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ABSTRACT
Autophagy is usually a pro-survival mechanism in cancer cells, especially in the course of chemotherapy,
thus autophagy inhibition may enhance the chemotherapy-mediated anti-cancer effect. However, since
autophagy is strongly involved in the immunogenicity of cell death by promoting ATP release, its
inhibition may reduce the immune response against tumors, negatively influencing the overall outcome
of chemotherapy. In this study, we evaluated the in vitro and in vivo anti-cancer effect of curcumin (CUR)
against Her2/neu overexpressing breast cancer cells (TUBO) in the presence or in the absence of the
autophagy inhibitor chloroquine (CQ). We found that TUBO cell death induced by CUR was increased in
vitro by CQ and slightly in vivo in nude mice. Conversely, CQ counteracted the Cur cytotoxic effect in
immune competent mice, as demonstrated by the lack of in vivo tumor regression and the reduction of
overall mice survival as compared with CUR-treated mice. Immunohistochemistry analysis revealed the
presence of a remarkable FoxP3 T cell infiltrate within the tumors in CUR/CQ treated mice and a reduction
of T cytotoxic cells, as compared with single CUR treatment. These findings suggest that autophagy is
important to elicit anti-tumor immune response and that autophagy inhibition by CQ reduces such
response also by recruiting T regulatory (Treg) cells in the tumor microenvironment that may be pro-
tumorigenic and might counteract CUR-mediated anti-cancer effects.

Abbreviations: ATP, adenosine triphosphate; CQ, chloroquine; CUR, Curcumin; DAMPs, Damage-Associated Molecu-
lar Patterns; FoxP3, Forkhead Box P3; HCQ, hydroxychloroquine; HIF 1a, Hypoxia-inducible factor 1-a; ICD, Immuno-
genic Cell Death; LC3, Microtubule-associated protein 1A/1B-light chain 3; PARP, Poly (ADP-ribose) polymerase;
Treg, T regulatory cells

KEYWORDS
athymic nude mice;
autophagy; Balb/c mice;
cancer; chloroquine;
curcumin; Her2/neu

Introduction

Curcumin or diferuloylmethane (CUR) is a polyphenolic com-
pound derived from Curcuma longa widely studied for its anti-
oxidant, anti-inflammatory and especially anti-cancer proper-
ties. Cancer cells adopt several strategies to induce immune
suppression and to escape from immune recognition, therefore
it is important that the chemotherapy, besides being cytotoxic
against tumor cells, may help to restore anti-cancer immunity.
Both aims could be achieved by curcumin that triggers cell
death in a variety of cancers, stimulates the helper/cytotoxic T
cell response and concomitantly reduces regulatory T cell activ-
ity.1 Another important feature needed for a successful anti-
cancer therapy is the induction of an immunogenic cell death
(ICD), meaning that only tumor cells that die exposing and/or
releasing damage-associated molecular patterns (DAMPs)

harness the immune system against the tumors.2-5 These
DAMPs include Calreticulin, Heat shock Proteins (HSPs) and
adenosine triphosphate (ATP), whose release occurs during
pre-mortem autophagy induced by chemotherapies.6 Auto-
phagy is a catabolic process basally activated in cancer cells and
upregulated in stressful conditions such as starvation or che-
motherapeutic treatments. In mostly of the cases, autophagy
helps cancer cells to survive and based on this knowledge, che-
motherapies (able to promote autophagy), have been success-
fully combined with autophagy inhibitors to enhance their
cytotoxic effects in vitro7-11 or in vivo, in xenograft mice
models.12,13 Obviously in both cases, the effects of autophagy
inhibition on anticancer immune response were not evaluable.
Indeed, considering that autophagy promotes the ATP release
that positively influences the immune response required for
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tumor eradication, its inhibition could worsen rather than
improve the overall survival outcome of chemotherapy in
immune competent host.14 Accordingly, it has been reported
that the depletion of essential autophagy-relevant gene prod-
ucts such as ATG5 and Beclin 1, although increased the cancer
cytotoxic effect of irradiation in vitro and in vivo in immune
deficient mice, reduced the efficacy of radiotherapy or chemo-
therapy in immune competent mice.14,15

Despite these contradictory results, autophagy inhibitors
such as the lysosomotropic agents chloroquine (CQ) or
hydroxychloroquine (HCQ) have been introduced in clinical
trials against a variety of cancers.16,17 To shed more lights into
this field, we investigated the therapeutic potential of CQ in
combination with CUR, as compared with CUR alone, against
Her2/neu overexpressing breast cancer cells in vitro and in
vivo, both in immune competent and immune deficient Balb/c
mice. HER-2 overexpression, strongly involved in cell survival/
growth of epithelial cancer cells including breast has been
shown to be efficiently inhibited by curcumin.18,19

Curcumin induces apoptosis in breast cancer cell lines
and delays the growth of mammary tumors in neu transgenic
mice,19 suggesting that this drug might be a safe and inex-
pensive therapeutic strategy for the treatment of Her2/neu-
positive tumors.18,20 Interestingly, resveratrol potentiates the
in vitro and in vivo anti-tumoral effects of curcumin in head
and neck carcinomas.21 Other protein kinases and transcrip-
tion factors such as Signal transducer and activator of tran-
scription factors (STATs) and Hypoxia-inducible factor 1-a
(HIF1a), frequently upregulated in cancers including those
Her2/neu positive, can be also efficiently targeted by curcu-
min.20,22-24 In this study, we assessed the ability of CUR to
induce autophagy in vitro in Her2/neu positive murine
breast cancer cells (TUBO), based on the previous findings
that CUR targets Her2/neu kinase restoring autophagy
blocked by Her2/neu-mediated phosphorylation of Beclin
1.25 Next, the cytotoxic effects of CUR in the presence or in
the absence of CQ in vitro, was investigated. Finally, the
effect of such combination on tumor growth, presence and
type of inflammatory infiltrate in the tumor microenviron-
ment and the overall mice survival was evaluated in vivo,
either in nude and immune competent Balb/c mice. Since
CQ may have autophagy-related or unrelated effects toward
the tumor cells as well as cells belonging to the immune sys-
tem, i.e. T regulatory cells,26,27 a group of mice treated with
CQ only were also included. The ability of cancer cells
treated with CUR and CUR/CQ originated from nude mice
to recover and grow in vitro and the possible underlying
mechanisms involved were also investigated.

Materials and methods

Cells

BALB-neuT mammary cancer cells (H-2d) (TUBO cells) over-
expressing activated rat ErbB2/neu were kindly provided by
Prof. G. Forni (University of Torino, Italy).28 Cells were main-
tained in DMEM (Dulbecco’s modified Eagle’s medium)
(Sigma Aldrich, St Louis. MO, USA; D6046) containing 10%
fetal bovine serum (Corning, NY, USA; 35–079), 100 U/ml

penicillin and 100 mg/ml streptomycin (EuroClone, Milan,
Italy, ECB3001D) (complete medium) and grown at 37�C in a
humidified incubator with an atmosphere of 5% CO2.

Sulforhodamine B (SRB) assay

Cells were seeded at 5 £ 103 /well in 96-well plates and incu-
bated at 37�C to allow cell attachment. After 24 hours, the
medium was changed and the cells were treated with CUR
(Sigma Aldrich, St Louis. MO, USA; C1396) at 25mM, CQ
(Sigma Aldrich, St Louis. MO, USA; C6628) at at 10 mM,
CURCCQ or DMSO (Sigma Aldrich, St Louis. MO, USA;
D4540) and were incubated for 48 hours. The cells were then
fixed with cold trichloroacetic acid (final concentration 10%)
for 1 h at 4�C. After 4 washes with distilled water, the plates
were air-dried and stained for 30 min with 0.4% (wt/vol) SRB
(Sigma Aldrich, St Louis. MO, USA; 230162) in 1% acetic acid.
After 4 washes with 1% acetic acid to remove the unbound dye,
the plates were air-dried, and cell-bound SRB was dissolved
with 200 ml/well of 10 mM un-buffered Trizma base solution.
The optical density (O.D.) of the samples was determined at
540 nm with a spectrophotometric plate reader. The percentage
survival of the cultures treated with CUR, CQ or CURCCQ
was calculated by normalizing their O.D. values to those of con-
trol cultures treated with DMSO.21,29 The experiments were
performed in triplicate and repeated 3 times.

Trypan blue exclusion assay

TUBO cells were plated in 6-well plates at a density of 8 £ 105

cells/well for 24 hours. Then, cells were treated with curcumin
(CUR) at 25mM or with chloroquine (CQ) at 10mM, alone or
in combination, for 48 hrs. A trypan blue (Sigma Aldrich, St
Louis. MO, USA; 72571) exclusion assay was performed to test
cell viability. Live cells were counted by light microscopy using
a Neubauer hemocytometer. The experiments were performed
in triplicate and repeated 3 times.

Antibodies

In western blotting analysis, we used in this study the following
primary antibodies: rabbit polyclonal anti-PARP (1:500) (Cell
Signaling, Danvers, MA, USA; 9542), mouse monoclonal anti-
p62 (1:1000) (BD Transduction Laboratories, New Jersey, USA;
610832), mouse monoclonal anti-HIF1a (1:500) (Novus Bio-
logicals, Cambridge, UK; NB100–105). To study autophagy we
used a rabbit polyclonal anti-LC3 (1:1000) (Novus Biologicals,
Cambridge, UK; NB100–2220SS).

Mouse monoclonal anti-b-actin (1:10000) (Sigma Aldrich,
St Louis. MO, USA; A5441) (1:10000) was used as loading
control. The goat polyclonal anti-mouse IgG-Horseradish Per-
oxidase Santa Cruz Biotechnology Inc., Heidelberg, Germany;
sc-2005) and anti-rabbit IgG-HRP (Santa Cruz Biotechnology
Inc., Heidelberg, Germany; sc-2004) were used as secondary
antibodies. All the primary and secondary antibodies were
diluted in PBS-0.1% Tween20 solution containing 3% of BSA
(SERVA, Reno, NV, USA; 11943.03). For immunohistochemis-
try mouse monoclonal anti- Forkhead Box P3 (FoxP3) (Santa
Cruz Biotechnology Inc., Heidelberg, Germany; sc-53876) or
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mouse monoclonal anti-CD8a (Santa Cruz Biotechnology Inc.,
Heidelberg, Germany; sc-7970) were used.

Western blot analysis

TUBO cells were plated in 6-wells plates at a density 8 £ 105

cells/well, and treated with either CUR (25mM) and CQ
(10mM) alone or combination of both. After 48 hours, cells
were washed twice with 1X PBS solution and centrifuged at
1500 rpm for 5 minutes. Cell pellet was lysed in a RIPA buffer
containing 150 mM NaCl, 1% NP-40, 50 mM Tris-HCl (pH8),
0.5% deoxycholic acid, 0.1% SDS, protease and phosphatase
inhibitors. 20mg of protein lysates were subjected to protein
electrophoresis on 4–12% NuPage Bis-Tris gels (Sigma Aldrich,
St Louis. MO, USA; N00322BOX), according to the manufac-
turer’s instruction. Then, the gels were blotted to nitrocellulose
membrane (Biorad, Milan, Italy; 162–0115) for 2 h in Tris-
Glycine buffer. The membranes were blocked in PBS 0.1%
Tween20 solution containing 3% of BSA, probed with specific
antibodies and developed using ECL Blotting Substrate
(Advansta, Menlo Park, CA, USA; K-12045-D20).30

Immunohistochemistry

The expression of specific markers for Treg and T citotoxic
lymphocytes in mouse tumor tissues was determined by immu-
noperoxidase staining after incubation with specific antibodies
using a mouse on mouse immunoperoxidase kit (UCS, Italy).
For immunohistochemistry, 4-mm paraffin sections were
deparaffinized, rehydrated and quenched in a 0.2% hydrogen
peroxide solution diluted in methanol. Nonspecific sites were
blocked for 5 min in a buffer containing 100 mM Tris, BSA 2%
horse serum, and 0.02% sodium azide and for 15 min with a
specific mouse to mouse blocking agent. After pre-treatment of
30 min at 100�C in EDTA citric buffer, the sections were
immunolabeled for 1 hour at room temperature with the spe-
cific mouse monoclonal primary antibodies. The reactions were
revealed with DAB. Two different tumors were used for each
group of mice.

Transmission electron microscopy

Tumors derived from Balb/c treated and untreated mice were
fixed in 2.5% glutaraldehyde in 1X PBS pH 7.4, and the samples
were processed for transmission electron microscopy following
routine procedures.31 Two different tumors were used for each
group of mice.

Treatment of balb/c mice and athymic nude mice with CUR
and CQ alone or in combination

Groups of Balb/c female mice (6 or 7 mice per group) and
groups of athymic nude mice (5 mice per group) were subcuta-
neously injected in the right flank with a 0.2 ml suspension
containing 1 £ 106 TUBO cells in phosphate-buffered saline
(PBS). Athymic nude mice were purchased by ENVIGO. Mice
were treated per os with CUR (2 mg in 50 ml of maize oil,
3 times per week), CQ (2 mg in 50 ml of water, 5 times per
week) or CURCCQ (2 mg of CUR in 50 ml of maize oil, 3 times

per week C 2 mg of CQ in 50 ml of water, 5 times per week) or
with maize oil (50 ml, 5 times a week). The treatments were
started simultaneously with the inoculation of cells. Mice were
killed at the first signs of distress. Investigation has been con-
ducted in accordance with the ethical standards and according
to the Declaration of Helsinki and according to national and
international guidelines. A veterinary surgeon was present dur-
ing the experiments. Animal care, before and after the experi-
ments, was performed only by qualified and trained personnel.
Mice were bred under pathogen-free conditions in the animal
facilities of the University of Roma “Tor Vergata” and handled
in compliance with European Union and institutional stand-
ards for animal research. The work was conducted with the for-
mal approval of the local (“Organismo Preposto al Benessere
degli Animali” (O.P.B.A.), University of Rome Tor Vergata)
and national (Ministry of Health) animal care committees, and
animal experiments have been registered as legislation requires
(Authorization from Ministry of Health n� 187/2016-PR and
n� 1089/2016-PR).

Analysis of antitumor activity in vivo

Tumor growth was monitored weekly until tumor-bearing mice
were killed when the tumor exceeded a 20 mm width. Tumor
size was measured by a caliper in 2 dimensions and the volumes
were calculated using the formula: (width2 x length)/2.32

Statistical analysis

Survival curves and tumor growth were estimated by Kaplan-
Meier method and compared by logrank test (Mantel-Cox).
Differences in tumor volumes were regarded as significant
when the p value was � 0.05.

For the in vitro experiments, the percentage of cell growth
and cell survival is represented by the mean § standard devia-
tion (SD) of at least 3 independent experiments. Two-tailed
Student’s t-test was used to determine statistical significance.
Difference was considered statistically significant with a
p value < 0.05.

Results

CUR induces autophagy in Her2/neu overexpressing breast
cancer TUBO cells whose inhibition by CQ increases its
cytotoxic effect

To investigate the effect of CUR on autophagy, TUBO cells
were treated with this compound for 24 hours and the expres-
sion of the autophagic marker p62 was evaluated by western
blot analysis. We found that p62 decreased in CUR-treated cells
as compared with vehicle-treated cells (Fig. 1A) indicating that
autophagy was induced by CUR in TUBO cells. To better
explore the autophagy activation and assess its role in cells sur-
vival, TUBO cells were treated with CUR in the presence or in
the absence of CQ. Cell survival, LC3-I/II accumulation and
PARP-1 cleavage (PARPCl) were evaluated after 24 hours of
treatments. As shown in Fig. 1B and C, we observed that
TUBO cell viability was further inhibited by CURCCQ combi-
nation as compared with the single CUR treatment. PARP-1
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cleavage, indicative of apoptotic cell death and the lipidated
form of LC3 (LC3-II) also increased in CURCCQ treated cells
(Fig. 1D), indicating that CUR induced a complete autophagic
flux in TUBO cells that played a pro-survival role.

CQ counteracts the anti-cancer effect of CUR in immune
competent balb/c mice

To evaluate the in vivo antitumor effects of CUR and CQ,
groups of Balb/c female mice (5 mice per group) were subcuta-
neously inoculated with 1 £ 106 TUBO cells in the right flank.
Mice were treated per os with CUR (2 mg in 50 ml of maize oil,
3 times per week), CQ (2 mg in 50 ml of water, 5 times per
week) or CURCCQ (2 mg of CUR in 50 ml of maize oil, 3 times
per week C 2 mg of CQ in 50 ml of water, 5 times per week) or
with maize oil (50 ml, 5 times a week). Treatments were started
simultaneously with the inoculation of the cells.

After 21 days, all mice treated with maize oil, CQ or
CURCCQ were killed because of the excessive size of the
tumors. Conversely, CUR was able to counteract TUBO cells
growth in Balb/c mice. Mice treated with CUR alone showed a
significant decrease in the mean of the tumor volume as com-
pared with maize oil-, CQ- or CURCCQ-treated mice
(1571 mm3 vs 4000 mm3 p D 0.00115, at day 21) (Fig. 2A and
Table 1). In addition, CUR treatment prolonged the survival of
Balb/c mice as compared with maize oil-treated mice and mice
treated with CQ or CURCCQ (p D 0.003) (Fig. 2B). Overall,
the risk of developing tumors in maize oil-, CQ- and
CURCCQ-treated mice was 24.14 greater than in the
CUR-treated mice (Table 2). Thus, CQ was able to inhibit the
anti-tumoral effects of CUR.

To evaluate the autophagy induction by CUR treatment in
vivo, ultrastructural analysis of tumors arising in maize oil- or
CUR treated mice was also performed. As shown in Fig. 3A,
cancer cells arising from CUR-treated mice showed the pres-
ence of double membrane vesicles (autophagosomes), in some
cases containing entire organelles such as mitochondria. In
addition, we observed that the rough endoplasmic reticulum
appeared dilated in response to CUR treatment. In vivo auto-
phagy induction by CUR was confirmed by western blot analy-
sis showing the reduction of the autophagic marker p62
(Fig. 3B), indicating the activation of a complete autophagic
flux by CUR in vivo.

CQ enhances the anti-cancer effect mediated by curcumin
in balb/c nude mice

Groups of athymic nude mice (5 mice per group) were treated
as described previously in Materials and Method. After 17 d of
treatment all mice treated with maize oil or CQ alone were
killed because of the excessive size of their tumors. As shown in

Figure 1. CUR induces a complete autophagic flux in Her2/neu overexpressing
breast cancer TUBO cells that plays a pro-survival role. A) TUBO cells were mock
treated or treated with curcumin (CUR) (25 mM) for 48 hours and the autophagic
marker p62 expression level was evaluated by western blot. b-actin was used as
loading control. Numbers represent the ratio of specific proteins on the loading
control. B) TUBO cells were treated with mock treated or treated with CUR in the
presence or in the absence of chloroquine (CQ) (10 mM) for 48 hours and cell
survival was assessed by Sulforhodamine B or C) by tripan blue exclusion assay.
�p < 0.05. D) TUBO cells were treated with mock treated or treated with CUR in
the presence or in the absence of CQ and PARP cleavage and LC3-I/II expression
was investigated by western blot analysis. b-actin was used as loading control.
Numbers represent the ratio of specific proteins on the loading control. A repre-
sentative experiment is shown.

Figure 2. In vivo tumor growth of TUBO cells in mice treated with CQ and CUR alone or in combination. Groups of Balb/c mice were treated with CQ and CUR alone or
in combination simultaneously with TUBO tumor cell implantation. A) Differences in the tumor volumes and B) the mean survival time among the treated mice are
reported.

Table 1. Average of tumors volume of BALB/c mice treated with CQ and CUR
alone or in combination simultaneously with TUBO tumor cell implantation.

Treatment

Day 7:
average
volume
(mm3)

Day 14:
average
volume
(mm3)

Day 21:
average
volume
(mm3)

Day 28:
average
volume
(mm3)

Day 35:
average
volume
(mm3)

CORN OIL 42.1 504.3 4000
CQ 35 493.1 4000
CUR 33.6 188.2 1571.2 2487 4000
CURCCQ 34 479.3 4000
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Fig. 4 (panel A), CUR treatment was able to counteract the
growth of TUBO cells. Tumor volume in CUR- and
CURCCQ-treated mice was significantly lower as compared

with maize oil- and CQ-treated mice (676 mm3 and 440 mm3

vs 3998 mm3 and 3978 mm3 respectively, p < 0.0001, at day
17). CQ was able to significantly increase the anti-tumoral
effect of CUR (Fig. 4A). In fact, at 21 d of treatment the tumor
volume of CURCCQ treated mice was 571 mm3 compared
with 1112 mm3 of CUR treated mice (p D 0.017). At 24 d of
treatment the tumor volume of CURCCQ treated mice was
1124 mm3 compared with 2549 mm3 of CUR treated mice
(p D 0.047). CUR and CURCCQ treated mice were killed at
34 d. CUR and CURCCQ treatments increased the median sur-
vival of Balb/c as compared with maize oil- and CQ-treated
mice (27 vs 17 days, CUR vs maize oil and vs CQ, p D 0.0027;
30 vs 17 days, CURCCQ vs maize oil and CQ, p D 0.0047)
(Fig. 4B and Table 3). CURCCQ treatment delayed the tumor
growth but did not increase the survival as compared with
CUR treatment (Fig. 4 B). Overall, the risk of developing
tumors in maize oil-, CQ-treated mice was 36.60 greater than
in the CUR- or CURCCQ-treated mice (Table 4).

CURCCQ treatment reduces the inflammatory infiltrate
and cytotoxic T cells in the peritumoral area and
concomitantly increases T regulatory cells

Histological examination of tumors arising in different groups
of Balb/c immune-competent mice was performed by hematox-
ilin/eosin staining while the characterization of immune cells
infiltrating the tumor microenvironment was performed by
immunohistochemistry as described in Materials and methods.
As shown in Fig. 5A, tumors from maize oil-, CQ- or
CURCCQ treated mice showed infiltrating ductal carcinoma
morphology with small areas of necrosis due to the excessive
tumor growth. Conversely, tumors from CUR-treated mice
were mostly necrotic. In the peritumoral area, a conspicuous
inflammatory infiltrate was present in tumors from CUR
treated mice (Fig. 5A). A FoxP3 positive cell infiltrate was pres-
ent in maize oil-, CQ- and was particularly evident in
CURCCQ-treated tumors (Fig. 5B). Interestingly, CUR treat-
ment diminished the number of FoxP3 positive cells in the
peritumoral area and concomitantly increased the number of
CD8 positive cells, as compared with maize oil-, CQ- or
CURCCQ-treated mice (Fig. 5B).

CURCCQ treated tumor cells arising from nude mice
display a faster recovery and growth in vitro in correlation
with a higher HIF-1 a expression

We finally assessed the in vitro recovery of CUR- and
CURCCQ-treated tumor cells. To exclude the possible

Table 2. Analysis of the survival of Balb/c mice after treatment with CUR, CQ or CURCCQ by the log-rank test (Mantel-Cox).

95% hazard ratio confidence limits

Variable Contrast Hazard ratio lower upper p value Median survival (weeks)

Treatments CQ vs CORN OIL NS 3 vs 3
CUR vs CORN OIL 24.14 2.951 197.4 0.003 5 vs 3
CQCCUR vs CORN OIL NS 3 vs 3
CUR vs CQ 24.14 2.951 197.4 0.003 5 vs 3
CQCCUR vs CQ NS 3 vs 3
CUR vs CQCCUR 24.14 2.951 197.4 0.003 5 vs 3

Figure 3. CUR induces autophagy in vivo. A) Ultrastructural analysis of autophagy in
Balb/c mice transplanted with TUBO cells and treated with maize oil (CTRL) or CUR by
transmission electron microscopy. Control tumor cells appear well organized, with
nuclei1 and mitochondria1 conserved. No vacuoles are present in the cytoplasm. lu:
lumen. CUR-treated tumor cells: several vacuoles surrounded by double membrane
and containing organules are present in the cytoplasm (arrows). Dilated rough endo-
plasmic reticulum is also visible.47 N: nuclei, lu: lumen. (Original magnification: a:
x5000; c, e: x7000; b: x11000, d, f: x14000). 100 tumor cells have been analyzed from
tumor sections and autophagosomes were observed in about 40% of CUR-treated
tumor cells and 5% of control cells. B) Tumor cells originated from control or CUR
treated mice were analyzed for the expression of the autophagic mearher p62 by
western blot analysis. b-actin was used as loading control. Numbers represent the ratio
of specific proteins on the loading control. A representative experiment is shown.
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influence of the high number of FoxP3 positive cells infiltrating
the CURCCQ tumors on cell growth, tumors from nude mice
were used for this purpose. Even though tumors originating
from CURCCQ were more necrotic (the percentage of cell
death was about 50% compare with the 30% of CUR-treated
tumor, as evaluated by tripam blue exclusion assay), cells from
CURCCQ-treated tumors grew faster in comparison with those
originating from CUR-treated tumors (Fig. 6A). Searching for
possible underlying mechanisms, we found that tumor cells
arising from CURCCQ tumors showed a higher expression of
HIF 1a in comparison to those arising from CUR-treated
tumors (Fig. 6B). HIF 1a is one of the most important mole-
cules involved in chemo-resistance,33,34 and interestingly, it has
been previously reported that HIF 1a can be degraded also via
lysosomal route.35,36 Thus the inhibition of the lysosomal func-
tion mediated by CQ treatment could counteract its degrada-
tion promoted by CUR.

Discussion

The question whether inhibition or induction of autophagy
may improve the efficacy of anti-cancer therapy remains still
open. Meanwhile, several clinical trials aimed at manipulating
autophagy in cancer patients are going on.37 Most of these
clinical trials are trying to inhibit autophagy, given that auto-

phagy is usually upregulated by chemotherapies in cancer cells
to cope with their increased demand, due to cellular stress.
For such combinatory strategies, lysosomotropic agents such
as CQ or HCQ are frequently used. Unfortunately, the results
so far obtained are not very encouraging and one of the possi-
ble explanations for this clinical failure could be the reduction
of the immune response, since autophagy plays an important
role in the release of ATP.6 ATP is one of the DAMPs that
characterize the immunogenic cell death and activate the anti-
cancer immune response,38 which is needed for a complete
eradication of tumors, also in the course of chemotherapy.39

Our results indicate that CQ did not enhance CUR anti-can-
cer effects, but it was detrimental for mice survival trans-
planted with Her2/neu positive breast cancer cells. Indeed,
CQ completely inhibited the anti-cancer effects of CUR in
immune competent mice, although increased it in vitro and in
nude mice. These findings suggest that the negative effect of
CURCCQ combination could be mediated by T cell response
in immune competent mice. Besides immune defensive cells,
the T population comprises T regulatory cells (FoxP3 positive)
that are able to suppress the immune response through the
release of cytokines such as TGF b, IL-10 and IL-35.40 More
recently, it has been reported that T regulatory cells are also
able to promote tumorigenesis by releasing factors that,
besides being immune suppressive, have pro-angiogenic

Figure 4. In vivo tumor growth of TUBO cells in mice treated with CQ and CUR alone or in combination. Groups of athymic nude mice were treated with CQ and CUR
alone or in combination simultaneously with TUBO tumor cell implantation. A) Differences in the tumor volumes and B) the mean survival time among the treated mice
are reported.

Table 3. Average of tumors volume of BALB/c nude mice treated with CQ and CUR alone or in combination simultaneously with TUBO tumor cell implantation.

Treatment
Day 7: average
volume (mm3)

Day 13: average
volume (mm3)

Day 17: average
volume (mm3)

Day 21: average
volume (mm3)

Day 24: average
volume (mm3)

Day 27: average
volume (mm3)

Day 30: average
volume (mm3)

Day 34: average
volume (mm3)

CORN OIL 35.6 1001.9 3998.4
CQ 28.3 1264.3 3978
CUR 4.6 586.5 676 1112.2 2549.9 2342.5 2992.8 4000
CURCCQ 6.9 400.9 440.3 571.9 1124 1711 1946.7 4000

Table 4. Analysis of the survival of athymic mice after treatment with CUR, CQ or CURCCQ by the log-rank test (Mantel-Cox).

95% hazard ratio confidence limits

Variable Contrast Hazard ratio lower upper p value Median survival (days)

Treatments CQ vs CORN OIL 0 0 0 Ns 17 vs 17
CUR vs CORN OIL 36.60 3.483 384.5 0.0027 27 vs 17
CQCCUR vs CORN OIL 36.60 3.020 443.5 0.0047 30 vs 17
CUR vs CQ 36.60 3.483 384.5 0.0027 27 vs 17
CQCCUR vs CQ 36.60 3.020 443.5 0.0047 30 vs 17
CUR vs CQCCUR 0.5001 0.08358 2.992 Ns 27 vs 30
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properties, i.e., VEGF.41,42 Interestingly, we found that the
CURCCQ combination recruited a higher number of FoxP3
positive cells in the tumor microenvironment in comparison
to CUR alone and it is possible that such cell population
might promote angiogenesis and tumor growth releasing
VEGF, restoring angiogenesis and counterbalancing the anti-
tumor effect of CUR. An important question is why the
CURCCQ combination attracted more T regulatory cells in
the tumor microenvironment in comparison to CUR alone.
One possible explanation could be that immune suppressive
DAMPs could be released by CURCCQ-treated tumors, i.e.,
PGE2, whose production positively correlates with the expres-
sion of HIF 1a in tumor cells.43 Interestingly, we found that
CUR reduced HIF 1 a, expression in cancer cells and that CQ
counteracted such reduction. HIF 1 a, one of the most impor-
tant molecules involved in resistance to chemotherapy,34 has
been reported to be degraded also through the lysosomal
route.35 Therefore, the lysomonotropic agent CQ could inhibit

its degradation into the lysosomes promoted by CUR. Another
possibility is that molecules attracting T regulatory cells in the
tumor microenvironment such as CCL28 could be released by
CURCCQ-treated tumors. Interestingly also CCL28 release
appears to be dependent on HIF 1a expression.42 These evi-
dences suggest that HIF 1a, highly expressed in CURCCQ
treated tumor cells, could play also indirect pro-tumorigenic
effects through the recruitment of T regulatory cells, in addi-
tion to its direct pro-survival effect on the tumor itself.

According to previous studies suggesting that autophagy,
although a powerful strategy to enhance the antineoplastic
effects of chemotherapies, should be performed with caution
because of the possible negative effect on the immune
response,44 this study shows that the autophagy inhibitor
CQ counteracted the anti-cancer effects mediated by CUR in
the immune competent host. The recruitment of FoxP3 posi-
tive cells in the tumor microenvironment could play an
important role in counteracting the cytotoxicity exerted by
CUR. Moreover, the finding that CURCCQ-treated tumor
cells displayed a faster recovery and growth in vitro, suggests
that such combination might also favor tumor relapse also
in vivo, once therapy is discontinued. These negative effects
of CQ in combination with CUR correlated with the reduc-
tion of HIF 1a degradation through autophagy promoted by
CUR. In conclusion, our results suggest that the use of auto-
phagy inhibitors like CQ in combination with CUR could be
detrimental and the underlying mechanisms involved in this
effect might explain the disappointing results obtained by
combining autophagy inhibitors with chemotherapies. The
main disadvantage to use polyphenols as anticancer agents is
their poor bioavailability, which may reduce their in vivo
effects, especially when used as single drug. One approach to
overcome this problem may be to concomitantly use several
polyphenols or combine them with other anticancer drugs.45

Future studies will be performed to assess whether auto-
phagy induction i.e., by calory restriction could play an
opposite effects and improve the outcome of CUR anti-
cancer therapy against Her 2/neu positive breast cancers.
Indeed, it is emerging that autophagy induction rather than
inhibition may improve the outcome of immunogenic che-
motherapies or radiotherapies, by promoting the immunoge-
nicity of cell death.46

Figure 5. Differences in the immune cell infiltrate in tumors arising from maize oil-(CTRL), CUR-, CQ- and CURCCQ-treated mice. A) Hematoxilin/eosin staining. Original
magnification x 100. B) immunohistochemical staining with anti CD8 and FoxP3 monoclonal antibodies. The immunoreactivity of the samples was visualized by immuno-
peroxidase staining as described in the “Materials and methods” section. Original magnification x 200.

Figure 6. CUR C CQ treated tumor cells arising from nude mice display a faster in
vitro growth in correlation with a higher HIF-1a expression. Tumor cells originating
from CUR or CUR C CQ treated mice were cultured in vitro for 48 hours. 3 plates
containing the same amount of cells were prepared for each tumor and A)
observed by optical microscopy or B) analyzed for the expression of HIF-1a by
western blot. Tumor cells from CTRL mice were also included. Lamin B was used as
loading control. Numbers represent the ratio of specific proteins on the loading
control.A representative experiment is shown.
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