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Abstract Let G be a complex connected reductive group. I. Losev has shown that a smooth affine

spherical G-variety X is uniquely determined by its weight monoid, which is the set of irreducible

representations of G that occur in the coordinate ring of X. In this paper we use a combinatorial char-

acterization of the weight monoids of smooth affine spherical varieties to classify: (a) all such varieties

for G = SL(2) × C× and (b) all such varieties for G simple which have a G-saturated weight monoid

of full rank. We also use the characterization and F. Knop’s classification theorem for multiplicity

free Hamiltonian manifolds to give a new proof of C. Woodward’s result that every reflective Delzant

polytope is the moment polytope of such a manifold.
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1 Introduction

Spherical varieties play a role in many areas of mathematics, including symplectic geometry.

This provides the main motivation for this paper, in which we combinatorially classify certain

families of smooth affine spherical varieties, as described in more detail later in this introduction.

We first recall, following [21], the connection between smooth affine spherical varieties and

multiplicity free Hamiltonian manifolds. This will explain how explicit classifications of families

of such varieties, like the ones in this paper, can be used to generate (families of) examples

of multiplicity free Hamiltonian manifolds. We have endeavored to make the presentation
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accessible to non-experts, and we hope that it shows that the combinatorial theory of spherical

varieties can be used effectively.

A Hamiltonian manifold M is a compact connected symplectic manifold equipped with an

action of a compact connected Lie group K and a K-equivariant moment map µ : M → k∗,

where k∗ is the dual of the Lie algebra k of K. Let us choose a maximal torus TR in K and

a dominant Weyl chamber t+ in the dual Lie(TR)∗ of the Lie algebra of TR. We can identify

Lie(TR)∗ with the subspace of k∗ fixed by the coadjoint action of TR. In [18], F. Kirwan showed

that µ(M) ∩ t+ is a convex polytope. We call it the moment polytope of M and denote it by

PM . In [14], V. Guillemin and S. Sternberg introduced an important class of such manifolds:

a Hamiltonian manifold M is called multiplicity free if every symplectic reduction µ−1(x)/Kx

is a point. Here x ∈ µ(M) and Kx = {k ∈ K : k · x = x} is the isotropy group of x under the

coadjoint action of K.

When K is a (compact) torus, i.e. when K = U(1)r for some r ∈ N, and the action of

K is effective, then a multiplicity free Hamiltonian K-manifold is called a symplectic toric

manifold. In his influential 1988 paper [11], T. Delzant showed that symplectic toric manifolds

are uniquely determined by their moment polytope. He also gave a combinatorial description of

the polytopes that can occur as moment polytopes of symplectic toric manifolds: they are the so-

called Delzant polytopes (which are also known as simple regular polytopes). Building on work

of M. Brion [8], R. Sjamaar [36] and I. Losev [28], F. Knop generalized both of Delzant’s results

to nonabelian groups K in [21], using smooth affine spherical varieties. In addition, Knop

further extended these results recently to the setting of multiplicity free quasi-Hamiltonian

manifolds in [22], and, in [40], C. Woodward used the theory of spherical varieties to study the

existence of compatible Kähler structures on multiplicity free Hamiltonian manifolds.

Let us give more details on the results of [21]. Theorem 10.2 of loc.cit. says that a multiplicity

free Hamiltonian K-manifold M is uniquely determined by its moment polytope PM and its

generic isotropy group KM . To state Knop’s theorem describing the “admissible” moment

polytopes we need some more notation.

Let T be the complexification of TR and let Λ := Hom(T,C×) ∼= ZdimT be the character

group of T . Then T is a maximal torus of the complexification G of K, which is a connected

reductive group. The choice of the dominant Weyl chamber t+ above corresponds to the choice

of a Borel subgroup B of G. Restriction of characters yields an identification of Λ with the

character group Hom(TR,C×). Furthermore, λ 7→ (2πi)−1dλ is an embedding Hom(TR,C×) ↪→
Lie(TR)∗, where dλ is the differential of λ at the identity. We also identify Λ with the image of

this embedding, which is a sublattice of Lie(TR)∗ that spans Lie(TR)∗ as a vector space. When

a ∈ t+ ⊂ k∗, we will use G(a) for the complexification of the stabilizer Ka := {k ∈ K : k ·a = a}.
It is well known that T ⊂ G(a) and that G(a) is a Levi subgroup of G. If P is a convex polytope

in t+ and a ∈ P, then the tangent cone to P at a is

CaP := R≥0(P − a). (1.1)

Observe that CaP is a cone in

Cat
+ := R≥0(t+ − a) ⊂ Lie(TR)∗. (1.2)

Furthermore, Cat
+ is the dominant Weyl chamber for G(a) corresponding to its Borel subgroup
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B ∩G(a).

As explained in [21, pp.570-571], given PM the information about the generic isotropy

group KM of a multiplicity free Hamiltonian K-manifold M can be encoded in a sublattice

ΛM of Λ. Indeed, let LR ⊂ K be the centralizer of PM (seen as a subset of k∗), that is,

LR = {k ∈ K : k · p = p for every p ∈ PM}. Then LR is a Levi subgroup of K containing TR

and LR/KM is a torus. Consequently, KM is determined by the character group

ΛM := Hom(LR/KM ,C×), (1.3)

which is a subgroup of Λ ≡ Hom(TR,C×).

Knop showed that the moment polytopes of multiplicity free Hamiltonian manifolds locally

“look like” the weight monoids of smooth affine spherical varieties (see Definition 2.1 below). To

be more precise, Theorem 11.2 of [21] tells us that a pair (P,Λ0), with P a polytope in t+ and

Λ0 a subgroup of Λ, is equal to (PM ,ΛM ) for some multiplicity free Hamiltonian K-manifold

M if and only if for every vertex a of P there exists a smooth affine spherical G(a)-variety Xa

such that

CaP = the cone generated by the weight monoid of Xa; and

Λ0 = the abelian group generated by the weight monoid of Xa.
(1.4)

We recall that a normal G-variety is called spherical if it contains a dense orbit under the

action of a Borel subgroup of G.

Correspondingly, the varieties Xa can be considered as “building blocks” for the manifold

M . Let us recall briefly in which sense, referring to Section 2 of [21] for details: the manifold

M admits an open cover M =
⋃
a Ua, where the union is over all vertices a of PM and Ua is K-

stable for all a. Moreover, the subset Ua is a K-equivariant fibre bundle of the form K ×Ka Ya,

where Ya is a Ka-stable open subset of Xa intersecting the closed G(a)-orbit.

Example 1.1 Let K = SU(2). Then one can identify su(2)∗ with R3 and the coadjoint action

of SU(2) with the standard action through SU(2) � SO(3,R) on R3. Let v ∈ su(2)∗ \{0}. Like

every coadjoint orbit, S2 ∼= SU(2) · v is a Hamiltonian SU(2)-manifold with moment map the

inclusion ι : SU(2) · v ↪→ su(2)∗. Consequently M := S2 × S2 is a Hamiltonian manifold under

the diagonal action of SU(2) with moment map

µ : S2 × S2 → su(2)∗, (x1, x2) 7→ ι(x1) + ι(x2).

One can check that M is multiplicity free. For TR we can take the subgroup of K made up of

diagonal matrices. Then TR ∼= U(1) and Λ ∼= Z. We can choose the identification su(2)∗ ≡ R3 in

such a way that Lie(TR)∗ gets identified with R(0, 0, 1) and the weight lattice Λ with Z(0, 0, 1).

As a dominant Weyl chamber t+ we can then choose R≥0(0, 0, 1). To lighten notation, we will

identify Λ with Z and t+ with R≥0. Elementary computations show that

PM = µ(M) ∩ t+ = [0, b],

where b ∈ R>0 depends on the choice of v ∈ su(2)∗, that LR = TR and that the generic isotropy

group KM is equal to the center of SU(2). Consequently,

ΛM = 2Z ⊂ Z ≡ Λ.



4 Paulus K., Pezzini G. and Van Steirteghem B.

We confirm that the conditions (1.4) are satisfied at the two vertices of PM . We begin with the

vertex 0. Since K0 = SU(2), we have that G(0) = SL(2). Observe that C0P = t+. Consider

the smooth affine spherical SL(2)-variety

X0 = SL(2)/T

where T is the subset of SL(2) made up of diagonal matrices. As is well known, the weight

monoid of X0 is 2N ⊂ N = Λ ∩ t+, whence (1.4) holds at the vertex 0. Next we consider

the vertex b of PM . Then Kb = TR and consequently G(b) = T . Note that CbPM = −t+.

Straightforward computations show that for the smooth affine spherical T -variety

Xb = C with action t · v = t2v for t ∈ T, v ∈ Xb

the conditions in (1.4) hold again.

Remark 1.2 (a) Generalizing Example 1.1, Corollary 11.4 in [21] shows how one can recover

P. Iglésias’s classification of multiplicity free Hamiltonian SU(2)-manifolds in [15] from

Knop’s theorems above.

(b) Similarly, Delzant’s classification of symplectic toric manifolds in [11] by Delzant polytopes

is an immediate consequence of Knop’s results (see [21, Corollary 11.3].)

(c) In [22, Section 11], Knop has given examples of multiplicity free quasi-Hamiltonian mani-

folds M and the corresponding pairs (PM ,ΛM ). In his thesis [33], K. Paulus has obtained

classifications of certain subclasses of such manifolds using the results in [22].

For any given pair (P,Λ0) and vertex a of P, checking the conditions (1.4) can be reduced

to a finite number of elementary verifications. Indeed, in [34] Pezzini and Van Steirteghem

used the combinatorial theory of spherical varieties (always defined over C in this paper) and

a smoothness criterion due to R. Camus [10] to give a combinatorial characterization of the

weight monoids of smooth affine spherical varieties.

We also recall that, in [28], Losev proved Knop’s conjecture that a smooth affine spherical

variety is uniquely determined by its weight monoid. Put differently, the classification of smooth

affine spherical varieties is equivalent to the classification of their weight monoids. In this paper

we apply the criterion in [34] to classify the weight monoids of three families of smooth affine

spherical varieties.

More specifically, in Section 3 we find, for all simple groups G, the G-saturated smooth affine

spherical varieties of full rank (see Definitions 2.8 and 3.1 below). In Section 4 we classify the

smooth affine spherical (SL(2)×C×)–varieties. Finally, in Section 5 we show that every so-called

reflective monoid which is “Delzant” is the weight monoid of a smooth affine spherical variety,

see Theorem 5.10. Thanks to Knop’s aforementioned results on multiplicity free Hamiltonian

manifolds, this yields a new proof of one of C. Woodward’s results in [39]: every reflective

Delzant polytope is the moment polytope of a multiplicity free Hamiltonian manifold.

For completeness, we recall the existing classifications of smooth affine spherical varieties.

In [25], M. Krämer classified affine spherical homogeneous spaces G/H where G is simple,

while I.V. Mikityuk [32] and Brion [7] independently generalized this to arbitrary reductive

G. Spherical modules (that is, representations of G which are spherical when considered as G-

varieties) were classified in [6, 16, 27]. Building on these two cases, Knop and Van Steirteghem



Smooth affine spherical varieties of full rank 5

classified all smooth affine spherical varieties up to coverings, central tori, and C×-fibrations

in [24]. The weight monoids of the varieties in these classifications have been determined in

[25], [1], [27] (see also [20, Section 5]) and [23], respectively. We remark that these are all

classifications of so-called “primitive” smooth affine spherical varieties (see, e.g., [24, Examples

2.3 – 2.6] for why the restriction to such varieties is necessary). This means that, while possible,

obtaining the results of the present paper from these classifications would also require work.

For example, the (SL(2) × C×)–varieties we classify in Section 4 (cf. Table 5) correspond to

only four entries in the Tables of [24].

Notation

Throughout this paper, G will be a complex connected reductive group, with a chosen Borel

subgroup B and maximal torus T ⊂ B. The weight lattice Hom(T,C×), identified with

Hom(B,C×) as usual, will be denoted Λ. We will use ΛR for the root lattice and S for the set

of simple roots. When α ∈ S, we will use α∨ for the corresponding coroot, which we view as

an element of HomZ(Λ,Z). We will use Λ+ for the monoid of dominant weights. Recall that

every weight λ ∈ Λ+ naturally corresponds to an irreducible representation of G, which we

will denote V (λ). We will number the fundamental weights and the simple roots of the simple

Lie algebras and of the corresponding simply connected simple algebraic group as in [4]. All

varieties are defined over C and are, by definition, irreducible. Unless stated otherwise, X will

denote an affine spherical G-variety.

When F is a subset of Λ⊗Z R and A is a submonoid of (R,+), like N,Z,Q or Q≥0, we will

use the notation AF for the A-span of F in Λ ⊗Z R. For example, when Γ ⊂ Λ, then ZΓ and

Q≥0Γ are, respectively, the lattice and cone generated by Γ in Λ⊗Z Q. If F = {f1, f2, . . . , fn}
is a finite set, then we will also write 〈f1, f2, . . . , fn〉A for AF . If X is a lattice, then we will

write X ∗ for the dual lattice HomZ(X ,Z). By a polytope (or a convex polytope) we mean the

convex hull of finitely many points.

2 Smooth affine spherical varieties

In this section we begin by briefly reviewing notions from the combinatorial theory of affine

spherical varieties we will need. For further details and context, we refer to [9] and [34]. In

Theorem 2.18, we recall from [34] the characterization of G-saturated weight monoids of smooth

affine spherical varieties. This will be the main tool we will use in Section 3. As throughout

the paper, X is an affine spherical G-variety. As is well known, a normal affine G-variety Y is

spherical if and only if its coordinate ring C[Y ] is multiplicity free as a G-module [38].

Definition 2.1 Let Y be an affine G-variety. The weight monoid of Y is

Γ(Y ) := {λ ∈ Λ+ : dimC HomG(V (λ),C[Y ]) 6= 0}. (2.1)

Since X is a normal variety, its weight monoid Γ = Γ(X) is finitely generated and satisfies

the following equality in Λ⊗Z Q:

ZΓ ∩Q≥0Γ = Γ. (2.2)

In this paper we assume all monoids to be finitely generated, and we call a submonoid Γ of Λ+

satisfying condition (2.2) normal.
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It is well-known that non-isomorphic affine spherical G-varieties may have the same weight

monoid. For example, if G = SL(2) and V = 〈x2, xy, y2〉C is the vector space of binary forms

of degree 2 on which G acts by linear change of variables, then the smooth affine spherical

G-variety G · xy ⊂ V has the same weight monoid as the singular affine spherical G-variety

G · x2 ⊂ V . In the 1990s, Knop conjectured that for smooth affine spherical varieties the weight

monoid is a complete invariant. This conjecture was proved by Losev:

Theorem 2.2 ([28]) If X1 and X2 are smooth affine spherical G-varieties with Γ(X1) =

Γ(X2), then X1 and X2 are G-equivariantly isomorphic.

This result leads to a natural question: which normal submonoids of Λ+ are the weight

monoids of smooth affine spherical varieties?

Definition 2.3 Let Γ be a submonoid of Λ+. We will say that Γ is a smooth weight monoid

if there exists a smooth affine spherical G-variety X such that Γ(X) = Γ.

Example 2.4 Suppose G = T is a torus. Then Λ+ = Λ ∼= ZdimT . A basic fact in the theory

of toric varieties (see, e.g. [12, Section 2.1]) says that a submonoid Γ ⊂ Λ is a smooth weight

monoid if and only if

Γ = 〈λ1,−λ1, λ2,−λ2, . . . , λr,−λr, λr+1, λr+2, . . . , λn〉N

for some collection λ1, λ2, . . . , λn of Z-linearly independent elements of Λ and some r ∈ {0, 1, . . . ,
n}.

In contrast to the case where G is a torus, the characterization of smooth weight monoids

for general G is much more complicated. In [34, Theorem 4.2], Pezzini and Van Steirteghem

gave such a combinatorial characterization. We recall a special case below in Theorem 2.18.

Before doing so and for completeness we quickly recall the combinatorial invariants Sp(Γ),

ΣN (Γ) and SΓ needed in the statement of the theorem. We omit most of the discussion of the

geometric meaning of these invariants, but wish to emphasize that computing them only uses

basic combinatorics of root systems and elementary calculations.

Besides its weight monoid Γ(Y ), another important invariant of an affine G-variety Y is its

set ΣN (Y ) of N-spherical roots, which we now define. First, we recall that the root monoid

MY of Y is the submonoid of Λ generated by

{λ+ µ− ν | λ, µ, ν ∈ Λ+ such that C[Y ](ν) ∩ (C[Y ](λ)C[Y ](µ)) 6= 0},

where for γ ∈ Λ+ we used C[Y ](γ) for the isotypic component of type γ in C[Y ] and where

C[Y ](λ)C[Y ](µ) is the subspace of C[Y ] spanned by the set {fg : f ∈ C[Y ](λ), g ∈ C[Y ](µ)}. By

[19, Theorem 1.3], the saturation of MY , that is, the intersection of the cone spanned by MY

and the group generated by MY , is a free submonoid of ΛR.

Definition 2.5 Let Y be an affine G-variety. The set ΣN (Y ) of N-spherical roots of Y is

the basis (as a monoid) of the saturation of the root monoid MY of Y .

Definition 2.6 Let Γ be a submonoid of Λ+ and let σ ∈ ΛR. We say that σ is N-adapted

to Γ if there exists an affine spherical G-variety X such that ΣN (X) = {σ} and Γ(X) = Γ. We

use ΣN (Γ) for the set of all σ ∈ ΛR that are N-adapted to Γ.

Corollary 2.17 of [9], which we will recall in Proposition 4.1, gives a combinatorial description
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of ΣN (Γ), when Γ is normal. In Proposition 2.13 below we recall, from [34], the simpler

description of ΣN (Γ) under the stronger assumption that Γ be G-saturated.

Remark 2.7 In [28, Theorem 1.2], Losev proved that an affine spherical G-variety X (smooth

or not) is uniquely determined (up to G-equivariant isomorphism) by the pair Γ(X),ΣN (X).

In [2], R. Avdeev and S. Cupit-Foutou have proposed a proof that the root monoid of an affine

spherical variety is free.

Definition 2.8 Let Γ be a submonoid of the monoid Λ+ of dominant weights of G. We say

that Γ is G-saturated if the following equality holds in Λ:

ZΓ ∩ Λ+ = Γ. (2.3)

We will also call an affine spherical G-variety G-saturated if its weight monoid is G-saturated.

Remark 2.9 Observe that by (2.3), the lattice ZΓ determines Γ when Γ is G-saturated.

The following characterization of G-saturated affine spherical varieties, due to Luna, will

be useful later.

Proposition 2.10 ([34, Proposition 2.31 and Remark 2.32]) An affine spherical G-variety X

is G-saturated if and only if ΣN (X) does not contain any simple root and X has no G-stable

prime divisor.

Definition 2.11 Let σ be an element of the root lattice ΛR of G and let σ =
∑
α∈S nαα

be its unique expression as a linear combination of the simple roots. The support of σ is

supp(σ) = {α ∈ S : nα 6= 0}. The type of supp(σ) is the Dynkin type of the root subsystem

generated by supp(σ) in the root system of G. The set Σsc(G) of spherically closed spherical

roots of G is the subset of NS defined as follows: an element σ of NS belongs to Σsc(G) if σ

is listed in Table 1, where the numbering of the simple roots in supp(σ) is as in [4].

Table 1 Spherically closed spherical roots

Type of supp(σ) σ

A1 α1

A1 2α1

A1 × A1 α1 + α′1

An, n ≥ 2 α1 + . . .+ αn

A3 α1 + 2α2 + α3

Bn, n ≥ 2 α1 + . . .+ αn

2(α1 + . . .+ αn)

B3 α1 + 2α2 + 3α3

Cn, n ≥ 3 α1 + 2(α2 + . . .+ αn−1) + αn

Dn, n ≥ 4 2(α1 + . . .+ αn−2) + αn−1 + αn

F4 α1 + 2α2 + 3α3 + 2α4

G2 4α1 + 2α2

α1 + α2
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Definition 2.12 Let Γ be a set of dominant weights of G, that is Γ ⊂ Λ+. Then we define

Sp(Γ) := {α ∈ S : 〈α∨, λ〉 = 0 for all λ ∈ Γ}.

Proposition 2.13 ([34, Prop. 1.6]) Suppose Γ is a G-saturated submonoid of Λ+. The set

ΣN (Γ) consists of all σ ∈ Σsc(G) that satisfy all the following conditions:

(i) σ is not a simple root;

(ii) σ ∈ ZΓ;

(iii) σ is compatible with Sp(Γ), that is:

- if σ = α1 + . . . + αn with support of type Bn then {α2, α3, . . . , αn−1} ⊂ Sp(Γ) and

αn /∈ Sp(Γ);

- if σ = α1 + 2(α2 + . . .+ αn−1) + αn with support of type Cn then {α3, α4, . . . , αn} ⊂
Sp(Γ);

- if σ is any other element of Σsc(G) then {α ∈ supp(σ) : 〈α∨, σ〉 = 0} ⊂ Sp(Γ);

(iv) if σ = 2α ∈ 2S then 〈α∨, γ〉 ∈ 2Z for all γ ∈ ZΓ;

(v) if σ = α+ β with α, β ∈ S and α ⊥ β, then 〈α∨, γ〉 = 〈β∨, γ〉 for all γ ∈ ZΓ.

Proposition 2.14 ([34, Prop. 1.7]) Let Γ be a G-saturated submonoid of Λ+. Among all

the subsets F of S such that the relative interior of the cone spanned by {α∨|ZΓ : α ∈ F} in

HomZ(ZΓ,Q) intersects the cone

{ν ∈ HomZ(ZΓ,Q) : 〈ν, σ〉 ≤ 0 for all σ ∈ ΣN (Γ)}

there is a unique one, denoted SΓ, that contains all the others.

Definition 2.15 Let S be the set of simple roots of a root system. Let Sp be a subset of S.

Let ΣN be a subset of NS. We say that the triple (S, Sp,ΣN ) is admissible if there exists a

finite set I and for every i ∈ I a triple (Si, S
p
i ,Σi) from List 2.16 below and an automorphism

fi of the Dynkin diagram of Si such that the Dynkin diagram of S is the disjoint union over

i ∈ I of the Dynkin diagrams of the Si, that Sp = ∪ifi(Spi ) and that ΣN = ∪ifi(Σi).

List 2.16 (Primitive admissible triples) 1. (S, S, ∅) where S is the set of simple roots of an

irreducible root system;

2. (An, {α2, α3, . . . , αn}, ∅) for n ≥ 1;

3. (An, {α1, α3, α5, . . . , αn−1}, {α1 + 2α2 + α3, α3 + 2α4 + α5, . . . , αn−3 + 2αn−2 + αn−1}) for

n ≥ 4, n even;

4. (An × Ak, {αk+2, αk+3, . . . , αn}, {α1 + α′1, α2 + α′2, . . . , αk + α′k}) for n > k ≥ 2;

5. (Cn, {α2, α3, . . . , αn}, ∅) for n ≥ 2;

6. (D5, {α2, α3, α4}, {α2 + 2α3 + α4 + 2α5}).
For example, (A2 × D5, {α1, α

′
2, α
′
3, α
′
5}, {α′2 + 2α′3 + 2α′4 + α′5}) is an admissible triple.
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Remark 2.17 (a) Note that we allow I = ∅ in Definition 2.15: the triple (∅, ∅, ∅) is admissible.

(b) For n = 1, the triple (2.) in List 2.16 is (A1, ∅, ∅).

Theorem 2.18 ([34, Theorem 1.12]) If Γ is a G-saturated monoid of dominant weights of G,

then Γ is the weight monoid of a smooth affine spherical G-variety if and only if

(a) {α∨|ZΓ : α ∈ SΓ \ Sp(Γ)} is a subset of a basis of (ZΓ)∗; and

(b) for all α, β ∈ SΓ \ Sp(Γ) such that α 6= β and α∨|ZΓ = β∨|ZΓ we have α+ β ∈ ZΓ; and

(c) the triple (SΓ, S
p(Γ),ΣN (Γ) ∩ ZSΓ) is admissible.

Remark 2.19 As explained in [34], when Γ is G-saturated, Sp(Γ),ΣN (Γ), SΓ and (SΓ, S
p(Γ),

ΣN (Γ)∩ZSΓ) are standard invariants from the theory of spherical varieties of the “most generic”

affine spherical G-variety with weight monoid Γ (see Section 2 of loc.cit. for details). In par-

ticular, if Γ is a G-saturated weight monoid and X is a smooth affine spherical G-variety with

Γ(X) = Γ, then ΣN (Γ) = ΣN (X).

The following well-known consequence of the Elementary Divisors Theorem (see, e.g. [26,

Theorem 5.2, p.234]) is useful in verifying condition (a) of Theorem 2.18.

Lemma 2.20 Let k, l ∈ N with k ≥ l ≥ 1 and A ∈ Matk×l(Z). The following are equivalent:

(1) There exists a matrix C ∈ Matk×(k−l) such that the k × k block matrix (A|C) is invertible

over Z;

(2) The greatest common divisor of all l × l minors in A is equal to 1.

We will use Theorem 2.18 in Section 3 to determine the smooth weight monoids that are G-

saturated and have full rank, where G is a simple algebraic group. In his thesis [17], W.G. Kim

implemented Theorem 2.18 as an algorithm in Sage [35] for the case where G = SL(n) and Γ

is free. He also used the Theorem to find the smooth weight monoids for G = SL(n) generated

by fundamental weights, cf. [17, Theorem 4.1].

3 G-saturated smooth affine spherical varieties of full rank

In this Section we generalize [34, Theorem 1.15], which states: if G is a simply connected

semisimple linear algebraic group, then there exists a smooth affine model G-variety if and only

if the simple factors of G are of type A or of type C. Recalling that an affine spherical G-variety

is called a model variety if its weight monoid is Λ+, this theorem tells us for which semisimple

and simply connected groups Λ+ itself is a smooth weight monoid. Here we will determine all

the G-saturated weight monoids (and affine spherical varieties) of full rank that are smooth,

where G is simply connected and simple.

Definition 3.1 We will say that a sublattice X of Λ has full rank if rkX = rk Λ. Further-

more, we say that a submonoid of Λ+ has full rank if the lattice it generates in Λ has full rank.

Finally, we say that an affine spherical G-variety has full rank if its weight monoid has full

rank.
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3.1 Restrictions on the set of N-adapted spherical roots

We begin by collecting some immediate consequences of Theorem 2.18 that we will use in the

sequel. As the following sets of spherical roots will frequently show up, we give them a name:

2S := {2α : α ∈ S};

S+ := {α+ β : α, β ∈ S, α 6= β, α 6⊥ β}.

Lemma 3.2 Let Γ be a submonoid of Λ+.

(a) If rkZΓ = rk Λ, then Sp(Γ) = ∅

(b) If rkZΓ = rk Λ and Γ is G-saturated, then ΣN (Γ) ⊂ 2S ∪ S+.

Proof Assertion (a) follows from Definition 2.12 of Sp(Γ). Indeed, if α ∈ Sp(Γ), then ZΓ is

a subset of the lattice {λ ∈ Λ: 〈α∨, λ〉 = 0}, so that rkZΓ < rk Λ. Part (b) is a consequence

of Proposition 2.13. Indeed, it follows from the fact that Sp(Γ) = ∅ and condition (iii) in

Proposition 2.13 that if σ ∈ ΣN (Γ), then σ ∈ 2S ∪S+ or σ = α+α′ with α, α′ ∈ S and α ⊥ α′.
The second possibility cannot occur by condition (v) of Proposition 2.13 since rkZΓ = rk Λ. �

Lemma 3.3 Let Γ be a G-saturated submonoid of Λ+. If α ∈ S \ supp(ΣN (Γ)), then α ∈ SΓ.

Proof Observe that if α /∈ supp(ΣN (Γ)), then 〈α∨, σ〉 ≤ 0 for all σ ∈ ΣN (Γ). �

For the remainder of Section 3.1, we will assume that Γ is a smooth, G-saturated submonoid

of Λ+ of full rank.

Lemma 3.4 (a) If α, β ∈ SΓ with α 6= β, then α ⊥ β.

(b) If α ∈ SΓ, then 2α /∈ ΣN (Γ).

Proof Part (a) follows from Theorem 2.18(c) and both assertions of Lemma 3.2: the only

primitive admissible triple in List 2.16 of which the second component is equal to ∅ and the

third component is a subset of 2S ∪ S+ is (A1, ∅, ∅). Part (b) also immediately follows from

Theorem 2.18(c): there is no triple in List 2.16 for which the third component contains an

element of 2S. �

Lemma 3.5 Let α, β ∈ S with α 6= β and α 6⊥ β. Then the following hold:

(a) α ∈ supp(ΣN (Γ)) and β ∈ supp(ΣN (Γ)).

(b) Suppose 〈α∨, β〉 ∈ {−1,−3}. If 2α ∈ ΣN (Γ), then α+ β /∈ ΣN (Γ).

Proof We first show that α ∈ supp(ΣN (Γ)) or β ∈ supp(ΣN (Γ)). Indeed, if not then we

would have α, β ∈ SΓ by Lemma 3.3, which contradicts Lemma 3.4(a). To prove (a), we can

now assume that α ∈ supp(ΣN (Γ)). If β /∈ supp(ΣN (Γ)) held, then, using that α 6⊥ β, we

would have that 〈β∨, σ〉 < 0 for all σ ∈ ΣN (Γ) with α ∈ supp(σ). By Proposition 2.14 it would

follow that {α, β} ⊂ SΓ, contradicting Lemma 3.4(a). This proves (a). Assertion (b) follows

from conditions (ii) and (iv) in Proposition 2.13, since 〈α∨, α+ β〉 ∈ {−1, 1}. �

Lemma 3.6 Let α, β, γ ∈ S with α ⊥ γ, 〈α∨, β〉 = −1 and γ 6⊥ β. Then the following hold:

(a) If 2α ∈ ΣN (Γ), then β + γ /∈ ΣN (Γ).
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(b) Suppose 〈β∨, α〉 = −1. If α+ β ∈ ΣN (Γ), then β + γ ∈ ΣN (Γ).

Proof Assertion (a) follows from conditions (ii) and (iv) in Proposition 2.13, since 〈α∨, β+γ〉 =

−1.

We now prove (b). By Lemma 3.5(a) we know that γ ∈ supp(ΣN (Γ)) and by Lemma 3.5(b)

that 2β /∈ ΣN (Γ). To obtain a contradiction, we assume that β + γ /∈ ΣN (Γ). Then, by

Lemma 3.2(b), we know that 2γ ∈ ΣN (Γ), or γ + δ ∈ ΣN (Γ) for some δ ∈ S \ {γ} with γ 6⊥ δ.

We prove that both are impossible.

We first show that 2γ ∈ ΣN (Γ) cannot happen. If 〈γ∨, β〉 = −1, then this follows from

part (a). Next we consider the case 〈γ∨, β〉 6= −1. Then 〈γ∨, β〉 = −2 and the root subsystem

generated by {α, β, γ} is of type B3. If 2γ ∈ ΣN (Γ), then by Lemma 3.2(b) and Lemma 3.5(b),

2γ and α+β are the only elements of ΣN (Γ) with β or γ in their support. Since 〈2β∨+γ∨, α+

β〉 = 0 and 〈2β∨+γ∨, 2γ〉 = 0 it follows by Proposition 2.14 that {β, γ} ⊂ SΓ. This contradicts

Lemma 3.4(a).

We have shown that 2γ /∈ ΣN (Γ), and consequently, γ+δ ∈ ΣN (Γ) for some δ ∈ S\{γ} with

γ 6⊥ δ (there may be two such δ ∈ S if the component of the Dynkin diagram of S containing

α, β and γ is of type Dn,E6,E7 or E8 and γ is a node of degree 3). As is well known, the Dynkin

diagram of S contains no cycles, and consequently, α ⊥ δ and δ ⊥ β. Thus, 〈β∨+γ∨, α+β〉 ≤ 0

and 〈β∨+γ∨, γ+δ〉 ≤ 0. If the component of the Dynkin diagram of S containing α, β and γ is

of type Dn,E6,E7 or E8 and β is a node of degree 3, then there may exist α′ ∈ S \{α, β, γ} such

that α′ + β ∈ ΣN (Γ). In that case, 〈β∨ + γ∨, α′ + β〉 = 0. Since for every other σ ∈ ΣN (Γ) we

have β, γ /∈ supp(σ), and therefore 〈β∨, σ〉 ≤ 0 and 〈γ∨, σ〉 ≤ 0, it follows by Proposition 2.14

that {β, γ} ⊂ SΓ, again contradicting Lemma 3.4(a). �

3.2 Simple groups of type A

Applying Theorem 2.18 to G-saturated monoids of full rank for G simple and simply connected

of type A we obtain the following proposition.

Proposition 3.7 Let G = SL(n+ 1) for n ≥ 1. If Γ is a G-saturated submonoid of Λ+ of full

rank, then Γ is a smooth weight monoid if and only if one of the following holds

(1) 2ΛR ⊂ ZΓ ⊂ 2Λ;

(2) n is even and S+ ⊂ ZΓ;

(3) n is odd and S+ ⊂ ZΓ and {α∨1 |ZΓ, α
∨
3 |ZΓ, . . . α

∨
n |ZΓ} is part of a basis of (ZΓ)∗.

Remark 3.8 For n = 1, Proposition 3.7 asserts that the smooth weight monoids of rank 1 for

G = SL(2) are N(kω) with k ∈ {1, 2, 4}, where ω is the fundamental dominant weight (every

normal submonoid of Λ+ is G-saturated for G = SL(2)).

Proof It is well-known (and an exercise using Theorem 2.18 to show) that for SL(2) the only

smooth weight monoids of rank 1 are N(kω) with k ∈ {1, 2, 4}. What is left is to prove the

Proposition for n ≥ 2.

We first prove the “only if” statement in the proposition. It follows from Lemma 3.2(b),

Lemma 3.5 and Lemma 3.6 that ΣN (Γ) = 2S or ΣN (Γ) = S+. If ΣN (Γ) = 2S then 2ΛR ⊂ ZΓ by

Proposition 2.13(ii), while ZΓ ⊂ 2Λ by Proposition 2.13(iv). On the other hand, if ΣN (Γ) = S+
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and n is odd, then a straightforward computation shows that SΓ = {α1, α3, . . . , αn}. Condition

(a) in Theorem 2.18 then finishes the proof of the “only if” statement.

We now prove the reverse implication. If (1) holds, then one deduces from Proposition 2.13

that ΣN (Γ) = 2S. A straightforward computation then shows that SΓ = ∅, and therefore

(SΓ, S
p(Γ),ΣN (Γ) ∩ ZSΓ) = (∅, ∅, ∅), which is admissible. Consequently, Γ is smooth by Theo-

rem 2.18. If we have (2) or (3), then one computes using Proposition 2.13 that ΣN (Γ) = S+.

If n is even, then one computes that SΓ = ∅, and it follows again that Γ is smooth. If n is odd,

then SΓ = {α1, α3, . . . , αn}. Consequently, (SΓ, S
p(Γ),ΣN (Γ)∩ZSΓ) = ({α1, α3, . . . , αn}, ∅, ∅),

which is admissible. Condition (a) of Theorem 2.18 is met by Γ because it is part of the as-

sumption (3) in the Proposition, and condition (b) of the Theorem is trivially met. We have

shown that, once again, Γ is smooth. �

Remark 3.9 The “if” statement in Proposition 3.7 could also be proved by exhibiting for

every Γ satisfying (1), (2) or (3) a smooth affine spherical SL(n + 1)-variety with Γ(X) = Γ.

We list those varieties in Table 2.

In the next lemma, we describe the lattices ZΓ in Proposition 3.7 more explicitly.

Lemma 3.10 Let X be a sublattice of the weight lattice Λ of SL(n+ 1), where n ≥ 1.

(a) We have ΛR ⊂ X ⊂ Λ if and only if X = 〈α2, α3, . . . , αn, dωn〉Z for some d ∈ N with

d|(n+ 1).

(b) Suppose n is even. The lattice X has full rank and contains S+ if and only if X = ZS+ ⊕
Z(kωn−1) for some k ∈ N \ {0}.

(c) Suppose n is odd. The lattice X has full rank, contains S+ and {α∨1 |X , α∨3 |X , . . . , α∨n |X } is

part of a basis of X ∗ if and only if

X = 〈α2 + α3, α3 + α4, . . . , αn−1 + αn, eωn−1, rωn−1 + ωn〉Z

for some e, r ∈ N with e|n+1
2 and 0 ≤ r ≤ e− 1.

Proof We begin with the proof of assertion (a). The direct computation
∑n
k=1 kαk = (n+1)ωn

implies that ΛR = 〈α2, α3, . . . , αn, (n+1)ωn〉Z. One readily checks that Λ = 〈α2, α3, . . . , αn, ωn〉Z.

The assertion follows.

For the rest of the proof we put σi = αi+αi+1 for every i ∈ {1, 2, . . . , n−1}. Sublattices X
of Λ of full rank and containing S+ are in one-to-one correspondence with subgroups of Λ/ZS+

of maximal rank. We now prove assertion (b) and assume that n ≥ 2 is even. One checks that(∑n
2−1

k=1 k(σ2k−1 + σ2k)

)
+ n

2σn−1 = n
2ωn−1 + ωn.

Clearly, this implies that

ZS+ = 〈σ2, σ3, . . . , σn−1,
n
2ωn−1 + ωn〉Z.

Next, consider the matrix A ∈ Matn×n(Z) whose (i, j)-th entry is

Aij =


〈α∨j , σi+1〉 if 1 ≤ i ≤ n− 2;

〈α∨j , n2ωn−1 + ωn〉 if i = n− 1;

〈α∨j , ωn−1〉 if i = n.
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It is straightforward to compute that det(A) = 1. This implies that

Λ = ZS+ ⊕ Zωn−1.

Assertion (b) follows.

We now move to the proof of the assertion (c). Assume that n is odd, and put d = n+1
2 .

One checks that ∑d−1
k=1k(σ2k−1 + σ2k) = dωn−1

Clearly, this implies that

ZS+ = 〈σ2, σ3, . . . , σn−1, dωn−1〉Z.

Next, consider the matrix C ∈ Mat(n−1)×n(Z) whose (i, j)-th entry is

Cij =

〈α∨j , σi+1〉 if 1 ≤ i ≤ n− 2;

〈α∨j , dωn−1〉 if i = n− 1

For example, for n = 5, we have

C =


−1 1 1 −1 0

0 −1 1 1 −1

0 0 −1 1 1

0 0 0 3 0


It follows by a standard argument that Λ/ZS+ ∼= Z⊕ Z/dZ and that the inverse image of the

torsion Z/dZ under the quotient map Λ � Λ/ZS+ is

〈σ2, σ3, . . . , σn−1, ωn−1〉Z.

One deduces that if X is a lattice of rank n containing ZS+, then

X = 〈σ2, σ3, . . . , σn−1, eωn−1, rωn−1 +mωn〉Z

for some e, r,m ∈ N with e|d, 0 ≤ r ≤ e − 1 and m 6= 0. Applying Lemma 2.20 one shows

that for such a lattice X , the set {α∨1 |X , α∨3 |X , . . . , α∨n |X } is part of a basis of X ∗ if and only if

m = 1. This proves the Lemma. �

Remark 3.11 We observe that it follows from Lemma 3.10 that there are infinitely many

lattices ZΓ (and correspondingly infinitely many non-isomorphic smooth affine spherical SL(n)-

varieties) satisfying (2) in Proposition 3.7. On the other hand, there are only finitely many

lattices ZΓ satisfying (3) in Proposition 3.7: in fact there are σ(n+1
2 ) such lattices, where

σ(n+1
2 ) is the sum of all divisors of n+1

2 . We also observe that there are τ(n + 1) lattices ZΓ

satisfying (1) of Proposition 3.7, where τ(n+ 1) is the number of divisors of n+ 1.

Corollary 3.12 Let G = SL(n + 1) with n ≥ 1. A G-saturated submonoid Γ of Λ+ of full

rank is a smooth weight monoid if and only if

(1) ZΓ = 2〈α2, α3, . . . , αn, dωn〉Z for some d ∈ N with d|(n+ 1);

(2) n is even and ZΓ = 〈α1 + α2, α2 + α3, . . . , αn−1 + αn, kωn−1〉Z for some k ∈ N \ {0}; or
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(3) n is odd and ZΓ = 〈α2 +α3, α3 +α4, . . . , αn−1 +αn, eωn−1, rωn−1 +ωn〉Z for some e, r ∈ N
with e|n+1

2 and 0 ≤ r ≤ e− 1.

Remark 3.13 In Table 2 and in the proof of Corollary 3.15 below, the special orthogonal

group SO(n+ 1) is defined as the set of matrices g ∈ SL(n+ 1) such that g · tg = Id, and when

n is odd, we choose Sp(n + 1) inside SL(n + 1) to be the subgroup fixing the skew-symmetric

bilinear form given by the matrix

J =



0 1 . . . 0 0

−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . −1 0


When n is even, as in case 5 of Table 2, we embed Sp(n) into SL(n+ 1) via A 7→ (A 0

0 1 ).

Remark 3.14 In the proofs of Corollaries 3.15 and 3.19 below, we use references where the

sets of N-spherical roots of certain varieties are computed. To be precise, in these references

one finds the sets of their spherical roots, which can be defined for an affine spherical variety

Z as the primitive elements in ZΓ(Z) that are positive rational multiples of the elements of

ΣN (Z). Denote by Σ(Z) the set of spherical roots of Z. The relation between ΣN (Z) and Σ(Z)

was described by Losev in [29, Theorem 2] and for more details on these sets we refer to [37].

Here we will only need the following simple observation: in general, the elements of ΣN (Z)

appear in Table 1, and are positive integer multiples of the elements of Σ(Z). This is enough to

conclude that ΣN (Z) = Σ(Z) in all cases we refer to during the aforementioned proofs, as one

can check case-by-case using the description of Σ(Z) given in the references used in the proofs

of the Corollaries.

Corollary 3.15 Let G = SL(n + 1) with n ≥ 1. Every G-saturated smooth affine spherical

G-variety of full rank is G-equivariantly isomorphic to a (unique) G-variety in Table 2.

Table 2: G-saturated smooth affine spherical SL(n+ 1)-varieties of

full rank.

Case n X ZΓ(X) ΣN (X) param.

1 1 C2 〈ω1〉Z ∅

2 1 SL(2)/T 〈2ω1〉Z {2α1}

3 1 SL(2)/N(T ) 〈4ω1〉Z {2α1}
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4 ≥ 2

SL(n+ 1)/ZdSO(n+ 1)

Zd := {ζId : ζ ∈ C, ζd = 1}

if n is even,

Zd := 〈diag(ξ
n+1
d , . . . , ξ

n+1
d ,

(−ξ)
n+1
d )〉

ξ=primitive 2(n+ 1)-th root of 1

if n is odd

2〈α2, α3, . . . , αn,

dωn〉Z
2S d|(n+ 1)

5
≥ 2,

even

SL(n+ 1)/HkSp(n)

Hk := {diag(ζ, . . . , ζ, ζ−n) :

ζ ∈ C, ζ2k = 1}

ZS+ ⊕ Z(kωn−1) S+ k ∈ N \ {0}

6
≥ 2,

odd

SL(n+ 1)×Z2eSp(n+1) Cn+1

Z2e defined as in case 4,

ζId ∈ Z2e acts on Cn+1

as the multiplication by ζr

〈α2 + α3, α3 + α4,

. . . , αn−1 + αn,

eωn−1,

rωn−1 + ωn〉Z

S+

e|n+1
2 ;

0 ≤ r

≤ e− 1

Proof of Corollary 3.15 We first show that the varieties in Table 2 do have the lattices specified

in the table. Then we will prove that each variety of the table is G-saturated. By the “only if”

part of Proposition 3.7 and Losev’s Theorem 2.2, this will finish the proof.

For the three SL(2)-varieties the claims above are well known, so we only deal with the

remaining varieties.

To avoid confusion, during the proof we denote by X the smooth affine variety having G-

saturated weight monoid, and such that ZΓ(X) is the one given in the table, and we denote by

Y instead of X the “candidate” variety given in the second column of the table. By Remark 2.19

and the proof of Proposition 3.7, the set ΣN (X) is the one given in the fifth column of the table.

Let us consider the first remaining case, namely case 4, for the group G = SL(n+ 1) where

n ≥ 2. The lattice ZΓ(X) is 2〈α2, α3, . . . , αn, dωn〉Z where d|(n + 1). Notice that ZΓ(X) is

contained in the lattice 2〈α2, α3, . . . , αn, ωn〉Z, which is 2Λ, and the corresponding quotient has

order d. Moreover ZΓ(X) contains 2〈α2, α3, . . . , αn, (n+ 1)ωn〉Z, which is 2ΛR.

The variety Y given in the table is G-homogeneous, and the stabilizer indicated in the table

(call it H) contains SO(n+ 1) and is contained in NG(SO(n+ 1)). More precisely, the quotient

NG(SO(n + 1))/SO(n + 1) is cyclic of order n + 1: it is generated by the class of the matrix

ζ0Id (where ζ0 is a primitive (n + 1)-th root of unity) if n + 1 is odd, and by the class of the

matrix diag(ξ, . . . , ξ,−ξ) (where ξ is a primitive 2(n+ 1)-th root of unity) if n+ 1 is even. The

quotient H/SO(n+ 1) is the subgroup of NG(SO(n+ 1))/SO(n+ 1) of order d.

Set Y0 = G/SO(n + 1) and Y1 = G/NG(SO(n + 1)). Recall that if Z is an affine spherical

variety then ZΓ(Z) is the lattice of B-eigenvalues of B-eigenvectors of C(Z). Then ZΓ(Y0) ⊃
ZΓ(Y ) ⊃ ZΓ(Y1), and, by [13, Lemma 2.4], the quotient ZΓ(Y0)/ZΓ(Y ) is isomorphic to the

character group of H/SO(n+ 1), so it is cyclic of order d.

On the other hand it is well-known that ZΓ(Y0) = 2Λ (see e.g. [25, Tabelle 1]), and ZΓ(Y1) =
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2ΛR (because ZΓ(Y1) = ZΣN (Y1) and ΣN (Y1) = 2S, see e.g. [30, Section 5.2]). This implies

that ZΓ(Y0) ⊃ ZΓ(X) ⊃ ZΓ(Y1).

The desired equality ZΓ(X) = ZΓ(Y ) follows, because both quotients ZΓ(Y0)/ZΓ(Y ) and

ZΓ(Y0)/ZΓ(X) are quotients of the cyclic group ZΓ(Y0)/ZΓ(Y1) and have the same order.

We discuss case 5, with the lattice ZS+ ⊕ Z(kωn−1) where k ∈ N \ 0, for G = SL(n + 1)

where n is even. The proof goes similarly as the previous case: we set Y0 = G/Sp(n) and

Y1 = G/NG(Sp(n)), and we observe that the fibers of the natural map Y0 → Y have cardinality

k, hence this is also the index of ZΓ(Y ) in ZΓ(Y0).

We have that ZS+ = ZΓ(Y1), because ZΓ(Y1) = ZΣN (Y1) and ΣN (Y1) = S+ by [5, Sec-

tion 3, Case 31], therefore ZS+ ⊂ ZΓ(Y ). Now ZΓ(Y0) has a unique subgroup that contains

S+ and is of index k, namely ZΓ(X). The desired equality ZΓ(X) = ZΓ(Y ) follows.

Let us consider case 6. The lattice ZΓ(X) is 〈α2+α3, α3+α4, . . . , αn−1+αn, eωn−1, rωn−1+

ωn〉Z where e|n+1
2 and 0 ≤ r ≤ e−1, for G = SL(n+1) where n is odd. Here again ΣN (X) = S+.

The variety Y is here SL(n+ 1)×Z2eSp(n+1) Cn+1, where diag(ζ) ∈ Z2e acts on Cn+1 as the

multiplication by ζr. Set Y0 = SL(n + 1) ×Sp(n+1) Cn+1. It is well known that ZΓ(Y0) is the

weight lattice of G and that ΣN (Y0) = S+, see e.g. [31, Section 3.3]. The map

π : Y0 = SL(n+ 1)×Sp(n+1) Cn+1 → Y = SL(n+ 1)×Z2eSp(n+1) Cn+1

[g, v] 7→ [g, v]

is surjective and G-equivariant, and its generic fibers have cardinality equal to the index of

ZΓ(X) in ZΓ(Y0).

Let us define B-eigenvectors of C(Y0) of B-eigenvalues ωn and ωn−1. Denote by H the

stabilizer in SL(n + 1) of the point [eG, en+1] ∈ Y , where eG is the neutral element of G and

(ei)i∈{1,...,n+1} is the standard basis of Cn+1. Then the open G-orbit of Y0 is isomorphic to

the homogeneous space G/H. The map gH 7→ gn+1,n+1, where g = (gi,j)i,j∈{1,...,n+1} ∈ G,

is a B-eigenvector of C(G/H), hence of C(Y0), of B-eigenvalue ωn. On the other hand, a

B-eigenvector of C[Y0] of B-eigenvalue ωn−1 is the map

[g, v] 7→ Pf

 an,n an,n+1

an+1,n an+1,n+1


where a = gJ(tg). Then it is elementary to check that the functions having weights resp.

eωn−1 and rωn−1 + ωn descend to B-semiinvariant rational functions on Y . Moreover, since

π : Y0 → Y is finite, we have ΣN (Y ) = ΣN (Y0) up to replacing some elements with positive

rational multiples. But Table 1 and the fact that ΣN (Y0) = S+ imply that ΣN (Y ) = S+. We

conclude that αi + αi+1 is in ZΓ(Y ) for all i ∈ {2, . . . , n− 1}.
It follows that ZΓ(Y ) ⊃ ZΓ(X), and since they are two sublattices of same index in ZΓ(Y0),

they are equal.

To finish the proof, it remains to prove that Y is G-saturated, where Y is any of the last

three cases of the table. We use Proposition 2.10, and we must check that ΣN (Y ) does not

contain any simple root, and that Y has no G-stable prime divisor.

For cases 4 and 5, recall that we have defined a homogeneous variety Y1 such that ΣN (Y1)

doesn’t contain any simple root. Then Y1 is G-saturated by loc.cit., and Y too, because there
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exists a surjective G-equivariant finite map Y → Y1 as we have seen. We also deduce that

X = Y , whence ΣN (Y ) is indeed the set indicated in the fifth column of the table.

Finally, we consider case 6. Here we have defined a variety Y0 such that ΣN (Y0) = S+. The

variety Y0 has no G-stable prime divisor: indeed, a G-stable prime divisor of Y0 would intersect

the subset V = {[eG, v] : v ∈ Cn+1} of Y0 in a Sp(n + 1)-stable prime divisor of V ∼= Cn+1,

which is absurd.

Then Y0 is G-saturated, and so is Y because of the surjective G-equivariant finite map

π : Y0 → Y that we have defined. We have already shown that ΣN (Y ) = S+, so the proof is

complete. �

3.3 Other types

We now classify the smooth and G-saturated affine spherical varieties of full rank, when G is a

simply connected simple group not of type A.

Proposition 3.16 Suppose G is a simply connected simple group of type different from A. A

G-saturated submonoid Γ of Λ+ of full rank is a smooth weight monoid if and only if one of the

following holds:

1. 2ΛR ⊂ ZΓ ⊂ 2Λ;

2. G is of type Bn with n ≥ 2 and 〈α1 + α2, α2 + α3, . . . , αn−1 + αn, 2αn〉Z ⊂ ZΓ ⊂
〈ω1, ω2, . . . , ωn−1, 2ωn〉Z; or

3. G is of type Cn with n ≥ 2 and ZΓ = Λ.

The proof of this proposition will be given on page 21

Remark 3.17 The lattices ZΓ satisfying 2ΛR ⊂ ZΓ ⊂ 2Λ are in natural bijective correspon-

dence with the subgroups of the quotient 2Λ/2ΛR ∼= Λ/ΛR. For all simply connected simple

groups G, the quotient Λ/ΛR can be found in [4, Planches I-IX]:

Type of G Λ/ΛR

Bn, n ≥ 2 Z/2Z

Cn, n ≥ 3 Z/2Z

Dn, n ≥ 4 even Z/2Z× Z/2Z

Dn, n ≥ 5 odd Z/4Z

E6 Z/3Z

E7 Z/2Z

E8 {0}

F4 {0}

G2 {0}

Remark 3.18 In Table 4 and in the proof of Corollary 3.19 below, the orthogonal group is

defined as the stabilizer of the symmetric bilinear form given by the matrix J that has entries
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equal to 1 on the skew diagonal, and zeros elsewhere. We denote by (ei)i∈{1,...,2n} the standard

basis of C2n (with n ≥ 4), and if n is even then we define the subgroup SO(n) × SO(n) of

SO(2n) as the stabilizer of the subspace of C2n generated by en
2 +1, en2 +2, . . . , e 3n

2
. If n is odd,

we define SO(n)×SO(n) as the stabilizer of any subspace of C2n where the above bilinear form

is nondegenerate. For the exceptional groups appearing in homogeneous spaces written e.g. as
E6

C4
, the numerator refers to the simply connected simple group, and the Dynkin types appearing

in the denominator refer to connected semisimple subgroups of the corresponding type.

Corollary 3.19 Let G be a simply connected simple group of type different from A. Every

G-saturated smooth affine spherical G-variety of full rank is G-equivariantly isomorphic to a

(unique) G-variety in Table 4.

Table 4: G-saturated smooth affine spherical G-varieties of full

rank with G simple and not of type A.

Case G X ZΓ(X) ΣN (X)

1
Spin(2n+ 1),

n ≥ 2

SO(2n+1)
S(O(n+1)×O(n)) 2ΛR 2S

2
Spin(2n+ 1),

n ≥ 2

SO(2n+1)
SO(n+1)×SO(n) 2Λ 2S

3
Spin(2n+ 1),

n ≥ 2

SO(2n+1)
N(GL(n)) Z(S+ ∪ {2αn}) S+ ∪ {2αn}

4
Spin(2n+ 1),

n ≥ 2

SO(2n+1)
GL(n)

〈ω1, ω2, . . . , ωn−1,

2ωn〉Z
S+ ∪ {2αn}

5
Sp(2n),

n ≥ 3

Sp(2n)
N(GL(n)) 2ΛR 2S

6
Sp(2n),

n ≥ 3

Sp(2n)
GL(n) 2Λ 2S

7
Sp(2n),

n ≥ 2

Sp(2n)×Sp(2a)×Sp(2b) C2b

a = b = n/2

if n is even,

a = b− 1 = (n− 1)/2

if n is odd

Λ S+

8
Spin(2n),

n ≥ 4

SO(2n)
N(SO(n)×SO(n)) 2ΛR 2S

9
Spin(2n),

n ≥ 4

SO(2n)
SO(n)×SO(n) 2Λ 2S
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10
Spin(2n),

n ≥ 4

SO(2n)
S(O(n)×O(n))

2〈α1, . . . , αn−2,

αn, ω1〉Z
2S

11
Spin(2n),

n ≥ 4 even

SO(2n)
〈A·(SO(n)×SO(n))〉 ,

where Aei = −en−i+1,

Aen
2

+i = en
2

−i+1,

Aen+i = e2n−i+1,

Ae 3n
2

+i
= −e 3n

2
−i+1

for all i ∈ {1, . . . , n/2}

2〈α1, . . . , αn−2,

αn, ωn〉Z
2S

12
Spin(2n),

n ≥ 4 even

SO(2n)
〈A·S(O(n)×O(n))〉

2〈α1, . . . , αn−2,

αn, ω1 + ωn〉Z
2S

13 E6
E6

Z(E6)C4
2ΛR 2S

14 E6
E6

C4
2Λ 2S

15 E7
E7

N(A7) 2ΛR 2S

16 E7
E7

A7
2Λ 2S

17 E8
E8

D8
2Λ = 2ΛR 2S

18 F4
F4

C3×A1
2Λ = 2ΛR 2S

19 G2
G2

A1×A1
2Λ = 2ΛR 2S

Proof of Corollary 3.19 We proceed as in the proof of Corollary 3.15. Again, during the proof

we denote by X the smooth affine variety having G-saturated weight monoid, and such that

ZΓ(X) is the one given in the table, and we denote by Y instead of X the “candidate” variety

given in the third column of the table. By the proof of Proposition 3.16, the set ΣN (X) is the

one given in the last column of the table. For the cases where the variety Y is homogeneous,

let us denote by G0 and H0 the groups and subgroups specified in the third column of the table

such that Y = G0/H0; notice that G0 is an isogenous quotient of G.

Let us consider the entries of the table where the variety Y is homogeneous, and the cor-

responding stabilizer H0 is equal to the normalizer NG0
(H◦0 ) of its connected component H◦0

containing the neutral element. They are cases 1, 3, 5, 8, 13, 15, 17, 18, 19.

These varieties are given in the paper [5] (they are, respectively, cases 9 with p = q, 33, 13,

15 with p = q, 21, 25, 27, 29, 30 of loc.cit.) together with the set ΣN (Y ) which is equal to

ΣN (X). Moreover, for such varieties we have that ZΓ(Y ) is equal to the lattice generated by

ΣN (Y ) (see loc.cit.), and this is precisely ZΓ(X). Notice that for these cases Y is G-saturated

thanks to Proposition 2.10, since it is homogeneous and ΣN (Y ) does not contain simple roots.

Let us consider cases 2, 4, 6, 9, 10 with n odd, 14, 16. They are all homogeneous, and

for each of them the variety Y1 = G0/NG0(H◦0 ) appears as one of the cases considered before.
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We have seen that Y1 is G-saturated, whence Y has this property too. In all cases one checks

that ZΓ(X) contains ZΓ(Y1), and that the index of H0 in NG0(H◦0 ) is equal to the index of

ZΓ(Y1) in ZΓ(X). We conclude that ZΓ(Y1) has the same index in ZΓ(X) and in ZΓ(Y ) by

[13, Lemma 2.4]. Using this fact, one checks using Proposition 3.16 together with the fact that

Y is smooth and G-saturated that the only possibility for ZΓ(Y ) is ZΓ(X). We underline that

this argument is valid for case 10 with n odd because the quotient 2Λ/2ΛR is cyclic, and the

lattice of case 10 (with n odd) corresponds to the unique subgroup of order 2 of this quotient.

We turn to the cases 10 with n even, 11, and 12. They are similar to case 10 with n odd,

but here 2Λ/2ΛR ∼= (Z/2Z) × (Z/2Z), and the three cases under consideration correspond to

the three subgroups of order 2 of this quotient.

Since we treat these varieties together, let us rename then as Y1 = SO(2n)/H1, Y2 =

SO(2n)/H2, and Y3 = SO(2n)/H3, where H1 = S(O(n)×O(n)), H2 = 〈A · (SO(n)× SO(n))〉,
and H3 = 〈A · S(O(n)×O(n))〉.

Notice that NG(SO(n) × SO(n))/(SO(n) × SO(n)) is isomorphic to (Z/2Z) × (Z/2Z), and

is generated by the classes of A and of an element in S(O(n) × O(n)) \ (SO(n) × SO(n)). By

[13, Lemma 2.4], the lattice ZΓ(Yi) contains ZΓ(SO(2n)/NG(SO(n) × SO(n))) as a sublattice

of index 2, and is a sublattice of index 2 of ZΓ(SO(2n)/(SO(n) × SO(n))). To check that the

lattice ZΓ(Yi) is the one indicated in the table, it is enough to exhibit a rational function on

SO(2n) that is Hi-invariant by right multiplication, and B-semiinvariant of weight 2ω1 and 2ωn

for resp. i = 1 and i = 2.

A function for i = 1 with the desired properties is the one that associates to g ∈ SO(2n)

the value v(g) · J · tv(g), where v(g) is obtained from the last row of g setting to 0 the first

n/2 and the last n/2 entries. A function for i = 2 is the one that associates to g ∈ SO(2n) the

n× n-minor given by the last n rows and the middle n columns of the matrix g.

Finally, it remains to discuss the only case in the table where Y is not homogeneous, namely

case 7. It is well known that ZΓ(Y ) = Λ and that ΣN (Y ) = S+, see e.g. [31, Section 3.3].

The variety Y has no G-stable prime divisors, by the same argument used for the variety

SL(n + 1) ×Sp(n+1) Cn+1 in the proof of Corollary 3.15. Then Y is G-saturated, again by

Proposition 2.10, and the proof is complete. �

Lemma 3.20 Let G be a simple group of type different from A and let Γ ⊂ Λ+ be a G-saturated

submonoid of full rank. If Γ is smooth then one of the following holds:

(a) ΣN (Γ) = 2S;

(b) G is of type Cn with n ≥ 2 and ΣN (Γ) = S+; or

(c) G is of type Bn with n ≥ 2 and ΣN (Γ) = S+ ∪ {2αn}.

Proof By Lemma 3.5(a) and Lemma 3.2(b) we know that supp(ΣN (Γ)) = S and ΣN (Γ) ⊂
S+ ∪ 2S. We first suppose that the Dynkin diagram of G is simply laced (i.e. G is of type Dn,

E6, E7 or E8). It follows from repeated applications of Lemma 3.5(b) and Lemma 3.6(a) that if

2α1 ∈ ΣN (Γ), then ΣN (Γ) = 2S. On the other hand, if 2α1 /∈ ΣN (Γ), then α1 + α2 ∈ ΣN (Γ)

and it then follows from the same lemmas that ΣN (Γ) = S+. We claim that Lemma 3.4(a)
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implies that ΣN (Γ) = S+ is not possible. We show this by contradiction: we suppose that

ΣN (Γ) = S+ and show that SΓ contains two non-orthogonal simple roots. Indeed,

- if G is of type Dn with n ≥ 4, then one checks that 〈α∨n−3 +α∨n−2 +α∨n−1 +α∨n , σ〉 ≤ 0 for

all σ ∈ S+ and consequently {αn−3, αn−2, αn−1, αn} ⊂ SΓ;

- if G is of type E6,E7,E8 then one checks that 〈α∨2 + α∨3 + α∨4 + α∨5 , σ〉 ≤ 0 for all σ ∈ S+

and consequently {α2, α3, α4, α5} ⊂ SΓ.

This proves the Lemma for groups with a simply laced Dynkin diagram.

Next, suppose that G is of type Cn with n ≥ 3. If 2αn ∈ ΣN (Γ), then it follows as above

that ΣN (Γ) = 2S. On the other hand if 2αn /∈ ΣN (Γ), then we know that αn−1 +αn ∈ ΣN (Γ).

Then it follows from Lemma 3.6(a) that 2αn−2 /∈ ΣN (Γ). Consequently αn−2+αn−1 ∈ ΣN (Γ) if

n = 3 and αn−2 +αn−1 ∈ ΣN (Γ) or αn−3 +αn−2 ∈ ΣN (Γ) if n ≥ 4, since αn−2 ∈ supp(ΣN (Γ)).

By Lemma 3.6(b) this implies that αn−2 + αn−1 ∈ ΣN (Γ) and αn−3 + αn−2 ∈ ΣN (Γ) when

n ≥ 4. Continuing to apply Lemma 3.6(b) we deduce that S+ ⊂ ΣN (Γ). It then follows from

(n − 2) applications of Lemma 3.5(b) that ΣN (Γ) ∩ 2S = ∅ and therefore ΣN (Γ) = S+. We

have proven the Lemma for groups of type Cn with n ≥ 3

Now, we suppose that G is of type Bn with n ≥ 3. If 2α1 ∈ ΣN (Γ), then it follows as

before that ΣN (Γ) = 2S. If 2α1 /∈ ΣN (Γ), then α1 + α2 ∈ ΣN (Γ) and it follows by (n − 2)

applications of Lemma 3.6(b) that S+ ⊂ ΣN (Γ). In turn, this implies by (n−2) applications of

Lemma 3.5(b) that ΣN (Γ)∩ 2S ⊂ {2αn}. Lemma 3.4(a) rules out the possibility ΣN (Γ) = S+.

Indeed, one checks that 〈α∨n−2 + α∨n−1 + α∨n , σ〉 ≤ 0 for all σ ∈ S+. This means that if we had

ΣN (Γ) = S+, we would have {αn−2, αn−1, αn} ⊂ SΓ, which contradicts Lemma 3.4(a). This

shows the Lemma for groups of type Bn with n ≥ 3.

Next we suppose that G is of type B2. If 2α1 ∈ ΣN (Γ), then α1 + α2 /∈ ΣN (Γ) by

Lemma 3.5(b) and consequently ΣN (Γ) = 2S. On the other hand if 2α1 /∈ ΣN (Γ), then

α1 + α2 ∈ ΣN (Γ) and consequently ΣN (Γ) = {α1 + α2} or ΣN (Γ) = {α1 + α2, 2α2}. Since

B2
∼= C2, we have proven the Lemma for groups of type Bn and Cn with n ≥ 2.

We turn to the case where G is of type F4. If 2α1 ∈ ΣN (Γ) then by Lemma 3.5(b) and

Lemma 3.6(a) we have that α1 +α2, α2 +α3 /∈ ΣN (Γ). Since α2 ∈ supp(ΣN (Γ)) it follows that

2α2 ∈ ΣN (Γ) and again by Lemma 3.6(a) that α3+α4 /∈ ΣN (Γ). Consequently ΣN (Γ) = 2S. On

the other hand, if 2α1 /∈ ΣN (Γ), then α1 +α2 ∈ ΣN (Γ) and by Lemma 3.6(b) α2 +α3 ∈ ΣN (Γ).

This implies by Lemma 3.5(b) and Lemma 3.6(a) that 2α2 /∈ ΣN (Γ) and 2α4 /∈ ΣN (Γ). Since

α4 ∈ supp(ΣN (Γ)), we deduce that α3 + α4 ∈ ΣN (Γ) and from Lemma 3.5(b) we obtain that

2α3 /∈ ΣN (Γ). We have shown that if 2α1 /∈ ΣN (Γ), then ΣN (Γ) = S+, but this is impossible

by Lemma 3.4(a) since 〈α∨1 + α∨2 + α∨3 , σ〉 = 0 for all σ ∈ S+. This proves the Lemma for G of

type F4.

Finally, when G is of type G2, it follows from Lemma 3.5 that ΣN (Γ) = S+ or ΣN (Γ) =

2S. The former is not possible by Lemma 3.4(a) since 〈α∨1 + α∨2 , α1 + α2〉 = 0 and therefore

{α1, α2} ∈ SΓ. This finishes the proof of the Lemma. �

Proof of Proposition 3.16 We begin by proving “⇒”. Assume that Γ is smooth. It follows

from Lemma 3.20 that we have to consider three possibilities for ΣN (Γ). If ΣN (Γ) = 2S then

it follows from (ii) and (iv) in Proposition 2.13 that 2ΛR ⊂ ZΓ ⊂ 2Λ.
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The second possibility we have to consider is that G is of type Cn with n ≥ 2 and ΣN (Γ) =

S+. One checks that 〈
∑
i odd α

∨
i , σ〉 ≤ 0 for all σ ∈ S+. Consequently, {αi : i odd} ⊂ SΓ. It

follows from Theorem 2.18(a) that

{α∨i |ZΓ : i odd} is part of a basis of ZΓ∗. (3.1)

By Proposition 2.13(ii) we know that S+ ⊂ ZΓ. A simple computation shows that ZS+ contains

〈ωk : k even〉Z and so {ωk : k even} ⊂ ZΓ. Since {ωk : k even} is part of a basis of Λ, it is part

of a basis of ZΓ. We choose F ⊂ ZΓ so that F ∪ {ωk : k even} is a basis of ZΓ. Without loss of

generality, we may assume that F ⊂ 〈ωi : i odd〉Z. Using Lemma 2.20 it now follows from (3.1)

that ZF = 〈ωi : i odd〉Z and therefore that ZΓ = Λ.

The third and final possibility is that G is of type Bn with n ≥ 2 and ΣN (Γ) = S+ ∪
{2αn}. Then it follows from (ii) and (iv) in Proposition 2.13 that Z(S+ ∪ {2αn}) ⊂ ZΓ ⊂
〈ω1, ω2, . . . , ωn−1, 2ωn〉Z. This finishes the proof of the implication “⇒.”

We now prove the other implication “⇐.” This is a straightforward application of Theo-

rem 2.18. Indeed, if 2ΛR ⊂ ZΓ ⊂ 2Λ, then it follows from Proposition 2.13 that ΣN (Γ) = 2S.

One computes that SΓ = ∅ and it follows that Γ is smooth. Similarly, if G is of type Bn with

n ≥ 2 and 〈α1+α2, α2+α3, . . . , αn−1+αn, 2αn〉Z ⊂ ZΓ ⊂ 〈ω1, ω2, . . . , ωn−1, 2ωn〉Z then it follows

from Proposition 2.13 that ΣN (Γ) = S+∪{2αn}. One computes that SΓ = ∅ and it again follows

that Γ is smooth. Finally, if G is of type Cn with n ≥ 2 and ZΓ = Λ, then ΣN (Γ) = S+ and one

computes that SΓ = {αi : i odd}. It follows that (SΓ, S
p(Γ),ΣN (Γ)∩ZSΓ) = ({αi : i odd}, ∅, ∅),

which is admissible. Condition (a) of Theorem 2.18 is clearly met and condition (b) is trivially

met. It follows once again that Γ is smooth. This completes the proof of the Proposition. �

4 Smooth affine spherical SL(2)× C×-varieties

In this section, we will apply the results from [34] to classify all smooth affine spherical SL(2)×
C×-varieties, see Theorem 4.3 and Corollary 4.4.

Since we are no longer restricting ourselves to G-saturated weight monoids and varieties in

this and the next section, we will apply the general characterization of smooth weight monoids

[34, Theorem 4.2], rather than Theorem 2.18 above. Because stating the general characteriza-

tion requires a substantial number of additional notions from the theory of spherical varieties,

we have not included it in this paper. In this section and the next, we have included precise

references whenever we appeal to the results in [34] in proofs.

Without the assumption of G-saturatedness, the combinatorial description of the set ΣN (Γ)

becomes a little more involved than in Proposition 2.13 because it is now possible for ΣN (Γ) to

contain simple roots. Before restricting ourselves to G = SL(2)×C×, we recall this description,

which we will also use in Section 5, from [9]. To do so, we introduce some additional notation:

if Γ is a normal submonoid of Λ+, then we denote

1. by Γ∨ the dual cone of Γ in HomZ(Γ,Q), that is

Γ∨ := {v ∈ HomZ(ZΓ,Q) : 〈v, γ〉 ≥ 0 for all γ ∈ Γ};

2. by E(Γ) the set of primitive vectors on the extremal rays of Γ∨, that is

E(Γ) := {δ ∈ (ZΓ)∗ : δ spans an extremal ray of Γ∨ and δ is primitive in ZΓ∗};
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3. by a(α) the set {δ ∈ (ZΓ)∗ : 〈δ, α〉 = 1 and
(
δ ∈ E(Γ) or α∨|ZΓ− δ ∈ E(Γ)

)
} for α ∈ S ∩ZΓ.

Proposition 4.1 ([9, Corollary 2.17]) Let Γ be a normal submonoid of Λ+. If σ ∈ Σsc(G),

then σ ∈ ΣN (Γ) if and only if all of the following conditions hold:

(1) σ ∈ ZΓ;

(2) σ is compatible with Sp(Γ), that is

- if σ = α1 + . . . + αn with support of type Bn then {α2, α3, . . . , αn−1} ⊂ Sp(Γ) and

αn /∈ Sp(Γ);

- if σ = α1 + 2(α2 + . . .+ αn−1) + αn with support of type Cn then {α3, α4, . . . , αn} ⊂
Sp(Γ);

- if σ is any other element of Σsc(G) then {α ∈ supp(σ) : 〈α∨, σ〉 = 0} ⊂ Sp(Γ);

(3) if σ /∈ S and δ ∈ E(Γ) such that 〈δ, σ〉 > 0 then there exists β ∈ S \ Sp(Γ) such that β∨|ZΓ

is a positive multiple of δ;

(4) if σ ∈ S then

(a) a(σ) has two elements; and

(b) 〈δ, γ〉 ≥ 0 for all δ ∈ a(σ) and all γ ∈ Γ; and

(c) 〈δ, σ〉 ≤ 1 for all δ ∈ E(Γ);

(5) if σ = 2α ∈ 2S, then 〈α∨, γ〉 ∈ 2Z for all γ ∈ Γ;

(6) if σ = α+ β with α, β ∈ S and α ⊥ β, then α∨ = β∨ on Γ.

From now on we will assume that G = SL(2)× C× and we will (by abuse of notation) use

T for the maximal torus of SL(2) consisting of diagonal matrices. Our chosen maximal torus

of G will be T ×C× and as a Borel subgroup of G we will take {
(
t a
0 t−1

)
: t ∈ C×, a ∈ C}×C×.

We will use ω for the fundamental weight of SL(2), which is the highest weight of the defining

representation (SL(2),C2). Further we will use ε for the character of C× which is the identity

map. The simple root of SL(2) (and of G) will be denoted α. As is well known, α = 2ω.

Consequently, the weight lattice, set of simple roots, root lattice and monoid of dominant

weights of G = SL(2)× C× are:

Λ = 〈ω, ε〉Z, S = {α}, ΛR = Zα, Λ+ = 〈ω, ε,−ε〉N.

The simple coroot α∨ in HomZ(Λ,Z) satisfies

〈α∨, ω〉 = 1 and 〈α∨, ε〉 = 0.

In the next lemma, we specialize Proposition 4.1 to the case G = SL(2) × C×, in a form

that is convenient for the proof of Theorem 4.3.

Lemma 4.2 Let G = SL(2)×C× and let Γ be a normal submonoid of Λ+ = 〈ω, ε,−ε〉N. Then

the following hold:

(1) ΣN (Γ) ∈ {∅, {α}, {2α}};
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(2) ΣN (Γ) = {2α} if and only if

(i) 2α ∈ ZΓ ⊂ 〈2ω, ε〉Z; and

(ii) if rkZΓ = 2 and Q≥0Γ 6= Q≥0Λ+ then there exist u, v, w ∈ Z with u > 0, w 6= 0 and

vw ≥ 0 such that uα + vε and wε are the primitive elements of ZΓ on the two rays

of Q≥0Γ;

(3) ΣN (Γ) = {α} if and only if there exists λ ∈ Γ such that

(i) 〈α∨, λ〉 > 0;

(ii) ZΓ = Zα⊕ Zλ; and

(iii) Q≥0Γ = 〈λ, γ〉Q≥0
where γ = 〈α∨, λ〉α − λ, or γ = α, or γ = aα + bλ for some

a, b ∈ N \ {0} with gcd(a, b) = 1.

Proof We begin with assertion (1). Since G has a root system of type A1 it is clear from

Definition 2.11 that Σsc(G) = {α, 2α}. Since ΣN (Γ) ⊂ Σsc(G), all we have to show is that if

α ∈ ΣN (Γ) then 2α /∈ ΣN (Γ). If α ∈ ΣN (Γ) then it follows from (4a) in Proposition 4.1 that

there is δ ∈ E(Γ) with 〈δ, α〉 > 0 and δ /∈ Q>0α
∨|ZΓ. By (3) of the same proposition this implies

that 2α /∈ ΣN (Γ).

We move to assertion (2). Observe that (2i) holds if and only if (1) and (5) of Proposition 4.1

hold and that (2ii) is equivalent to (3) of that Proposition. Condition (2) of the Proposition is

trivial in this case.

We now prove assertion (3). We begin by showing that the conditions (3i), (3ii) and (3iii)

are sufficient for α to belong to ΣN (Γ). Condition (1) of Proposition 4.1 follows from (3ii)

and Condition (2) of the proposition is trivial. To verify condition (4) of the proposition, let

{α#, λ#} be the basis of ZΓ∗ that is dual to the basis {α, λ} of ZΓ. Then it is clear that α#

is an element of E(Γ) and of a(α). Furthermore

α∨|ZΓ = 2α# + 〈α∨, λ〉λ# (4.1)

and therefore α∨|ZΓ − α# = α# + 〈α∨, λ〉λ is a second element of a(α). By (3iii), the set E(Γ)

contains two elements, and we now determine the element δ′ of E(Γ) that is not α#:

- if γ = 〈α∨, λ〉α− λ, then δ′ = α∨|ZΓ − α#;

- if γ = α, then δ′ = λ#;

- if γ = aα+ bλ with a, b ∈ N \ {0} and gcd(a, b) = 1 then δ′ = −bα# + aλ#.

One readily checks in all three cases that condition (4c) of Proposition 4.1 holds and that

a(α) = {α#, α∨|ZΓ − α#}. (4.2)

This immediately implies condition (4a) of the Proposition. Moreover, using the descriptions

of δ′ and γ and condition (3i) of the Lemma we obtain that

〈α#, λ〉 = 0, 〈α#, γ〉 > 0, 〈δ′, γ〉 = 0, 〈δ′, λ〉 > 0

and condition (4b) of the Proposition now follows from (3iii).
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We now prove the reverse implication in assertion (3). Assume that α ∈ ΣN (Γ). It follows

from (1) of Proposition 4.1 and a(α) 6= ∅ that α is primitive in ZΓ. It follows from (4a) of the

Proposition that rkZΓ = 2 and therefore there exists β ∈ ZΓ such that ZΓ = Zα⊕ Zβ. Again

from (4a) of the Proposition we know that there exists δ ∈ E(Γ) such that

〈δ, α〉 = 1 and α∨ − δ 6= δ (4.3)

Let c := 〈δ, β〉. Then cα − β is on the line {δ = 0}, which supports a ray of Γ. By (4.3), we

know that δ /∈ Q≥0α
∨|ZΓ and consequently α∨ takes a positive value on exactly one element

of {cα − β, β − cα}. Let λ be that element. By construction, λ satisfies condition (3i) of the

Lemma and it is a primitive element of ZΓ on a ray of Q≥0Γ. Moreover, {α, λ} is also a basis

of ZΓ and therefore λ satisfies condition (3ii) of the Lemma. Let α#, λ# be the dual basis of

ZΓ∗. Since 〈δ, α〉 = 1 and 〈δ, λ〉 = 0 we have δ = α# and it follows from (4a) of Proposition 4.1

that (4.2) holds again.

Since E(Γ) contains an element, namely δ, that is not a multiple of α∨|ZΓ we know that the

cone Q≥0Γ has two linearly independent rays and that E(Γ) contains two elements. Let γ be

the primitive element of ZΓ on the ray of Q≥0Γ that is not spanned by λ. Then γ = aα + βλ

for some a, b ∈ Z with gcd(a, b) = 1 and a 6= 0. Because 〈α#, γ〉 = a, it follows from condition

(4b) of Proposition 4.1 that a > 0. Let δ′ be the element of E(Γ) that vanishes on γ. Then

δ′ = aλ# − bα#. Since 〈δ′, α〉 = −b it follows from (4c) of the Proposition that b ≥ −1. We

now show that γ has to be as described in (3iii). If b > 0 then we are done. We check the two

remaining values for b:

- If b = −1 then δ′ ∈ a(α), and so by (4.2) we have that δ′ = α∨|ZΓ−α# = α# +〈α∨, λ〉λ#.

It follows that a = 〈α∨, λ〉 and γ = 〈α∨, λ〉α− λ;

- If b = 0 then a = 1 because gcd(a, b) = 1 and so γ = α.

This completes the proof. �

Theorem 4.3 Let G = SL(2)× C×. A submonoid Γ of Λ+ = 〈ω, ε,−ε〉N is a smooth weight

monoid if and only if it is one of the following submonoids of Λ+:

(1) {0};

(2) 〈bε,−bε〉N for some b ∈ N \ {0};

(3) 〈bε〉N for some b ∈ Z \ {0};

(4) 〈ω + bε〉N for some b ∈ Z;

(5) 〈aω〉N for some a ∈ {2, 4};

(6) 〈ω + cε, bε,−bε〉N for some c ∈ Z, b ∈ N \ {0} and |c| ≤ b
2 ;

(7) 〈aω, bε,−bε〉N for some a ∈ {2, 4} and some b ∈ N \ {0};

(8) 〈aω, bε〉N for some a ∈ {2, 4} and some b ∈ Z \ {0};

(9) 〈2ω + bε, 2ω − bε, 2bε,−2bε〉N for some b ∈ N \ {0};
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(10) 〈2ω, aω + bε〉N for some a ∈ N \ {0} and some b ∈ Z \ {0};

(11) 〈aω + bε, aω − bε, 2ω〉N for some a, b ∈ N \ {0};

(12) 〈2ω + bε, 2bε〉N for some b ∈ Z \ {0};

(13) 〈ω + bε, cε〉N for some b ∈ Z and some c ∈ Z \ {0};

(14) 〈4ω, 2bε, 2ω + bε〉N for some b ∈ Z \ {0}.

Proof We first assume that Γ is smooth and show that it occurs in the list of the Theorem.

We begin by assuming rkZΓ = 1. It then follows from the normality of Γ that if Γ is not

G-saturated, then Γ is of the form (3) in the Theorem. Hence we may assume that Γ is G-

saturated, so that we can use Theorem 2.18. If ΣN (Γ) = {2α} then it follows from Lemma 4.2

that ZΓ = 〈2ω〉Z or ZΓ = 〈4ω〉Z. By the normality of Γ it follows that Γ = 〈2ω〉N of Γ = 〈4ω〉N.

If ΣN (Γ) = ∅ then it follows from Lemma 4.2 that ZΓ = Zλ with λ ∈ Λ+ \ {0, 2ω, 4ω}. Write

λ = aω + bε with a ≥ 0 and b ∈ Z. Because SΓ = {α} it follows from Theorem 2.18(a) that

α∨|ZΓ must be 0 (when Sp(Γ) = {α}) or part of a basis of ZΓ∗. This implies that a ∈ {0, 1}.
If a = 0 then ZΓ = 〈bε〉Z and it follows from the G-saturatedness of Γ that Γ = 〈bε,−bε〉N. If

a = 1, then Γ = 〈ω + bε〉N. We have shown that every smooth weight monoid of rank 1 shows

up in the list in the Theorem.

We now consider the case where rkZΓ = 2. For several cases we will make use of [34,

Theorem 4.2] and the notations in that paper. By Lemma 4.2 there are three possibilities for

ΣN (Γ). We first assume that ΣN (Γ) = {α}. It follows from (3) of Lemma 4.2 that there

exist u, v ∈ Z with u > 0 and v 6= 0 such that ZΓ = Zα ⊕ Zλ and Q≥0Γ = Q≥0{λ, γ} where

λ = uω + vε and γ is as in Lemma 4.2(3iii). Note that if γ = 〈α∨, λ〉α − λ or γ = α, then it

follows from the normality of Γ and Gordan’s lemma (see, e.g. [3, Lemma 2.9, p.52]) that Γ is

a monoid in entry (11) or entry (10) of the list in the Theorem, respectively. We claim that if

γ = aα+ bλ with a, b ∈ N \ {0} then Γ is not smooth. Indeed, in this case C(Γ,ΣN (Γ)) of [34,

Definition 4.1] is equal to Γ∨ because the element δ of E(Γ) that is zero on the line spanned by

γ lies in the relative interior of the cone V(Γ,ΣN (Γ)) of [34, Definition 4.1]. Consequently the

|D(Γ,ΣN (Γ))|-tuple (ρ(D))D∈D(Γ,ΣN (Γ)) of part (3) of [34, Theorem 4.2] is equal to a(α) ∪ {δ}
and contains 3 elements. It can therefore not be part of a basis of ZΓ∗, contradicting condition

(3) of [34, Theorem 4.2] for Γ to be smooth. This proves our claim and finishes the proof that

if ΣN (Γ) = {α} then Γ shows up in the list of the Theorem.

Next we assume that ΣN (Γ) = {2α}. Then it follows from Lemma 4.2(2i) that α or 2α is

primitive in ZΓ. From the same assertion we also obtain that if α = 2ω is primitive, then

there exists c ∈ Z \ {0} such that ZΓ = 〈α, cε〉Z, (4.4)

and that if 2α is primitive then

there exist x ∈ {0, 1} and d ∈ Z \ {0} such that ZΓ = 〈2α, xα+ dε〉Z. (4.5)

Suppose Q≥0Γ = Q≥0Λ+. Then it follows from the normality of Γ and Gordan’s lemma that

Γ is the monoid (7) in the Theorem with a = 2 and b = |c| if α is primitive. Similarly, if 2α is

primitive then Γ is the monoid (7) with a = 4 and b = |d| if x = 0, and Γ is the monoid (9)
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with b = |d| if x = 1. Next we suppose that Q≥0Γ is a strict subset of Q≥0Λ+. Let u, v, w be

as in Lemma 4.2(2ii).

If α is primitive, then the set Σsc(Γ) defined in [34, Definition 2.11] is equal to {α}, by [34,

Proposition 2.7]. We claim that we must have v = 0. Consequently u = 1 and it follows that Γ

is the monoid in (8) for a = 2 and b = w. The claim follows from condition (3) of [34, Theorem

4.2] for Γ to be smooth. Indeed, if v 6= 0, then C(Γ,Σsc(Γ)) of [34, Definition 4.1] is equal to

Γ∨. The fact that α ∈ Σsc(Γ) then implies that D(Γ,Σsc(Γ)) of loc.cit. contains 2 elements

D+ and D− such that ρ(D+) = ρ(D−) = 1
2α
∨|ZΓ. As a consequence, the |D(Γ,Σsc(Γ))|-

tuple (ρ(D))D∈D(Γ,Σsc(Γ)) cannot be part of a basis ZΓ∗ which contradicts condition (3) of [34,

Theorem 4.2].

If 2α is primitive in ZΓ and v = 0 then it follows that u = 2. If x = 0 in (4.5) then Γ

is the monoid in (8) for a = 4 and b = w. If x = 1 in (4.5) then it follows from the fact

that wε is a primitive element of ZΓ that w ∈ {−2d, 2d}. It follows that Γ is the monoid in

(14) with b = w/2. On the other hand, if 2α is primitive and v 6= 0, then C(Γ,ΣN (Γ)) of [34,

Definition 4.1] is equal to Γ∨ and the |D(Γ,ΣN (Γ))|-tuple (ρ(D))D∈D(Γ,ΣN (Γ)) of loc.cit. is equal

to E(Γ) = { 1
2α
∨|ZΓ, δ} where δ be the element of E(Γ) which vanishes on the ray uα + vε of

Q≥0Γ. By part (3) in [34, Theorem 4.2], E(Γ) is a basis of ZΓ∗. This implies that {uα+vε, wε}
is the dual basis of ZΓ. Consequently 〈 12α

∨|ZΓ, uα + vε〉 = 1 implies that u = 1. Moreover it

follows from part (2) in [34, Theorem 4.2] that soc(Γ,ΣN (Γ)) is the third entry of [34, Table 2]

for n = 1 which implies that 〈δ, 2α〉 = −1. Since 〈δ, α+ vε〉 = 0 this implies that 〈δ, vε〉 = 1
2 so

that v = w/2. It follows that Γ is the monoid (12) in the Theorem’s list for b = v.

The third possibility for ΣN (Γ) is that it is empty. If Q≥0Γ = Q≥0Λ+, then it follows from

part (3) of [34, Theorem 4.2] that α∨|ZΓ is part of a basis of ZΓ∗. One deduces that Γ is a

monoid in the entry (6) of the Theorem. On the other hand, if Q≥0Γ is a strict subset of Q≥0Λ+

then it follows from loc.cit. that α∨ZΓ ∈ E(Γ) and that E(Γ) is a basis of ZΓ∗. It follows that Γ

is free and is generated (as a monoid) by the dual basis of ZΓ. Consequently, Γ is one of the

monoids in entry (13) of the Theorem. This completes the proof of the fact that every smooth

weight monoid for G occurs in the list of the Theorem.

What is left is to prove the reverse implication, namely that every monoid in the list of

the Theorem is smooth. For the monoids in (1), (2), (4), (5), (6), (7) and (9) one can use

Theorem 2.18 since they are G-saturated. For the other monoids one can use [34, Theorem

4.2]. This only involves elementary, if somewhat lengthy, verifications for each monoid, which we

leave to the reader. Alternatively, one can exhibit for each monoid Γ a smooth affine spherical

G-variety X with Γ(X) = Γ (these varieties are given in Table 5, but determining their weight

monoid is left to the reader). �

Corollary 4.4 Let G = SL(2)×C×. Every smooth affine spherical G-variety is G-equivariantly

isomorphic to a (unique) G-variety in Table 5.

Proof By Losev’s Theorem 2.2 and Theorem 4.3 it suffices to prove that each variety X in

Table 5 has the indicated weight monoid Γ(X). We leave this verification to the reader. One

way to proceed is to use basic facts in the representation theory of SL(2) × C× to explicitly

determine the highest weights of SL(2)× C× that occur in the coordinate ring C[X] of X. �
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Table 5: Smooth affine spherical (SL(2)× C×)–varieties.

Case X Γ(X) ΣN (X) parameters

1 point {0} ∅

2 C×bε 〈bε,−bε〉N ∅ b ∈ N \ {0}

3 C−bε 〈bε〉N ∅ b ∈ Z \ {0}

4 C2 ⊗ C−bε 〈ω + bε〉N ∅ b ∈ Z

5 SL(2)/T 〈2ω〉N {2α}

6 SL(2)/N(T ) 〈4ω〉N {2α}

7 (C2 ⊗ C−bε)× C×−cε 〈ω + bε, cε,−cε〉N ∅
b ∈ Z,

c ∈ N \ {0}, |b| ≤ c
2

8 SL(2)/T × C×−bε 〈2ω, bε,−bε〉N {2α} b ∈ N \ {0}

9 SL(2)/N(T )× C×−bε 〈4ω, bε,−bε〉N {2α} b ∈ N \ {0}

10

(SL(2)× C×)/Hb,

Hb = {(n, σ(n)z)}

where n ∈ N(T ),

z ∈ C×, σ(n)zb = 1,

σ nontriv. char. of N(T )

〈2ω + bε, 2ω − bε,

2bε,−2bε〉N
{2α} b ∈ N \ {0}

11 (C2 ⊗ C−bε)× C−cε 〈ω + bε, cε〉N ∅
b ∈ Z,

c ∈ Z \ {0}

12 SL(2)/T × C−bε 〈2ω, bε〉N {2α} b ∈ Z \ {0}

13 SL(2)/N(T )× C−bε 〈4ω, bε〉N {2α} b ∈ Z \ {0}

14

SL(2)×T Caω,

C× acts on Caω

with weight − bε

〈2ω, aω + bε〉N {α}
a ∈ N \ {0},

b ∈ Z \ {0}

15
SL(2)× C×

ker(aω − bε)
〈aω + bε, aω − bε, 2ω〉N {α} a, b ∈ N \ {0}

16 S2C2 ⊗ C−bε 〈2ω + bε, 2bε〉N {2α} b ∈ Z \ {0}

17

SL(2)×N(T ) Cσ,

σ nontriv. char. of N(T ),

C× acts on Cσ

with weight − bε

〈4ω, 2bε, 2ω + bε〉N {2α} b ∈ Z \ {0}

Remark 4.5 As already mentioned in the introduction, our results can also be deduced using

other techniques. For example, Corollary 4.4 and Table 5 could be obtained by using the

approach of [24], taking as a starting point the fact that a smooth affine spherical SL(2)×C×-

variety is equivariantly isomorphic to a homogeneous vector bundle of the form (SL(2)×C×)×H
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V , where H is a reductive subgroup of SL(2) × C× and V is an H-module. The pairs (H,V )

for which (SL(2)×C×)×H V is spherical can be classified using a careful case-by-case analysis.

Remark 4.6 In Table 6, we have listed all the cones Q≥0Γ, where Γ runs through the weight

monoids of smooth affine spherical SL(2) × C×–varieties such that Q≥0Γ is pointed. Similar

pictures of Q≥0Γ were also included in F. Knop’s 2012 lecture on “Multiplicity free Hamiltonian

actions” in the “Lie-Theorie und komplexe Geometrie” Seminar at the Universität Marburg.

In view of the conditions (1.4), the table gives the possible shapes of the moment polytope P
of a multiplicity free Hamiltonian manifold near a vertex a ∈ P such that G(a) is equal (or

isogenous) to SL(2)× C×.

Table 6: Pointed cones of smooth affine spherical SL(2) × C×–

varieties (the given value of tanϕ assumes that ω and ε have the same length.)

ε

ω

ϕ

0 ≤ ϕ ≤ π
(tanϕ)−1 ∈ Z ∪ {±∞}

ε

ω
ϕϕ

ε

ω
ϕ

ε

ω
ϕ

ε

ω
ϕ

0 < ϕ < π
2

tanϕ ∈ Q
−π2 ≤ ϕ ≤

π
2 , ϕ 6= 0

tanϕ ∈ Q ∪ {±∞}
−π/2 < ϕ < π/2

2 tanϕ ∈ Z
−π/2 < ϕ < π/2

2 tanϕ ∈ Z

Example 4.7 In this example, we use the classifications in Section 3 and in this section to ex-

hibit two pairs (P,Λ0) with the same polytope P satisfying the conditions (1.4) for K = SU(3).

As explained in the introduction, this implies by [21, Theorem 11.2] that there exists a mul-

tiplicity free Hamiltonian SU(3)-manifold M with (PM ,ΛM ) = (P,Λ0). The complexification

of K is G = SL(3). We will use ω1, ω2 for the fundamental weights of G. We then have

Λ = 〈ω1, ω2〉Z. We identify the positive Weyl chamber t+ with 〈ω1, ω2〉R≥0
. Let P be the

triangle in t+ with vertices 0, ω1 and ω2:

P := conv(0, ω1, ω2) ⊂ t+.

We need to check the conditions (1.4) at a = 0, at a = ω1 and at a = ω2. Because

there is an (outer) automorphism of G that exchanges ω1 and ω2, it suffices to check them

at 0 and ω1. Using the notation of the introduction we have that G(0) = G and G(ω1) ={(
det(A)−1 0

0 A

)
: A ∈ GL(2)

}
∼= GL(2). Observe that the tangent cone C0P to P at 0 is t+. To

take advantage of our classification of (SL(2)×C×)-varieties, we will use the following isogeny

ϕ : SL(2) × C× → G(ω1) : (A, z) 7→
(
z−2 0

0 zA

)
. The induced map ϕ∗ from the weight lattice Λ

of G(ω1) (and of G) to the weight lattice 〈ω, ε〉Z of SL(2) × C× satisfies: ϕ∗(ω1) = −2ε and

ϕ∗(ω2) = ω − ε. One immediately computes that the tangent cone to P at ω1 is Cω1
P =

〈−ω1, ω2 − ω1〉R≥0.
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We check that the pair

(P,Λ0) with Λ0 = Λ = 〈ω1, ω2〉Z

satisfies (1.4) at a = 0 and at a = ω1. From Table 2, we see that C0P ∩ Λ0 is the weight

monoid of the smooth affine spherical G(0)-variety SL(3)/Sp(2). At a = ω1, we have that

Cω1
P ∩ Λ0 = 〈−ω1, ω2 − ω1〉N. Consequently, ϕ∗(Cω1

P ∩ Λ0) = 〈2ε, ω + ε〉N, which is the

weight monoid of the smooth affine spherical (SL(2)×C×)-variety C2⊗C−ε×C−2ε, cf. Table 5.

Similarly, one can check that the pair

(P,Λ0) with Λ0 = 2Λ = 〈2ω1, 2ω2〉Z

satisfies (1.4) at a = 0 and at a = ω1. Indeed, C0P ∩ Λ0 is the weight monoid of SL(3)/SO(3),

while ϕ∗(Cω1P ∩ Λ0) = 〈4ε, 2ω + 2ε〉N is the weight monoid of S2C2 ⊗ C−2ε.

5 Woodward’s reflective polytopes

In this section we study a special class of weight monoids that are not G-saturated. They are

related to Woodward’s work [39] on transversal multiplicity free actions, which correspond to

reflective polytopes (see Definition 5.1).

As in the introduction, K is a compact connected Lie group with complexification G. Let

W = N(T )/T be the Weyl group of G and of K. We recall that t+ ⊂ Lie(TR)∗ ≡ Λ⊗Z R is the

chosen positive Weyl chamber of K corresponding to the choice of the Borel subgroup B of G.

Definition 5.1 Let P be a convex polytope in t+.

1. We call P reflective if the following conditions are fulfilled:

(a) P is of maximal dimension;

(b) for all a ∈ P, the set of hyperplanes generated by the faces of P of codimension 1

containing a is stable under Wa = {w ∈W : w · a = a};

(c) for all a ∈ P, any face of P of codimension 1 containing a meets the relative interior of

t+.

2. Let Λ0 be a sublattice of Λ. We say that P is Delzant (with respect to Λ0) if for every

vertex a of P there exists a basis λ1, λ2, . . . , λn of Λ0 such that CaP = 〈λ1, λ2, . . . , λn〉R≥0
,

where CaP is the tangent cone to P at a.

Part of [39, Theorem 1.3] can be stated as follows.

Theorem 5.2 (Woodward) Let K be a compact connected Lie group. Let P be a convex

polytope in t+. If P is reflective and Delzant with respect to the weight lattice Λ of K, and if

the semisimple part of the stabilizer Kx is simply connected for every x ∈ P, then there exists

a multiplicity free Hamiltonian manifold M with trivial generic isotropy group and moment

polytope P.

Observe that the condition on Kx in this theorem only needs to be checked for finitely many

points x ∈ P since Kx only depends on the face of t+ that contains x in its relative interior.

We emphasize that Theorem 5.2 is only part of Woodward’s result: loc.cit. also established the

uniqueness of M and characterized the multiplicity free actions that have moment polytopes
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which are reflective and Delzant: they are the so-called torsion-free and transversal multiplicity

free actions. Woodward’s approach is completely symplectic.

The goal of this section is to give a proof of Theorem 5.2 using the techniques we have

seen in the rest of the paper, see Corollary 5.11 below. The property of being reflective, for a

polytope P, can be restated locally in terms of the weight monoids related to P as recalled in

the introduction.

Definition 5.3 Let W be the Weyl group of G. A submonoid Γ of Λ+ is reflective if it is

normal and the following hold:

1. Γ has full rank;

2. the set of hyperplanes generated by the faces of codimension 1 of the cone spanned by Γ

is stable under W ;

3. every face of codimension 1 of the cone spanned by Γ meets the open positive Weyl cham-

ber.

Remark 5.4 If a monoid Γ is reflective, then E(Γ) does not contain any element proportional

to α∨|ZΓ for α a simple root, thanks to property (3) of the above definition. Since for a G-

saturated submonoid Γ of Λ+ every element of E(Γ) is proportional to α∨|ZΓ for some α ∈ S,

it follows in particular that a reflective submonoid of Λ+ is never G-saturated when G is not

abelian.

We start by showing that reflectivity of Γ has strong consequences on ΣN (Γ).

Lemma 5.5 Let Γ be reflective. Then ΣN (Γ) ⊂ S.

Proof We assume for the sake of contradiction that there exists σ ∈ ΣN (Γ)\S. We claim that

there exists a simple root α such that 〈α∨, σ〉 > 0. Indeed, the set S∪{σ} is linearly dependent

and lies in an open half-space, whence it contains two elements forming an acute angle. One of

the two elements must be σ, and our claim is proved.

Since Γ ⊂ Λ+, the convex cone Γ∨ contains all simple coroots. Then the existence of α

implies that there exists δ ∈ E(Γ) such that 〈δ, σ〉 > 0. By Proposition 4.1(3), this implies that

δ is a positive multiple of a simple coroot, contradicting the assumption that Γ is reflective, by

Remark 5.4. �

The property of being Delzant, for a polytope P, can also be restated locally in terms of

weight monoids. Recall from Definition 5.1 that P is Delzant with respect to a sublattice Λ0 of

Λ if and only if for every vertex a of P there exists a basis Fa of Λ0 such that CaP = R≥0Fa.

Now, if we consider a general polytope P in t+ and set Γa = CaP ∩ Λ0 for any vertex a of P,

then P is Delzant if and only if dimP = rank Λ0 and for every vertex a of P

there exists a basis Fa of Λ0 such that Γa = NFa. (5.1)

Moreover, (5.1) holds if and only if

ZΓa = Λ0 and E(Γa) is a basis of Λ∗0. (5.2)

Lemma 5.6 Let Γ be reflective. Suppose that S ⊂ ZΓ, that E(Γ) is part of a basis of ZΓ∗,

and that ZΓ is W -invariant. Then ΣN (Γ) = S.
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Proof After Lemma 5.5, it remains to show the inclusion ΣN (Γ) ⊃ S. Let α ∈ S. To show

that α ∈ ΣN (X) we use Proposition 4.1, so we have to check the conditions required by that

Proposition.

Condition (1), i.e. that α ∈ ZΓ, follows from our assumption S ⊂ ZΓ. Condition (2) is met

because {β ∈ supp(α) : 〈β∨, α〉 = 0} = ∅. We turn to the conditions (4). We begin by proving

that a(α) has two elements. By construction, Γ ⊂ Λ+, hence α∨|ZΓ ∈ Γ∨. Since 〈α∨, α〉 = 2,

there exists δ ∈ E(Γ) such that 〈δ, α〉 > 0. We show that −sαδ ∈ Γ∨. Either −sαδ or sαδ lies

on an extremal ray of Γ∨, by reflectivity. Assume it is sαδ, and consider the equality

〈δ, α〉α∨|ZΓ = δ − sαδ.

It expresses α∨|ZΓ ∈ Γ∨ as a linear combination of elements of E(Γ), with both positive and

negative coefficients. This contradicts the assumption that E(Γ) is part of a basis, and yields

that −sαδ lies on an extremal ray of Γ∨. Observe that δ is primitive in (ZΓ)∗ by assumption,

and ZΓ is W -invariant. This shows that −sαδ is also primitive in (ZΓ)∗, hence −sαδ ∈ E(Γ).

Let us show now that 〈δ, α〉 = 1. Otherwise, the element δ − sαδ is not primitive in (ZΓ)∗.

But since {δ,−sαδ} is part of a basis, then also {δ, δ−sαδ} is part of a basis. Therefore δ−sαδ
is primitive, and we conclude that 〈δ, α〉 = 1.

At this point δ,−sαδ are two elements of E(Γ), both taking value 1 on α. They are distinct,

otherwise we would have

α∨|ZΓ = 2δ

which contradicts the fact that δ is not a positive multiple of any simple coroot by Remark 5.4.

We deduce that both belong to a(α), hence |a(α)| ≥ 2.

We show that |a(α)| = 2. If |a(α)| > 2, then there exists ε ∈ a(α) ∩ E(Γ) such that

ε /∈ {δ,−sαδ}. We have 〈ε, α〉 = 1, and by the above argument applied to ε instead of δ, we

have that −sαε ∈ E(Γ). Then

α∨|ZΓ = δ − sαδ = ε− sαε

contradicts the assumed linear independence of E(Γ). Therefore |a(α)| = 2, and we have verified

condition (4a) of the Proposition.

We have also proved that a(α) ⊂ E(Γ), which implies in particular that 〈δ, γ〉 ≥ 0 for all

δ ∈ a(α) and all γ ∈ Γ, which is condition (4b).

Finally, it remains to check the last condition required by the Proposition, which is that

〈δ, α〉 ≤ 1 for all δ ∈ E(Γ). We have already proved in general that if δ ∈ E(Γ) satisfies

〈δ, α〉 > 0, then 〈δ, α〉 = 1, and this completes the proof. �

We single out the following already noticed consequence of the above proof.

Corollary 5.7 Under the assumptions of Lemma 5.6, let α ∈ S. Then a(α) consists of two

elements δ1, δ2 ∈ E(Γ) such that α∨|ZΓ = δ1 + δ2, and if δ ∈ E(Γ) satisfies 〈δ, α〉 > 0, then

〈δ, α〉 = 1.

Lemma 5.8 Under the assumptions of Lemma 5.6, there exists an affine spherical variety X

with ΣN (X) = ΣN (Γ) and Γ(X) = Γ.

Proof Thanks to [34, Proposition 2.7] we have to check that the condition (b) given in [34,

Proposition 2.24] holds, i.e. that if α ∈ S ∩ ΣN (Γ), δ ∈ a(α) and γ ∈ ΣN (Γ) satisfy 〈δ, γ〉 > 0,
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then γ ∈ S and δ ∈ a(γ). Let α, δ and γ be as above. Then γ ∈ S, δ ∈ E(Γ), and 〈δ, γ〉 = 1 by

Corollary 5.7. It follows that δ ∈ a(γ), and the proof is complete. �

Lemma 5.9 Under the assumptions of Lemma 5.6, let δ ∈ E(Γ) and α ∈ S. Then 〈δ, α〉 ≥ 0.

Proof For the sake of contradiction, we assume 〈δ, α〉 < 0. By reflectivity, we have that −sαδ
is a multiple of an element of E(Γ). Then

α∨|ZΓ =
1

〈δ, α〉
δ +

(
1

〈δ, α〉

)
(−sαδ)

is an expression of α∨|ZΓ as a linear combination of elements of E(Γ) with at least one negative

coefficient. On the other hand, α∨|ZΓ can be written as a linear combination of elements of

E(Γ) with non-negative rational coefficients. This contradicts the assumption that E(Γ) is part

of a basis of (ZΓ)∗. �

We are ready to prove the main result of this section.

Theorem 5.10 Let Γ be reflective. Suppose that S ⊂ ZΓ, that E(Γ) is part of a basis of

(ZΓ)∗, and that ZΓ is W -invariant. Then Γ is smooth, and the semisimple type of G is (A1)r

for some r ∈ N.

Proof Let us first prove the claim about the semisimple type of G. Assume α, β ∈ S with

α 6= β. Then, by Corollary 5.7, we have

α∨|ZΓ = δ1 + δ2

where δ1, δ2 ∈ E(Γ), which yields

〈α∨, β〉 = 〈δ1, β〉+ 〈δ2, β〉.

As both summands are non-negative by Lemma 5.9, we have 〈α∨, β〉 = 0.

Let us prove that Γ is smooth. We use [34, Theorem 4.2] with Σ of loc.cit. equal to ΣN (Γ).

Notice that this choice of Σ is allowed by Lemma 5.8.

The objects defined in [34, Definition 4.1] are then the following.

• The set

A(Γ,ΣN (Γ)) =
⋃
α∈S

a(α).

• The triple S (Γ,ΣN (Γ)) = (∅, S,A(Γ,ΣN (Γ))).

• The set V(Γ,ΣN (Γ)) = {v ∈ HomZ(ZΓ,Q) : 〈v, σ〉 ≤ 0 ∀σ ∈ ΣN (Γ)}.

• The set ∆(Γ,ΣN (Γ)) = A(Γ,ΣN (Γ)).

• The set C(Γ,ΣN (Γ)) is the maximal face of Γ∨ of which the relative interior meets

V(Γ,ΣN (Γ)). Since ΣN (Γ) = S, any element of C(Γ,ΣN (Γ)) is zero on S.

• The set F(Γ,ΣN (Γ)) := {δ ∈ ∆(Γ,ΣN (Γ)) : δ ∈ C(Γ,ΣN (Γ))}, which is empty since for

all α ∈ S any element of a(α) takes value 1 on α.

• The set B(Γ,ΣN (Γ)) is the set of primitive elements of the lattice (ZΓ)∗ on extremal

rays of C(Γ,ΣN (Γ)) that do not contain any element of F(Γ,ΣN (Γ)). This is equal to

{δ ∈ E(Γ) : δ|S = 0}.
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• The set D(Γ,ΣN (Γ)) = B(Γ,ΣN (Γ)) ∪ F(Γ,ΣN (Γ)), it is hence equal to B(Γ,ΣN (Γ)).

• The set S(Γ,ΣN (Γ)) is the set of the elements α ∈ ΣN (Γ) such that no element in

∆(Γ,ΣN (Γ)) \ F(Γ,ΣN (Γ)) is in a(α). Then S(Γ,ΣN (Γ)) = ∅.

• The sextuple soc(Γ,ΣN (Γ)) = (∅, S,A(Γ,ΣN (Γ)), ∅,D(Γ,ΣN (Γ)), ρ′), where the map

ρ′ : A(Γ,ΣN (Γ))→ (ZΣN (Γ))∗ is the restriction to the sublattice ZΣN (Γ) ⊂ ZΓ.

• The sextuple soc(Γ,ΣN (Γ)) = (∅, ∅, ∅, ∅,D(Γ,ΣN (Γ)), ∅).

The sextuple soc(Γ,ΣN (Γ)) is a product (in the sense of [34, Section 3]) of the first two entries

of Table 2 in [34], which yields condition (2) of [34, Theorem 4.2]. Condition (1) of [34,

Theorem 4.2] follows from Lemma 5.6. Condition (3) is fulfilled because D(Γ,ΣN (Γ)) is a

subset of E(Γ), and the proof is complete. �

Combining Theorem 5.10 with [21, Theorem 11.2] we obtain the following:

Corollary 5.11 Let K be a compact Lie group with weight lattice Λ, positive Weyl chamber

t+, Weyl group W and set of simple roots S. Let Λ0 be a sublattice of Λ and P a convex polytope

in t+. If Λ0 is Wa-invariant and contains {α ∈ S : 〈α∨, a〉 = 0} for every vertex a of P, and if

P is reflective and Delzant with respect to Λ0, then there exists a multiplicity free Hamiltonian

K-manifold M such that (PM ,ΛM ) = (P,Λ0).

Proof As in the introduction, we denote by G the complexification of K. Then for all a ∈ P
the subgroup G(a) ⊂ G is a Levi with set of simple roots {α ∈ S : 〈α∨, a〉 = 0}. After [21,

Theorem 11.2], we must prove that for all vertices a of P the intersection Γ = CaP ∩ Λ0 is a

smooth weight monoid for the reductive group G(a). Notice that ZΓ = Λ0, since P is reflective

and thus of maximal dimension, and that ZΓ is Wa-invariant by assumption.

Since P is reflective and Delzant with respect to Λ0, the monoid Γ is reflective and E(Γ) is

a basis of (ZΓ)∗. The set of simple roots of G(a) is contained in ZΓ by our assumptions. At

this point all hypotheses of Theorem 5.10 are satisfied, therefore Γ is smooth. �

We remark that the conditions on the lattice Λ0 in the corollary are met if S ⊂ Λ0 and Λ0 is

W -invariant. This corollary is slightly more general than Theorem 5.2, as it allows for lattices

Λ0 which are not equal to the weight lattice of K, see the examples below.

Example 5.12 Let G = GL(2), fix a ∈ Z with a /∈ {−1, 0}, and define Γ = 〈ω1 + aω2, ω1 −
(a + 1)ω2〉N, where ωi is the highest weight of

∧iC2 for all i ∈ {1, 2}. We claim that Γ is

smooth, and ZΓ 6= Λ. We show that Γ is smooth by checking that it satisfies the assumptions

of Theorem 5.10. Set λ1 = ω1 +aω2 and λ2 = ω1− (a+ 1)ω2. As α = λ1 +λ2, we have α ∈ ZΓ,

and since sα(λ1) = −λ2, sα(λ2) = −λ1, the lattice ZΓ is W -invariant. The monoid Γ has full

rank, and since the walls of Γ are generated by λ1 and λ2, one checks easily that Γ is reflective.

As Γ is free, the set E(Γ) is a basis of (ZΓ)∗. So Γ fulfills all the assumptions of Theorem 5.10,

and hence Γ is smooth. Finally, it is elementary to check that ZΓ does not contain ω1.

Example 5.13 We fix the lattice ZΓ with Γ as in the above example. Consider the polytope

P = conv(0, λ1, λ2): it is elementary to check that it is Delzant in the vertices λ1 and λ2. Then,

thanks to the above example and [21, Theorem 11.2], the polytope P is the moment polytope

of a Hamiltonian manifold for the group U(2) with nontrivial generic isotropy group.
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[38] Èrnest B. Vinberg and Boris N. Kimel’fel’d, Homogeneous domains on flag manifolds and spherical sub-

groups of semisimple Lie groups, Funct. Anal. Appl. 12 (1978), no. 3, 168–174.

[39] Christopher T. Woodward, The classification of transversal multiplicity-free group actions, Ann. Global

Anal. Geom. 14 (1996), no. 1, 3–42.

[40] , Spherical varieties and existence of invariant Kähler structures, Duke Math. J. 93 (1998), no. 2,

345–377.


