
Automated Process Adaptation in Cyber-Physical
Domains with the SmartPM System
Andrea Marrella∗, Massimo Mecella∗, Pätris Halapuu† and Sebastian Sardiña‡
∗Sapienza Università di Roma, Italy. Email: {marrella,mecella}@dis.uniroma1.it

†University of Tartu, Estonia. Email: patris.halapuu@ut.ee
‡RMIT University, Melbourne, Australia. Email: sebastian.sardina@rmit.edu.au

Abstract—Cyber Physical Systems (CPSs) refer to a new
generation of embedded ICT systems (PCs, smartphones, sensors,
actuators, etc.) that are interconnected and collaborating to
provide users with a wide range of innovative applications and
services. Many application domains, e.g., emergency manage-
ment, factories of the future, personalized healthcare, just to
name a few, require the definition, design and development of
systems able to carry out complex processes that coordinate
the services offered by the CPS in the “physical” real world.
The physical world, however, is not entirely predictable, and
such processes must be robust to unexpected conditions and
adaptable to unanticipated exceptions. This demands a more
flexible approach in process design and enactment, recognizing
that in real-world environments it is not adequate to assume
that all possible recovery activities can be predefined for dealing
with the exceptions that can ensue. In this paper, we tackle the
above issue and we propose an approach and a process manage-
ment system implementation, called SmartPM, for automatically
adapting processes enacted in cyber-physical domains in case of
unanticipated exceptions and exogenous events.

I. INTRODUCTION

As Information and Communication Technologies (ICTs)
are being increasingly integrated and embedded into our
everyday environment, the design of embedded ICT from
components (PCs, smartphones, sensors, actuators, etc.) to
cyber-physical systems is becoming a reality. A cyber-physical
system (CPS) is a system of interconnected and collaborating
computational elements controlling physical components that
provide real world entities (e.g., people, machines, robots,
agents, etc.) with a wide range of innovative applications and
services [1]. CPSs are designed to support and facilitate collab-
oration among people and software services on complex tasks.
On the other side, the Business Process Management (BPM)
discipline has gained an increasing importance in describing
complex correlations between distributed systems and offer
a powerful representation of collaborative activities [2]. In
the field of online trading and manufacturing, for example,
modelling and execution languages for business processes,
such as BPMN [3] and BPEL [4], have proven to be well
suited to formalize high-level sequences of tasks and activities
involving web service invocations and human interaction.

The current maturity of process management systems
(PMSs) can led to the application of process-oriented ap-
proaches in new challenging cyber-physical domains beyond
business computing [5], [6], such as personalized health-
care [7], emergency management [8] and factories of the

future [9]. Such domains are characterized by the presence
of a CPS coordinating heterogeneous ICT components and
involving real world entities that perform complex tasks in
the “physical” real world to achieve a common goal. In this
context, a PMS is used to manage the life cycle of the
collaborative processes that coordinate the services offered by
the CPS to the real world entities, on the basis of the contextual
information collected from the specific cyber-physical domain
of interest.

The long-term objective of CPSs is to create a strong link
between the physical world and the cyber world to support
their users while performing their tasks [10]. The physical
world, however, is not entirely predictable. CPSs do not
necessarily and always operate in a controlled environment,
and their collaborative processes must be robust to unexpected
conditions and adaptable to exceptions and external exogenous
events. Exception handling is one of the most important tasks
that process designers undertake during process modelling and
execution [11]. An anticipated exception can be planned at
design-time and incorporated into the process model, i.e., a
(human) process designer can provide an exception handler
that is invoked during run-time to cope with the exception.
Conversely, unanticipated exceptions refer to situations, un-
planned at design-time, that may emerge at run-time and can
be detected by monitoring discrepancies between the real-
world processes and their computerized representation. To
cope with those exceptions, a PMS is required to allow ad-hoc
process changes for adapting running process instances in a
context-dependent way.

However, in cyber-physical domains, the number of possi-
ble anticipated exceptions is often too large, and traditional
manual implementation of exception handlers at design-time
is not feasible for the process designer, who has to anticipate
all potential problems and ways to overcome them in advance.
Furthermore, anticipated exceptions cover only partially rele-
vant situations, as in such scenarios many unanticipated excep-
tional circumstances may arise during the process execution.
While most PMSs of today shy away from dealing with the
inherent dynamic nature of cyber-physical domains [9], the
management of processes enacted in such domains requires
a PMS providing the formalization of explicit mechanisms to
model world changes and responding to anomalous situations
and exceptions in an automated way, in order to achieve
the overall objectives of the processes still preserving their



Fig. 1. A train derailment situation; area and context of the intervention.

structure without (or by minimising) any human intervention.
In this paper, we tackle the above challenge by presenting a

general approach and a PMS implementation, called SmartPM
(Smart Process Management) for automatically adapting pro-
cesses enacted in cyber-physical domains in case of unantici-
pated exceptions and exogenous events. SmartPM is based on
declarative task specifications, process execution monitoring
for detecting failures and context changes at run-time, and
automated exception handling and resolution strategies on
the basis of well-established Artificial Intelligence (AI) tech-
niques, including the Situation Calculus [12], IndiGolog [13]
and classical planning [14]. Specifically, the paper is organized
as follows. In Section II, we present a concrete running
example. In Section III we introduce the general approach of
SmartPM, and we present the architecture of the implemented
SmartPM system. Finally, in Section IV we discuss the state-
of-the-art approaches to process adaptation, while in Section V
we conclude the paper by providing a critical discussion about
the applicability of SmartPM in cyber-physical domains.

II. RUNNING EXAMPLE

The trend of managing processes in cyber-physical domains
has been fueled by the increased availability of sensors dissem-
inated in the world, which has lead to the possibility to monitor
the evolution of several real-world objects of interest [15]. The
knowledge extracted from such objects allows to depict the
context in which processes are carried out, by consenting a
fine-grained monitoring and decision support for them.

To make our discussion more concrete, let us consider an
application scenario that comes from the emergency man-
agement domain and is inspired to a real disaster response
plan investigated by the authors during the European project
WORKPAD [16]. Specifically, in Fig. 1(a), a train derailment
is depicted in a grid-type map. A possible concrete realization
of an incident response plan for our scenario is shown in
Fig. 1(c), through a BPMN process composed of three parallel
branches, with tasks instructing first responders to act for
evacuating people from train coaches, taking pictures of the

locomotive, and assessing the gravity of the accident. To
execute the process, a response team is sent to the derailment
scene. The team is composed of four first responders, called
actors, and two robots, initially all located at location cell
loc00. It is assumed that actors are equipped with mobile
devices for picking up and executing tasks, and that each
provide specific capabilities. For example, act1 is able to
extinguish fire and take pictures, while act2 and act3 can
evacuate people from train coaches. The two robots, in turn,
are designed to remove debris from specific locations. When
the battery of a robot is discharged, act4 can charge it. In order
to carry on the response plan, all actors and robots ought to be
continually inter-connected. The connection between mobile
devices is supported by a fixed antenna located at loc00,
whose range is limited to the dotted squares in Fig. 1(a). Such
a coverage can be extended by robots rb1 and rb2, which
have their own independent (from antenna) connectivity to
the network and can act as wireless routers to provide network
connection in all adjacent locations. Due to the high dynamism
of the environment, there is a wide range of exceptions that
can ensue. So, suppose for instance that actor act1 is sent
to the locomotive’s location, by assigning to her/him the task
GO(loc00, loc33) in the first parallel branch. Unfortunately,
however, the actor happens to reach location loc03 instead.
The actor is now located at a different position than the desired
one and is out of the network connectivity range (cf. Fig. 1(a)).
Therefore, the PMS initially has to find a recovery procedure
to bring back full connectivity, and then find a way to re-align
the process. To that end, provided robots have enough battery
charge, the PMS may first instruct the first robot to move to
cell loc03 in order to re-establish network connection to actor
act1, and then instruct the second robot to reach location loc23
in order to extend the network range to cover the locomotive’s
location loc33. Finally, task GO(loc03, loc33) is reassigned to
actor act1 (cf. Fig. 1(b)). The corresponding updated process
is shown in Fig. 1(d), with the encircled section being the
recovery procedure. We note that the execution of a process



Fig. 2. An overview of the SmartPM approach.

can be also jeopardized by the occurrence of exogenous events
(e.g., a fire burnt up into a coach) that could asynchronously
change some contextual properties of the scenario, by possibly
requiring the process to be adapted accordingly.

III. THE SMARTPM APPROACH AND SYSTEM

SmartPM is an approach and a PMS implementing a set of
techniques that enable to automatically adapt process instances
at run-time in the presence of unanticipated exceptions and
exogenous events, without requiring an explicit definition of
recovery policies. The approach, which is schematized in
Fig. 2, builds on the dualism between an expected reality
ψs, the (idealized) model of reality that is used by the PMS
to reason, and a physical reality φs, the real world with the
actual values of conditions and task outcomes. While the phys-
ical reality records what is concretely happening in the real
environment during a process execution, the expected reality
reflects what it is supposed to happen in the environment.
A misalignment of the two realities often stems from errors
in the tasks outcomes or is the result of exogenous events
coming from the environment. Specifically, when a task is ex-
ecuted and completed, the physical/expected reality will reflect
the actual/intended outcome of the task execution, according
to the specification of task’s effects. Conversely, exogenous
events modify asynchronously only the physical reality, by
leaving untouched the expected one. A recovery procedure is
needed if the two realities are different from each other. If
an exception/exogenous event invalidates the enactment of the
process being executed, an external state-of-the-art planner is
invoked to synthesise a recovery procedure that adapts the
faulty process instance by removing the gap between the two
realities, in order to allow process progression. In this paper,
we do not focus on the formal model underlying the SmartPM
approach, which is described in [17], but we rather explore
the architecture of the implemented system, which covers the
modeling, execution and monitoring stages of the process life-
cycle and captures the connection of implemented processes
with the real-world objects of the cyber-physical domain of
interest. To that end, as shown in Fig. 3, the architecture of
the SmartPM system relies on five architectural layers.

The Presentation layer. The Presentation layer provides a
GUI-based tool called SmartPM Definition Tool, which assists
the process designer in the definition of a process model

at design-time, i.e., it allows to (i) build a tasks repository,
(ii) define the process control flow and (iii) formalize the
contextual knowledge of the cyber-physical domain in which
the process will be enacted. Contextual knowledge is repre-
sented as a domain theory that includes all the information
of the application domain, such as the people/services that
may be involved in performing the process, the exogenous
events, the contextual data and so forth. Data are represented
through some atomic terms that range over a set of data
objects. In short, a data object depicts an entity of interest
(e.g., a location, a capability, a service, etc.), while atomic
terms can be used to express properties of domain objects
(and relations over objects). In our running example, the term
At[act : Actor] = (loc : Location type) is used for recording
the position of each actor in the area. In addition, the designer
can define complex terms. They are declared as basic atomic
terms, with the additional specification of a well-formed first-
order formula that determines the truth value for the complex
term. For example, the complex term Connected[act : Actor]
can be defined to express that an actor is connected to the
network if s/he is in a covered location or if s/he is in a location
adjacent to a location where a robot is located. A process
designer can also specify which exogenous events may be
catched at run-time and which atomic terms will be modified
after their occurrence. Concerning the definition of process
tasks, the process designer is required to specify which tasks
are applicable to the scenario under study. Tasks will be stored
in a specific repository, and can be used for composing the
control flow of the process and for adaptation purposes. Each
task is described with (i) typed input parameters, (ii) pre-
conditions - defined over atomic and complex terms - that
constrain the task assignment, and (iii) deterministic effects,
which establish the outcome of a task after its execution in
terms of a change of the value of one or more atomic terms.
For example, the task GO involves two input parameters from
and to of type Location type, representing a starting and an
arrival location. An instance of this task can be executed only
if the process participant SRV C that will execute it at run-
time is at the starting location from and is connected to the
network. As a consequence of task execution, the actor moves
from the starting to the arrival location, and this is reflected
by assigning to the term At[SRV C] the value to in the effect.
Once a valid domain theory and a tasks repository are ready,
the process designer uses the BPMN graphical editor provided
by the SmartPM Definition Tool to define the process control
flow among a set of tasks selected from the tasks repository.
The outcome of the process design activity is a XML-encoded
process specification that is passed to the Execution layer.

The Execution and Service layers. The Execution Layer is
in charge of managing and coordinating the process enact-
ment. SmartPM adopts a service-based approach to process
execution, that is, tasks are executed by services (that could
be software applications, human actors, robots, agents, etc.).
The BPMN process and the associated domain theory are
taken as input from the XML-to-IndiGolog Parser component,



Fig. 3. The SmartPM architecture.

a Java module that translates them into Situation Calculus
and IndiGolog readable formats. The Situation Calculus is
a logical language designed for representing and reasoning
about dynamic domains [12]. On top of that, we use the
IndiGolog high-level agent programming language [13] for
the specification of the process control flow. Hence, while
from a user perspective the process control flow is defined
using a subset of the modeling constructs provided by the
BPMN notation, an executable model is obtained in the form
of an IndiGolog program to be executed through an IndiGolog
engine. To that end, we customized an existing IndiGolog
engine1 to (i) build a physical/expected reality by taking the
initial context from the external environment; (ii) manage
the process routing; (iii) collect exogenous events from the
external environment. Once a task is ready for being exe-
cuted, the IndiGolog engine is in charge of assigning it to a
proper service that provides all the required capabilities for
task execution. Process participants interact with the engine
through a Task Handler (cf. Fig. 4), an interactive GUI-based
software application that supports the visualization of assigned
tasks and enables starting task execution and notifying of task
completion by selecting an appropriate outcome. The SmartPM
Task Handler is realized for Android devices from version 4.0
and up. The communication between the IndiGolog engine and
the task handlers is mediated by the Communicator Manager
component (which is essentially a web server) and established
using the Google Cloud Messaging (GCM) service.2

The Adaptation layer. The IndiGolog engine is also in charge
of monitoring contextual data to identify changes or events
which may affect process execution, and notify them to the
Adaptation layer. Specifically, given a process instance δ, after

1https://bitbucket.org/ssardina/indigolog
2https://developer.android.com/google/gcm/index.html

Fig. 4. The SmartPM Task Handler.

each task completion (or exogenous event occurrence), the
physical and expected realities are updated to reflect the actual
and intended outcome of task performance (or the contextual
changes produced by an exogenous event). If we consider our
running example, when the task GO(loc00, loc33) completes,
we show that the output value for At(act1) (generated as
an effect of the task GO) is ’loc03’, that is different from
the task’s expected outcome, that is ’loc33’ (cf. Fig. 4).
This means that the two realities are misaligned, and the
faulty process instance δ needs to be adapted. To enable the
automated synthesis of a recovery procedure, the Adaptation
Layer of SmartPM relies on the capabilities provided by a
PDDL-based planner component (the LPG-td planner [18]),
which assumes the availability of a planning problem, i.e.,
an initial state and a goal to be achieved, and of a planning
domain definition that includes the actions to be composed
to achieve the goal, the domain predicates and data types.
Specifically, if process adaptation is required, the Domain
Builder component translates the domain theory defined at
design-time into a planning domain, while the Problem Builder
component converts (i) the physical reality into the initial
state of the planning problem and (ii) the expected reality
into the goal state of the planning problem. The planning
domain and problem are the input for the planner component.
If the planner is able to synthesize a recovery procedure δa,
the Synchronization component combines δ′ (which is the
remaining part of the faulty process instance δ still to be
executed), with the recovery plan δa, builds an adapted process
δ′′ = (δa; δ

′) and converts it into an executable IndiGolog
program so that it can be enacted by the IndiGolog engine.
Otherwise, if no plan exists for the current planning problem,
the control passes back to the process designer, who can try
to manually adapt the process instance.



The Cyber-Physical layer. This layer is tightly coupled with
the concrete physical components available in the cyber-
physical domain under consideration. For automating the data
collection from the environment by using external/internal
sensors built-in in the mobile devices, several plugins have
been created for the Task Handler. For example, location
data can be obtained using built-in GPS sensors. In addition,
external sensors can be taken into use to gather automatic
measurements. For example, the Task Handler can take advan-
tage of the Arduino platform3, which provides several sensors
to measure different environmental values, such as the gas
level in the air, water quality, radiation level, etc. Arduino
can be connected with the Task Handler via Bluetooth for
transferring the data. We notice that the IndiGolog engine of
SmartPM can only work with defined discrete values, while
data gathered from physical sensors have naturally continuous
values. Therefore, a mapping of such continuous values into
their discrete counterparts is required. To tackle this issue,
we enhanced the SmartPM Definition Tool by providing several
web tools that allow process designers to associate some
of the data objects defined in the domain theory with the
continuous data values collected from the environment. For
example, in the case of the GPS sensor, we developed a
web tool (as a Google Maps plugin) that allows a process
designer to mark areas of interest from a real map (by
selecting latidude/longitude values) and associate them to the
discrete locations (e.g., loc00, loc01, etc.) defined during the
design stage of a process through the SmartPM Definition
Tool. Similarly, we developed further web tools for the other
developed sensors (temperature, humidity, noise level, etc.).
The mapping rules generated are then encoded in a XML file
that is saved into the Communication Manager and retrieved
at run-time (after any task completion) to allow the matching
of the continuous data values collected by the specific sensor
into discrete data objects (cf. the matching between ’loc03’
and concrete latitude/longitude values in Fig. 4).

IV. RELATED WORK

Initial research efforts addressing the need for exception
handling in PMSs can be traced back to the late nineties and
early two thousands [19]–[21]. Although possible sources of
anticipated exceptions are different and go beyond technical
failures, not surprisingly exception handling approaches in
PMSs trace and resemble exception handling mechanisms in
programming languages. At design-time, the process designer
identifies possible exceptions that may occur, defines exception
triggering events and conditions, and specifies exception han-
dlers associated with the predefined process model. Exception
handlers can be defined for single activities, for selected pro-
cess regions, or for the overall process (as in the case of a try
block in programming languages). During process execution,
timers, messages, errors, constraint violations and other events
might interrupt the process flow: the exception is detected and

3Arduino is an open-source physical computing platform based on a simple
microcontroller board, and a development environment for writing software
for the board, cf. http://arduino.cc/en/guide/introduction

thrown. The run-time environment checks for the availability
of a suitable exception handler, which is then invoked to catch
the exception (as in the case of a catch block). Typically,
the process (or sub-parts of it) is interrupted and the flow of
control passes to the exception handler, which defines specific
activities to be performed to recover from the exception, so
that process execution can be possibly resumed. As extensively
discussed in [22], exception handling capabilities provided by
academic prototypes and commercial PMSs can be recon-
ducted to the abstract framework introduced before. Several
exception detection and handler activation techniques [21],
[23], [24] adopt a rule-based approach, typically relying on
some form of Event-Condition-Action (ECA) rules. ECA rules
have the form “on event if condition do action” and specify to
execute the action (i.e., the exception handler) automatically
when the event happens (i.e., when the exception is caught),
provided the a specific condition holds.

Research efforts dealing with unanticipated exceptions have
established the area of adaptive process management [11].
The handling of unanticipated exceptions does not assume
the availability of predefined exception handlers and relies
on the possibility of performing ad hoc changes over process
instances at run-time. However, the degree of automation
in performing these changes is generally limited, as they
are often manually performed by experienced users: process
execution is suspended and the state of the affected instance
is adapted by relying on the capabilities of the modeling
environment. In an attempt to increase the level of user
support, semi-automated approaches based on case-based rea-
soning techniques have been proposed [25], [26]. They aim at
storing and exploiting available knowledge about previously
performed changed, so that users can retrieve and apply it
when adapting a process. Strong support for adaptive process
management and exception handling is also provided by the
ADEPT system and its evolutions [27]–[29] and by several
AI-based techniques [30]–[34]. If compared with traditional
exception handling approaches, we note that adaptive PMSs
deal with unanticipated exceptions by automatically deriving
the try block (with the manual definition of some business
policies at design-time, in the case of [33], [34]) as the
situation in which the PMS does not adequately reflect the
real-world process anymore. As a consequence, one or several
process instances have to be adapted with ad hoc process
changes, and the common strategy used by the adaptive PMSs
is to manually or semi-automatically define at run-time the
catch block. However, in dynamic working environments
and cyber-physical domains, analyzing and defining these
adaptations “manually” becomes time-demanding and error-
prone. Indeed, the designer should have a global vision of
the application and its context to define appropriate recov-
ery actions, which becomes complicated when the number
of relevant context features and their interleaving increases.
Conversely, the adaptation mechanism provided by SmartPM
is based on execution monitoring for detecting failures and
context changes, and allows to automatically synthesize at run-
time the recovery procedures, without requiring to predefine



any specific adaptation policy at design-time.

V. CONCLUSION

In this paper, we have introduced SmartPM, a framework
and a concrete PMS for automated process adaptation in case
of unanticipated exceptions and exogenous event, based on
declarative task specifications and planning techniques. The
choice of adopting AI technologies is motivated by their ability
to provide the right abstraction level needed when dealing
with dynamic situations in which data (values) play a relevant
role in system enactment and automated reasoning over the
system progress. However, the use of classical AI planning
techniques for the synthesis of the recovery procedure imposes
some restrictions for addressing more expressive problems,
including incomplete information, preferences and multiple
task effects. Furthermore, the need to explicitly model process
execution context and annotate tasks with preconditions and
effects may require some extra modeling effort at design-time,
but the overhead is compensated at run-time by the possibility
of automating exception handling procedures. The SmartPM
system was validated through empirical experiments based
on 3600 different process models having control flows with
different structures and domain theories associated to them.
The experiments confirm the feasibility of the planning-based
approach of SmartPM for adapting processes in medium-sized
cyber-physical domains from the timing performance perspec-
tive. On the other hand, SmartPM was able to complete 2537
process instances without any domain expert intervention, cor-
responding to an effectiveness of about 70,5%. For a detailed
discussion of the above experiments, the reader can refer
to [17]. Future work will include an extension of our approach
to “stress” the above assumptions by making the approach
applicable to less-controllable cyber-physical domains (such
as smart museums, and in general smart spaces), with the
purpose to maintain the planning process very responsive.

Acknowledgements. This work has been partly supported by
the Italian Sapienza grants TESTMED and SUPER, Sapienza
award SPIRITLETS, Italian projects NEPTIS and RoMA.

REFERENCES

[1] E. A. Lee, “Cyber physical Systems: Design Challenges,” in 11th
IEEE Int. Symp. on Object Oriented Real-Time Distributed Computing
(ISORC). IEEE, 2008.

[2] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2012.

[3] T. Allweyer, BPMN 2.0: Introduction to the Standard for Business
Process Modeling. BoD–Books on Demand, 2010.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte et al., “Business Process Execution
Language for Web Services,” 2003.

[5] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive Pro-
cesses: An Overview of Contemporary Approaches,” in 1st Int. Work-
shop on Knowledge-intensive Business Processes (KiBP 2012), 2012.

[6] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-Intensive Pro-
cesses: Characteristics, Requirements and Analysis of Contemporary
Approaches,” Journal on Data Semantics, pp. 1–29, 2014.

[7] R. Lenz and M. Reichert, “IT support for healthcare processes -
premises, challenges, perspectives,” Data Kn. Eng., vol. 61, no. 1, 2007.

[8] A. Marrella, A. Russo, and M. Mecella, “Planlets: Automatically Recov-
ering Dynamic Processes in YAWL,” in 20th Int. Conf. on Cooperative
Information Systems (CoopIS), 2012.

[9] R. Seiger, C. Keller, F. Niebling, and T. Schlegel, “Modelling Complex
and Flexible Processes for Smart Cyber-Physical Environments,” Journal
of Computational Science, 2014.

[10] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-Physical
Systems: the Next Computing Revolution,” in 47th Design Automation
Conference. ACM, 2010.

[11] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Infor-
mation Systems. Challenges,Methods,Technologies. Springer, 2012.

[12] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, September 2001.

[13] G. De Giacomo, Y. Lespérance, H. Levesque, and S. Sardina, “Indigolog:
A high-level programming language for embedded reasoning agents,” in
Multi-Agent Programming. Springer US, 2009, pp. 31–72.

[14] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory &
Practice. San Francisco, CA, USA: Morgan Kaufmann Pub. Inc., 2004.

[15] A. Marrella, M. Mecella, and A. Russo, “Collaboration on-the-field:
suggestions and Beyond,” in 8th Int. Conf. on Information Systems for
Crisis Response and Management (ISCRAM), 2011.

[16] S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella,
M. Bortenschlager, and R. Steinmann, “The Workpad User Interface
and Methodology: Developing Smart and Effective Mobile Applications
for Emergency Operators,” in Universal Access in Human-Computer
Interaction. Applications and Services. Springer, 2009, pp. 343–352.

[17] A. Marrella, M. Mecella, and S. Sardina, “SmartPM: An Adaptive
Process Management System through Situation Calculus, IndiGolog,
and Classical Planning,” in Principles of Knowledge Representation and
Reasoning: Proceedings of the 14th International Conference, KR, 2014.

[18] A. Gerevini, A. Saetti, I. Serina, and P. Toninelli, “LPG-TD: a Fully
Automated Planner for PDDL2.2 Domains,” in 14th Int. Conference on
Automated Planning and Scheduling (ICAPS-04), 2004.

[19] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
Implementation of Exceptions in Workflow Management Systems,” ACM
Transactions on Database Systems (TODS), vol. 24, no. 3, 1999.

[20] J. Eder and W. Liebhart, “Workflow Recovery,” in 1st IFCIS Int. Conf.
on Cooperative Information Systems (CoopIS). IEEE, 1996.

[21] C. Hagen and G. Alonso, “Exception Handling in Workflow Manage-
ment Systems,” IEEE Trans. on Soft. Eng., vol. 26, no. 10, 2000.

[22] M. J. Adams, “Facilitating Dynamic Flexibility and Exception Handling
for Workflows,” Ph.D. dissertation, Queensland University of Technol-
ogy Brisbane, Australia, 2007.

[23] D. K. W. Chiu, Q. Li, and K. Karlapalem, “A Logical Framework for
Exception Handling in ADOME Workflow Management System,” in
12th Int. Conf. on Adv. Inf. Syst. Eng. (CAiSE). Springer-Verlag, 2000.

[24] A. H. M. ter Hofstede, W. M. P. van der Aalst, M. Adams, and
N. Russell, Modern Business Process Automation: YAWL and its Support
Environment. Springer, 2009.

[25] B. Weber, W. Wild, and R. Breu, “CBRFlow: Enabling adaptive
workflow management through conversational case-based reasoning,”
Advances in Case-Based Reasoning, 2004.

[26] M. Minor, R. Bergmann, and S. Görg, “Case-based Adaptation of
Workflows,” Information Systems, vol. 40, pp. 142–152, 2014.

[27] M. Reichert, S. Rinderle, and P. Dadam, “Adept Workflow Management
System,” in Business Process Management (BPM). Springer, 2003.

[28] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam, “Adaptive Process
Management with ADEPT2,” in ICDE, 2005.

[29] A. Lanz, M. Reichert, and P. Dadam, “Robust and Flexible Error Han-
dling in the AristaFlow BPM Suite,” in Information Systems Evolution.
Springer, 2011.

[30] M. D. R-Moreno and P. Kearney, “Integrating AI planning techniques
with Workflow Management System,” Knowl.-Based Syst., vol. 15, no.
5-6, 2002.

[31] H. Ferreira and D. Ferreira, “An Integrated Life Cycle for Workflow
Management Based on Learning and Planning,” Int. J. Cooperative
Information Systems, vol. 15, 2006.

[32] A. Marrella, M. Mecella, and A. Russo, “Featuring Automatic Adaptivity
through Workflow Enactment and Planning,” in 7th Int. Conf. on
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom). IEEE, 2011.

[33] A. Bucchiarone, M. Pistore, H. Raik, and R. Kazhamiakin, “Adaptation
of Service-Based Business Processes by Context-Aware Replanning,” in
SOCA, 2011, pp. 1–8.

[34] N. van Beest, E. Kaldeli, P. Bulanov, J. Wortmann, and A. Lazovik, “Au-
tomated Runtime Repair of Business Processes,” Information Systems,
vol. 39, pp. 45–79, 2014.


