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SUMMARY

Low-power devices are usually highly constrained in terms of CPU computing power, memory, and GPGPU
resources for real-time applications to run. In this paper we describe RAPID, a complete framework suite
for computation offloading to help low-powered devices overcome these limitations. RAPID supports CPU
and GPGPU computation offloading on Linux and Android devices. Moreover, the framework implements
lightweight secure data transmission of the offloading operations. We present the architecture of the
framework, showing the integration of the CPU and GPGPU offloading modules. We show by extensive
experiments that the overhead introduced by the security layer is negligible. We present the first benchmark
results showing that Java/Android GPGPU code offloading is possible. Finally, we show the adoption of the
GPGPU offloading into BioSurveillance, a commercial real-time face recognition application. The results
show that, thanks to RAPID, BioSurveillance is being successfully adapted to run on low-power devices.
The proposed framework is highly modular and exposes a rich Application Programming Interface (API) to
developers, making it highly versatile while hiding the complexity of the underlying networking layer.
Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays, we use mobile devices to write documents, browse the Internet, explore maps, watch
or edit videos, play games, perform all the tasks we used to run on powerful computers, and many
more. Users are so attached to their smart mobile devices, that researchers have found that they
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2 MONTELLA ET AL.

would prefer to use their own devices even for working, a concept known as Bring Your Own Device
(BYOD)?.

To keep up with users’ demands and applications’ needs for ever-increasing computational
resources, devices are being equipped with a myriad of additional hardware, sensors, and
extra capabilities. Nevertheless, low-power devices do not possess such features, making newest
applications difficult or even impossible to run. Furthermore, advances in battery technology have
not been able to follow the fast smartphone race, making energy consumption a bottleneck for most
users. To address these problems, developers and companies have engineered solutions that offload
computational intensive operations from the low-power mobile devices to more resourceful remote
machines, usually residing on the cloud [1], [2], [3], [4], [5], [6]. However, none of these works deals
with securing the data during the offloading process [5]. Moreover, only recently researchers have
proposed the need for offloading not only computationally-intensive CPU tasks but also operations
performed by the GPU [7], [8], [9]. This mechanism can help the low-power devices overcome the
limitations arising from the absence of a GPGPU component or from the small amount of resources
available on such devices.

Focusing on CUDA GPGPU programming environment, the lack of offloading frameworks
is due to NVIDIA’s CUDA GPGPU proprietary platform, which collides with the open source
philosophy [10]. This way, when it comes to Android devices, for example, CUDA availability
is limited only to brand-specific Android products powered by the Tegra system on chip (SoC),
severely hurting the mass adoption of GPU computation in the Android developers’ community?.
OpenCL represents a more open alternative to NVIDIA’s CUDA, sharing the same programming
model and achieving almost the same performance under selected benchmarks [11]. Nevertheless,
Google has openly displayed its opposition to OpenCL, because mobile devices need performance
portability between many different GPU and CPU vendors with very different architectures®*,
motivating the support of parallel programming in the Renderscript model [12]. Although many
vendors use OpenCL as Renderscript back-end, there is no standard OpenCL programming model
for Android, because as for now it is impossible to write a unique kernel able to run acceptably
on a range of devices. The offloading approach proposed in this paper overcomes these limitations,
allowing CUDA or OpenCL code for GPGPU computation to be integrated in all Android devices,
even on those without a GPU. Given that there is no significant difference in our solution with
respect to CUDA or OpenCL, in this paper we present our contribution and results focusing only
in the CUDA GPGPU approach. Moreover, not only Android devices but also low-powered Linux
devices without a GPU can benefit from the GPGPU code offloading process, as we show in our
real deployment of the BioSurveillance experiments.

With the emergence of deep neural networks (DNNs), there is a need to perform neural network
inference for solving tasks such as object detection and recognition on legacy low-powered
Linux and Android mobile devices. Highly-accurate proposed convolutional neural network (CNN)
architectures such as ResNet [13] or Faster R-CNN [14] are typically computed on CUDA-enabled

platforms, and require a high-end power-hungry discrete GPU for processing big pictures on a

2http://www.dell.com/en-uk/work/learn/mobility-byod
3https://developer.nvidia.com/codeworks-android
4http://stackoverflow.com/questions/14385843/why-did-google-choose-renderscript-instead-of-opencl
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ACCELERATING LOW-POWER DEVICES THROUGH REMOTE GPGPU OFFLOADING 3

reasonable time. However, an increasing number of end-user mobile applications targeting low-
power Android devices demand near real-time performance and high accuracy for object recognition
tasks. We believe that bringing generic CUDA support to the Android world will open the door to
transparently perform inference of such complex CNNs in an easy manner, and benefit from the
existing deep learning GPU ecosystem.

In this paper, we discuss the design and implementation of RAPID, a complete offloading
framework that enables remote offloading of CPU computations and resource-intensive GPGPU
kernels on Android and Linux applications. RAPID comes in different flavours, so that it can support

many low-power devices. Precisely, RAPID supports:

e CPU and GPGPU remote task offloading on Android devices;
e CPU and GPGPU remote task offloading on Java applications for Linux devices;
e GPGPU remote task offloading on C/C++ applications for Linux devices;

The CPU task offloading is based on ThinkAir [1], an offloading framework for Android
applications. In this work we have extended ThinkAir to also support Java applications running on
Linux devices. Moreover, we have added a security layer for encrypting the offloaded data to avoid
eavesdropping of sensitive information by malicious users. As shown in [5], no other offloading
framework offers this type of security. We show by extensive experiments that the data encryption
process is quite lightweight and negligible in the case of non real-time applications.

The GPGPU task offloading is based on GVirtuS [15], an offloading framework for GPGPU
task offloading on C/C++ Linux applications. In this work, we extend the existing GVirtuS with
the design and the development of the completely brand new GVirtuS for Java and GVirtuS for
Android frameworks. From the technical point of view, we improved the overall GPGPU remoting
and virtualization availability, updating the support to the newest CUDA 8.0 APIs as compared to
the previous implementation supporting CUDA 6.5, and enriching the set of supported functions
with more advanced libraries, such as CUDA Fast Fourier Transform library (cuFFT), CUDA Basic
Linear Algebra Subroutines (cuBLAS), and CUDA Deep Neural Network library (cuDNN).

Even though task offloading is a well known technique in the distributed computing landscape,
it has not been adopted widely in the wild yet. One of the reasons for this, is that developers
prefer to develop following the traditional approach of setting up web service infrastructures able
to handle requests in a client-server fashion. To start developing applications using an offloading
framework, a developer should first learn how to use the new tools, which, depending also on the
clarity of the documentation, may be quite a hassle, compared to the traditional approach. Moreover,
the recent trend of cloud serverless computing, such as Amazon AWS Lambda’ or Google Cloud
Function®, may seem more attractive, given that they are supported by big technology drivers. The
proposed approach enables the developer to implement offloadable CPU and GPU code avoiding
any issue related to the infrastructure management. One of the most important contributions of
the paper, is enabling developers to embed GPGPU code in Android/Java applications, which can
later be distributed in regular ways (for example using the Google Play store) without the need

to deal with infrastructure issues (technical details, virtual machine management, load balancing,
Shttps://aws.amazon.com/lambda/
Shitps://cloud.google.com/functions/
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4 MONTELLA ET AL.

security, scalability, etc.). With the proposed approach, the typical Android development cycle is:
1) developing the app code, ii) developing the GPGPU code using the regular CUDA toolchain, iii)
embedding the GPGPU code in the application, iv) generating the signed APK, v) releasing the
application on the Google Play store.

We perform different experiments and show that GPGPU offloading not only is possible, but is
also convenient. We consider a matrix multiplication as a benchmark application to demonstrate the
GPGPU offloading on Android devices, while on Linux devices we assess the effectiveness of the
GPGPU offloading using the BioSurveillance application. In this paper, we omit the results about
the benefits of the CPU task offloading, given that these results have been assessed extensively
by many previous works, as described in Section 3, where in particular we compare and contrast
different offloading approaches with the web service option considered as a common baseline.
The proposed framework is subject to some limitations due to the task offloading itself. Some of
those limitations could be addressed and mitigated as the overhead caused by the networking and
the security management, others could be considered as a kick-start for future developments and
could be turned into opportunities as the exploitation as a offloading task provider for public clouds
entrepreneurs.

The rest of the paper is organized as follows: in Section 2 we give a short description of
application scenarios; in Section 3 we position our paper with respect to the state of the art; in
Section 4 we describe the high-level architecture of the RAPID framework, identifying its main
components; in Section 4.2 we give an overview of the GPU virtualization technique we designed
and used in our system; in Section 5 we present the design and implementation details of the Linux
and Android GPGPU task offloading component; in Section 6 we show the results of an Android
application exploiting GPGPU offloading and the results obtained by offloading parts of the real-
time face recognition procedure in the BioSurveillance application; and finally, in Section 7 we
conclude the paper with remarks on future directions.

2. REAL USE CASE SCENARIOS

We select two challenging compute-intensive application scenarios that extensively leverage CUDA
on both low-power devices and HPC resources on which the contribution could impact: i) a real-
time face recognition application and ii) an environmental model setup. Lately in this work, we use
the first one as evaluation scenario.

The real-time face analytics application is being developed by Herta Security. The application
relies extensively on CUDA kernels for performing the steps of face detection, facial template
extraction, and matching over high-definition live video stream feeds. Performing these operations
in real-time is already a difficult task. In the future, surveillance cameras are expected to provide
even higher definition, 4K or even 8K [16], which means that performing real-time face recognition
on crowded environments will become nearly impossible. In particular, performing CNN inference
of complex models locally at such high resolutions on a low-power envelope (typically SoCs
dissipating 3 W) is the biggest challenge. Moreover, the recent stagnation of Moore’s Law, and
projections reported recently in the latest International Technology Roadmap for Semiconductors
(ITRS), point out that transistors will stop shrinking in 2021 [17], thus highlighting the necessity
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ACCELERATING LOW-POWER DEVICES THROUGH REMOTE GPGPU OFFLOADING 5

of transparently offloading such compute-intensive GPU machine learning computations to remote
GPU server clouds.

WaComM (Water quality Community Model) is a three-dimensional decision support model
enabling the simulation and prediction of pollutant spills, its transportation, and dispersion in both
inshore and offshore environments. Its development is contextualized in the effort for a robust, stable
and consistent operational forecast system to protect mussel farms from pollution, which is one of
the outstanding issues in many developing world economies. The numerical models[18], with a
specific parametrization and spatial/temporal resolution, have been integrated in the Framework
to Advance Climate, Economic, and Impact Investigations with Information Technology (Face-
IT) work-flow system [19], providing support for experiment repeatability and interactive data
publishing [20, 21]. WaComM uses a hybrid approach, based on Eulerian-Lagrangian models [22],
implemented using a heterogeneous parallel approach[23]. WaComM requires high performance
computing (HPC) capabilities to be able to provide near real-time results [24, 25], impacting
the on-premise total cost of ownership [26]. The operational costs derived from such expensive
infrastructures could be mitigated by the GPU offloader, running the CUDA applications in
dedicated remote commodity GPU accelerator servers.

3. RELATED WORK

CPU GPGPU Native  Parallel. Plug-in Secure = Mobile Linux

offload- offload- (C/C++) support com- com- support  support
ing ing offload- muni- muni-
ing cator cator
Client-Server / / / / / / / /
ThinkAir [1] ¢ 4 v
MAUI [27] v 4
Cuckoo [28] v v
Giurgiu [29] (4 (4
COMPSs [30] v 4 4
POWER [31] v 4
GVvirtS [15] ¢ 4 4
rCUDA [32] v 4
JCUDA [33] v 4
This work 4 v v v Only v v v

GPGPU

Table 1. Related work comparison

With the massive proliferation of mobile devices in recent years, researchers soon realized that the
low computational capabilities and limited battery capacity constituted a bottleneck to end-users.
In order to solve this challenge, different solutions have been proposed to boost the performance
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6 MONTELLA ET AL.

of low-power devices by migrating resource-intensive computations to more powerful machines
featuring a higher Thermal Design Point (TDP).

Table I synthesizes the contributions of the most prominent works related to this paper.
As a reference, we also include the Client-Server baseline in the table. It is obvious that an
experienced developer could implement the offloading characteristics manually, as it has been the
case traditionally. In that case, the developer would implement a client and a server side for the
application. The developer would take care of implementing the logic of deciding where to execute
each heavy task, sending the task and the input data to the server, running the task on the server,
and getting the result to/from the server. The drawback of this architecture is that the client and
the server are tightly coupled with each other, making the developer responsible for implementing,
debugging, and maintaining both sides of the application.

Contrary to the tightly coupled paradigm of the client-server architecture, offloading frameworks
offer a higher degree of flexibility to developers, allowing them to focus only on the client side of
the application. Using these frameworks, developers implement their applications as if everything
were to be run locally on the client device. Indeed, the frameworks try to hide as much as possible
the complexity of the offloading decision, the data transmission, and the remote execution from the
developer. In this case, developers do not need to worry about the remote side at all, given that this
is part of the offloading framework. When we compare the client-server architecture with the other
offloading frameworks, we assume that nothing prevents an experienced developer to implement
any of the features of any offloading framework. However, as mentioned earlier, this would require
the developer to manually handle every aspect of computation remoting.

Based on their characteristics, we categorize the related works by eight aspects:

e CPU offloading indicates if the framework supports CPU computation offloading.

¢ GPGPU offloading indicates if the framework supports GPGPU computation offloading.

e Native (C/C++) offloading indicates if the framework supports native code offloading. This
is an important feature, given that many applications embed native libraries that implement
computationally intensive operations.

e Parallelization support indicates if the framework is able to handle automatic task
parallelization on the remote side.

e Plug-in communicator indicates if the communication between the client side and the remote
side is easily replaceable with another communication technology without interfering with the
rest of the framework.

e Secure communicator indicates if the communication between the client side and the remote
side is protected by means of encryption.

e Mobile support indicates if the framework supports offloading of mobile applications such
as Android, iOS, or Windows.

¢ Linux support indicates if the framework supports offloading of Linux applications.

The rest of the section gives a more detailed description of the works shown in the table.
CloneCloud is one the first popular frameworks in this direction [34]. CloneCloud uses an offline
static analysis of the apps’ binary to determine the code sections that are better to offload to the
cloud. The developer should then use the output of this analysis to build a database of offloading
decisions, which are later loaded on the device. On runtime, when an offloadable portion of the
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ACCELERATING LOW-POWER DEVICES THROUGH REMOTE GPGPU OFFLOADING 7

code has to be executed, the framework queries the database to decide where to execute the code.
CloneCloud presents the clear benefit of working on the application binaries and not on the source
code, being completely transparent to the developers. However, training the offloading decision
to consider all possible combinations of parameters of influence, such as network type, latency,
bandwidth, etc., is a tedious work to be performed for each application. MAUI [27] and ThinkAir [1]
are two alternative popular solutions that try to mitigate the issues of CloneCloud of static offline
partitioning. However, a drawback compared to CloneCloud is that these frameworks work at the
source code level, requiring the developer to be aware of the offloading environment. MAUI is
a method-level framework for Windows phones, which uses .NET language to achieve remote
method offloading and invocation. ThinkAir is a method-based offloading framework for Android
devices. The smartphone is associated with a virtual machine (VM) on a private or public cloud,
and the offloadable methods are sent to the VM for remote execution. ThinkAir also supports
dynamic resource allocation, exploiting the power of the cloud whenever the offloaded method can
be executed in parallel on multiple VMs. Cuckoo [28] is another offloading framework for Android
devices that works at the source code level, similar to MAUI and ThinkAir. Cuckoo also provides
the developers with an Eclipse extension to facilitate the programming model. In [29], the authors
present the implementation of a framework for Android that also considers the size of input data
when partitioning applications for remote execution. POWER [31] is a recent offloading framework
that is built on top of previous works. In this paper, the authors argue about the feasibility of
offloading between devices of different architectures. COMPSs-Mobile [30] advances on previous
works and proposes a parallelized version of the offloading paradigm for Android devices.

All the above-mentioned works strictly focus on offloading of CPU computations. Only recently
researchers have started proposing the first ideas about GPGPU code offloading on mobile
devices [7], [9]. The rest of this section focuses on the available GPU virtualization technologies
and frameworks to better put our solution in context.

One of the most prominent solutions related to concurrent remote usage of CUDA-enabled
devices in a transparent way is rCUDA [32]. Thanks to the split-driver approach, there is no need
to modify and recompile the CUDA-enabled application in order to use it with rCUDA. Indeed,
the framework takes care of all the necessary details in order to execute the CUDA kernels on a
remote or local GPGPU [35]. The overhead introduced by using a remote GPU is evaluable as
about less than 4% when a high performance network fabric is used [36]. At the time of writing,
rCUDA delivers high performance CUDA virtualization and it is up to date supporting the latest
CUDA 8.0 framework and its ancillary libraries exploiting the full advantage of using InfiniBand
and the recently developed support for RoCE networks (RDMA over Converged Ethernet). The
rCUDA binary distribution can be requested from the rCUDA web site’ at no charge, but it is not
freely available as open source.

JCUDA [33] is a Java framework that enables CUDA kernel invocation by delegating the
responsibility of generating the Java-CUDA interface code and host-device data transfer calls to the
compiler. The JCUDA implementation handles data transfers of primitives and multidimensional
arrays of primitives between the host and device. The framework works thanks to the Java Native

method invocation. Under this scheme, C functions are declared as native external methods dealing

7http://rcuda.net
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8 MONTELLA ET AL.

with out-of-the-sandbox unmanaged memory. Additionally, it automates the process of CUDA
kernel external compiling and JNI compliant interface code generation by offering a complete
integrated device/host memory management.

Even though these related works share several similarities with our proposed GPU offloading
mechanism, they all suffer from important drawbacks. For instance, while JCUDA offers a
remarkable solution to the problem of Java-CUDA kernel development, it cannot be directly applied
in the Android context, as the native CUDA compiler support is mandatory at runtime. rCUDA is
an excellent GPGPU virtualization and remoting middleware characterized by notable performance
and stability, sharing with GVirtuS many features and limitations, but unfortunately rCUDA is not
open source.

Our conference paper [37], which represents the baseline for this work, already shows some
preliminary results about the designing and the development of a framework supporting CUDA
kernel offloading for regular Android applications have been demonstrated. The extended work

presented in this paper differs from the conference paper in the following:

e The overall architecture is described with more details and it is contextualized in the
RAPID framework, where GVirtuS (the GPGPU virtualization and remoting engine) [15]
and ThinkAir (the offloading framework) are designed to be integrated and deeply cooperate
in order to accelerate low-power devices like SoCs, wearable, and mobile.

e We have added a security layer to the offloading framework, used to protect the data
transmitted during the offloading process from malicious users.

e This work focuses on the peculiar GVirtuS split-driver modular architecture used to virtualize
and remote GPGPUs on both Linux and Android.

e A bunch of technical updating are given as, but not limited to, the GVirtuS version 8.0
supporting CUDA 8.0, the support to both PTX and cubin formats for Android CUDA kernel
embedding.

e The new brand support for CUDA companion libraries such as cuFFT, cuBLAS, and cuDNN.
A general refactoring has been performed on the Android front-end achieving better overall
offloading performance.

e Even though the matrix product is still used in both papers as comparison tool for performance
evaluation, in this paper we present the adoption of GVirtuS into a real-time face recognition
BioSurveillance experimental application. The use of GVirtuS for GPGPU remoting is crucial
for these kind of applications where GPGPU-capable SoCs are currently not powerful enough.

As demonstrated in this paper, the RAPID framework is in an active development state.
Nevertheless, its CPU and GPGPU offloading technologies represent the current state of the art

and are mature enough to be used in the wild for a selected application scenarios.

4. THE RAPID OFFLOADING SERVICE ARCHITECTURE

The proposed offloading framework is highly modular and it is composed of two main entities:
the Acceleration Client (AC) and the Acceleration Server (AS). The AC is implemented in two
versions, as a Java Linux and as an Android library, that specifies the Application Programming
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Interface (API) that developers should use to implement method offloading. The AS is a server
application that runs on a remote machine and receives offloaded methods from the AC for remote
execution. On the other hand, the AC defines two API flavors, each one specialized to handle either
CPU or GPU instructions. As such, the API dealing with CPU offloading is inspired by the ThinkAir
framework [1], while the API dealing with GPU offloading is a novel implementation and Android-
adapted version of the GVirtuS system.

The programming model for CPU task offloading is quite straightforward. The developer needs
to simply tag the compute-intensive methods using @Remote Java annotations, where Remote is
a tagging interface defined in RAPID. Then, the RAPID compiler converts the annotated code
by adding the necessary code that will handle the offloading during runtime. When an annotated
and modified method is called for execution, the AC takes the method and the state of the calling
object and sends them to the AS. The AS then executes the method using Java Reflection and
returns the result of the execution to the AC, which forwards it to the calling object. The CPU
computation offloading is quite transparent to the developers, thanks to the fact that these methods
are implemented in Java, which provides all the mechanisms needed for object serialization and
remote execution via Reflection. When it comes to GPGPU code, however, the programming
languages such as CUDA or OpenCL do not provide such features. In this case, the developer
needs to utilize RAPID’s API to be able to perform GPGPU computation offloading. The API we
provide is composed of Java/Android method wrappers of the original CUDA functions. Obviously,
the wrappers have the same signature as the respective CUDA functions, facilitating this way
the adoption of our framework. Finally, the developer needs also to include the compiled CUDA
functions as raw files in a specific folder in the application. During runtime, when a wrapper method
of a CUDA function is called, the compiled CUDA code together with the input values will be
transferred on the remote side, where the GPU offload handler will take care of executing it on the
remote GPU. Then, the result of the invocation will be returned to the client.

Figure 1 shows a device on the left with multiple applications, some of which make use of the
AC to migrate the heavy tasks. We can notice the two different modules implemented by the AC
that are used to handle the CPU and GPU tasks offloading. On the right side of the figure, we can
see the Acceleration Server running on a Virtual Machine (VM) with the same operating system as
the device (e.g. Android OS). When an AC connects with the AS, the AS starts a new thread (App
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10 MONTELLA ET AL.

Handler) to serve the respective application, making it possible to support multiple applications
on one VM. The CPU offload handler on the AS receives the migrated code, executes it, and then
sends the result of the execution back to the AC. When the AC has to offload GPGPU operations,
it connects to the GPU offload handler on the remote physical machine, which is part of the GPU
virtualized framework. In the rest of the paper, we will provide a more in-depth overview of the
offloading framework architecture by emphasizing the aspects of the GPU offloading component.

4.1. CPU Code Offloading

CPU offloading is an extension of ThinkAir [1], a method-level offloading framework for Android.

ThinkAir is composed of three major components:

The Compiler is a source-to-source code converter, which helps the developers with the offloading
process, facilitating their work by hiding the complexity of the offloading operations. This
components comes together with a programming model, which allows developers to utilize
Java annotations, such as @Remote, to fag the compute-intensive methods as offloadable.
Then, the compiler converts the tagged methods to support offloading. In particular, the
compiler injects portions of code that are able to handle computation offloading via the

Execution Controller.

The Execution Controller is the component that handles computation offloading on the client
side. Developers should embed it as a library in their application. The compiler will inject
the needed code in the client’s classes where @Remote tagged methods are found. The
Execution Controller takes care of the communication with the Application Server, which
the remote side of ThinkAir running on the VM and executing the offloaded code. Moreover,
the Execution Controller includes a decision engine, which decides dynamically at runtime
if a method should be offloaded or if it should be executed locally on the device. Offloading
decisions are based on methods’ resource utilization, which are monitored via ThinkAir’s
profilers: i) Hardware profiler, ii) Software profiler, and iii) Network profiler. Finally, the
Execution Controller also includes an energy estimation model, which uses the profiled values
to estimate the energy spent by each method.

The Application Server is the component that runs on the VM, responsible for executing the
offloaded methods via Java Reflection. Moreover, if a method is able to exploit parallelization,
this component will dynamically trigger a process for allocating multiple VMs and will
distribute the offloaded code for distributed computation.

In this work, we have extended ThinkAir to support newer versions of Android and we have
ported it to support Java Linux applications. Furthermore, we have added a security layer to protect
the data transmitted from the Acceleration Controller (AC) to the Acceleration Server (AS) during
the offloading process. Before the security extensions, the communication between the AC and
the AS was performed using Java’s Socket® and ServerSocket®. In the current implementation, the

communication is implemented using the secured versions of these sockets, namely the SSLSocket'®

8https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/7/docs/api/java/net/ServerSocket.html
10https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLSocket.html
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ACCELERATING LOW-POWER DEVICES THROUGH REMOTE GPGPU OFFLOADING 11

and the SSLServerSocket'!. These sockets offer an encryption layer, such as the Secure Socket Layer
(SSL) [38] or the Transport Layer Security (TLS) [39], which protects the communication in three

ways:

e Integrity: SSL/TLS protects messages from being modified by a malicious user that can stand
in between the communication.

e Authentication: SSL/TLS offers the possibility for the client to authenticate the server,
making sure that it is authentic. This way, the AC can be sure that the AS is not malicious
and is executing the tasks correctly. The server can also authenticate the client, making sure
that the AC asking for computation offloading is the one allocated to this AS. This way, the
AS can be sure that is not running jobs for free-rider clients.

¢ Confidentiality: SSL/TLS supports data encryption, making sure that passive eavesdroppers
standing in between the AC and AS would not be able to read the content of the offloaded

data or the result of the offloaded computation.

Android replaces the default Java’s SSL/TLS library with a customized version of Bouncy Castle'?,
which provides a lighter implementation of the encryption algorithms. However, Android does not
include all Bouncy Castle’s algorithms, and that is one of the reasons why the Spongy Castle project
was born'3. In our implementation, we used the SSL/TLS sockets provided by java.net.ssl library
with the Spongy Castle provider to create the secure communication channel between the entities.
We used the default cipher suite choice of the library, namely SSL_RSA_WITH_RC_128_MDS5,
which means that it uses RSA as symmetric-key exchange algorithm [40], RC4 with 128 bits key as
stream cipher, and MD5 as the hash function to provide data integrity.

SSL/TLS works thanks to cryptographic keys embedded in digital certificates, which are managed
and distributed by a Public Key Infrastructure (PKI) [41]. The Certificate Authority (CA), is the
main entity of the PKI, which uses its own private key to sign other certificates for the clients,
the servers, and for other intermediate CAs. The certificates are then used by the clients and the
servers for authenticating each-other and for the RSA symmetric-key exchange. In our current
implementation, however, we do not implement a PKI. Instead, we manually generate the CA,
the client, and the server certificates. Then, we sign clients’ and servers’ certificates using the CA

certificate and embed them on the AC and the AS. Precisely, these are the main steps we performed:

o First, we create the Certificate Authority (CA) cryptographic keys (also known as root keys)
using OpenSSL'4. We use 4096 bits RSA for the root keys and protect the private key with
AES 256.

e Second, we use the root keys to create the CA certificate.

e Third, we use OpenSSL to generate the keys for the clients and the servers. We use RSA with
2048 for these keys.

e Fourth, we create the client and server certificates, and sign them with the root CA.

e Finally, we embed the root CA in both AC and AS projects, and embed the client and server
certificates in the AC and in the AS, respectively.

Mhttps://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLServerSocket.html
L2https://www.bouncycastle.org/

L3https://rtyley.github.io/spongycastle/

Mhttps://www.openssl.org/
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4.2. GPU Virtualization Architecture

The GPU virtualization architecture is inspired by our previous work done for GVirtuS, which is a
generic framework for virtualization solutions based on a split-driver model [42]. This driver model,
also known as driver paravirtualization, involves sharing a physical GPU. Hardware management is
left to a privileged domain. A front-end driver runs in the unprivileged VM and forwards calls
to the back-end driver in the privileged domain [43]. The back-end driver then takes care of
sharing resources among virtual machines. This approach requires special drivers for the guest
VM. The split driver model is currently the only GPU virtualization technique that effectively
allows sharing the same GPU hardware between several VMs simultaneously [44]. This framework
offers virtualization for generic GPU libraries on traditional x86 computers. At the current state,
GVirtuS supports leading GPGPU programming models such as CUDA and OpenCL. It also
enables platform independence from all the underlying involved technologies (i.e. hypervisor,
communicator, and target of virtualization).

In particular, as opposite of OpenCL, CUDA is strictly proprietary and not open source, making
the use of a virtualization/remoting layer non trivial. In our previous work about GVirtuS [45] we
described the GVirtuS development status framed to the CUDA version 6.5. Because the nature of
the transparent virtualization and remoting, GVirtuS strictly depends on CUDA APIs version and

we motivated the use the 6.5 version by the following issues:

e We had to perform a serious refactoring in order to make GVirtuS compliant with the latest
CUDA library design especially about the CUDA kernel management and invocation;

e Since the CUDA 6.5 release, both the compilers and required NVIDIA libraries are also
available for ARM architectures (e.g. NVIDIA Jetson development boards);

e GVirtuS represents the core of the RAPID GPGPU accelerator service. In this context the
target application requirements are CUDA 6.5 compliant.

As described in [46] with a remarkable level of details, GVirtuS leverages on the split-driver
model: a back-end, a communicator and one or more front-end(s).

In the split-driver, the communication issue is critical, especially when the virtualized resources
need to be thread-safe, as in case of GPUs providing CUDA support, and the one of the first
middleware goals is achieving the best possible performance for the available communication
technology (shared memory, TCP/IP, parallel streams, virtio, InfiniBand).

GVirtuS is composed of two main components: the back-end, installed on the GPU-capable
remote device and the front-end installed on the client device. The data transport between the two

components is managed by a communicator.

4.3. The back-end

In the GVirtuS framework, the back-end performs the actual remote CUDA function invocation. It
is a server application running at user privilege with the only need of accessing to the actual CUDA
drivers in order to control one or more GPGPU devices. If compared with other paravirtualization
approaches, where the need for the super user space level is mandatory for software components
designed for native hardware access, the GVirtuS back-end management is made straightforward
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by the only constraint of dealing with the physical device driver. In a production environment the

back-end can run as a daemon matching the system security policies.

4.4. The communicator

The communicator has the duty of high performance data transfer between the front-end and the
back-end. In the GVirtuS architecture, the communicator is a pluggable module characterized by a
public well defined API, which hides the underlying data transfer technology. This design allows
the development of diverse and different communicators in order to match a specific use case or in
order to exploit the best performance from a networking devices ecosystem. Each communicator
implementation must fit the following strict requirements due to the fact that it is a system-
critical component: i) security; ii) high-performance; iii) and liability. As such, the choice of the
communicator deeply impacts the GPGPU virtualization and remoting performance.

To contribute in enforcing heterogeneous cloud computing environments [47], GVirtuS comes

with several communicator implementations:

e The TCP/IP communicator has been implemented at the GVirtuS early development stages as
testing playground [48], nevertheless due to the improvement of performance in host/guest
machines communication using virtual networks, it became a first class component. This
communicator is under a deep refactoring process in order to enable parallel data transfer
for a better bandwidth utilization. The TCP/IP over InfiniBand is used for high performance
GPGPU remoting with GVirtuS.

e The AfUnix communicator is used for supporting local uses of GVirtuS. Through this
communicator a process can run via GVirtuS without the latency of the TCP/IP communicator.
In this case, the back-end and the front-end must both be deployed on the same physical
machine.

e VMSocket communicator aims to expose AfUnix socket between KVM virtual machines and
the host. It provides a fast and reliable communication channel. VMSocket is implemented as
a virtual PCI device inside QEMU, the emulator used by KVM.

e VMShm communicator enables QEMU virtual machines to access to POSIX shared memory
objects created on the host OS. VMShm make it possible to an user space application running
in a virtual machine to map up to 1M of a POSIX shared memory object from the host OS.

The TCP/IP communicator has been used in this work because it permits the communication

between remote machines, so we can compare remote Android and Linux system performances.

4.5. The Linux transparent front-end

The front-end is transparent to the application developers, allowing applications to make CUDA or
OpenCL calls without any adaption on the source code. This is achieved thanks to the imitation
of the virtualised or remoted shared libraries by intercepting each function call. The front-end is
incarnated as CUDA drivers, CUDA runtime, or other CUDA ancillary software components such as
cuFFT, cuBLAS, cuDNN, replacing the regular shared CUDA libraries implementation. In this way,
when a CUDA application invokes a CUDA function call or it launches a CUDA kernel, the GVirtuS
front-end intercepts the call, performs some parameters packaging, taking care about the host and
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Guest machine Host machine
| Application |
| Stub library |
GVirtus
plug-in
library
Front-end
Back-end
| Communicator | | Communicator

Figure 2. The GVirtuS approach to the split-driver model.

device pointers management, and sends what is needed to the back-end running on the remote
machine hosting the physical GPGPU device. Then the front-end waits for the results produced by
the back-end remote invocation, unpacks the returned parameters dealing with the pointers type and,
finally, returns the result back to the caller program. The stub-library implemented by the front-end
provides the APIs abstraction needed to make transparent the remote GPGPU function invocation
allowing non-GPGPU-capable machines to be accelerated by CUDA or OpenCL kernels.

4.6. GVirtuS implementation details

GVirtusS is provided with a basic plug-in SDK enabling developers and advanced users to implement
the NVIDIA CUDA stack split-driver in a relatively straightforward way. In this scenario, a
developer has to subclass from Frontend, Backend and Handler classes. The Frontend class
abstracts the communication buffer preparation, the input and output parameters management,
function invocation and the gathering of the returned value. Thanks to the GVirtuS modularity
and technology/architecture independence, many plug-ins are already available fully or partially
implemented as OpenCL, cuFFT, cuBLAS, and cuDNN.

The CUDA-enabled application running on the virtual or remote machine requests GPGPU
resources to the virtualized device using the stub-library. The CUDA application must be compiled
choosing the use of the shared libraries, otherwise the GVirtuS front-end is not invoked. In general,

on the back-end side, each function in the stub-library follows these steps:

Obtains a reference to a Frontend instance from a FrontendFactory singleton class;

Uses Frontend class methods for setting the parameters;

Invokes the Frontend handler method specifying the remote procedure name;

Checks the remote procedure call results and handles output data.

By design, the GVirtuS front-end does not implement data locality, meaning that a CUDA
function will be executed every time that it is invoked, without taking into account if the function
with the same parameters has been already invoked. This means that no local cache is available.
We motivate this choice by the simple fact of avoiding data inconsistency in this early stage
development. As for the current status, with the improvement of our software stability and with the
aim of achieving the best peak performance, we have already designed and partially implemented

two caching mechanisms:
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Figure 3. The GVirtuS-powered GPU offload handler architecture: GVirtuS (Linux) and GVirtuS4j
(Java/Android) front-ends interact with the GVirtuS back-end leveraging on the communicator.

e Local function caching. Function signatures, parameters, and results are stored on the front-
end side and managed by a front-end cache manager component in order to avoid remote
useless calls.

e Remote function caching. Function signatures, parameters, and results are stored on the
back-end side and managed by a back-end cache manager component in order to avoid useless
GPGPU usage.

The first (local) is used mainly to reduce the need of a complete offload, but the cache size is limited
by the device memory availability, while performance is limited by the local storage technology.
The latter (remote) is used to reduce the GPGPU usage by making it available for calculations not
performed yet thanks to a virtually unlimited cache size. The two function caching approaches are

not mutually exclusive.

5. THE JAVA/ANDROID FRONT-END FRAMEWORK

In this section, we present the design of GVirtus4j, the Android GPU offloading framework, which
is inspired by the architecture of GVirtuS described in Section 4.2. A CUDA program is composed
of two different elements: i) CUDA application programming interface functions'> such as memory
management, and ii) the kernel functions'®, which are written in CUDA language. As such, we
implement GVirtuS4J along two axes: i) Encapsulating the CUDA API functions and ii) handling
the kernel functions.

In order to deal with the first problem, we build the front-end of GVirtuS4J as a Java/Android
library that developers can include in their applications. We include the CUDA C++ methods with

5 http://docs.nvidia.com/cuda/cuda-runtime-api/
16https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
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Figure 4. How GVirtuS4j face with the regular GVirtuS back-end: The GPGPU code is embedded in the
Android application as a text PTX or binary cubin. The GVirtuS4j manages connection, the memory
allocation, the context and the kernel invocation.

the same original signature whenever possible. Following an approach similar to JCUDA [33],
Android developers can write Java code that directly calls CUDA kernels by using our API. As
opposed to JCUDA, GVirtuS4J does not delegate the responsibility of generating the Java-CUDA
bridge code and host-device data transfer calls to the compiler but it behaves as a local wrapper of
the standard CUDA library. In the remote side, we use the regular GVirtuS back-end.

The communication between the Android GVirtuS4J front-end and the back-end is implemented
using a customized TCP/IP communication protocol (see Figure 3). When a CUDA function is
called in the Java/Android code, a socket connection with the back-end server is created, and a
buffer for the data to be sent is allocated. Then, the CUDA function name together with the data (the
parameters passed to the function) are serialized and sent to the back-end. The latter assigns them
to the appropriate variables and invokes the corresponding CUDA function. The processed results
are returned to the Java/Android front-end, which forwards them to the caller object. In order to
add support for new API functions that may be included in future CUDA toolkit releases, we have
implemented a series of support classes that simplify the communication and argument passing
between C++ and Java. Frequently, argument passing is not strictly directed given the different
nature of languages and architectures used.

In order to add support for CUDA kernel execution on Java/Android environments, and also to
transparently execute them on a remote GPU server, it is necessary to send the kernel code to the
back-end, as shown in Figure 4.

The kernel code has to be embedded in the application in PTX or cubin (CUDA binary):

e As it is well-known, the CUDA programming model stack relies on its proprietary pseudo-
assembly intermediate language and split compilation architecture to ensure portability of
GPU kernels across different NVIDIA GPU architectures. This intermediate language is
called Parallel Thread Execution (PTX). Therefore, developers can write kernel code either
using the low-level PTX or a high-level programming language such as C/C++. In both cases,
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kernels must be compiled into binary code by the NVIDIA CUDA Compiler (NVCC) to
effectively execute them on the device. NVCC compiles applications written in C/C++ and
CUDA by splitting the code into two parts: the pure C/C++ part, which will be compiled by
traditional C/C++ compilers such as GCC, and the CUDA part which is compiled by NVCC
thus generating a PTX file with the GPU kernel code. The PTX source code file typically
includes pseudo-assembly instructions, operands and other low-level operations responsible
for encoding symbols and manage memory addressing. Unfortunately, current compilers are
not able to generate binary code from CUDA kernels that are written in Java language.

e A CUDA binary (also referred to as cubin) file is an ELF-formatted file which consists of
CUDA executable code sections as well as other sections containing symbols, relocators,
debug info, etc. By default, the CUDA compiler driver NVCC embeds cubin files into the
host executable file. In order to embed cubin files in a Java or Android application it must
be generated separately by using the ’-cubin” option of NVCC. Using GVirtuS4j, the cubin
files sent on the remote host and the they are loaded at run time by the CUDA driver API.
The input program is preprocessed for device compilation and is compiled to CUDA binary

(cubin) which are placed in a fat binary.

GVirtuS4J solves this issue by mapping the entire PTX or cubin file into a buffer, encoding it as a
string, and finally sending the string to the back-end to perform the execution of kernels on remote
GPUs (see Figure 4).

However, the driver API needs an additional level of control by exposing lower-level concepts
such as CUDA contexts and CUDA modules that are not implicit. Applications that use the driver
API must compile code to separate files and explicitly load PTX code or cubin fat binaries.
GVirtuS4] takes advantage of this procedure to mix host code written in Java (i.e. code that executes
on the CPU), and then using the front-end library of GVirtuS-CUDA and device code (i.e. kernel
code targeting the GPU) previously compiled using NVCC.

Under certain circumstances, GPGPU code offloading could have not been performed. A short
and incomplete list of errors triggering this issue could be the following: i) unavailability of network
connectivity (totally absent or too poor to offload the task), ii) the remote acceleration server could
be overloaded or not correctly working, and iii) the application could embed one or more kernels
that cannot be executed by the accelerator server. While GVirtuS4j offers a framework enabling
CUDA kernel offloading, the local fallback management is under the developer’s responsibility, as
it is usually the case with GPGPU programming. If the code accelerated using GVirtuS4j cannot
be executed for any reason, the developer has to provide a local alternative, making de facto the
GPGPU code offloading optional:

e If there is no other way to perform the computation in an accelerated fashion, a local Java or
native coded algorithm will be called, if provided by the developer.

e If the device has an on board GPGPU resource, as the NVIDIA Shield tablet for example, the
computation could be performed locally, meaning that if the developer wants to support the

fallback to the local GPU he/she has to provide that implementation as well!”

17GVirtuS4j and the regular NVIDIA CUDA SDK for Android are similar, but they are not the same entity.
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Remotely
offloaded

Figure 5. Face recognition pipeline used in BioSurveillance

If the GPGPU accelerated code is within a remoteable CPU code and the CPU code is executed
remotely on the accelerator server, the issues about network connectivity and GPGPU code
offloading are implicitly solved because the actual GPGPU device is proximal to the resource where
the CPU code is executed.

6. PERFORMANCE EVALUATION

In this section, we show the obtained performance results for a real-wold face recognition
application offloading CUDA kernels using GVirtuS on a Linux environment, and performance
tests obtained by executing CUDA kernels remotely in Android.

6.1. Remote CUDA Kernel Execution in the BioSurveillance Application

BioSurveillance is a real-time highly-accurate face recognition software that extensively relies
on GPU computing, and is specifically aimed for surveillance purposes in highly-crowded
environments. It implements fine-grain parallelization using CUDA kernels for accelerating steps
such as video decoding, face detection, template extraction and matching in databases populated
with hundreds of thousands of suspects. Unfortunately, this application requires a single or several
high-end NVIDIA discrete GPUs for concurrently analyzing faces on multiple 4K video feeds on
a single machine. An approach for minimizing the total cost of ownership of the deployment of
facial recognition systems is to split computations in a distributed manner. Typically, the most time-
sensitive part of the face recognition pipeline are the video decoding and face detection substeps,
as they are the input of the final face matching process. If video decoding and face detection do
not meet the real-time deadline (i.e. 40 ms at 25 FPS), the system must discard video frames thus
losing precious information while dramatically slowing down the end-user experience. Therefore,
in order to avoid discarding frames, such steps should be implemented nearby the video capturing
device or the surveillance camera. The approach we follow for adopting a client/server architecture
in BioSurveillance is to deploy the NVIDIA Jetson TK/TX1 boards close to the cameras so they
can perform the video decoding and execute the face detection/template extraction kernels on the
CUDA-enabled on-die GPU of the Tegra SoC. Once facial templates have been extracted, the
template matching kernel is then automatically offloaded to a remote high-performance discrete
GPU by means of the GVirtuS framework (see Figure 5).
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By following this architecture, a benchmarking experiment is conducted to study the feasibility of
such approach, which substantially differs from other remote face recognition solutions such as the
Amazon Rekognition API'®, Microsoft Cognitive Services API'°, or Google’s Vision API?’. These
solutions require sending the whole image frames to their remote cloud before returning the results
in JSON format. We believe our alternative is better suited for video workloads, as the input video
feed resolution of surveillance cameras will keep improving to higher pixel densities (e.g. 4K or 8K
resolutions). Moreover, we expect that future surveillance cameras to feature some kind of limited
GPGPU capabilities, and to rely on low-power SoCs similar to the NVIDIA’s Tegra platform for
running image processing, and object detection kernels inside the camera.

In order to prove the feasibility of such distributed architecture, we benchmark the performance
of the face template matching when performed on the NVIDIA Jetson TK1 board compared to
offloading it using GVirtuS. The selected platform for issuing kernel launches is the NVIDIA
Jetson TK1 board attached to a 1080p camera. The initial video decoding is performed by relying
on the on-die H.264 video decoder by means of the GStreamer interface provided by NVIDIA.
Decoded frames are then mapped to the face detector kernel, which determines face locations. These
locations, are then used as an input of the facial template extraction kernel, which is also executed
on the board. At this point, we distinguish the two different experiments by executing the template
matching CUDA kernel i) on the local GPU of the Jetson TK1; and ii) on a remote GeForce Titan
X thanks to GVirtuS.

Results of face template matching against a suspects database (remotely stored in the GeForce
Titan X dedicated memory) are summarized below in Table II.

CUDA Kernel Tegra K1 GPU (ms) GeForce Titan X GPU (ms)

[Local] [Remote - GVirtuS]
Template matching 290 52
Table II. Execution time of the face template matching CUDA kernel (local GPU vs. remote GPU with
GVirtuS)

As the results depicted in Table II show, GVirtuS is a promising approach for transparently
offloading and massively scaling template facial matching on low-power embedded GPGPU
platforms. Even though the test was performed on a local area network (LAN) with a low
average round-trip delay time of 1 ms, the 55x obtained speed-up indicates great opportunities
for deployments in networks with higher latencies. Additionally, it also opens the door for the
execution of CUDA kernels matching against millions or records of suspects, which could be stored
in a distributed manner over several powerful remote discrete GPUs equipped with high-bandwidth
memories (HBM).

6.2. Executing CUDA Kernels in a Regular Android Application

In order to evaluate our prototype, we performed some tests which proved that i) GPU code

offloading is feasible and ii) convenient under the right circumstances. Choosing a performance

18https://aws.amazon.com/rekognition/
LOhttps://www.microsoft.com/cognitive-services/
2Ohttps://cloud.google.com/vision/
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AxB CPU GPU* CPU GPU*  CPU  GPU*

(PA64,s) (PA64,s) (NEO,s) (NEO,s) (S2T,s) (S2T,s)
A[192,128] x B[128,128] 0.3 4.9 32 59 0.01 1.1
A[384,256] x B[256, 256] 3.6 15.9 52.0 11.2 0.7 2.4
A[768,512] x B[512,512] 60.7 42.4 505 45.0 15.6 5.4
A[1152,768] x B[768,768]  223.6 94.5 1783 94.7 47.2 11.9

Table III. Results: Time in seconds, *GPU offload. PA64: PineA64+ developer board; NEO: UDOO Neo
Internet of Things board; S2T: Samsung Galaxy S2 Tab (T-819), top-range Android mobile tablet. In bold
when the offload GPU execution beats the local CPU performance.

testing suite accepted by the community was not possible, due to the lack of such suite, given that
the GPU code offloading for Android devices is a novel approach. We chose one of the NVIDIA’s
CUDA SDK 8.0 samples, which are included with the standard CUDA Toolkit distribution?!.
Precisely, in this paper, we benchmarked Matrix Multiplication. The choice was motivated by
its clarity of exposition on illustrating various CUDA programming principles, which makes it
easy to clearly present the needed modifications for making it work with GVirtuS4J. Moreover,
performing linear algebra operations is a common task assigned to GPGPUs [49], and it is becoming
increasingly important in the context of CNNs, as they extensively rely on BLAS SGEMM
operations for both training such networks and inferencing them. Preliminary tests have been
conducted with a varying problem size as shown in Table III, where the size of matrix A is given
by 4*block_size, 6*block_size, and the size of matrix B is given by 4*block_size, 4*block_size
(block_size=32). The Accelerator Server (Dual Intel Xeon 6-core E5-2609v3 1.9Ghz - 8§GB DDR4)
we used for this experiment is equipped with two NVIDIA Titan X CUDA-enabled devices. We also
executed performance tests using a Pine A64+ single board computer (ARM Cortex A53 64-bit Quad
core), a UDOO Neo Internet of Things board (ARM Cortex-A9 32-bit Single Core, 1.0GHz, 1GB
RAM) and a tablet Samsung S2 mod. T-819 (8 cores, 1.8GHz, 3GB RAM). The connection between
the front-end and the back-end was made through a traditional IEEE 802.11 Wi-Fi infrastructure.
The results include the network overhead.

This experiment demonstrated that remote GPU offloading is a promising approach to be
considered as the problem size of a given workload is increased. The break point of offloaded GPU
beating the local CPU is related to the device (single board computer and tablet behaves differently),
the algorithm used, and the network condition.

These results demonstrate how the proposed framework enables CUDA kernel execution on
devices that are not provided with GPUs with CUDA support. However, a more extensive
performance test and evaluation suite is needed in order to define the range of problem size thus
reflecting the feasibility of the proposed approach. The comparison with local CUDA execution on
devices with CUDA GPUs, such as the NVIDIA Shield K1 Tablet, would be quite useful to show
same results as we previously did in Section 6.1 with the NVIDIA Jetson TK1. The NVIDIA CUDA
official support to Android is very limited to a short list of devices??; the NVIDIA CUDA toolchain
differs from the one common in regular Android development and, last but not the least, the Android
based products supporting NVIDIA CUDA represent a niche market not straightforwardly available

21http://docs.nvidia.com/cuda/cuda-samples/
22https://developer.nvidia.com/codeworks-android
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off the shelf. However, we plan on extending our performance test application enabling the local
CUDA support and designing a three-step fallback system: remote GPU, local GPU, local CPU.

6.3. Overhead of the security layer

We perform an extensive number of experiments to characterize and measure the costs introduced
by the cryptographic communication protocol for data exchange between the AC and AS. The
data transmission/receiving costs depend on the size of data to send/receive and on the network
quality. For this reason, we measure the latency when sending and receiving objects of different
size from an Android client to VMs running on two clouds with different capabilities and network
quality. In particular, we present here only the costs related to data transmission; the results of data
reception are similar and consistent with the results obtained with the transmission experiments. We
use a Motorola Moto G phone with Quad-core 1.2GHz Cortex-A7 CPU, 1GB of memory, running
Android 5.1 as the client device. We use two clouds for running the VMs: one private and one
public, precisely the Amazon EC2 cloud?®. The private cloud is deployed on a Dell machine with
2xIntel Xeon ES5 2600 v3 2.40GHz processors (24 cores), 32GB (up to 1536GB) RAM, running
Ubuntu Linux 14.04.3 LTS x86_64. The cloud platform is OpenStack®*.

The purpose of using two clouds is to perform the experiments using network connections with
different conditions between the AC and the AS. As the ping measurements show, presented in
Table IV, the connection towards the private cloud presents higher latency than the Amazon EC2
cloud. The Amazon Machine Image (AMI) we utilize for running the VM is a m/.medium instance,
with 1 vCPU, 3.75GB RAM, 410GB of disk memory, not EBS optimized, and with moderate
network performance®>. We launch the instance in Amazon’s eu-west-1 region, more precisely in
Ireland, the physical location of the Private cloud is Greece, and the physical location of the mobile
device is Denmark. We configure the VM on the private cloud with 1 vCPU, 1GB RAM, 20GB
of disk memory, and normal network priority. The VM in the private cloud and on Amazon EC2
runs the Android-x86 OS?° 4.4 and 4.0, respectively. In particular, on Amazon EC2 we run our
customized Android-x86 AMI, publicly available with ID ami-ce5a4dba [50].

We send/receive random data of size 4B, 100KB, and 1MB from the AC to the AS and vice-versa
for 200, 100, and 20 times in clear and with SSL/TLS for each data size, respectively. We select
these data sizes to represent applications needing to send small, average, and large data. Then, we
plot the measurements as boxplots, showing the minimum, the 25" percentile, the median, the
75" percentile, and the maximum. We recreate the connection between the AC and the AS before
sending the data, to avoid the caching optimization implemented in Java’s ObjectOutputStream. The
results of the experiments performed with the Private cloud and with the Amazon EC2 cloud are
presented in Figure 6 and Figure 7, respectively. The results show that in all cases the encryption
layer does not introduce any noticeable overhead compared to the clear communication.

We perform the same experiment also using the Linux version of the framework. The client
device (AC) in this case is a Lenovo ThinkPad T460p running Ubuntu 16.04, Core i7-6820HQ
(4C, 2.7 /1 3.6GHz, 8MB) CPU, 4GB RAM, WiFi, and physically located in Denmark. The VM is

23https://aws.amazon.com/ec2/
24https://www.openstack.org/
25https://aws.amazon.com/ec2/previous-generation/
26http://www.android-x86.org/
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Figure 6. Latency of transmitting 4B, 100KB, and 1MB from the Motorola Moto G (AC) to the VM (AS) in
clear and with SSL using WiFi and Mobile network. The VM runs on a private cloud with low data rate and

high latency.
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Figure 7. Latency of transmitting 4B, 100KB, and 1MB from the Motorola Moto G (AC) to the VM (AS) in
clear and with SSL using WiFi and Mobile network. The VM runs on the Amazon EC2 cloud with moderate
data rate and moderate latency.

Table IV. Network latency between the AC and AS when the AS runs on a Private cloud and on the Amazon

EC2 cloud.
Private Cloud Amazon EC2
WiFi (ms) Mobile (ms) WiFi (ms) Mobile (ms)
Motorola Moto G 87.526 162.539 57.651 132.380

configured with 1 vCPU, 1GB RAM, and normal network priority on the private cloud. On Amazon
EC2, we use the m3.medium instance, which provides 1 vCPU, 3GB RAM, and moderate network
priority. The VM runs Ubuntu 16.04 on both clouds. The network latency towards the private cloud
and Amazon EC2, as measured by ping, is 78.846ms 37.718ms, respectively. The results of these
experiments are consistent with the ones obtained with Android, showing that also in this case the
encryption layer does not introduce any noticeable overhead compared to the clear communication.
The plotted results are omitted for reasons of space.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design and implementation of RAPID, the first, to the best of
our knowledge, complete offloading suite for low-powered devices. RAPID supports CPU task
offloading for Android and Java Linux applications and supports GPGPU CUDA-based offloading
for Android and C/C++/Java Linux applications. Moreover, RAPID implements a lightweight
security layer to protect the data transmitted during CPU task offloading from malicious users. We
first presented a high-level perspective of the whole framework, describing its main components
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with a focus on the GPGPU-related subsystem that deals with the GPGPU offloading process.
We showed through preliminary experiments that GPGPU CUDA offloading on Android devices
is not only possible but also convenient when the problem becomes large enough. Moreover, we
showed the first impressive results of embedding the framework into a real world face recognition
application, namely BioSurveillance. From these experiments we saw that transparent remote
GPGPU offloading substantially reduced the execution time of workloads demanding highly
compute-intensive operations. Finally, we showed that the security layer does not introduce any
significant overhead in terms of data transmission delay.

As it is the case with computation offloading, RAPID is not a solution for all possible applications.
Applications with heavy computation requirements, small-sized input/output problems, and non-
strictly real-time could be the best candidates. However, there are applications that are characterised
by a nature that makes the remoting approach not feasible, such as large input/output size, for
example. The evaluation Android application we used for the results presented in this paper
fosters a pretty common scenario in Android GPGPU offloading, where the network overhead
is non-negligible. Considering just the GPGPU code offloading, Linux applications, such as the
BioSurveillance and the WaComM model, best fit another scenario pictured out by the need of
GPGPU computation and the availability of proximal accelerator servers (remote, but close and
stable from the network point of view).

Currently, we are gearing the development of the proposed platform towards three future
directions: i) As a first goal, we will improve the efficiency and architectural design of the GPGPU
offload handler by relying on more developed and robust suites thanks to the availability of up-
to-date hardware infrastructures, tools, and compiler technology. New communicators leveraging
on parallel streams and InfiniBand are in development and early-testing stage. Regarding the local
fallback in case of offloading failure, which is already supported for CPU computational tasks,
we are working on implementing the same feature for GPGPU code as well. This delay is due to
the current state of the available technology, which does not allow for fully automatic GPGPU code
local fallback management. For this reason, we still rely on the developer’s support for providing the
source code for local execution along with that for remote acceleration. Moreover, we have started
the integration of a Public Key Infrastructure for automatic key distribution into the project. ii) As
medium-term goal, we will release the RAPID framework as open source software under Apache 2.0
license. This way, we will offer the availability of our cloud shared CPU and GPGPUs computing
resources to a selected group of early adopters for testing their applications and for improving the
overall quality of code; iii) As a long-term goal, we will leverage on a solid and stable CPU and
GPGPU offloading infrastructure to implement real-world applications in the field of distributed
computing and high-performance [oT [51],[52], paying special attention to the techniques developed
to enhance the selection and transparent use of resources [53],[54].

At the time of writing, the GVirtuS’ back-end is implemented as a Linux daemon, the GVirtuS’
front-end is implemented as a Linux shared library, and the GVirtuS4j’s front-end is implemented
as a Java and Android library. Because of design and performance reasons, the implementation of
the back-end as a Linux daemon is mandatory in our solution. However, there is nothing preventing
the implementation of the front-end as a Windows Dynamic-link library (DLL), thus supporting
also low-powered devices running Windows. In a similar way, GVirtuS4j could be implemented

as an iOS framework, enabling remoted GPGPU computation also on Apple devices. As already
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stated in the paper, we focused this ongoing research work on CUDA, but thanks to the GVirtuS
architecture, our plans involve the development of a GVirtuS4j framework wrapping OpenCL. The
GVirtuS’ OpenCL plug-in is already available. The use of OpenCL could be a trailblazer to different
acceleration architectures than just GPGPUs.

The RAPID acceleration framework and, in particular, the CPU?’, the GPU Linux?® and
Android?® offloading middleware are available as open source under the business-friendly Apache
2.0 license.
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