.

Kinobeads

Reverse-phase gradient Kinobeads eluates were measured using

nanoflow LC-MS/MS by directly coupling an Eksigent nanoLC-Ultra

1D+ (Eksigent) to an Orbitrap Elite mass spectrometer (Thermo

Fisher). Chromatography as well as data acquisition was similar to

the settings used for full proteome fractions; hence, we only

describe differences between the two set-ups. We injected 10 ll per
measurement instead of 5 ll and used a slightly steeper gradient

from 2% buffer B to 4% in 2 min and from 4 to 32% in 88 min

instead of 96 min. The rest of the gradient was kept the same,

resulting in a turnaround time of 110 min per Kinobeads pulldown,

totalling ~15 days of measurement time for the entire CRC65 cell

line panel in biological triplicates.

Acquisition parameters The source voltage was at 2.2 kV instead

of 2.6 kV and the Orbitrap Elite selected the top 15 most

intense precursor ions for MS2 instead of the top 10 most

intense ones because of its higher scanning speed. While the

MS1 m/z range, resolution, AGC target value and maximum

injection time were the same as for the Orbitrap Velos, the

Orbitrap Elite acquired MS2 spectra at a resolution of 15,000 at

m/z 400 with an AGC target value of 2 × 104 charges and a

maximum injection time of 100 ms. Dynamic exclusion was set

to 20 s instead of 60 s and the Orbitrap Elite also made use of

a global kinase peptide inclusion list, which contained precursor

ions and retention times from frequently observed kinase

peptides.

Processing of LC-MS/MS raw data

Full proteomes and CPTAC patient data

MaxQuant v.1.5.3.30 (Cox & Mann, 2008) was used to search our

LC-MS/MS raw data, as well as the raw data from the original

CPTAC publication on human colon and rectal cancer (Zhang

et al, 2014) against the UniProtKB human reference proteome

(v25.11.2015; 92,011 sequences), concatenated with a list of

common contaminants supplied by MaxQuant (245 sequences) in

two separate runs with identical settings. Therefore, some data

used in this publication were generated by the Clinical Proteomic

Tumor Analysis Consortium (NCI/NIH). We set the digestion mode

to fully tryptic, allowing for cleavage before proline (Trypsin/P)

and a maximum of two missed cleavages. Carbamidomethylation

of cysteines was set as a fixed modification and oxidation of

methionines and acetylation of protein N-termini were set as

variable modifications, allowing for a maximum number of five

modifications per peptide. Candidate peptides were required to

have a length of at least seven amino acids, with a maximum

peptide mass of 4,600 Da. The fragment ion tolerance was set to

20 ppm for FTMS (CRC65) and 0.4 Da for ITMS spectra (CPTAC),

respectively. A first search with a precursor ion tolerance of

20 ppm was used to recalibrate raw data based on all peptide

spectrum matches (PSMs) without filtering using hard score cut-

offs. After recalibration, the data were searched with a precursor

ion tolerance of 4.5 ppm, while chimeric spectra were searched a

second time using MaxQuant’s “Second peptides” option to iden-

tify co-fragmented peptide precursors. We used “Match between

runs” with an alignment time window of 30 min and a match time

window of 1.1 min to transfer identifications between raw files of

the same and neighbouring fractions (� 1 fraction). Using the

classical target-decoy approach with a concatenated database of

reversed peptide sequences, data were filtered using a PSM and

protein false discovery rate (FDR) of 1%. Protein groups were

required to have at least one unique or razor peptide, with each

razor peptide being used only once during the calculation of the

protein FDR. No score cut-offs were applied in addition to the

target-decoy FDR.

Kinobeads

Raw files from triplicate Kinobeads pulldowns were processed

using a pipeline similar to the one employed for the analysis of

full proteomes, adapting some of the parameters described here-

after. The fragment ion tolerance was set to 120 ppm for FTMS

spectra instead of 20 ppm, since we observed systematic fragment

mass deviations, which were linearly dependent on the m/z of the

fragment ions in ppm space. Because this was likely due to prob-

lems during data acquisition, we had to compensate for it during

the processing of raw data. Since Kinobeads pulldowns were not

fractionated, “Match between runs” was used with the same

parameters as described above to transfer identifications between

all raw files.

Quantification, statistical analysis and multi-omics
data integration

Proteins detected in proteomics experiments were quantified based

on MaxQuant output data, which was subsequently integrated with
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transcriptomics data from various CRC samples (see Appendix Sup-

plementary Methods for details). All statistical analyses were carried

out using R v3.2.4 (R Core Team, 2016).

Code availability

Modified MComBat and computeAUC functions (Appendix Supple-

mentary Methods) can be downloaded from https://github.com/mf

rejno/pharmacoproteomics_crc.

Data availability

The proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository (Vizcaino et al, 2016)

under ID codes PXD005353–PXD005355.

Expanded View for this article is available online.
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