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General introduction

The importance of magnetism in white dwarfs (WDs) was addressed several
decades ago, being Ostriker and Hartwick (1968) the first addressing their im-
portance on the structure of these kind of stars. It was understood that the effect
of magnetic fields was to increase the radius of the WDs and that they cannot be
arbitrarily large, otherwise the WD becomes unstable. While theoretical efforts
were undertaken to understand the effect of magnetic fields on the structure
and stability of WDs, on the observational field the number of magnetic WDs
reported has increased significantly in the last years (Ferrario et al., 2015). As
is stated in the title of this dissertation, the main purpose of this work is to
address the issue of magnetism in WDs, mainly their structure and their appli-
cation to some of the most enigmatic objects discovered recently in the field of
astrophysics, the Soft Gamma-ray repeaters (SGRs) and the Anomalous X-ray pulsars
(AXPs), objects that traditionally have been associated with a particular model,
the magnetar model, a fact that make them being better known in literature sim-
ply as magnetars.

In chapter 1 I make an introduction to the motivation behind this disserta-
tion. I explain, from a brief historical point of view, the observational discov-
ery of pulsars. We explain also how these peculiar astrophysical objects were
finally associated to the previously theoretically hypothesized Neutron Stars
(NSs). NSs are very compact objects, first proposed by Landau (1932) and Baade
and Zwicky (1934d), and were proposed as the result of supernova explosions of
massive stars. Then I explain how the discovery of AXPs and SGRs established
a new paradigm in the field of neutron stars (NSs), where it was established
the idea that a new kind of pulsar has been discovered, the magnetar. A magne-
tar is a very magnetic NS, with magnetic fields of the order ∼ (1014 − 1015) G.
The fundamental difference between a magnetar and an ordinary pulsar is the
mechanism responsible for the electromagnetic wave emission: in a magnetar
the magnetic field energy powers the electromagnetic wave emission while in
a traditional pulsar the rotational energy is responsible for that. This difference
lays on the fact that rotational energy loss of a typical NS cannot explain ener-
getically the electromagnetic emission of AXPs/SGRs. Is at this point where we
remind the existence of an alternative model to the magnetar model, first pro-
posed by Paczynski (1990), which also intends to explain AXPs/SGRs invoking
a magnetic WD instead of a magnetar. In this model the magnetic WD would be
more like a traditional pulsar instead of a magnetar, i.e., the WD would behave
like a rotationally powered pulsar.
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General introduction

The WD model is a motivation to study in the most realistic way the struc-
ture and stability of rotating WDs. Therefore, in chapter 2 I address the main
points behind the structure and stability of these compact objects. I explain the
main physical effects that play a role in the structure of WDs such as degener-
acy pressure, Coulomb repulsion or gravitational force, and then I consider the
consequences of the instabilities that are produced by different phenomena such
as inverse β-decay, pycnonuclear fusion reactions or General Relativity (GR). We
show the main aspects of WDs that obey the relativistic Feynman-Metropolis-
Teller equation of state, both in the static (Rotondo et al., 2011a) and uniformly
rotating (Boshkayev et al., 2013) cases.

We proceed in chapter 3 with the topic of magnetism in WDs. In the first
part of this chapter we give attention to what observations have revealed about
magnetic WDs. Observations show that the most magnetic WDs are in the range
(106 − 109) G. In the last years different missions have allowed to increase the
number of reported magnetic WDs, which now we know make up a signifi-
cant percentage of the total number of observed WDs. We show information re-
garding their average masses, their observed periods and we mention the main
models that intend to explain their origin and evolutionary channel. From these
models, of special importance is the double degenerate merger model, which
also was considered by Paczynski (1990) as the most probable scenario for the
origin of the pulsar-like WDs that would explain AXPs/SGRs. In the second part
we deal with the recently proposed model of ultra-magnetic WDs (proposed by
Das and Mukhopadhyay, 2012, 2013) as an explanation to the observation of
superluminous supernovae Type Ia that would require the existence of super-
Chandrasekhar WDs, typically of the order (2.1 − 2.8)M�. In that model the
way the WD can reach such masses is through the hypothetical presence of very
high magnetic fields, usually as large as 1018 G. We therefore show this treatment
ignores several microscopic effects that render unstable this ultra-magnetic WDs,
whose properties resemble more the characteristics of typical NSs. We also show
that other instabilities due to the breaking of spherical symmetry or the violation
of the virial theorem also invalidate the conclusions obtained in that model.

In chapter 4 we address the model of highly rotating and magnetic WDs
for AXPs/SGRs. We show that the WDs of this model should have magnetic
fields in the range (106 − 109) G, making them very similar in this aspect to the
magnetic WDs observed in nature and about which we talked in the first part
of chapter 3. Therefore these WDs do not have the problem of instabilities like
the ultra-magnetic (B ∼ 1018 G) super-Chandrasekhar WDs proposed by Das
and Mukhopadhyay (2012, 2013) to explain superluminous supernovae type Ia.
We also show that these WDs are also stable against instabilities produced by
the high stage of rotation. This is because the periods of AXPs/SGRs are in the
range (2− 12) s, putting them close but above the lower boundary limit imposed
by the mass-shedding limit, a limit that establishes a minimum rotation period
(between 0.3s and 2.2s) for rotating WDs and which depends on the nuclear
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composition. We then show that in all cases these WDs can thoroughly explain
from the energetic point of view AXPs/SGRs. We also show that the model of
uniformly rotating WDs explained in chapter 2 can give more precise informa-
tion about parameters like masses, radii, moments of inertia or magnetic fields.
We show that the model cannot only explain the persistent emission but also the
transient emission, where starquakes happening inside the star produce glitches
and outbursts that have been already confirmed by observations. After this, we
also show that the information coming from observations in the optical, infrared
and ultraviolet does not contradict the WD model.

In chapter 5 we talk about the emission in X-rays. In this case, as we men-
tioned before, the WD has to be modelled as a rotationally powered pulsar, thus,
we consider the model of a traditional pulsar, showing first the general char-
acteristics of this model and the main considerations behind it. A key point in
this model is that the condition on the magnetic field for the pair production of
electrons and positrons through the process γ + B → e− + e+ must be satisfied,
something that depends on the period of rotation and the magnetic field. This
condition defines a theoretical limit called death-line, which determines when a
compact star (WD or NS) will behave or not as an active pulsar. We show that
when we consider the death-line for a WD rotating as fast as AXPs/SGRs, the
WD should behave like an active pulsar, or in other words, the magnetic field
and the angular velocity are high enough to ensure the pair production of elec-
trons and positrons. When this pair production is ensured, these particles hit the
surface of the compact star and the heat reradiated will be observed on earth as
a blackbody spectrum. Almost all AXPs/SGRs in the range of (2− 10) keV emit
radiation that can be decomposed in a blackbody+power-law components. The
blackbody component in this range of soft X-rays is associated with this heat
re-radiated by the WD surface. We therefore show that within this model the
luminosity predicted agrees with the luminosity observed. We also remark that
in order to have such small areas of emission for these blackbodies it is crucial
to consider that in the surface of the WD we have the presence of multipoles. We
then show that the pulsed fraction observed in these objects can be explained
considering the different possible viewing angles. We also mention that in or-
der to be able to see this spot on the surface of the star, we must have certain
conditions on the surface that make the hot spot re-radiate efficiently the heat
proportioned by the inward particle bombardment. We do this in appendix A,
where we have used the heat transport and energy balance equations applied to
the actual conditions of density and temperature under the polar cap of the WD.

In chapter 6 we reconsider the fact that some AXPs/SGRs could be mode-
lled as traditional rotationally powered pulsars instead of being modelled as
magnetars. For this, we explore the possibility that the electromagnetic wave
emission can be explained from the rotational energy loss of NSs, but consider-
ing the full range of masses, moments of inertia and radii possible for realistic
configurations of NSs. This analysis implies that the AXPs/SGRs that could be
rotationally powered pulsars could be 11 out of 23. This is significant because

7



General introduction

before this estimate was done, only 4 AXPs/SGRs were recognised as potential
pulsars powered by rotation. We therefore conclude that the consideration of the
full range of parameters can be significant to determine a wider range of the
efficiencies of any neutron star. We also perform an analysis about the glitches
and outbursts observed, considering the possibility that they could be triggered
by starquakes.

Finally we give the general conclusions. We analyze the consequences of se-
veral of our analysis done throughout this document, pointing out also to appli-
cations and future work on this area.

The results of this work have been published in the following articles:

• On the stability of ultra-magnetized white dwarfs, Journal of the Korean Phys-
ical Society, Vol. 65, No.6, September 2014, pp. 846-849. Dynamical Insta-
bility of White Dwarfs and Breaking of Spherical Symmetry Under the Presence
of Extreme Magnetic Fields, The Astrophysical Journal, Volume 794, Issue 1,
article id. 86, 7 pp. (2014). The results of these two articles are shown in
chapter 3.

• Thermal X-ray emission from massive, fast rotating, highly magnetized white
dwarfs, Monthly Notices of the Royal Astronomical Society, Volume 465,
Issue 4, p.4434-4440. The results are shown in chapter 5.

• The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-
ray pulsars, Astronomy & Astrophysics, Volume 599, id.A87, 10 pp. The
results are shown in chapter 6.
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Chapter 1

Anomalous X-ray pulsars and Soft
Gamma-ray repeaters: A new class of
pulsars

This chapter will explain the main motivation of this work. First, I will give a
general introduction to pulsars, considering the main historical and theoretical
aspects of this field of astrophysics, and which has gained new interest in the
scientific community either in the theoretical or in the observational fields. Then
I will address the implications of the discovery of the well known Anomalous
X-ray pulsars and Soft Gamma-ray repeaters (AXPs/SGRs), whose observation
brought a new challenge to the theoretical understanding of these objects and
stimulated and renewed the interest on pulsars. Particularly, a new hypothesis
was formulated, that these objects are highly magnetic neutron stars, but despite
this has been the main model assumed to describe AXPs/SGRs, there have been
proposed other models that try to give account of the observations, particularly,
a pulsar-like white dwarf model that was proposed at the end of the 80’s and
beggining of 90’s. This model is the main motivation of this work. At the end
of this chapter, I will give some conclusions and perspectives. This chapter gives
the motivation to start the next chapters, which are thought to be connected fol-
lowing a logic line.

In 1967 a research group using the Mullard Radio Astronomy Observatory in
Cambridge made an important discovery, the first observation of what we know
today as pulsars. The object, PSR 1919+21 had a periodicity of 1.3373 seconds
and a pulse width of 0.04 seconds. The results of their work were published in
1968 (see, e.g., Hewish et al., 1968) and its importance was rapidly recognized
when the Nobel committee decided to award Hewish, the head of the group,
with the Nobel prize in Physics in 1974.

Immediately there were raised various hypotheses to explain the mechanism
that produced the pulsations. Three of them were considered: radial pulsations,
orbital motion and rotation. Pulsating white dwarfs were ruled out after theo-
retical calculations showed that the shortest period for the fundamental mode
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1. Anomalous X-ray pulsars and Soft Gamma-ray repeaters: A new class of pulsars

is ∼ 2 s (Meltzer and Thorne, 1966; Shapiro and Teukolsky, 1986), much bigger
than many observed pulsar periods. Rotating white dwarfs were excluded af-
ter calculations showed that the smallest possible period of rotation of a white
dwarf (WD) is ∼ 1 s (Boshkayev et al., 2013; Ostriker, 1968; Shapiro and Teukol-
sky, 1986). And binary WDs were also ruled out because a pair in contact would
have an orbital period not less than 1.7 s (Ostriker, 1968).

Regarding a neutron star (NS) as a source of the pulsation, both three pos-
sibilities were considered as were considered for a WD. Following Meltzer and
Thorne (1966), stable neutron stars have central densities in the range (2.7 ×
1013 − 6.0× 1015) g·cm−3. This implies fundamental periods in the range (8×
10−4 − 5× 10−2) s. This range of values is very small compared to the values
measured of many pulsars that have measured periods ∼ 0.1 s. Hence, pulsa-
tions of neutrons stars are easily ruled out as an explanation to the observations.
Then, there remain only two possibilities, orbital motion and rotation. In the case
of a binary neutron star system, thorough calculations (Ostriker, 1968; Shapiro
and Teukolsky, 1986) of gravitational wave emission of such a system, with a
period in the range of the observed periods of pulsars (10−3 − 4) s, show that
the period of this system should decrease with time. Instead, observations show
that the period of pulsations is increasing with time, something that is inconsis-
tent with an orbital origin of the pulsations.

So, the only natural explanation that remains is that pulsations come from a
rotating neutron star, a picture that then was immediately widely accepted up to
these days. This idea and the remark that this rotating neutron stars should have
magnetic fields ∼ 1012 G was first put forward by Gold (1968). After that, Gold
(1969) showed that the rotational energy loss of the Crab pulsar was roughly the
same as the energy required to power the Crab Nebula. This helped to establish
the rotating neutron star model as the most plausible model that can give ac-
count of pulsar observations.

When pulsars were first observed the idea of the hypothetical existence of
NSs was already advanced decades before. Baade and Zwicky (1934d) were the
first to propose the idea of neutron stars, pointing out their very high density,
small radius and that they would be formed in supernova explosions. Super-
novae explosions had already been observed. For example, Chinese astronomers
in 1054 A.D. observed the supernova explosion that created the Crab pulsar and
nebula. In november 1572 Tycho Brahe observed and reported a new star or
nova in the Cassiopeia constellation. This supernova (SN 1572) is also known as
Tycho’s supernova. In October 9, 1604, another new supernova (SN 1604) was
observed, in that case by Johannes Kepler’s student and assistant. He named
it Kepler’s supernova to honor his professor. In 1885 Hartwig observed a su-
pernova in our companion galaxy Andromeda (or M31). So, these observations
made Baade and Zwicky to raise their hypothesis that supernovae represent
rapid transitions of ordinary stars into NSs, that this transition process would be
responsible of the great amount of luminosity or energy released and observed
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and that these explosions contribute to cosmic rays detected on earth (Baade and
Zwicky, 1934a,b,c; Zwicky, 1938).

The idea of NSs was also elaborated independently by Oppenheimer and
Volkoff (1939), who assumed matter to be composed of an ideal gas of free neu-
trons at high density. This work focused on the hypothesis that neutron cores
in massive normal stars might be a source of stellar energy. When thermonu-
clear fusion became understood, the idea of NSs was generally ignored by the
astronomical community, in part also because their thermal radiation would be
too faint to be observed with telescopes on earth. However, many theoretical
works were done to discuss the equation of state and different NS models were
proposed (see, e.g., Ambartsumyan and Saakyan, 1960; Cameron, 1959; Hamada
and Salpeter, 1961; Harrison et al., 1965). Rotating magnetic neutron stars were
proposed as the energy source in supernovae remnants by Wheeler (1966) and
Pacini (1967). The interest on NSs was further stimulated by the discovery of
pulsating, compact X-ray sources (X-ray pulsars) by the UHURU satellite in the
70’s (Giacconi et al., 1971; Tananbaum et al., 1972). These are NSs in close binary
systems, accreting gas from their companion stars. The first conclusive evidence
for periodicity was found in the sources Cen X-3 and Her X-1 (Schreier et al.,
1972a,b; Tananbaum et al., 1972).

Immediately after the scientific community understood the origin of the pul-
sations, the problem of solving the electromagnetic Maxwell equations in the
atmosphere of the NSs became a requirement to fully understand these objects,
the powering of their associated nebulae, and their emission mechanisms. As the
reader can read with more detail in chapter 5, the first model assumed a vac-
uum magnetosphere, but after that, it was understood it was not possible due
to huge induction electric fields that appear when a huge magnetic field rotates
(see Goldreich and Julian, 1969, and section 5.2). These huge electric fields must
remove charged particles from the surface and the magnetosphere cannot be
empty. This implies that a corotating magnetosphere should appear where, fur-
thermore, electric and magnetic fields are orthogonal, E · B = 0. After the work
of Goldreich and Julian (1969), several efforts have been done to find a stan-
dard solution to Maxwell equations in the magnetosphere of NSs (Cerutti and
Beloborodov, 2016; Contopoulos et al., 1999; Mestel and Shibata, 1994; Michel,
1973a,b, 1982; Spitkovsky, 2006).

In order to explain the emission of some single NSs in γ-rays and X-rays as
well as in radio wavelengths, it was understood there must exist a region where
the corotation condition E ·B = 0 would not be satisfied and therefore, an electric
field non-ortogonal to the magnetic field B should accelerate charged particles
along the magnetic field lines, creating γ-ray photons. In this way, different mod-
els have appeared, where different regions of emission are considered (see, for
instance Venter and Harding, 2014, for a recent review of the different models
proposed). Some of them can give account of certain observations in X-rays and
γ-rays (Venter and Harding, 2014). But up to now, the mechanism that produces
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coherent radio emission, which was the first pulsed emission detected, is still far
from being understood (Melrose, 1995). So, despite all theoretical and numerical
efforts, this problem is still open and not a single unified and satisfactory picture
has been yet accepted.

Several problems had to be solved, such as to find a standard solution to
Maxwell equations in the magnetosphere (Cerutti and Beloborodov, 2016; Con-
topoulos et al., 1999; Mestel and Shibata, 1994; Michel, 1973a,b, 1982; Spitkovsky,
2006), the problem of the pulsar wind (Arons, 2002, 2004; Bogovalov, 1999; Ca-
menzind, 1986; Goldreich and Julian, 1970; Michel, 1969, 2005; Tong, 2016) and
the mechanism responsible of pulsar emission in radio wavelengths (Beskin
et al., 1988; Blandford, 1975; Lyutikov et al., 1999; Melrose, 2004, 1978, 1995). To-
day these problems are still open and not a definitive solution has been found.
There are several inconsistencies in the original model (Michel, 1982; Michel and
Li, 1999; Michel and Smith, 2001), the mechanism responsible for the radio emis-
sion is poorly understood (Melrose, 2004, 1995) and remains open the problem
of the low braking index expected from models (Blandford and Romani, 1988;
Chen and Li, 2006; Chukwude et al., 2010; Hamil et al., 2015).

While the physical properties of pulsars still remained far from being well
understood, observations revealed the existence of a new class of pulsars or
compact objects that with time, after several observational and theoretical stud-
ies, were called magnetars. What we know today as magnetars are objects that
were classified either as Soft Gamma-ray repeaters (SGRs) or as Anomalous X-
ray pulsars (AXPs). The first of these objects to be observed was SGR 0526-66 and
was observed in 1979 (Mazets and Golenetskii, 1981; Mazets et al., 1979). These
sources were originally thought to be related to the already known Gamma-ray
Bursts (GRBs) (Atteia et al., 1987; Laros et al., 1986), but repeated bursts and
an enormous flare detected on 5 March 1979 from the direction of the Dorado
region in the Large Magellanic Cloud (Mazets et al., 1979) and from the object
now known as SGR 1900+14 (Mazets and Golenetskii, 1981; Mazets et al., 1979),
provided evidence that these were a new kind of objects, that belonged to a
group different to the one that caused the GRBs. The SGRs had a softer spectra
than most of GRBs, hence their designation as ’soft gamma repeaters’. After that
a third galactic source, SGR 1806-20, underwent a burst episode (Laros et al.,
1987).

Meanwhile the first AXP discovered was detected in 1981, 1E 2259+586. It
had an unusual 7s period and was detected in the galactic supernova remnant
CTB 109 (Fahlman and Gregory, 1981). Several researches (see Hellier, 1994;
Mereghetti and Stella, 1995; Thompson and Duncan, 1996; van Paradijs et al.,
1995) found distinctive and similar features in 1E 2259+586 and other sources
such as 4U 0142+61 and 1E 1048.1-5937, that finally prompted to their classifica-
tion as a distinct group of pulsars. Among several distinctive characteristics of
AXPs are their bright X-ray pulsations in the soft X-ray range (< 10 keV) at pe-
riods of few seconds and not apparent companions from which to accrete, since
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their emission in the X-ray range was thought to be initially originated from
accreting binary neutron stars. Due to their emission in the X-ray range it was
thought initially they were accreting binary neutron stars but further searches
and observations in the optical and IR failed to detect bright companion stars
(see, e.g., Thompson and Duncan, 1996, and references therein); these luminous
counterparts in the optical and near infrared (NIR) were expected if these pul-
sars were in high-mass binaries. But also low-mass binary systems were ruled
out after X-ray timing studies did not show the orbital Doppler shifts expected
for binary motion (Mereghetti et al., 1998; Wilson et al., 1999). But the main rea-
son these objects were called anomalous was that their rotational energy loss
ĖNS, could not explain the observed luminosity Lobs,

ĖNS := −4π2 INS
Ṗ
P3 < Lobs, (1.1)

where INS is the moment of inertia of a typical NS and P and Ṗ are the measured
period of rotation and its time derivative, respectively. This puts a problem to
the standard model of pulsars that relied on rotational energy loss to power
the luminosity. In the case of normal isolated (non-accreting) pulsars the rule is
that the rotational energy loss is several orders of magnitude larger than the ob-
served luminosity (ĖNS > Lobs), whether it is radio, X-ray or γ-ray luminosity, so
it can explain energetically the observed luminosity of the NS and also the bright
radio/optical/X-ray emission from their nebulae, observed around the most en-
ergetic pulsars. Most of the spin-down power is lost in the stellar wind particles
rather than in beamed photons from the pulsar. The efficiency (ε := Lobs/ĖNS) is
very low in the radio band of pulsars, ε ∼ 10−5. Radio pulsars make up the ma-
jority of the discovered pulsars (over 2000). The efficiency is larger in the X-ray
band, where non-thermal emission is seen around 100 pulsars (a small percent-
age of the radio pulsars), but still the efficiency is very small, with an average
ε ∼ 10−3 (Li et al., 2008; Possenti et al., 2002). Hence, the fact that AXP/SGRs do
not satisfy this condition like normal pulsars do put a challenge to the pulsars’
model and a different model had to be proposed.

The development of a new model of pulsars and NSs that could give account
of these observations was therefore expected. While progress in the observa-
tional field showed the existence of AXPs and SGRs, in the theoretical field Dun-
can and Thompson (1992) stated that NSs with unusually strong magnetic dipole
fields B ∼ (1014− 1015) G can form when conditions for efficient dynamo action
are met after the gravitational collapse that creates the NS. The conditions propi-
tious are that they are born with initial spin periods P0 shorter than the overturn
time of ∼ (3− 10) ms of the convection driven by the high neutrino luminosity
Lν > 1052 erg s−1 (Duncan and Thompson, 1992). The efficient dynamo that re-
sults in such a case can generate magnetic fields as high as 3× 1017(P0/1ms)−1

G. Such a dynamo operates only for a few seconds but can generate magnetic
fields as high as 1016 G, usually with multipolar structure and a strong toroidal
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component in the interior (Ciolfi et al., 2010; Thompson et al., 2002). They called
these high-field NSs magnetars and proposed that they could be the origin of the
SGR emission. They also explained that these magnetars rotate initially faster,
with Pin ∼ 1 ms, but then quickly lose most of their rotational energy thanks
to magnetic dipole radiation and particle wind losses. This is important in the
model because the AXPs/SGRs rotate very slowly, compared to other pulsars.

Then Thompson and Duncan (1995) showed that many of the observational
characteristics of SGRs such as their bursts and their persistent emission can be
explained by a model in which spontaneous magnetic field decay serves as an
energy source. Thompson and Duncan (1996) argued that also AXPs are mag-
netars, with their X-ray luminosities powered by magnetic field decay. The de-
tection of two SGR-like bursts in two AXPs, 1E 1048-5937 (Gavriil et al., 2002)
and 1E2259+586 (Kaspi et al., 2003) then unified AXPs and SGRs observation-
ally. Since then, the differences between these two kind of objects have diluted,
as more objects of one group showed observational properties of the other; for
example, bursting has now been identified as an observational property of the
AXP family (Gavriil et al., 2004; Kaneko et al., 2010; Scholz and Kaspi, 2011;
Woods et al., 2005) and AXP-like behaviour, e.g., absence of bursting activity for
long periods of time, has been observed in objects previously identified as SGRs
(Kaplan et al., 2001).

As we said before, many observational characteristics were found to be com-
mon to the members of the AXP/SGR family. The most important are the fol-
lowing:

• A narrow distribution of the periods, between 2 and 12 seconds, in clear
contrast to normal pulsars that span a wider range of periods, between 1
ms up to 10 s.

• Regarding their spin-down, it spans a wide range, Ṗ ∼ (10−13 − 10−10),
much larger than the usual spin-down of normal pulsars, Ṗ ∼ 10−15.

• Half of them are persistent X-ray sources, with luminosities in the range
LX ∼ (1035 − 1036) erg s−1. The other ones, most of which were detected
during bright outbursts, are classified as transient sources. When bright,
their X-ray spectra pulse profile and luminosity share the same features
with the persistent AXPs/SGRs (Mereghetti, 2013).

• Their X-ray spectra is rather soft below 10 keV and are generally fit with
two-component models, mainly a blackbody with temperature given by
kTBB ∼ 0.5 keV plus either a power-law with photon index in the range
Γ ∼ 2− 4, or another blackbody (Olausen and Kaspi, 2014).
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• Some of them have also been detected in the hard X-ray range, with power-
law tails extending up to 100− 200 keV.

• Optical and NIR counterparts have not been firmly identified. In most cases
they are too faint, a fact that immediately rules out the existence of normal
companion stars or accretion disks. In three sources the optical emission
is modulated with the same period observed in the X-ray range, meaning
that this emission comes from the same rotating body and not from a hy-
pothetical companion.

• Short bursts with typical luminosities ∼ (1038 − 1042) erg s−1 and dura-
tions in the range ∼ (0.01− 1) s. The bursts occur sporadically, separated
by long periods of time or in groups of tens or hundreds concentrated in
few hours (Mereghetti, 2013).

• Extremely energetic giant flares observed to date in only three sources,
SGR 0526-66 (March 5, 1979 Mazets et al., 1979), SGR 1900+14 (August 27,
1998 Hurley et al., 1999) and SGR 1806-20 (December 27, 2004 Mereghetti
et al., 2005; Palmer et al., 2005).

We mentioned before that in the magnetar model the highly magnetic NS is
formed when specific conditions are satisfied during the first moments of the
gravitational collapse that lead to its birth. Within this model an alternative sce-
nario has been proposed for the formation of these hypothetical highly magnetic
NSs. They could be the descendants of the stars with the highest magnetic fields.
Magnetic white dwarfs (MWDs) with magnetic fields as high as 109 G have been
observed in nature (see Ferrario et al., 2015, and chapter 3). By conservation of
the magnetic flux, these objects could be the progenitors of these highly mag-
netic NSs (Ferrario and Wickramasinghe, 2006; Hu and Lou, 2009).

In the magnetar model the magnetic field decay provides a source of internal
heating that can produce a surface temperature higher than the surface temper-
ature of a cooling NS of the same age but with a magnetic field smaller. But
the magnetic field decay is also affected by the NS temperature evolution, hence
a self-consistent evolution model has to be developed. Higher surface tempera-
tures are obtained for NSs with strong internal toroidal fields, according to 2-D
simulations where the magnetic field is sustained by currents in the NS crust
(Pons et al., 2009).

Most of the models developed to reproduce the spectral properties of AXPs
and SGRs within the magnetar model consider globally twisted magnetospheres,
where dissipation of magnetic energy has been studied and even there have
been obtained expressions for the evolution of the luminosity (see, for instance,
Beloborodov, 2009). In this case, most of the magnetic energy is dissipated as
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thermal radiation in the footprints of a bundle of twisted lines which are heated
by the accelerated magnetospheric particles. The areas of these hot spots esti-
mated in this model are consistent with the small emitting areas inferred from
the blackbody fits of transient AXP/SGRs.

The outbursts and giant flares are explained in this model considering that
with time, as the magnetic field evolves, the NS crust deforms, leading to low
level seismic activity and storing magneto-elastic energy that powers these tran-
sient episodes when the crust cracks. In particular, for ordinary pulsars the mag-
netosphere could be static but for pulsars with B & 1014 G their magnetospheres
are dynamic, due to crustal motions relieving internal stresses caused by the
aforementioned magnetic field evolution (Kaspi, 2007; Mereghetti, 2008; Woods
and Thompson, 2006). Perna and Pons (2011) were the first trying to obtain the
bursting properties of these ultra-magnetic NSs taking into account the magneto-
thermal evolution of the components (poloidal and toroidal) of the internal mag-
netic field, obtaining significant differences with observations in the energetics
and the recurrence time as the magnetar evolves with time. It was found that
objects with a lower toroidal field are less active. The interesting thing is that
sporadic bursts were predicted for NSs with magnetic fields between 1012 G and
1013 G.

Thus, the observations and the theoretical modelling has lead to the conclu-
sion, in the most popular model, that huge magnetic fields power the outbursts
events observed in AXPs/SGRs. However, a clear definition of AXPs/SGRs is
not always absolute. As we will see, some objects are classified as AXP/SGRs
due to their discovery through bursting phenomena. But then it was shown that
they did not satisfy the criterion Lobs > ĖNS, so they also could be modelled
as rotationally powered NSs (Coelho et al., 2017). And some even don’t satisfy
the criterion of being highly magnetic. Let’s remember that whether it be in the
magnetar model or the white dwarf model, the magnetic field is always, as in
the case of rotationally powered pulsars, inferred from the timing properties of
the AXPs/SGRs. It is done using a very simple model for the pulsar, the magnetic
dipole model, where an oblique rotator neutron star is assumed to rotate uniformly
in vacuo at some frequency Ω and with a magnetic dipole moment m oriented at
an angle α to the rotation axis. Let’s remember that a pure magnetic dipole field
at the magnetic pole of the star, Bp is related to m by the relation

|m| =
BpR3

2
. (1.2)

Such a configuration radiates energy at a rate (Landau and Lifshitz, 1975; Shapiro
and Teukolsky, 1986):

Ė = − 2
3c3 |m̈|

2 = −
B2

pR6Ω4 sin2 α

6c3 . (1.3)
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This equation means that when a rotating dipole magnetic field is aligned with
the axis of rotation there is no energy radiated away by it. On the other hand,
when the axis of rotation is perpendicular to the dipole field axis, the radiated
energy reaches its maximum value. This energy radiated originates from the
rotational kinetic energy of the neutron star,

E =
1
2

INSΩ2. (1.4)

The rotational energy loss is therefore

Ė = INSΩΩ̇. (1.5)

So, if we assume an angle α = 90◦ we will obtain a lower limit to the magnetic
field by requering the rotational energy loss due to the dipole field be equal to
the electromagnetic radiation emission of the dipole:

Bp =

√
3c3

8π2
INS

R6 PṖ. (1.6)

Using this formula, Duncan and Thompson (1992), Thompson and Duncan (1995)
and Thompson and Duncan (1996) determined that AXPs and SGRs are NSs
with strong magnetic fields, larger than the quantum critical field BQED defined
by:

BQED :=
m2c3

eh̄
= 4.4× 1013 G. (1.7)

This quantum critical field is the magnetic field for which the energy of the first
Landau level of an electron equals its rest mass. It was often regarded as being
the boundary between ordinary pulsars and the magnetars. However, there have
been found some AXPs/SGRs with inferred magnetic fields lower or slightly
similar to BQED (Turolla and Esposito, 2013). The two sources up to now discov-
ered with a low magnetic field are SGR 0418+5729 (B . 7.5× 1012 G, Rea et al.
(2010)) and Swift J18822.3-1606 (B . 2.7 × 1013 G, Rea et al. (2012)) (see also
Turolla and Esposito, 2013, and references therein). These two sources widely
classified by the scientific as magnetars have dipole magnetic fields well in the
range of ordinary radio pulsars. This would imply the magnetic field, consider-
ing these objects as isolated neutron stars, would not be the main responsible for
the bursting activity, putting a problem to the paradigm in the magnetar model
where the high magnetic fields are a requisite for the transient nature of these
objects. As we know, normal radio pulsars do not show this magnetar-like activ-
ity. This fact, together with other anomalies or discrepancies with the magnetar
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picture, pose a challenge to the model and opens the possibility that other mod-
els could give account of the properties of these objects.

Another observational fact is that there have been discovered normal radio
pulsars with inferred magnetic fields very high (Haberl, 2007). The fact that these
radio pulsars have magnetic fields similar to those of AXPs/SGRs modelled as
magnetars means that not necessarily a high magnetic field is responsible for
bursting activity. From a theoretical point of view we should expect that NSs
with similar physical characteristics (dipolar magnetic fields of the same order
of magnitude) should share similar observational properties. But high magnetic
radio pulsars do not show bursting activity, while AXPs/SGRs, except in some
cases, do not emit in radio. These are problems from the theoretical point of view
that must be addressed in order to understand better these compact objects.

These problems show us that the magnetar model is not the only accept-
able model of AXPs/SGRs and leave us with several alternative models and
scenarios. One of them is the white dwarf model; this model was first proposed
by Paczynski (1990), where he considered that a fast rotating, highly magnetic
and massive WD could explain the AXP 1E 2259+586. The main reason behind
Paczynski’s hypothesis was that the rotational energy loss ĖWD of a WD can
explain from the energetic point of view the observed luminosity Lobs in X-rays
and γ-rays (Malheiro et al., 2012; Paczynski, 1990; Usov, 1993) detected in 1E
2259+586 (and in all other AXPs/SGRs), i.e., it does not have the problem repre-
sented by relation (1.1):

ĖWD := −4π2 IWD
Ṗ
P3 � Lobs, (1.8)

where IWD is the moment of inertia of the white dwarf, P is its period of rotation
and Ṗ its time derivative. We just compare equations (1.1) and (4.1) and we can
see immediately that a WD behaving as a traditional rotationally powered pul-
sar could be a good candidate to explain the observations of all AXPs and SGRs
up to now observed. Indeed, relation (4.1) is valid for all AXPs/SGRs, not just
1E 2259+586. The reason for this is that the typical moment of inertia of white
dwarfs (≈ 1049) gcm2 is several orders of magnitude larger than the typical mo-
ment of inertia of neutron stars (≈ 1045) gcm2, making it possible in principle,
from an energetic point of view, to explain 1E 2259+586, the first AXP detected
and reported by Fahlman and Gregory (1981), as a rotationally powered pulsar-
like white dwarf. However, the white dwarf hypothesis was forgotten due to the
popularization of the model developed by Duncan and Thompson, the magnetar
model. But after the works of Paczynski and Usov were almost forgotten, this
idea has been again considered in recent papers (see, e.g. Boshkayev et al., 2013;
Cáceres et al., 2017; Coelho and Malheiro, 2014; Lobato et al., 2016; Malheiro
et al., 2012; Rueda et al., 2013).

The aforementioned WD model is the main motivation of this work. We
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therefore proceed first studying the general theory of structure and stability of
static and uniformly rotating WDs (chapter 2). As the magnetic field is impor-
tant we continue in chapter 3 addressing the issue of magnetism in WDs. We
give the main observational aspects of the magnetic WDs, whose most magnetic
stars have magnetic fields in the range (106 − 109). We take into consideration
the structure and stability of WDs studied in chapter 2 to show that WDs with
magnetic fields much more larger than those up to now confirmed by observa-
tions (magnetic fields as large as ∼ 1018 G) cannot exist in nature due to several
instability limits.

In chapter 4 we consider again AXPs/SGRs, showing again that in the WD
model the magnetic fields necessary to explain observations are in the range
(106 − 109) G, something which make them similar to the observed magnetic
WDs addressed in chapter 3. This gives further support to the model. We con-
tinue in chapter 4 showing how the theory of unirofmly rotating WDs allow
us to extract more accurate information about the masses, radii or magnetic
fields for WDs modelling AXPs/SGRs. We also address the topic of the glitch-
outburst connection, the optical, violet and NIR emission observed in some of
these sources.

We address in chapter 5 the topic of X-ray emission in the WD model, where
it is produced by the particles produced in the magnetosphere of the WD and
that hit its surface, making in this way the kinetic energy be converted into ther-
mal energy that is reradiated and observed in earth as a blackbody component
in soft X-rays (2-10 keV). We show that the X-ray emission can be explained in
this context, giving additional support to this hypothesis.

Finally, in chapter 6 we explore the possibility some of AXPs/SGRs can be in
fact not magnetars but ordinary rotationally powered pulsars. We show that this
is a viable possibility for several sources when a more realistic equation of state
and structure is considered for the NS. And at the end we give the concluding
remarks.

19



1. Anomalous X-ray pulsars and Soft Gamma-ray repeaters: A new class of pulsars

20



Chapter 2

Structure and Stability of
non-magnetic White Dwarfs

2.1 Introduction

The structure and stability of white dwarfs is one of the most studied topics
in relativistic astrophysics. From the three kind of compact objects that exist
in nature, white dwarfs, neutron stars and black holes, the first ones are the
best understood both from the theoretical and observational points of view. It is
well known that using the quantum properties of electrons, which are fermions,
Chandrasekhar (1931), following the pioneering works of Stoner (1929) and
Fowler (1926), obtained for the first time a realistic interior density and pressure
profile of these objects which allowed him to obtain a new mass-radius relation
and consequently an improved value of the maximum stable mass MCh-L

crit for
the white dwarfs (see equation (2.7)). This mass-radius relation has been tested
observationally (Provencal et al., 1998; Vauclair et al., 1997) and the mass limit
obtained by Chandrasekhar has never been surpassed by any white dwarf re-
ported by observations.

Salpeter (1961) improved the work of Chandrasekhar considering effects ne-
glected by him such as corrections due to the nonuniformity of the electron dis-
tribution or the Coulomb interaction between electrons and electrons and ions.
Salpeter introduced the concept of a Wigner-Seitz cell to study the electron-ion
interior structure of white dwarfs through a lattice model of a point-like nu-
cleus surrounded by a cloud of electrons, including corrections due to the non-
uniformity of the electron distribution. In this way Salpeter (1961) obtained a
new equation of state pointing out explicitly the relevance of the Coulomb inter-
action. The consequences of this equation of state on the macroscopic structure
of the white dwarf were studied in a subsequent paper by Hamada and Salpeter
(1961) obtaining a new critical mass of white dwarfs MH& S

crit (see equation (2.9))
that depends in a nontrivial way on the specific nuclear composition.

More recently, Rotondo et al. (2011a) generalized the work of Salpeter by
modifying several assumptions such as abandoning the point-like assumption
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of the nucleus in order to ensure self-consistency with a relativistic treatment
of electrons (see Ferreirinho et al., 1980; Ruffini and Stella, 1981) or the consid-
eration of the contribution of the relativistic electrons to the energy density of
the system, a contribution that had always been neglected in the previous treat-
ments.

All these three treatments and their predictions for the mass-radius relation
can be compared with the information provided by observations. This can be
seen in figure 2.1, where the mass-radius relations for a white dwarf modelled
with the equations of state of Chandrasekhar (1931), Salpeter (1961) and Ro-
tondo et al. (2011a), are compared with the estimated masses and radii of white
dwarfs from the Sloan Digital Sky Survey Data Release 4 (SDSS-E06 catalog)
(Tremblay et al., 2011). We can see that the mass-radius relation fits more or
less the observational data, with the most massive stars being the best described
by the theoretical descriptions mentioned, while for white dwarfs with masses
. (0.7− 0.8)M�, the deviations from these theoretical treatments are already
evident. This was expected to happen because the aforementioned approaches
consider a degenerate star, where the temperature effects are neglected (it is as-
sumed a temperature T = 0), and this approximation of zero temperature or
degenerate electron distribution is good for high densities but fails when the
densities are low (. 106 g cm−3). The effect of finite temperatures is worth of
studying because many white dwarfs are well below the lower limiting mass or
central density below which the degenerate approximation is not valid anymore;
like the recent discovery of ultra-low-mass white dwarfs with masses . 0.2 M�,
which are companions of neutron stars in relativistic binaries (see, e.g. Anto-
niadis et al., 2013, 2012). We will not consider this interesting topic here and we
refer the reader to Boshkayev et al. (2016); de Carvalho et al. (2014, 2013), where
the work of Rotondo et al. (2011a) is generalized to finite temperatures.

In this chapter we will review the current theoretical knowledge of the struc-
ture and stability of non-magnetic white dwarfs. First we will give a review
of non-rotating white dwarfs, where briefly will be shown the main physical as-
pects of the structure of these compact objects and the recent theoretical progress
that improved the original work of Chandrasekhar, where several additional ef-
fects are considered, such as microscopic instabilities and general relativistic ef-
fects. In particular, we will talk about the aforementioned work of Rotondo et al.
(2011a), where general relativistic white dwarf equilibrium configurations were
studied, considering the formulation of the relativistic Thomas-Fermi model
within the Feynman-Metropolis Teller theory for compressed atoms and con-
sidering also the β-equilibrium, the nuclear and the Coulomb interactions be-
tween the nuclei and the surrounding electrons. All these effects have conse-
quences that modify the Chandrasekhar-Landau mass limit of white dwarfs.
The consequences of the different instabilities produced by phenomena such
as inverse-β-decay or pycnonuclear reactions are also presented. Then we will
give a review of the effects of rotation, where new instabilities appear, and also
the mass-radius relation is modified depending on the period or the rotational

22



2.2. Structure and Stability of non-rotating non-magnetic white dwarfs

Figure 2.1: Mass-radius relation of degenerate white dwarfs obtained with the relativistic
Feynman-Metropolis-Teller (solid black), Salpeter (dashed black) and Chandrasekhar (dotted
black) equations of state. These mass-radius relations are compared with the estimated masses
and radii of white dwarfs taken from the Sloan Digital Sky Survey Data Release 4 (SDSS-E06
catalog), which are represented by the gray circles (Tremblay et al., 2011). Figure taken from
de Carvalho et al. (2014).

angular velocity of the white dwarf. We follow closely the work of Boshkayev
et al. (2013), where Hartle’s formalism was used to construct the internal and
external solutions of the Einstein Field Equations. This work gave the mass M,
radius R, angular momentum J, eccentricity ε and quadrupole momentum Q of
uniformly rotating white dwarfs as a function of the central density ρc and the
rotational angular velocity Ω. This work allowed to establish new limits to the
minimum rotation periods of fast rotating white dwarfs, each limit depending
on the chemical composition of the white dwarf.

2.2 Structure and Stability of non-rotating non-magnetic
white dwarfs

Before the first theoretical calculations of the structure and stability of white
dwarfs were computed, the scientific community had observational evidence
of the existence of these dense and compact stars; by indirect methods the
masses and the radii of stars like Sirius B were determined and it was dis-
covered the existence of stars with the masses of the order of the solar mass
(M� ∼ 1.99× 1030 kg) but with radii of the order of the earth’s radius (∼ 108

cm). Therefore, it was concluded these were very dense objects, denser than the
usual stars known by the astronomical community.

The new theory of quantum mechanics allowed to establish the formula-
tion of the Fermi-Dirac statistics and therefore allowed to understand these ob-
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jects, where the traditional classical Maxwell-Boltzmann distribution was not
longer valid to describe them. If we consider the gas of electrons as a Maxwell-
Boltzmann gas, the volume occupied by an electron in the phase space is (Shapiro
and Teukolsky, 1986):

(∆pe∆qe) ∼ 180h3
(

M
M�

)1/2( R
R�

)3/2

, (2.1)

where R� = 6.96 × 1010 cm is the solar radius. Thus when a star with mass
M ∼ M� contracts to a radius R ∼ 3 × 10−2 R�, the phase space volume
occupied by an electron is ∼ h3. At such a regime of densities the quantum
mechanical effects become important due to the Pauli exclusion principle and
the Maxwell-Boltzmann distribution is no longer valid. Instead the Fermi-Dirac
statistics must be used. This distribution allows the gas of electrons to coun-
terbalance the gravitational collapse. At sufficiently high densities (where the
approximation of zero temperature is very accurate) the gas becomes degener-
ate and the electrons occupy all energy levels up to the Fermi energy EF, which
itself depends on the mass density of the electrons ρe through the relation:

ρe =
8πme

3h3 p3
F , (2.2)

where the Fermi momentum pF has been introduced:

EF ≡ (p2
F c2 + m2

ec4)1/2. (2.3)

This concept of degenerate stars was first introduced by Fowler (1926). This
concept was used by Stoner (1929), who followed Fowler’s idea, but introducing,
for the first time, the effects of special relativity in the Fermi-Dirac statistics
obtaining a generalized equation of state of the electron gas. Stoner also assumed
a constant density throughout the whole white dwarf. Stoner (1929) obtained a
critical mass for white dwarfs given by:

MStoner
crit =

15
16

√
5π

M3
Pl

µ2m2
n
≈ 3.72

M3
Pl

µ2m2
n
≈ 1.714M�, (2.4)

where MPl =
√

h̄c/G ≈ 2.18× 10−5 g is the Planck mass, mn = 1.675× 10−24 g
is the neutron mass, and µ = A/Z ≈ 2 is the average molecular weight of matter.

However, a more realistic picture must consider the gradient of the density
as follows: when we consider in an appropriate way the hydrostatic Newtonian
equilibrium equation:
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dP
dr

= −Gm(r)
r2 ρ, (2.5)

and when we consider also some equation of state P = P(ρ), we can obtain a
differential equation for the density ρ(r), whose solution will give us the struc-
ture of the star. The solutions to these hydrostatic equations (or its refinements,
where several effects are considered, as we will see in this subsection) allowed
to construct relations between the total mass of the star M, its radius R and its
central density ρc (see subsection 2.2.3 for details). These solutions also allow
to determine a critical mass that any white dwarf cannot surpass, otherwise it
becomes unstable because electron degeneracy pressure (also known as Fermi
pressure) cannot counterbalance gravitational collapse (see subsection 2.2.3 for
details).

It happens that in the extreme relativistic and non-relativistic limits of the
equation of state of a degenerate fermionic gas, the equation of state has a simple
analytic polytropic form; a polytropic equation of state is defined by the relation:

P = KρΓ, (2.6)

where K and γ are constants. For the ideal Fermi gas equation of state the con-
stant Γ has a value Γ = 5/3 for the non-relativistic limit while a value Γ = 4/3
for the ultra relativistic limit. It turns out that when the polytropic equation
of state (2.6) is used in the hydrostatic Newtonian equilibrium equation (2.5),
this Newtonian equilibrium equation, after making an appropriate change of
variables, becomes the well-known Lane-Emden equation. This equation allows to
obtain the radius R of the star evaluating the point where P = 0 and ρ = 0.
Chandrasekhar and Landau used the method of solutions of the Lane-Emden
polytropic equations, obtaining a critical mass given by (Chandrasekhar, 1931;
Landau, 1932):

MCh-L
crit = 2.015

√
3π

2
M3

PL
µ2m2

n
≈ 3.09

M3
PL

µ2m2
n
≈ 1.427M�. (2.7)

When this critical mass is surpassed the pressure of degenerate gas of electrons
can not balance the gravitational collapse. So, an observational test of this anal-
ysis should be to find white dwarfs with masses larger than this critical mass,
and up to now not a single white dwarf surpassing this upper bound has been
observed.

One characteristic of the solution obtained by Chandrasekhar (in the extreme
relativistic limit, where the polytropic index is Γ = 4/3) is that while the den-
sity increases indefinitely, the radius decreases with the density approaching to
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zero while the mass remains independent of the central density (see Shapiro
and Teukolsky, 1986). In this Newtonian picture of white dwarfs we can obtain
arbitrarily compact objects provided the total mass satisfies the Chandrasekhar
limit imposed by equation (2.7). However, this picture is not true because for a
small value of compactness (which is ∝ M/R), general relativistic effects become
non-negligible. So, density cannot be arbitrarily large, firstly due to microscopic
instabilities (see sections 2.2.1 and 2.3.3) and second because the solution ob-
tained by Chandrasekhar and Landau used the Newtonian hydrostatic equilib-
rium equation, not valid for high densities (see below the Tolman-Oppenheimer-
Volkoff equations (2.16), (2.17) and (2.18) that generalise Newtonian equation
(2.5)). When General Relativity is properly considered in the equilibrium equa-
tions the density can not increase arbitrarily due to dynamical instabilities (see
section 2.2.2, Shapiro and Teukolsky, 1986, and references therein).

Chandrasekhar treated the electrons as a free gas, ignoring effects due to the
Coulomb interaction between nuclei and electrons and of course, between elec-
trons. In Chandrasekhar’s work the nuclei provided most of the mass density
(the density of electrons was neglected) while the pressure was considered en-
tirely due to the gas of electrons. As we said, this gas was considered free, but
the electrostatic interactions make a contribution to the pressure of the electrons.
For sufficiently high densities the Coulomb interaction can be considered as a
small perturbation to the free gas solution (in the opposite case the Coulomb
interaction is no longer a small perturbation). The electron-electron Coulomb in-
teraction turns out to be smaller than the electron-ion interaction, hence the total
effect of the electrostatic interactions is to reduce the pressure of the electron
gas. The method used to approach this problem is the so-called ”lattice” model
which introduces the concept of Wigner-Seitz cell, where each cell is composed
of a point-like nucleus of charge +Ze with A nucleons located at the center
and surrounded by an uniformly distributed gas of Z electrons, all completely
degenerate. The global neutrality of each cell is assumed, so, there are not elec-
trostatic interactions between the different Wigner-Seitz cells.

The first correction mentioned above considered the electrostatic interactions
of an uniformly distributed cloud of degenerate electrons. However, the electron
distribution cannot be uniform due to the same electrostatic interaction. So, nat-
urally, the next correction comes into place when we consider a non-uniform
distribution of electrons. These effects are considered consistently in the Thomas-
Fermi equation, which comes from the electromagnetic Poisson equation and the
fact that electrons obey the Fermi-Dirac statistics. In the Thomas-Fermi method
is assumed that within each Wigner-Seitz cell the electrons move in a spheri-
cally symmetric potential V(r) and that this potential is slowly varying at any
point, allowing to use locally the free-particle Fermi-Dirac statistics. In order to
have a spherically symmetric potential the interaction energy between electrons
is assumed to be less than the kinetic or potential energies of each individual
electron. The Fermi energy EF is independent of r, ensuring in this way that
electrons do not migrate to regions with smaller EF; so, the Thomas-Fermi equi-
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2.2. Structure and Stability of non-rotating non-magnetic white dwarfs

librium condition for degenerate non-relativistic electrons in the cell is:

EF = −eV(r) +
pF(r)
2me

= constant > 0, (2.8)

where pF(r) is the maximum momentum (Fermi momentum) of electrons at r.

Salpeter (1961), well aware of these effects ignored in the previous works,
adopted for the study of the white dwarfs the aforementioned Wigner-Seitz cell
approach. He obtained an analytic formula for the total energy in a Wigner-Seitz
cell and derived the corresponding equation of state of the white dwarf modelled
by such cells. The consequences of the equation of state obtained by Salpeter
(1961) on the mass and radius of white dwarfs were explored in a subsequent
article, Hamada and Salpeter (1961), where a new expression for the critical mass
was obtained:

MH& S
crit = 2.015

√
3π

2
1

µ2
eff

M3
Pl

m2
n

, (2.9)

where

µeff = µ

(
PS

PCh

)−3/4

, (2.10)

being PS the pressure of the Wigner-Seitz cell obtained by Salpeter (1961) and PCh
the pressure of a free-electron fluid used by Chandrasekhar. The ratio PS/PCh is
a function of the number of protons Z, a direct consequence of the Coulomb
interaction, that makes the critical mass now depends on the specific nuclear
composition of the white dwarf, unlike in the previous simplified approaches,
where it depended only on the ratio A/Z. The results of Salpeter (1961) also
imply that PS/PCh < 1, so the effective molecular weight satisfies µeff > µ and
therefore, comparing with equation (2.7), the critical mass of white dwarfs turns
out to be smaller than the original one obtained by Chandrasekhar and Landau.

We have to remember that equation (2.8) corresponds to the classical Thomas-
Fermi model. This equation considers the consequences of the Fermi-Dirac statis-
tics only on the kinetic energy of the electron. However this does not take into
account the effects of the antisymmetric wave functions on the electrostatic in-
teraction energy. Dirac (1930) was the first to point out the relevance of these
exchange effects on the Thomas-Fermi model of the atom. Hence the model of
Thomas-Fermi that also includes these effects is known as the Thomas-Fermi-
Dirac model and modifies the equation (2.8):

27



2. Structure and Stability of non-magnetic White Dwarfs

EF =
p2

F

2me
− eV − e2

πh̄
pF = constant > 0. (2.11)

This is not the only generalization of the Thomas-Fermi equation. Look that the
relation between the Fermi energy and the Fermi momentum in relation (2.8) is
non-relativistic. Of course, the correct relation between these two quantities at
a relativistic regime is different, so the equilibrium condition for the Thomas-
Fermi atom is modified in relativistic regimes by:

EF =
√
(pF)2 + m2

ec4 −m2
ec4 − eV(r) = constant, (2.12)

and correspondingly the relativistic Thomas-Fermi-Dirac equilibrium condition
becomes:

EF =
√
(pF)2 + m2

ec4 −m2
ec4 − eV(r)− e2

πh̄
pF = constant. (2.13)

Rotondo et al. (2011b) extended the global approach of Feynman et al. (1949) con-
sidering the relativistic Thomas-Fermi and Thomas-Fermi-Dirac models. They
showed that for high densities the exchange effects become negligible so that
the results of the relativistic Thomas-Fermi model alone can be considered as
an excellent approximation to describe the structure of white dwarfs. The rela-
tivistic Thomas-Fermi model was solved by imposing in addition to the electro-
magnetic interaction also the weak equilibrium between neutrons, protons and
electrons in a self-consistent way. This equilibrium condition relates the chemical
potentials of electrons µe, protons µp and neutrons µn by the equation:

µe + µp = µn. (2.14)

Rotondo et al. (2011b) abandoned the pointlike assumption of the nucleus intro-
ducing a finite sized nucleus, warranting in this way a self-consistent treatment
with a relativistic approach of the electrons. This is because equation (2.12) (or
(2.13), because the exchange effects are not significant for high densities) leads
to a nonintegrable expression for the electron density near the origin.

Another contribution of Rotondo et al. (2011b) was to consider the energy
density of the system as the sum of the contributions of the nuclei, the Coulomb
interactions and the relativistic electrons, being the last one ignored in the pre-
vious approaches.

Then Rotondo et al. (2011a), following closely the results of Rotondo et al.
(2011b), applied the approach of a compressed atom in a Wigner-Seitz cell to
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2.2. Structure and Stability of non-rotating non-magnetic white dwarfs

describe nonrotating white dwarfs in General Relativity, obtaining the relativistic
Feynman-Metropolis-Teller equation of state in GR, assuming a metric that fits
a spherically symmetric system:

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (2.15)

This metric implies that the Einstein equations can be written in the Tolman-
Oppenheimer-Volkoff form (Oppenheimer and Volkoff, 1939; Tolman, 1939):

dν(r)
dr

=
2G
c2

4πr3P(r)/c2 + M(r)

r2
[
1− 2GM(r)

c2r

] , (2.16)

dM(r)
dr

= 4πr2 ε(r)
c2 , (2.17)

dP(r)
dr

= −1
2

dν(r)
dr

[ε(r) + P(r)], (2.18)

where M(r) stands for the mass enclosed at the distance r, it has been used the
relation eλ(r) = 1− 2GM(r)/(c2r), ε(r) is the energy density and P(r) is the total
pressure. This equation therefore generalized the hydrostatic Newtonian equi-
librium equation. The numerical integration of this set of equations allows to
obtain the mass-radius relation and the mass-central density relation of the rel-
ativistic white dwarfs within the relativistic Feynman-Metropolis-Teller theory
for compressed atoms. However, before showing the results of these integrations
it is necessary to talk about some instabilities like the inverse β-decay instability
or the General Relativity instability that constrain the range of values for the
mass or the central density of the white dwarfs.

2.2.1 Inverse β-decay

At high densities the most important correction to the equation of state is due to
the inverse β-decay process (Z, A) → (Z − 1, A), where energetic electrons are
captured:

A
Z X + e− → A

Z−1Y + νe. (2.19)

In this process a proton combines with an electron to give a free neutron and a
neutrino, which in the case of a gas of free electrons, protons and neutrons is
simply:
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2. Structure and Stability of non-magnetic White Dwarfs

e− + p→ n + νe. (2.20)

This reaction is possible only when the electron has enough energy to surpass
the mass difference between proton and neutron, (mn −mp)c2 = 1.29 MeV.

As we mentioned before the electron pressure is important to avoid the grav-
itational collapse, and when the number of electrons start to diminish, the white
dwarf becomes gravitationally unstable. This makes the inverse β-decay a pro-
cess that triggers the instability of the star because is an effective way to reduce
the number of electrons and increase the number of free neutrons. However, it
is balanced by the free neutron β-decay:

n→ p + e + ν̄. (2.21)

When these two processes are counterbalanced we have an equilibrium de-
scribed by equation (2.14). However, as long as we increase the density, the Fermi
energy also increases up to a point where β-decay reaction (2.21) is blocked be-
cause the Fermi energy is high enough that all electron energy levels in the Fermi
sea are occupied up to the one that the emitted electron would fill. Is at this point
where the inverse β-decay instability makes the existence of white dwarfs with
densities beyond such a critical density physically impossible.

So, when density starts to increase we reach a density where relation (3.2)
is triggered (∼ 107 g cm−3) but is balanced by reaction (2.21), this because free
neutrons are unstable and have a mean lifetime ∼ 14 min. However, there is a
density (∼ 1011 g cm−3) where reaction (2.21) is blocked and the white dwarf
becomes unstable. At such densities the electron Fermi energy must be larger
than the mass difference between the initial nucleus (Z, A) and the final nucleus
(Z− 1, A). Such a threshold energy is denoted by Eβ

F, Z. Usually Eβ
F,Z-1 < Eβ

F,Z and
the initial nucleus undergoes two successive decays, i.e., (Z, A)→ (Z− 1, A)→
(Z − 2, A) (see, e.g. Salpeter, 1961; Shapiro and Teukolsky, 1986). As we know,
the electron Fermi energy is proportional to the density, so configurations with
ρ > ρ

β
crit, where ρ

β
crit is the density corresponding to the threshold energy Eβ

F,Z,
are unstable.

The threshold energy can be obtained from a table reporting experimental
values of atomic masses. We show in table 2.1 the threshold energies for differ-
ent inverse β-decay reactions. These values were taken from Audi et al. (2003),
where experimental values of atomic masses are reported. We also show in ta-
ble 2.1 the corresponding critical density ρ

β
crit, which was obtained solving the

Thomas-Fermi equation and hence obtaining a relation between the threshold
energy and the corresponding critical density. There is also a dependence on A
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Decay Eβ
F,Z (MeV) ρ

β
crit (g cm−3)

4He→ 3H+n→ 4n 20.596 1.39× 1011

12C→12B→12Be 13.370 3.97× 1010

16O→16N→16C 10.419 1.94× 1010

56Fe→56Mn→56Cr 3.695 1.18× 109

Table 2.1: Onset for the inverse β-decay for 4He, 12C, 16O and 56Fe. The experimental values
of the threshold energy Eβ

F,Z have been taken from Audi et al. (2003). The corresponding critical

density ρ
β
crit are for the relativistic Feynman-Metropolis-Teller equation of state (Rotondo et al.,

2011a).

and Z, as we can appreciate in the table. For the case of the Salpeter equation
of state corresponding to the uniform approximation an analytical expression
between these quantities is obtained. However, when it comes to solve the rel-
ativistic Thomas-Fermi equation no analytical solution exists and instead a nu-
merical integration has to be employed.

2.2.2 General Relativity instability

A white dwarf is a fluid which is subject to perturbations of its configuration.
These perturbations are small and modify quantities such as the density or the
pressure. The equations governing these small perturbations of a static equi-
librium configuration allow to calculate the frequencies and normal modes of
oscillation of the configuration and allow to address the issue of the stability
of the equilibrium configuration. An instability corresponds to the unbounded
growth of a small initial perturbation, so the conditions of the fluid that make it
happen should set the criteria for stability.

There is a criterion to determine the onset of the instability due to perturba-
tions. In a sequence of equilibrium stars that obey the same equation of state but
that differ on the central density, the mass of a non-rotating star is limited by the
first maximum of the M− ρc curve, i.e., the point that satisfies ∂M/∂ρc = 0. This
marks the secualr instability point and coincides with the dynamical instability
point if the perturbation obeys the same equation of state the equlibrium config-
uration obeys (see for details, e.g. Shapiro and Teukolsky, 1986, and references
therein). It applies to Newtonian configurations as well as to general relativistic
configurations. When General Relativity is considered the total mass-energy of
the star has to be considered. So, the density ρc that satisfies the turning-point
criterion will be the critical density for the onset of instability due to general
relativity in a white dwarf. This density depends on the chemical composition
of the white dwarf.
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2. Structure and Stability of non-magnetic White Dwarfs

Figure 2.2: Mass in solar masses as a function of the central density for 4He white dwarfs. The
solid curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).

2.2.3 Mass-radius and mass-central density relations

When both β-decay equilibrium and general relativity have been considered self-
consistently, it is possible to determine the critical mass and the instability that
determines it. This can be seen in figures 2.2, 2.4, 2.6, 2.8, where a plot M vs.
ρc is shown for different chemical compositions. The results of Rotondo et al.
(2011a) are compared with the results of Hamada and Salpeter (1961) and the
Chandrasekhar equation of state. In all of them is shown where the critical mass
is reached and which instability sets it in. The same can be appreciated in figures
2.3, 2.5, 2.7, 2.9, where instead a plot M vs. R is shown for the same equations
of state and the same chemical compositions.

The main result is that the white dwarfs with the lighter nuclei, 4He and
12C are unstable with respect to General Relativity while the white dwarfs with
heavier compositions, e.g. 16O and 56Fe, are unstable due to inverse β-decay of
the nuclei. We list in table 2.2.3 the critical densities for the different composi-
tions, the corresponding maximum mass and the type of instability.

One of the most important contributions made by Rotondo et al. (2011a)
is that they obtained a new value for the critical density of 12C white dwarfs
(∼ 2.12× 1010) g/cm3 that correct the value 2.65× 1010 g/cm3 obtained from
calculations based on general relativistic corrections to the theory of polytropes
(see, for instance Shapiro and Teukolsky, 1986). This is possible because unlike
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Figure 2.3: Mass in solar masses as a function of the radius for 4He white dwarfs. The solid
curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).

Figure 2.4: Mass in solar masses as a function of the central density for 12C white dwarfs. The
solid curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).
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Figure 2.5: Mass in solar masses as a function of the radius for 12C white dwarfs. The solid
curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).

Figure 2.6: Mass in solar masses as a function of the central density for 16O white dwarfs. The
solid curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).
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Figure 2.7: Mass in solar masses as a function of the radius for 16O white dwarfs. The solid
curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).

Figure 2.8: Mass in solar masses as a function of the central density for 56Fe white dwarfs. The
solid curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).
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Figure 2.9: Mass in solar masses as a function of the radius for 56Fe white dwarfs. The solid
curve corresponds to the solution of the relativistic FMT approach solved in Rotondo et al.
(2011a), while the dotted curve corresponds to the Newtonian configuration of Hamada and
Salpeter (Hamada and Salpeter, 1961), while the dashed curve is the Newtonian configuration
of Chandrasekhar. Figure taken from Rotondo et al. (2011a).

Composition ρrelFMT
crit MrelFMT

crit /M� Instability
4He 1.56× 1010 1.41 GR
12C 2.12× 1010 1.39 GR
16O 1.94× 1010 1.38 Inv. β
56Fe 1.18× 109 1.11 Inv. β

Table 2.2: Critical density and corresponding critical mass for the onset of gravitational collapse
of 4He, 12C, 16O and 56Fe white dwarfs of the general relativistic configurations obtained in
Rotondo et al. (2011a) based on the relativistic Feynman-Metropolis-Teller equation of state
(Rotondo et al., 2011b). The densities are in units of g/cm3 and the masses in units of solar
masses. Values taken from Rotondo et al. (2011a).
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2.3. Uniformly rotating white dwarfs

in all previous approaches, the contribution of the electrons to the energy den-
sity of the system was considered. Otherwise, the critical density for 12C white
dwarfs should be determined by the inverse β-decay, whether or not the effects
of General Relativity are considered.

The other significant conclusion obtained by Rotondo et al. (2011a) is that
the Coulomb effects are much more pronounced in the case of white dwarfs
with heavy nuclear compositions; for instance, see figures 2.8, 2.9. It can be seen
that the result of Hamada and Salpeter as well as the result of Rotondo et al.
(2011a) make a significant correction to the results of Chandrasekhar that ne-
glects Coulomb effects. Neglecting these effects leads to an overestimation of the
mass of the white dwarfs.

2.3 Uniformly rotating white dwarfs

The effect of rotation in the structure of uniformly rotating white dwarfs has
been studied by several authors (Anand, 1965; Arutyunyan et al., 1971; Geroyan-
nis and Hadjopoulos, 1989; James, 1964; Monaghan, 1966; Roxburgh and Durney,
1966), where it has been concluded that rotation enhance the maximum stable
mass of white dwarfs. the issue of stability of uniformly and differentially ro-
tating white dwarfs has been studied also by several authors (see, e.g. Durisen,
1975; Ostriker and Bodenheimer, 1968; Ostriker and Tassoul, 1969; Tassoul and
Ostriker, 1970). All these works were considered in the framework of newtonian
gravity or post-newtonian approximation. However, Arutyunyan et al. (1971) in-
vestigated uniformly rotating white dwarfs within General Relativity using the
Chandrasekhar equation of state. As we saw in the previous section, the descrip-
tion done by Chandrasekhar is incomplete because important contributions due
to the electrostatic interactions or the non-uniformity of the electron distribution.

Boshkayev et al. (2013) extended the results of Rotondo et al. (2011a), pre-
sented in the previous section, for uniformly rotating white dwarfs at zero tem-
peratures. We could say that they also generalized the work of Arutyunyan et al.
(1971) by considering an equation of state more realistic than the Chandrasekhar
equation of state. However, Arutyunyan et al. (1971) used an Ω2 approxima-
tion following a method developed by Sedrakyan and Chubaryan (1968) while
Boshkayev et al. (2013) used the Hartle’s approach (Hartle, 1967) to solve the
Einstein equations.

In Hartle’s formalism the structure of rotating objects is described approxi-
mately up to second-order in terms of the angular velocity of the star Ω. In this
approach is possible to calculate the mass M, the equatorial Req and polar Rp
radii, the angular momentum J, the quadrupole moment Q as well as the mo-
ment of inertia, depending these quantities, as expected, on the central density
ρc and the rotational angular velocity Ω of the White Dwarf. In this approach
the white dwarf is rotating uniformly and the solution of the Einstein equations
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in the exterior vacuum can be written analytically in terms of M, J and Q. In this
formalism the parameters M, J and Q are obtained for a given equation of state
from the matching between the internal and external solutions at the surface of
the rotating star.

When a rotating configuration is considered there appears the mass-shedding
limit. And besides this instability limit, there are other instabilities, such as the
inverse β-decay instability, the pycnonuclear instability and the secular axysim-
metric instabilitiy, some of them mentioned in the previous section. As we will
see, all these boundaries limit the range of possible values for the mass, the ra-
dius or the moment of inertia of an uniformly rotating white dwarf with a given
rotational period P. This is important when highly rotating white dwarfs are
considered as a model for AXP/SGRs.

Let’s discuss some of the new instabilities not discussed in the previous sec-
tion, such as the pycnonuclear reaction instability or the mass-shedding limit,
that limits the mass of a rotating configuration.

2.3.1 The Mass-shedding limit

A particle on the equatorial surface of the star cannot exceed the Keplerian an-
gular velocity of an equivalent free particle at the same location. Particles in that
limit remain bound to the star only because of a balance between gravity and
centrifugal forces. A star rotating at this Keplerian velocity eventually loss mass
and becomes unstable (Stergioulas, 2003).

The mass-shedding angular velocity of a rotating star is computed for the
Hartle’s formalism calculating the four-velocity of a test particle on a circular
orbit in the equatorial plane (see Boshkayev et al., 2013, for details). In this way
is possible to calculate the angular velocity of corotating as well as counterrotat-
ing orbits. The result is an analytic formula for the Keplerian velocity that is a
function of the mass M, the equatorial radius Req, the angular momentum J and
the quadrupole moment Q of the star (see Boshkayev et al., 2013).

The accuracy of such a result depends on the accuracy of the slow rotation
approximation. Boshkayev et al. (2013) performed an analysis of the accuracy of
this slow rotation approximation obtaining that the accuracy increases with the
density of the white dwarf and that the Keplerian sequence of rotating white
dwarfs can be described by the Ω2 approximation within an error smaller than
. 6%.

2.3.2 Secular Instability in rotating and general relativistic con-
figurations

As we mentioned in the last section, the point where ∂M/∂ρc = 0 marks the sec-
ular instability point for a static non-rotating configuration. This applies whether
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we are considering a Newtonian or a General Relativistic configuration. For the
case of a rotating configuration Friedman et al. (1988) formulated, based on pre-
vious works (Sorkin, 1981, 1982), a turning-point method to locate the points where
secular instability sets in for uniformly rotating relativistic stars: for a sequence
of rotating stars with fixed angular momentum J but variable central density ρc,
the onset of the secular axisymmetric instability is determined by the relation:

(
∂M(ρc, J)

∂ρc

)
J
= 0. (2.22)

Boshkayev et al. (2013) constructed the boundary given by the turning points
of constant angular momentum sequences given by the above equation. This
boundary can be appreciated in the M vs. R or M vs. ρc curves.

2.3.3 Pycnonuclear Reactions

In a thermonuclear reaction the thermal energy of the reacting nuclei overcomes
the Coulomb repulsion between them so that the reaction can proceed. However,
nuclear reactions can take place even at zero temperature if densities are suffi-
ciently high; this because ions fluctuating about their lattice sites with zero-point
energy can penetrate the Coulomb barrier of neighbouring ions. This zero point
energy is given by (Shapiro and Teukolsky, 1986):

E0 = h̄ωp, ωp =

(
4πe2Z2ρ

A2M2
u

)1/2

, (2.23)

where Mu = 1.6605× 10−24 g is the atomi mass unit.

In order to calculate the effect of the pycnonuclear fusion reactions on the
stability of the white dwarfs a nuclear composition has to be assumed. In the
case of the model presented in Boshkayev et al. (2013) an unique nuclear com-
position (Z,A) is assumed throughout the star.

As we mentioned before the pycnonuclear reaction depends on the density
of the white dwarf star. If the density is higher the pycnonuclear reaction time
will be lower. So, it is necessary to assume a time, smaller than the Hubble time,
to assess whether or not a given pycnonuclear reaction is or not relevant for
the stability analysis of the white dwarf. Assuming a time of 0.1 Myr, Salpeter
(1961) estimated that the reaction 1H→4 He happens at ρ ∼ 5× 104 gcm−3, the
reaction 4He →12 C happens at a density ρ ∼ 8× 108 gcm−3 and the reaction
12C →24 Mg happens at ρ ∼ 6× 109 gcm−3. As we can see, as we increase the
atomic number the density increases. The density at which these reactions occur
for the given time are smaller than the usual critical densities for the onset of the
inverse β-decay instability. However, for the pycnonuclear reactions for the oxy-
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gen, for the same reaction time of 0.1 Myr, the threshold density is ρ ∼ 3× 1011

gcm−3. This density is larger than the corresponding density for the onset of
inverse β-decay instability for 16O, ρ ∼ 1.9× 1010 gcm−3, making the pycnonu-
clear instability irrelevant for white dwarfs with nuclear compositions heavier
than 12C.

Another analysis allows us to dismiss the pynonuclear fusion reaction in-
stability as essential for 4He White Dwarfs, making this instability important
only for 12C White Dwarfs. A cold star with a mass M > 0.5M� has already
burned an appreaciable part of helium at earlier stages, making the existence of
white dwarfs with masses M > 0.5M� very unlikely (see Hamada and Salpeter,
1961, for details). However, from the previous analysis we know that for a 4He
white dwarf the density necessary to make pynonuclear instability important is
ρpyc ∼ 8× 108 gcm−3. But a white dwarf with such a density must have a mass
M ∼ 1.35M� (see figure 2.2). Therefore a 4He white dwarf with such a mass
cannot exist in nature. Instead, for 4He white dwarfs with masses M . 0.5M�
the central densities are of the order ρ ∼ 106 gcm−3. These densities correspond
to pycnonuclear reaction times larger than 10 Gyr, and hence, are unimportant.

Salpeter and van Horn (1969) calculated the number of reactions per unit
volume per unit time for the pycnonuclear reactions:

Rpyc = 3.90× 1046Z4AρS(E0)λ
7/4 × exp(−2.638/

√
λ) cm−3s−1, (2.24)

where

λ =
1

Z2A4/3

(
ρ

1.3574× 1011g cm−3

)1/3

, (2.25)

and S are the astrophysical factors in units of MeV barns (1barn= 10−24cm2) that
have to be evaluated at the energy E0 given by equation (2.23). The astrophysical
factor S depends directly on the cross-section of the repulsive Coulomb barrier
between ions and hence gives account of the barrier the ions have to exceed to
achieve the pycnonuclear reaction.

The S-factors are known from experiments but in some energy ranges that
do not coincide with the energies found in white dwarfs. So, the S-factor has
to be obtained theoretically from the extrapolation of experimental values using
nuclear models.

All the nuclei (Z, A) at a given density ρ will fuse in a time τpyc given by:

τpyc =
nN

Rpyc
=

ρ

AMuRpyc
, (2.26)
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Figure 2.10: Pycnonuclear reaction times at zero temperature for C+C fusion as a function
of the density. Figure taken from Boshkayev et al. (2013).

.

where nN = ρ/(AMu) is the ion density.

In order to compute the pycnonuclear reaction times given by equation (2.26)
Boshkayev et al. (2013) used the results of Gasques et al. (2005), where the S-
factors where computed using the NL2 nuclear model parametrization. The fit
formula for the S-factors is appropriate for the ranges of the zero-point energies
at high densities. The results of the computed pynonuclear reaction times are
illustrated in figure 2.10.

2.3.4 Mass-radius and mass-central density relations

In figures 2.11, 2.12, 2.13 and 2.14 we show the mass-central density relation
and the mass-radius relation of general relativistic rotating 12C and 16O white
dwarfs. In figure 2.15 we plot also the mass-central density relation for general
relativistic rotating 12C, basically the same plot of 2.11 but there are also plotted
the sequences of constant angular momentum J and constant angular velocities
Ω. The boundaries of mass-shedding limit, secular axisymmetric instability, in-
verse β-decay and pycnonuclear reactions are explicitly shown. Notice that, as
expected from the previous analysis, for 12C white dwarfs are present all the
instabilities while for 16O only the inverse β-decay instability and the Keplerian
sequence limit are present. This also is consistent, as expected, with the conclu-
sions obtained from Rotondo et al. (2011a), if you follow the solid black line that
corresponds to the static configuration, for the 12C white dwarfs it intersects the
secular axysimmetric instability boundary (static 12C white dwarfs are unstable
due to General Relativity) while for 16O white dwarfs it intersects the inverse
β-decay boundary. We can see that the main contribution of rotation is that now
12C white dwarfs are also unstable due to inverse β-decay and mass-shedding
limit while the 16O white dwarfs are also unstable when they reach the mass-
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2. Structure and Stability of non-magnetic White Dwarfs

Figure 2.11: Mass vs. central density for 12C white dwarfs. The solid black curve corresponds
to non-rotating white dwarfs, the Keplerian sequence is the red thick dashed curve, the blue
thick, dotted-dashed curve is the inverse β instability boundary and the green thick, solid curve
is the axisymmetric instability boundary. The orange and purple dashed boundaries correspond
to the pycnonuclear densities for reaction times τpyc = 10 Gyr and 0.1 Myr, respectively. All
the configurations of rotating and stable white dwarfs are in the shaded region. Figure taken
from Boshkayev et al. (2013).

shedding boundary.

Another difference with the non-rotating case is that the maximum mass of
these rotating white dwarfs is no longer associated with a critical maximum den-
sity for gravitational collapse (inverse β-decay instability or General Relativity
instability). Looking at figures 2.11 and 2.13, the curve M vs. ρc for the static con-
figuration is a monotonically increasing function, so, when the critical density is
reached is also reached the maximum mass. Now, considering the whole region
of stable configurations, we see that in both cases the Keplerian sequence is an
upper boundary to the shaded region, we can easily see that the maximum crit-
ical mass corresponds to the maximum mass of the Keplerian sequence curve.
This curve, unlike the one of the static configuration, is not a monotonically
increasing function, instead, it reaches a maximum MJ 6=0

max, it is monotonically
increasing up to this point, and then its derivative changes and becomes a de-
creasing function. In fact, it reaches a local minimum when it meets the inverse
β-decay instability point. So, we can define the following relation:

MJ 6=0
max = kMJ=0

max, (2.27)

where MJ=0
max is the maximum stable mass of non-rotating white dwarfs and k is

a numerical factor that depends on the chemical composition. We show in table
2.3, for all chemical compositions considered, the values of MJ 6=0

max as well as k
and the corresponding critical density ρJ 6=0

Mmax that maximizes the mass.
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2.3. Uniformly rotating white dwarfs

Figure 2.12: Mass vs. equatorial radius in units of 103 km for 12C white dwarfs. The solid
black curve corresponds to non-rotating white dwarfs, the Keplerian sequence is the red thick
dashed curve, the blue thick, dotted-dashed curve is the inverse β instability boundary and the
green thick, solid curve is the axisymmetric instability boundary. The orange and purple dashed
boundaries correspond to the pycnonuclear densities for reaction times τpyc = 10 Gyr and 0.1
Myr, respectively. All the configurations of rotating and stable white dwarfs are in the shaded
region. Figure taken from Boshkayev et al. (2013).

Figure 2.13: Mass vs. central density for 16O white dwarfs. The solid black curve corresponds
to non-rotating white dwarfs, the Keplerian sequence is the red thick dashed curve and the
blue thick, dotted-dashed curve is the inverse β instability boundary. All the configurations of
rotating and stable white dwarfs are in the shaded region.. Figure taken from Boshkayev et al.
(2013).
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2. Structure and Stability of non-magnetic White Dwarfs

Figure 2.14: Mass vs. equatorial radius in units of 103 km for 16O white dwarfs. The solid
black curve corresponds to non-rotating white dwarfs, the Keplerian sequence is the red thick
dashed curve, the blue thick, dotted-dashed curve is the inverse β instability boundary. All the
configurations of rotating and stable white dwarfs are in the shaded region. Figure taken from
Boshkayev et al. (2013).

Figure 2.15: Mass vs. central density for 12C white dwarfs. This is basically the same plot
of figure 2.11 but with a wider range of central densities ρc, so the J = constant sequences
(solid black curves) and the Ω = constant sequences (colored thin-dashed curves) can be fully
appreciated. The solid black curve corresponds to non-rotating white dwarfs, the Keplerian
sequence is the red thick dashed curve, the blue thick, dotted-dashed curve is the inverse β

instability boundary and the green thick, solid curve is the axisymmetric instability boundary.
The orange and purple dashed boundaries correspond to the pycnonuclear densities for reaction
times τpyc = 10 Gyr and 0.1 Myr, respectively. All the configurations of rotating and stable
white dwarfs are in the shaded region. Figure taken from Boshkayev et al. (2013).
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2.3. Uniformly rotating white dwarfs

Composition ρJ 6=0
Mmax k MJ 6=0

max/M� MJ=0
max/M� Pmin RPmin

p RPmin
eq

4He 5.46 1.0646 1.50009 1.40906 0.284 5.64 7.36
12C 6.95 1.0632 1.47363 1.38603 0.501 8.17 1.07
16O 7.68 1.0626 1.46664 1.38024 0.687 1.00 1.32
56Fe 1.18 1.0864 1.20175 1.10618 2.195 2.00 2.69

Table 2.3: Properties of uniformly rotating general relativistic 4He, 12C, 16O and 56Fe white
dwarfs; ρJ 6=0

Mmax is in units of 109 gcm−3, and corresponds to the rotating maximum mass MJ 6=0
max;

k is defined by equation (2.27). MJ=0
max is the non-rotating maximum mass of white dwarfs,

obtained in Rotondo et al. (2011a). Pmin is the minimum rotation period and is obtained
finding the crossing point between the mass-shedding limit and the inverse β-decay instability
boundary. The polar RPmin

p and the equatorial RPmin
eq radii of the configuration rotating with

the minimum period Pmin are given in units of 103 km. Values obtained from Boshkayev et al.
(2013).

We also can see that for a sequence of constant angular velocity Ω the max-
imum mass not necessarily is associated with the critical maximum density for
gravitational collapse. For example, in figure 2.15 the curves with very small
Ω (approaching zero) approach to the solid curve line, that corresponds to the
static case (corresponds to the curve Ω = 0 and also to the curve J = 0). In
this case the maximum mass will correspond with the critical density associated
with either the inverse β-decay instability or the secular axysimmetric instabil-
ity in General Relativity. However, as long as we increase Ω the curves start
to go up, separating from the static configuration curve and up to some point
where the maximum mass will correspond not to the critical mass associated
with the inverse β-decay instability or the secular axysimmetric instability but
to the mass-shedding limit.

As long as we increase the angular velocity making the curves of Ω = con-
stant move upwards, we approach the point of intersection between the mass-
shedding and the critical inverse β-decay boundaries. This can be easily seen in
figure 2.15. This crossing point corresponds also to the minimum rotation period
Pmin of the white dwarfs. This crossing point, of course, depends on the chem-
ical composition. We show in table 2.3 the minimum periods for the 4 types of
white dwarfs considered as well as the corresponding polar RPmin

p and equato-
rial RPmin

eq radii.

To conclude this chapter we have to underline the importance of these works.
The refinement of the equation of state allows us to get more realistic pictures
of these objects. The refinements done in the work of Rotondo et al. (2011a) al-
lowed, for example, to determine that 12C white dwarfs are unstable due to Gen-
eral Relativity and not to inverse β-decay. Also, new limits to the mass of static
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2. Structure and Stability of non-magnetic White Dwarfs

white dwarfs were obtained. And regarding uniformly rotating white dwarfs,
Boshkayev et al. (2013) refined, although using a different approach, the work
of Arutyunyan et al. (1971), that also considered rotating white dwarfs in Gen-
eral Relativity but using only the Chandrasekhar equation of state, that, as we
know, gives a maximum mass that is independent of the chemical composition
of the star. Boshkayev et al. (2013) obtained new values for the maximum mass
(see table 2.3), that compared to the value of 1.478M� obtained by Arutyunyan
et al. (1971), are always smaller, being the maximum mass of 56Fe, 1.202M�, the
smallest one, showing us that the chemical composition effects are important,
mainly when heavy nuclei are considered.

Another important application is to confirm the importance of the instability
boundaries, specially when neglecting them could lead to misleading conclu-
sions about the maximum mass of white dwarfs. Recently Das and Mukhopad-
hyay (2012, 2013); Das et al. (2013) have proposed that the existence of ultra mag-
netic white dwarfs, with magnetic fields larger than the critical magnetic field
of quantum electrodynamics, exist in nature and that the effect of these huge
magnetic fields is to increase significantly the maximum mass of white dwarfs,
obtaining values that surpass the traditional limit imposed by Chandrasekhar.
We will show in the next chapter that the appropriate consideration of the insta-
bilities forbids the existence of these hypothetical ultra magnetic white dwarfs.

The effects of rotation are important only for white dwarfs rotating with
periods close to the minimum rotational periods. Otherwise a slow rotation im-
ply that the non-rotating approximation is actually very good to describe the
structure of these stars. Although observations have shown that magnetic or
non-magnetic white dwarfs on average rotate very slowly (Ferrario et al., 2015;
García-Berro et al., 2016), observations have also shown the existence of some
exceptions. The famous white dwarf component of the cataclysmic Variable AE
Aquarii, for example, rotates very fast, with a period of 33 s. This period of ro-
tation is close in order of magnitude to the minimum periods calculated within
this formalism. Considering also that this white dwarf has shown a pulsar-like
behaviour and that AXPs/SGRs have been proposed, in an alternative model,
as fast rotating highly magnetic white dwarfs, the results of this work turn out
particularly useful. This will be shown in detail in chapters 4 and 5.
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Chapter 3

Magnetic white dwarfs: Stability and
observations

3.1 Introduction

In this chapter we will address the topic of magnetism in white dwarfs. In the
first part we will review the current knowledge, both from an observational and
theoretical point of view, of the observed magnetic white dwarfs. The observa-
tional evidence of the existence of white dwarfs with magnetic fields in the range
(106 − 109) G shows us that they constitute about ∼ 10% of all white dwarfs
(Wickramasinghe and Ferrario, 2005). Hence the importance of magnetism in
white dwarfs.

On the other hand, in the second part of the chapter we will address the issue
of highly magnetic white dwarfs, e.g., the hypothetical existence of white dwarfs
with magnetic fields much larger than even the strongest magnetic fields mea-
sured (∼ 109 G) in white dwarfs. We address this issue because in the last years
ultra-magnetic and super-Chandrasekhar white dwarfs have been proposed as
a possibility to explain the observations of some peculiar superluminous type
Ia supernovae, which need white dwarf progenitors with masses (2.1− 2.8)M�,
mass that in turn depends on the amount of nickel needed to successfully ex-
plain both the low kinetic energies and the high luminosity of these super-
novae (Hicken et al., 2007; Howell et al., 2006; Scalzo et al., 2010; Silverman
et al., 2011; Taubenberger et al., 2011; Yamanaka et al., 2009). These hypothetical
white dwarfs should have interior fields up to 1018 G and a critical mass limit
Mmax ≈ 2.58 M�, which surpasses the traditional Chandrasekhar mass limit
MCh ≈ 1.44M�. In this case we show that several stability criteria and funda-
mental physical aspects (some of them studied in the preceding chapter), that
take place when huge magnetic fields and high densities are present, have been
neglected in the determination of such a new mass limit for white dwarfs, inva-
lidating that result.

In the first part we will review the current status of the research on magnetic
white dwarfs, both in the observational as well as in the theoretical fields. So, in
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3. Magnetic white dwarfs: Stability and observations

section 3.2.1 we will give a brief introduction to this interesting topic. Then in
section 3.2.2 we will give a review of the most significant historical discoveries
that gave birth to this research field in the observational field. We proceed in
section 3.2.3 addressing the mass distribution in magnetic white dwarfs, talking
about their difference with their non-magnetic white dwarfs and how this could
help to ellucidate their origin and evolution. Then, in section 3.2.4 we will ad-
dress the topic of the rotational periods reported from observations of magnetic
white dwarfs. We proceed in section 3.2.5 talking about the hypotheses proposed
to explain the origin and the observational facts mentioned before of magnetic
white dwarfs. Finally, we give in section 3.2.7 the conclusions. This is just a brief
review of this interesting topic, where I follow closely the main ideas exposed in
García-Berro et al. (2016) and Ferrario et al. (2015); for a recent and complete re-
view of this subject I suggest the reader to check the aforementioned references.

In the second part, as we mentioned before, we address the topic of ultram-
agnetic white dwarfs. In section 3.3.1 we give a brief introduction to the reasons
that lead some authors (Das and Mukhopadhyay, 2012, 2013) recently to pro-
pose the existence ultra-magnetic white dwarfs with interior fields up to 1018

G and with significantly super-Chandrasekhar masses. We specifically point out
that the existence of these ultra-magnetic white dwarfs is forbidden due to sev-
eral stability reasons ignored by such authors, physical considerations that are
considered in the different sections. So, in section 3.3.2 we show the main hy-
potheses and considerations behind the aforementioned model, how these con-
siderations lead them to obtain a theoretical structure and stability of magnetic
white dwarfs that can reach masses as large as M ∼ 2.58M�, an upper limit
significantly larger than the super-Chandrasekhar mass limit of MCh ≈ 1.44M�.
Then, in section 3.3.3 we show how these ultra-magnetic white dwarfs signif-
icantly violate the virial theorem, a stability criterion very well known in the
theory of structure of white dwarfs (Shapiro and Teukolsky, 1986). Then, in
section 3.3.4 we address the topic of microscopic instabilities, a topic already
considered in the previous chapter; we address the inverse β-decay instability
and then we point out the relevance of the pycnonuclear fusion reactions in
the stability of white dwarfs. In section 3.3.5 we remark that such huge mag-
netic white dwarfs will seriously break the spherical symmetry assumed in the
model of Das and Mukhopadhyay (2012, 2013), something that leads to an in-
consistency. This departure from spherical symmetry can be measured with an
eccentricity, which, by the way, cannot be arbitrarily large due to dynamical
instabilities (Shapiro and Teukolsky, 1986). In section 3.3.6 we point out the rel-
evance of the general relativistic effects, which are nonnegligible considering
the energy density of the magnetic field, which overcomes the matter density,
and considering the compactness of these white dwarfs, which is similar to the
compactness of a typical neutron star, where general relativistic effects can no
longer be ignored. These general relativistic effects were neglected in the treat-
ment of Das and Mukhopadhyay (2012, 2013). In section 3.3.7 we address the
evolutionary path, proposed by the aforementioned authors in order to explain
the existence of these ultra-magnetic white dwarfs. We show that these white
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dwarfs will be subjected to several of the above mentioned instability effects be-
fore reaching such hypothetical stages of ultra-magnetism. In section 3.3.8 we
discuss the recent discussion between the authors of the hypothesis of ultra-
magnetic white dwarfs and the different articles, included our articles (Cáceres
et al., 2014; Coelho et al., 2014), that criticized their work. Despite this feedback
allowed the authors of this hypothesis to improve their model, we still point
out their proposal lacks the consideration of several physical issues relevant for
the physics of magnetic white dwarfs. Finally, in section 3.2.7 we expose the
conclusions.

3.2 Observations of magnetic white dwarfs

3.2.1 Introduction

The existence of magnetic white dwarfs (with fields & 1 MG) has been shown
since the beggining of the 70’s. In order to analyze their spectra it has been
important to find the solution to the Schrödinger equation of atoms in strong
magnetic fields (Forster et al., 1984; Garstang, 1977; Roesner et al., 1984; Ruder
et al., 1994). This problem has not a general solution since there are two compet-
ing effects, the electric Coulomb force between the nucleus and the electron in
the atom (could be, for example, a hydrogen or a helium atom), and the magnetic
force acting on a free electron. The first case has spherical symmetry, while the
second one has cylindrical symmetry. In the case both forces are present there is
not a general solution, and the problem has to be solved numerically. If the mag-
netic field is weak compared to the electric field of the nucleus, the magnetic
field can be treated just as a perturbation. The same happens in the opposite
case, the Coulomb force can be treated as a perturbation to the magnetic field.
The case where both electric and magnetic forces are of the same magnitude is
the most difficult to solve. The range of magnetic fields of the highly magnetic
white dwarfs (106 − 109)G corresponds to this case and the numerical work to
solve this problem and the advances in the observational field have triggered the
research of atoms in strong magnetic fields. So, the first magnetic white dwarfs
reported had hydrogen atoms in their atmosphere but when numerical calcula-
tions for Helium atoms were available, it was possible to identify magnetic white
dwarfs with Helium (Ferrario et al., 2015).

Depending on the chemical composition of their atmosphere, white dwarfs
can exhibit different spectral features. This prompted to their classification in
different spectral types; so, for example, DA are rich in hydrogen, DB are rich
in helium, DQ are rich in carbon and DZ white dwarfs have metal rich atmo-
spheres. Most of the magnetic white dwarfs belong to the DA spectral type. This
is because more than 80% of normal white dwarfs also belong to that spectral
class. The measurements of the magnetic field rely on the spectroscopic determi-
nation of the Zeeman splitting of the Balmer series of hydrogen. For sufficiently
low magnetic fields these splittings are linear, but with increasing the magnetic
field this is not anymore true because nonlinear terms in the Hamiltonian of the
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atom become more relevant for the determination of the magnetic field strength.
More precisely, quadratic terms are important for field strengths ∼ 1 MG (Wick-
ramasinghe and Ferrario, 2000). Today the astronomical community has deter-
mined reliably the magnetic fields of several isolated magnetic white dwarfs
with magnetic field strengths as large as 800 MG (Ferrario et al., 2015).

For the white dwarfs of spectral type DB, the determination of the field
strength became more difficult (Jordan et al., 1998), until numerical calculations
allowed to associate the absorption features in spectra of several magnetic white
dwarfs with stationary line transitions of HeI. Regarding the white dwarfs of
spectral type DQ, there is a recently discovered population of hot DQs, with
carbon-dominated atmospheres (Dufour et al., 2007); about half of them are mag-
netic. Finally, there is also a group of magnetic DZ white dwarfs (Hollands et al.,
2015; Kepler et al., 2016).

Another technique used to determine the magnetic field of white dwarfs
consists of measuring the continuum circular polarization (Kemp, 1970), but this
technique is useful only for white dwarfs with magnetic field strengths exceed-
ing 108 G.

Now, there are reported more than 600 magnetic white dwarfs (see Ferrario
et al., 2015; Kepler et al., 2013, 2015, and references therein) since the first mag-
netic white dwarf was reported in 1970 (Kemp et al., 1970). This number allows
to make statistical analysis regarding their average masses, average rotational
periods or magnetic field strength, something that can give information and
hints that could help to solve the question of their origin and their evolution-
ary channels. But despite this is a very interesting research field, with many
applications to other areas, the progress on the observational side has not been
followed by a similar progress on its theoretical counterpart. This is due to the
intrinsic difficulty of modelling magnetic fields, something that in most cases
requires full three-dimensional (3D) simulations. This vacuum in our theoretical
understanding of magnetic white dwarfs is due also to the uncertainty about the
full evolutionary picture of the progenitors of magnetic white dwarfs. There are
two main hypotheses: either magnetic fields are inherited from a progenitor star
(fossil field hypothesis) or are originated by the evolution in a binary system.
Both hypotheses have advantages and drawbacks and this debate has still not
been solved. And besides these two hypotheses there are other proposed com-
peting scenarios which challenge those two previously mentioned.

Magnetic white dwarfs can also be found in Cataclysmic Variables, which are
close binary systems where a white dwarf accretes matter from a late-type main
sequence companion. Their orbital periods are less than a day and the typical
orbital separations are of the order of the solar radius, making these binaries rel-
atively compact. Those cataclysmic binaries with white dwarfs that host strong
magnetic fields (B & 1 MG) allow also to study accretion and emission processes
in a strong magnetic field environment and help to improve the understanding
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of the influence of magnetic fields in close binary evolution.

The cataclysmic variables with the most magnetic white dwarfs are known
as Polars or AM Herculis Stars. This name is due to the name of the first source of
this kind discovered, AM Herculis, a red dwarf variable star located in the con-
stellation Hercules. An important consequence of the high magnetism in these
binaries is that it synchronizes the rotational period of the white dwarf with the
rotational period of the binary to first order (Cropper, 1990; Hellier, 2001). Be-
sides the polars, that are the cataclysmic variables with the strongest magnetic
fields in their white dwarfs, there is another type of cataclysmic variables with
magnetic fields not so large as those of polars but large enough to differentiate
them from the non-magnetic cataclysmic variables. These binaries are known as
Intermediate Polars (IP).

The number of known magnetic Cataclysmic Variables has also increased
dramatically in the last years. Wickramasinghe and Ferrario (2000) listed around
60 cataclysmic variables but this number has recently increased to about 170
(Ferrario et al., 2015). But only about half of those magnetic cataclysmic variables
have measured magnetic fields, mostly in the range ∼ (7− 230) MG (Ferrario
et al., 2015).

The magnetic field distribution of White Dwarfs (WDs) seems to be bimodal
with a high field population (1-1000 MG) and a low field population (< 0.1MG).
This is because observations seem to point to the existence of a peculiarly low
percentage of MWDs in the field range (0.1− 1) MG (Kawka and Vennes, 2012;
Koester et al., 2001). This fact could be useful to ellucidate the different evolu-
tionary channels followed by the magnetic white dwarfs that exist in nature.

3.2.2 Historical background

Kemp et al. (1970) published the discovery of the first highly magnetic (∼ 107G)
white dwarf through the discovery of the circularly polarized continuum radia-
tion of Grw+70◦8247. For magnetic fields in these highly magnetic white dwarfs
the quadratic Zeeman effect is non-negligible, so, the discovery of these highly
magnetic white dwarfs led to several further investigations on this subject. Pre-
cisely, the spectral features of Grw+70◦8247 remained unidentified until the first
computations of the hydrogen transitions in strong magnetic fields became avail-
able in the mid of 80’s. Similarly, the spectral features of another magnetic white
dwarf, GD229, were interpreted as stationary line transitions of helium in a mag-
netic field of 300-700 MG (Jordan et al., 1998; Wickramasinghe et al., 2002).

The work of Kemp et al. (1970) was followed by the detection of many more
magnetic white dwarfs (see, e.g., Angel, 1978; Angel et al., 1981; Ferrario et al.,
2015; Wickramasinghe and Ferrario, 2000). Angel and Landstreet (1971a) de-
tected circular polarisation in a second white dwarf, G195-19 and Angel and
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Landstreet (1971b) published the detection of the third one, GD99-37.

After the discovery of Kemp in 1970 the number of known Magnetic White
Dwarfs has increased dramatically in the last decades. Wickramasinghe and Fer-
rario (2000) listed 65 isolated magnetic white dwarfs and later, thanks to the
Sloan Digital Sky Survey (York et al., 2000), the list increased in the last years
up to approximately 600 (see Ferrario et al., 2015; Kepler et al., 2013, 2015, and
references therein).

Regarding the Cataclysmic Variables, AM Her was the first source of this
kind discovered to emit soft X-rays by the UHURU and SAS-3 satellites in 1976
(Hearn et al., 1976). Then optical observations revealed variable linear (up to
7%) and circular (up to 9%) polarisation in the V and I spectral bands (Tapia,
1977), revealing in this way the presence of a compact star with a magnetic field
B ∼ 2× 108 G and a rotational period of 3.09 h, which is synchronized with
the orbital period. The unpolarized radiation in the U band revealed instead
the presence of a hot source, companion to the compact star and unaffected
by its magnetic field. Systems with similar characteristics were named AM Her-
type variables. The name polar was introduced later for these AM Her objects
and other X-ray sources where the main feature is polarised optical light (see
Warner, 1995).

The binary system DQ Her was discovered in the mid-50s and was the first
Intermediate Polar detected, which as we said before, is a magnetic cataclysmic
variable not so magnetic as a Polar. Observations detected a 71 s periodic vari-
ability (Walker, 1956) and two decades later it was also found to be weakly po-
larised (Swedlund et al., 1974). In 1978, optical pulsations of 33 s were detected
in AE Aqr, but not in polarised light (Patterson, 1979). Then, in the following
years, fast optical periodic variations at periods much shorter than the orbital
one (Prot � Porb) were found in other CVs, a characteristic that differentiated
them from the above mentioned polars. All cataclysmic variables that shared
the same characteristics of DQ Her were first called DQ Her-type variables, but
then were called Intermediate Polars (Patterson, 1994; Patterson and Steiner, 1983;
Warner, 1995). Later it was recognized there were two types fo magnetic cata-
clysmic variables, Polars and Intermediate Polars.

Because of their strong soft X-ray emission, soft X-ray surveys increased
the number of reported Polars, and in particular thanks to the survey con-
ducted in the nineties by the ROSAT satellite (Beuermann, 1999). To date, ∼ 110
of these systems are known hosting white dwarfs with surface field strengths
B ∼ (7− 230) MG (see Ferrario et al., 2015, for a complete list of known systems
up to December 2014). On the other hand, Intermediate Polars remained elusive
objects until the recent hard X-ray surveys conducted by the INTEGRAL/IBIS
and Swift/BAT satellites (Baumgartner et al., 2013; Bird et al., 2010). The number
of reported Intermediate Polars has now increased to ∼ 55 systems (see Bernar-
dini et al., 2012, 2013; Ferrario et al., 2015) and ∼ 60 candidates are still awaiting
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confirmation through X-ray follow-ups with facilities such as XMM-Newton and
NuSTAR.

3.2.3 Mass distribution of magnetic white dwarfs

Mass estimates of isolated magnetic white dwarfs with fields & 1 MG are avail-
able only for a small number of objects (Ferrario et al., 2015). This is due to the
poor knowledge of the magnetic field effects on the atmospheres of the mag-
netic white dwarfs. The derived effective temperatures often remain uncertain
and hence, also the implied magnetic white dwarf masses (Külebi et al., 2010).
The mass estimates are few also because the procedure of fitting the Balmer
lines for Teff and log g can only be applied to white dwarfs with magnetic fields
below a few MG, and even in such cases the results must be treated with some
caution (Dupuis et al., 2003; Ferrario et al., 1998). For higher field strengths,
mass estimates are derived from the combination of effective temperatures, par-
allaxes and a mass-radius relation. Estimates of the distance can be done for the
small number of magnetic white dwarfs with accurate parallax estimations, for
the magnetic white dwarfs that have non-degenerate white dwarf companions
(Dobbie et al., 2012, 2013; Girven et al., 2010), or for magnetic white dwarfs in
open clusters (Külebi et al., 2013).

Despite the limited number of magnetic white dwarfs whose mass could be
inferred from observations, it has been possible to determine that the mean mass
of high field isolated magnetic white dwarfs (with B & 1 MG) is 0.784± 0.047 M�
(Ferrario et al., 2015). The distribution of high field magnetic white dwarfs also
exhibits a strong tail that extends to the Chandrasekhar mass limit. Meanwhile,
the most recent estimate for the mean mass of non-magnetic DA white dwarfs
is 0.663± 0.136 M� (Tremblay et al., 2013). The fact that magnetic white dwarfs
are, on average, heavier than their non-magnetic counterparts was something
first noted by Liebert (1988). The comparison between the mass distributions of
magnetic and non-magnetic white dwarfs can be appreciated in figure 3.1.

3.2.4 Spin periods of isolated magnetic white dwarfs

Like nonmagnetic white dwarfs, their magnetic counterparts rotate very slowly
(Fontaine and Brassard, 2008). There is weak evidence for a bimodal distribution
of the rotational periods, with a group of magnetic white dwarfs rotating with
periods of the order of hours (see, for instance, the sources analysed in Barstow
et al., 1995; Ferrario et al., 1997), while a second group rotates very slowly, with
periods very large, typically of the order of years, with lower limits of decades,
if not centuries (Berdyugin and Piirola, 1999; Beuermann and Reinsch, 2002).
This should give useful information regarding their origin, something still not
completely elucidated. Within the group of magnetic white dwarfs it seems very
long period magnetic white dwarfs tend to possess high fields while short pe-
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Figure 3.1: Left panel : The mass distribution of magnetic white dwarfs (Ferrario and Wick-
ramasinghe, 2010). Right panel : The mass distribution of non-magnetic DA white dwarfs from
SDSS (Kepler et al., 2007).

Figure 3.2: Rotation periods of isolated magnetic white dwarfs against their magnetic field
strength. Figure taken from Ferrario et al. (2015).

riod ones do not show any preferred field strength (see figure 3.2). Slow rotators
could be the descendants of the magnetic main sequence stars Ap/Bp stars,
which means their magnetic field has a fossil origin, whereas fast rotators could
be the outcome of binary interaction. However, Külebi et al. (2013) argued that
in such kind of mergers the interaction between the magnetosphere of the white
dwarf and the debris disk may slow down the rotation rather quickly.

In the case of magnetic white dwarfs in cataclysmic variables, the spin period
is influenced by the interaction between the magnetic field of the magnetic white
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dwarf and that of the secondary and/or by the torque of the accretion flow. For
magnetic white dwarfs with strong magnetic fields the rotation period is locked
to the orbital period, a characteristic of these objects known as polars, while
for white dwarfs with weaker magnetic fields the magnetic white dwarf rotates
faster than the orbit. These are knwon as Intermediated Polars.

3.2.5 The origin of the magnetic field

As we mentioned before there is not still reached a general consensus in the
astronomical community about the origin of the magnetic white dwarfs. The
different scenarios proposed to explain their existence have to explain several
observational facts such as:

1. The high-field magnetic white dwarfs are on average more massive than
their nonmagnetic counterparts (see subsection 3.2.3).

2. Most of magnetic white dwarfs with reported rotational periods are slow
rotators (see subsection 3.2.4).

3. For nonmagnetic white dwarfs there exists a well known population of bi-
naries in which one of the members of the pair is a main-sequence star
while the other one is the white dwarf (Rebassa-Mansergas et al., 2013).
However, magnetic white dwarfs are predominantly single stars (Liebert
et al., 2015). For the magnetic white dwarfs in binary systems it has been
found that the white dwarf companion in cataclysmic variables is magnetic
in about 25% of those systems. All this is strong evidence that binarity is
fundamental in the origin of at least some fraction of the presently ob-
served magnetic white dwarfs.

There are two competing scenarios which could explain the formation of
the field of magnetic white dwarfs, the fossil field hypothesis and the binary
scenario. In the fossil field hypothesis the magnetic field in the white dwarf is
simply a consequence of the evolution of a single progenitor along the standard
stellar evolutionary phases, specifically the white dwarfs should descend from
rotating Ap and Bp stars, which are the only class of main-sequence stars known
to have magnetic fields between 103 and 105 G. Neglecting the mass loss and as-
suming the magnetic flux is conserved, their field will be amplified by a factor
of ∼ 104 when the progenitor becomes a white dwarf. But even if we consider
the effects of the mass loss, it is expected that the magnetic field of the result-
ing white dwarf would be comparable to those typically found in the magnetic
white dwarfs (García-Berro et al., 2016).

On the other hand, in the binary hypothesis, the magnetic field is the product
of the interaction of the future magnetic white dwarf with a companion during
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its previous evolution. In this scenario Tout et al. (2008); Wickramasinghe and
Ferrario (2005) suggested that the strong magnetic fields are produced during
a common envelope episode in a close binary system. During that stage, the
spiral-in of the secondary induces differential rotation in the extended convec-
tive envelope, producing a stellar dynamo responsible for the magnetic field.
However (Potter and Tout, 2010) showed that the magnetic field produced in
this way does not penetrate into the white dwarf and decays rapidly when the
common envelope is ejected. It has also been recently demonstrated that the
hot, differentially rotating convective corona resulting from the merger of two
degenerate cores produces strong magnetic fields that are confined to the outer
layers of the resulting remnant and it also has been shown that they do not decay
over very long timescales (García-Berro et al., 2012; Lorén-Aguilar et al., 2009).
And detailed 3D numerical simulations have shown that a very small magnetic
field is amplified during the merger episode and that the remnant of the merger
is strongly magnetized (Ji et al., 2013). All this would make of this scenario a
good candidate to explain some of the most properties of the high-field mag-
netic white dwarfs. However, this scenario may be in conflict with the observa-
tional fact that most magnetic white dwarfs are slow rotators. However, it has
also been shown that the interaction between the magnetosphere and the debris
region that results from the disruption of the secondary star during the merger
episode can brake the magnetic white dwarf and bring the rotation periods to
values similar to those observationally found (Külebi et al., 2013).

3.2.6 Applications

The theory of magnetic white dwarfs has numerous applications to astrophysical
phenomena occurring in cataclysmic variables. However, it can also be applied
to solve various questions in astrophysics, one of them directly related with the
topic addressed in this thesis. Various of those applications are the following
(García-Berro et al., 2016):

1. Millisecond pulsars are a special group of pulsars with characteristic mag-
netic fields of the order 108 − 109 G, smaller than the average strength
of radio pulsars (B . 1013 G). They are frequently found in binary sys-
tems (∼ 75%) (Hurley et al., 2010). It is believed they originated in a
core-collapse supernova event in a binary system. In this scenario, in order
to explain the large prevalence of low-field millisecond pulsars in binary
systems, it has been hypothesized that white dwarfs with initially small
magnetic fields (∼ 104 G) can explain naturally the observed properties of
these pulsars by simply assuming that the magnetic field is amplified by
flux conservation during the gravitational collapse this star will face due
to the accretion of material expected in a binary system. The evolutionary
route should be an accreting massive white dwarf whose degenerate core
reaches super-Chandrasekhar stages, something ensuring the gravitational
collapse and the formation of a neutron star (Gutiérrez et al., 2005; Gutier-
rez et al., 1996). This massive white dwarf sholuld have a core made of
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oxygen and neon, reaches the threshold density to enable electron captures
on 24Mg and 24Na first, and later on 20Ne and 20F, to finally ignite Ne and
O explosively at central densities higher than ∼ 2× 1010 g cm3, densities
high enough to trigger the electron captures. However, recent population
synthesis studies have concluded that the birth rates of binary millisecond
pulsars formed through accretion-induced collapse are comparable to and
can exceed those of core collapse (Hurley et al., 2010). Nevertheless these
studies are not yet conclusive and further research is needed to clarify this
issue (García-Berro et al., 2016).

2. Magnetic double degenerates are very rare systems which are composed
of two degenerate stars, a magnetic white dwarf and a non-magnetic one.
In these systems the stars are sufficiently separated so they have evolved
independently and the age and the distance of the system can be evaluated
studying the nonmagnetic star (Girven et al., 2010). These systems also al-
low to study the origin of the magnetic field. However, the fact that very
few of these systems have been observed and reported makes it difficult
to reach definite conclusions, but this is a promising line of future research.

3. Finally is the application of these magnetic white dwarfs to the study of
Anomalous X-ray pulsars. We will explain this application in chapters 4
and 5

3.2.7 Conclusions

Despite the determination of mass for most high-field white dwarfs is uncer-
tain, there is a curious characteristic difference between magnetic (B > 1) MG
and non-magnetic white dwarfs. The average mass of magnetic white dwarfs
has a value of 0.784± 0.047M� (Ferrario et al., 2015) whereas for non-magnetic
white dwarfs the average mass is 0.643± 0.136M� (Tremblay et al., 2013). This
observational fact could give us valuable information regarding the different
evolutionary channels that follow magnetic and non-magnetic white dwarfs.

Regarding the rotational properties, both magnetic and non-magnetic white
dwarfs rotate slowly (Fontaine and Brassard, 2008). For the case of magnetic
white dwarfs, despite the difficulties for measuring accurately the periods using
photometry and polarimetric variability, it has been discovered that the rota-
tional periods of isolated white dwarfs encompass a wide interval, with a lower
limit of ∼ 700 s and with the the longest rotation periods being of the order
of about 100 yr (Brinkworth et al., 2013; Jordan and Friedrich, 2002). There is a
weak evidence for a bimodal distribution of rotational periods, but some mag-
netic white dwarfs rotate with periods clustered around hours while a second
and more numerous group rotate with periods much more longer, of typically
hundreds of years. Therefore we could conclude that most of magnetic white
dwarfs are slow rotators, if we compare them with the non-magnetic ones. This
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observational fact can give hints to the question of the progenitors of the mag-
netic white dwarfs.

So, the most important observational facts are that magnetic white dwarfs
are more massive and much slower than non-magnetic ones. Any theory or hy-
pothesis has to give account of these observational properties of the ensemble
of the white dwarfs. An origin and an evolutionary channel has to be proposed
and elaborated in order to explain satisfactorily these facts. The origin or the
progenitors of the magnetic white dwarfs is still an open issue and still not a
definitive answer has been given to this question. There are two scenarios that
could explain the formation of magnetic white dwarfs, the fossil field hypothesis
and the binary hypothesis. In the first the evolutionary channel of the magnetic
field of white dwarfs is the consequence of the evolution of a single progenitor
along the different stellar evolutionary phases (Angel et al., 1981; Wickramas-
inghe and Ferrario, 2005) while in the binary scenario the magnetic field arises
from the interaction of the future white dwarfs with a companion during its
previous evolution. Both of them have their advantages and drawbacks (García-
Berro et al., 2016).

In the fossil field hypothesis the magnetic white dwarfs descend from ro-
tating Ap and Bp stars, which are the only stars in the main-sequence with
significantly high magnetic fields (103 − 105) G. Assuming that the magnetic
flux is conserved and neglecting the effects of mass loss the magnetic field will
be amplified by a factor of ∼ 104 when the progenitor becomes a white dwarf.
So, these magnetic stars would become white dwarfs with magnetic fields in the
range (106 − 109) G. This happens even if mass loss is considered (García-Berro
et al., 2016).

In the binary scenario several proposals for the evolutionary channel have
been proposed. For example, it has been proposed (see, e. g. Nordhaus et al.,
2011; Tout et al., 2008) that strong magnetic fields are produced during a com-
mon envelope episode in a close binary system in which one of the components
is a degenerate star. The spiral-in of the secondary star induces differential ro-
tation in the extended convective envelope, creating a stellar dynamo that pro-
duces the magnetic field. However, this magnetic field does not penetrate into
the white dwarf and decays very fast when the common envelope is ejected (Pot-
ter and Tout, 2010). On the other hand, another proposed channel has turn out
to be more plausible after research has shown more its feasibility; the merger
of two degenerate stars produce a hot differentially rotating convective corona
capable of producing strong magnetic fields that are confined to the outer layers
of the resulting remnant and do not decay for very long timescales (see García-
Berro et al., 2012; Lorén-Aguilar et al., 2009). It has also been shown that the
magnetosphere couples with the debris region producing a torque that brakes
the final magnetic white dwarf and brings the rotational periods to values com-
parable to those that have been observationally found (see Külebi et al., 2013).
So, this scenario should be the most plausible to explain the existence of mag-
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netic white dwarfs.

3.3 Stability of Magnetic White Dwarfs

3.3.1 Introduction

Super-Chandrasekhar white dwarfs with high magnetic fields have been recently
used to explain some properties of supernovae. These hypothetical white dwarfs
may surpass the Chandrasekhar mass limit,

MCh = 2.015

√
3π

2
m3

PL

(µemu)2 ≈ 1.44 M�, (3.1)

where µe ≈ 2 is the mean molecular weight per electron, mH is the mass of hy-
drogen atom, and mPL =

√
h̄c/G is the Planck mass.

Since such objects should be metastable, the magnetic breaking of magnetic
B ∼ 106 − 108 G, super-Chandrasekhar white dwarfs with M ∼ 1.5M� have
been adopted to explain the delayed time distribution of type Ia supernovae (see
Ilkov and Soker, 2012, for details). The explosion would be delayed for a time
typical of the spin-down timescale due to magnetic braking, providing the result
of the merging process is a magnetic super-Chandrasekhar white dwarf rather
than a sub-Chandrasekhar one.

It has also been claimed that super-Chandrasekhar white dwarfs could ex-
plain the observations of some peculiar superluminous type Ia supernovae which
need white dwarf progenitors with masses (2.1− 2.8)M�, mass that in turn de-
pends on the amount of nickel needed to successfully explain both the low ki-
netic energies and the high luminosity of these supernovae (Hicken et al., 2007;
Howell et al., 2006; Scalzo et al., 2010; Silverman et al., 2011; Taubenberger et al.,
2011; Yamanaka et al., 2009).

Following this idea, Das and Mukhopadhyay (2012, 2013) have recently pro-
posed that white dwarfs could hold in their interiors magnetic fields B ∼ 1018

G, something never proposed before. The effect of these hypothetical huge mag-
netic fields should be to increase the mass limit of the white dwarfs:

Mmax = π3/2 m3
PL

(µemH)2 ≈ 2.58M�, (3.2)

significantly exceeding the Chandrasekhar limit (3.1). This result would imply
these hypothetical objects would be viable progenitors of the above superlumi-
nous type Ia supernovae. Such a new mass limit would be reached, in principle,
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for extremely large interior magnetic fields of the order of 1018 G.

It is therefore necessary to assess the validity of the assumption of the existen-
ce of these objects following a theoretical approach. We show that the approach
followed in Das and Mukhopadhyay (2013) and Das and Mukhopadhyay (2012)
ignores several macro and micro physical effects needed for a complete and ac-
curate description of ultra-magnetic white dwarfs. The virial theorem, gravita-
tional and dynamical instabilities, the breaking of spherical symmetry, General
Relativity, inverse β-decay, and pycnonuclear reactions render invalid the new
mass limit and therefore confirm the validity of the traditional Chandrasekhar
mass limit. We already considered these effects in the previous chapter, follow-
ing closely the cases of static (Rotondo et al., 2011a) and uniformly rotating
(Boshkayev et al., 2013) white dwarfs. Our analysis in this chapter, that exposes
the analysis in Coelho et al. (2014) and Cáceres et al. (2014), leads to two major
conclusions:

• For the sub-Chandrasekhar white dwarfs (or slightly super-Chandrasekhar
when we consider, for example, rotation) with surface magnetic fields in
the observed range of the most magnetic white dwarfs, i.e., B ∼ (106− 109)
G (Ferrario et al., 2015), the non-magnetic approximation for the descrip-
tion of the structure parameters is approximately correct and therefore, the
results of Rotondo et al. (2011a) and (Boshkayev et al., 2013) can be used to
obtain the structure parameters such as mass and radius, for the static and
uniformly rotating cases, respectively.

• When all the above mentioned macro and micro physical aspects relevant
for the self-consistent description of the structure and stability of white
dwarfs are considered, they lead to the conclusion that the existence of
such ultra-magnetic white dwarfs in nature is very unlikely due to the
violation of the requirements for stability. All these ignored effects make
improbable that a white dwarf could reach such a hypothetical extreme
case either in single or binary evolution.

This implies that the canonical Chandrasekhar mass limit of white dwarfs
still has to be applied and consequently the proposed ultra-magnetic white
dwarfs cannot be used as progenitors of superluminous supernovae.

3.3.2 Ultra-magnetic white dwarfs

We now summarise how the new mass limit for ultra-magnetic white dwarfs
was obtained in Das and Mukhopadhyay (2013) and Das and Mukhopadhyay
(2012). The equation of state of a degenerate electron gas in the presence of a
magnetic field B directed along the z-axis in the limit of high magnetic fields,
B → ∞, where all electrons are constrained to the lowest Landau level, obeys
a polytrope-like form (with polytropic index γ = 2) (Das and Mukhopadhyay,
2012, 2013):
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P = Kmρ2, (3.3)

where

Km = mec2π2λ3
e /(µ2

e m2
HBD), (3.4)

with λe being the electron Compton wavelength and with BD ≡ B/Bc being the
magnetic field in units of the critical magnetic field of quantum electrodynamics:

Bc = m2
e c3/(eh̄) = 4.41× 1013 G. (3.5)

To obtain the aforementioned equation of state in Das and Mukhopadhyay (2013),
the density of the system was assumed to be given by ρ = µemHne, so, deter-
mined only by the nuclei component, where ne is the electron number density.

Then, the Newtonian equations of hydrostatic equilibrium in spherical sym-
metry were integrated for this equation of state using the Lane-Emden solution
of Newtonian self-gravitating polytropes of index n = 1, obtaining the radius

R =
√

πKm/2G, (3.6)

and the corresponding mass

M = 4π2ρc(Km/2πG)3/2, (3.7)

where ρc is the central density.

In the present limit of one Landau level with high-electron Fermi energies
EF

e , EF
e = EF

max � mec2, with

EF
max = mec2

√
1 + 2BD ≈ mec2

√
2BD � mec2, (3.8)

the maximum possible value of EF
e . In this limit the central density ρc is given by

(Das and Mukhopadhyay, 2012, 2013):

ρc =
µemHB3/2

D√
2π2λ3

e
. (3.9)

Substituting (3.9) in (3.7) we obtain the new upper mass limit independent of ρc
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Figure 3.3: Mass-radius relation of magnetic white dwarfs - the curve represents the evolu-
tionary track of the white dwarf with the increase of the uniform magnetic field inside the star
obtained in Das and Mukhopadhyay (2013).

and BD (corresponds to the limits ρc → ∞, BD → ∞ and R→ 0):

Mmax = π3/2 m3
PL

(µemH)2 ≈ 2.58M� (3.10)

In figure 3.3 is reproduced the evolutionary track of the white dwarf proposed
in Das and Mukhopadhyay (2012, 2013). It is possible to see how the star reaches
the maximum mass limit (3.10) while reducing its radius. The magnetic field is
increasing along the curve as a consequence of accretion onto the star.

At this point we can address some of the assumptions made in the model pre-
sented by Das and Mukhopadhyay (2013) which, as we will show, are unjustified
and therefore, render invalid all their conclusions regarding the existence of the
so-called super-Chandrasekhar ultra-magnetic white dwarfs. These assumptions
are:

• The equation of state assumed in the limit of very intense magnetic fields,
B→ ∞.

• An uniform magnetic field is adopted.

• The virial theorem is ignored, hence the huge magnetic fields and the mass-
radius relation they obtained are not realistic.
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• Dynamical instabilities due to quadrupole deformation are not taken into
account.

• Spherical symmetry is assumed for all values of the magnetic field.

• The role of the magnetic field in the hydrostatic equilibrium equations is
neglected.

• General relativistic effects are ignored, even if the final configuration is al-
most as compact as a neutron star and the magnetic energy is larger than
the matter energy density.

• Microphysical effects such as inverse β-decay and pycnonuclear fusion
reactions, important in a regime where electrons are highly relativistic,
EF

e � mec2, are ignored.

• The magnetic field, the density and the electron Fermi energy are assumed
to increase with time inside the star as a consequence of a continuos accre-
tion process onto the white dwarf.

3.3.3 Equation of state and virial theorem violation

Following Chandrasekhar and Fermi (1953), there existes a maximum magnetic
field Bmax above which an equilibrium configuration is impossible because the
electromagnetic energy WB exceed the gravitational energy WG, therefore be-
coming gravitationally unbound. If one includes the forces derived from the
magnetic field, one can write the virial scalar relation for an equilibrium config-
uration as (Chandrasekhar and Fermi, 1953):

3Π + WB + WG = 0, (3.11)

where Π =
∫

PdV, with P the pressure of the system, WB the positive mag-
netic energy and WG the negative gravitational potential energy. The quantity Π
satisfies Π = (γ− 1)U for a polytrope (P = Kργ), where U is the total kinetic
energy of particles. Since the total energy of the configuration can be written
as E = U + WB + WG, then one can eliminate U from equation (3.11) to obtain
E = −[(γ − 4/3)/(γ − 1)](|WG| −WB), and therefore the necessary condition
for the stability of the star, E < 0, is given by:

(3γ− 4)|WG|
(

1− WB

|WG|

)
> 0. (3.12)
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From this expression we can recover, in the case of an absent magnetic field
(WB = 0), the known condition for bound non-magnetic polytropes γ < 4/3,
or n < 3 in terms of the polytrope index n defined by γ = 1 + 1/n. The pre-
sence of a magnetic field weakens the stability and no matter the value of γ,
the star becomes gravitationally unbound when the magnetic energy exceed the
gravitational one, i.e., WB > |WG|. This condition implies an upper bound for
the magnetic field obtained by the condition WB = |WG|. In order to determine
such a limit we first consider the expression of WB for a constant magnetic field
throughout the whole star, which is the type of magnetic field assumed by Das
and Mukhopadhyay (2013). This expression for the magnetic field energy is:

WB =
B2

8π

4πR3

3
=

B2R3

6
. (3.13)

As we have already mentioned before, Das and Mukhopadhyay (2013) adopts
for the equation of state of the magnetic white dwarf a polytrope model with γ =
2 (n+ 1), assumption that is valid for extreme magnetic fields such that only one
Landau level is occupied and the electron Fermi energy satisfies EF � mec2. This
implies that the gravitational energy density of the spherical star configuration
is (Shapiro and Teukolsky, 1986):

WG = − 3
5− n

GM2

R
= −3

4
GM2

R
. (3.14)

Using the above expressions and expressing M and R in units of solar mass
M� and solar radius R� respectively, we find that the maximum value of the
magnetic field, Bmax, is given by:

Bmax = 2.24× 108 M
M�

(
R�
R

)2

G. (3.15)

In the case of a Chandrasekhar white dwarf with the maximum mass M =
1.44M� and a radius of 3000 km, consistent with the recent calculation of mas-
sive and rotating white dwarfs (Boshkayev et al., 2013), we obtain Bmax ∼ 1.7×
1013 G. This values is lower than the critical field Bc = 4.4× 1013 G.

We can see from equation (3.15) that if we know the mass-radius relation
we can obtain Bmax as a function of either the mass M or the radius R. We
therefore use the mass-radius relation calculated by Das and Mukhopadhyay
(2013) and shown in figure 3.3, to plot Bmax vs. M in figure 3.4. In the same
figure we can appreciate three points that correspond to the magnetic fields of
three configurations (shown in table 3.1) of the model of Das and Mukhopad-
hyay (2013), that correspond to different masses M = (2.06, 2.38, 2.58)M� and
that lie in the region of high-mass configuration. We compare these values of B
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Figure 3.4: Maximum magnetic field Bmax as a function of the star mass. We show (red dots)
the three values of the magnetic field of table 3.1. that are above the Bmax line in the dynamical
instability region.

with the maximum value, Bmax, allowed by the virial theorem, equation (3.15).
In figure 3.4 we show that such extreme magnetic fields with B > Bmax and
the magnetic white dwarfs of table 3.1 are in the instability region, violating the
virial theorem. We also show in that table the corresponding magnetic energy
WB and gravitational energy |WG| of each configuration. These results indicate
that the magnetic field obtained in Das and Mukhopadhyay (2013) are at least
one order of magnitude larger than the maximum magnetic field allowed Bmax.
Also for these configurations we have WB/|BG| ∼ 250, well above the stability
condition that requires WB/|BG| ∼ 1. These results imply these hypothetical
ultra-magnetic white dwarfs are indeed unstable and unbound.
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M(M�) R(km) B(G) Bmax(G) WB(×1051 erg) |WG|(×1051 erg) WB/|WG| ρB(g cm−3) ε/R
2.58 7.02× 101 8.80× 1017 5.70× 1016 4.43× 104 1.88× 102 235 3.40× 1013 -195.14
2.38 9.60× 102 4.44× 1015 2.81× 1014 2.90× 103 1.17× 101 248 8.71× 108 -204.16

2.026 1.86× 103 1.07× 1015 6.49× 1013 1.23× 103 4.52 273 5.10× 107 -223.03

Table 3.1: Mass radius configurations of magnetic white dwarfs of Das and Mukhopadhyay (2013) with the corresponding magnetic field B, the
maximum virial magnetic field Bmax, the magnetic energy WB, the gravitational energy WG, the ratio WB/|WG|, the magnetic field contribution to
the total energy density ρB, and the values of the eccentricity in units of the spherical star radius.
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It is worth noting that equation (3.15) can be also expressed as a limit to the
magnetic flux: Φmax ∼ BmaxR2 ≈ 1.1× 1030(M/M�) G cm2. In the case of the
maximum mass given by equation (3.10), M = 2.58M�, this maximum magnetic
flux is Φmax ≈ 2.8× 1030 G cm2. The equations of the solution obtained by Das
and Mukhopadhyay (2013) imply a constant value of the magnetic flux:

Φfrozen

Bc
∼ BDR2 = π3

(
h̄c
G

)
1

(µemH)2 λ2
e ≈ 2× 1018 cm2,⇒ (3.16)

Φfrozen ∼ BR2 ≈ 8.74× 1031 G cm2. (3.17)

This constant value highly overcomes the maximum possible magnetic flux Φmax,
something that shows in a different way the violation of the stablity limit im-
posed by the virial theorem by the solution presented in Das and Mukhopad-
hyay (2013).

3.3.4 Microscopic instabilities

We turn now to show how such well-known processes as the inverse β-decay
and pycnonuclear reactions lead to an instability region of these ultra-magnetic
white dwarfs. These processes were also considered in Chamel et al. (2013), and
a conclusion that these white dwarfs could not exist in nature was presented.

Inverse β-decay instability

As we saw in the previous chapter, inverse β-decay by capture of energetic elec-
trons is known to cause an instability in a white dwarf, thereby inducing its
gravitational collapse. The process is triggered once the electron Fermi energy
reaches the threshold energy, ε

β
Z, given by the difference in nuclear binding en-

ergies between the initial (Z, A) and the final (Z − 1, A) nucleus. Such a pro-
cess destabilizes the star because the electrons are the main responsible for the
pressure in a white dwarf (Harrison et al., 1965; Shapiro and Teukolsky, 1986).
This threshold Fermi energy for the non-magnetic case corresponds to a critical
density ρ

non-mag
c which of course, also depends on the composition, as can be

appreciated in table 3.2 and in table 2.1 of section 2.2.1. And for the magnetic
case this process also sets a limit on the maximum electron Fermi energy EF

max.
Using equation (3.8), it can be seen that the electron capture process limits the
magnetic field to values lower than (see, e.g., Chamel et al., 2013):

Bβ
D =

1
2

(
ε

β
Z

mec2

)2

, (3.18)

and on the density of the white dwarf through equation (3.9). These quantities,
the maximum magnetic field and the corresponding critical density ρ

mag
c are also
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Comp. Eβ
th (MeV) Bβ

max (G) ρ
mag
c (g· cm−3) ρ

non-mag
c (g· cm−3)

Carbon 13.370 1.51× 1016 2.6×1010 2.12×1010

Oxygen 10.419 9.18× 1015 1.2×1010 1.94×1010

Iron 3.695 1.16× 1015 5.7×108 1.18×109

Table 3.2: Depending on the composition, we have different threshold energies for the triggering
of electron capture. The corresponding maximum magnetic field Bβ

max and central density ρmag
c

(g· cm−3) will vary as shown. Just compare with the respective critical density in the non-
magnetic case, ρnon-mag

c (g· cm−3).

shown in table 3.2. We can see that the critical densities for the magnetic case are
even smaller than the corresponding critical densities for the non-magnetic case.
All these densities are much smaller than the ones of the massive ultra-magnetic
white dwarfs considered by Das and Mukhopadhyay (2013). The configurations
reaching the maximum mass limit (3.10), according to Das and Mukhopadhyay
(2013), have fields B & 4× 1017 G and densities ρc & 4× 1012 g cm−3. Indeed,
inverse β-decay in a 12C white dwarf (εβ

Z ≈ 13.4 MeV) will take place for a mag-
netic field B ≈ 1.5× 1016 G at a corresponding density ρc & 2.6× 1010 g cm−3.
Similar conclusions are obtained for other possible compositions such as 4He,
16O or 56Fe, as shown in table 3.2.

For the configurations that approach the maximum mass (3.10) BD & 104 (B &
4× 1017 G) and ρc & 4× 1012 g cm−3. At such high densities, higher than the
neutron drip value (ρdrip ≈ 4.3× 1011 g cm−3), the less bound neutrons in nuclei
start to drip out forming a free Fermi gas (Baym et al., 1971). The neutron drip
process then starts when ρc = ρdrip, where ρc is given by equation (3.9). For a
carbon composition it happens for a magnetic field BD ≈ 531, or B ≈ 2.3× 1016

G (see, e.g., Chamel et al., 2013). It is important to clarify that extremely large
magnetic fields (> 1017 G) are needed to modify the neutron drip value ap-
preaciably and we refer to Chamel et al. (2012) for an analysis of the influence
of strong magnetic fields on the precise value of the neutron drip density and
pressure.

Pycnonuclear Instability

As discussed by Chamel et al. (2013), pycnonuclear fusion reactions might estab-
lish a more stringent limit than inverse β-decay in an ultramagnetic white dwarf.
Carbon fusion leads to 24M, which undergoes electron capture and thus inverse
β-decay instability at a density of approximately ρ

β
crit,Mg ≈ 3× 109 g cm−3 (see

section 2.3.3 for further details). Therefore, if C+C fusion occurs at rates high
enough at densities lower than ρ

β
crit,Mg to produce appreciable amounts of 24Mg in

times shorter than a Hubble time, then this process imposes a more tight cons-
traint to the density of the white dwarf. Based on the up-to-date astrophysical
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τpyc (Myr) ρc (g cm−3) Bpyc
max (G)

103 9.3×109 7.5× 1015

0.1 1.6× 1010 1.1× 1016

Table 3.3: The corresponding central densities and maximum magnetic fields are shown for

the reaction 12C+12C→24Mg
β→

24
Na

β→
24
Ne for different timescales.

S-factors computed in Gasques et al. (2005) and Yakovlev et al. (2006), Boshkayev
et al. (2013) computed the pycnonuclear reaction times for C+C fusion as a
function of the density. They determined that for a timescale of τC+C

pyc = 10 Gyr,
ρpyc ∼ 9.26× 109 g cm−3 while for τC+C

pyc = 0.1 Myr, ρpyc ∼ 1.59× 1010 g cm−3;
see figure 2.10 and table 3.3. These densities are larger than the inverse β-decay
threshold density of 24Mg, 24Mg→24Na→24Ne, ρ ∼ 3.2× 109g cm−3 see Salpeter
(1961); Shapiro and Teukolsky (1986). Thus, pycnonuclear 12C+12C fusion pro-
duces unstable 24Mg, which decays due to electron capture, thus, the white
dwarf becomes β-unstable.

Since ρC+C
pyc < ρC+C

crit,C ≈ 2.6× 1010 g cm−3, this implies that C+C pycnonuclear
fusion does not limit further the magnetic field strength with respect to the in-
verse β-decay instability of carbon. Indeed, using equation (3.9) we obtain that
such a density is reached for a magnetic field BC+C

D,pyc ≈ 246.6, or BC+C
pyc ≈ 1.1× 1016

G, a value lower than Bβ,C
D ≈ 342.3 or Bβ

C ≈ 1.5× 1016 G. Longer reaction times
imply lower densities and thus lower magnetic fields.

It is important to note that the above limits to the magnetic field are estimated
assuming that the density of the system is given by equation (3.9); however,
more realistic estimates of these limiting fields have to account for the contribu-
tion of the magnetic field to the mass-energy density (see section 3.3.6) and the
self-consistent value of the electron density accounting for the real number of
Landau levels populated, which will be higher than one. The above microscopic
limits to the magnetic field are higher than the maximal values allowed by the
virial theorem. Therefore, the macroscopic dynamical instabilities appear to set
in before both electron captures and pycnonuclear reactions.

3.3.5 Breaking of spherical symmetry

In Chandrasekhar and Fermi (1953) (see also the errata Chandrasekhar and
Fermi (1955)), the figure of equilibrium of an incompressible fluid sphere with an
internal uniform magnetic field that matches an external dipole field was shown
to be represented by an oblate spheroid instead of a sphere. The star becomes
oblate by contracting along the direction of the magnetic field. The bounding
surface of this spheroid is given by
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r(cos θ) = R + εPl(cos θ), (3.19)

where ε � R, θ is the polar angle and Pl(cos θ) denotes the Legendre polyno-
mial of order l.

The deviation from the spherical configuration is given by the term Pl(cos θ),
thus in Chandrasekhar and Fermi (1953) such a perturbation was called "Pl-
deformation". They have also concluded that the term with l = 2 contributes
to the corresponding change in the internal magnetic energy density, while for
the all other values of l the change in the magnetic energy is of the second
order in ε. The quantity ε satisfies ε � R and measures the deviations from
a spherical configuration. The polar and equatorial radii are Rp = R + εPl(1)
and Req = R + εP(0), respectively, thus ε = −(2/3)(Req − Rp) and therefore
ε/R = −(2/3)(Req − Rp)/R for the axisymmetric deformed configuration with
l = 2.

It was shown by Chandrasekhar and Fermi (1953) that such an axisymmetri-
cally deformed object is favorable energetically with respect to the spherical star.
Thus the star becomes unstable and proceeds to collapse along the magnetic
field axis, turning into an oblate spheroidal with ε < 0. For a “P2−deformation”
(l = 2) the contraction continues until the configuration reaches a value of ε/R
given by (see: Chandrasekhar and Fermi, 1953, 1955):

ε

R
= −35

24
B2R4

GM2 . (3.20)

Using the expression for Bmax given by equation (3.15) one obtains:

ε

R
= −315

384

(
B

Bmax

)2

' −0.8
(

B
Bmax

)2

. (3.21)

Therefore, when the internal magnetic field is close to the limit set by the virial
theorem, the star deviates to a highly oblate shape.

We show in the last column of table 3.1 the "Pl-deformation" ε/R calculated
for the three configurations discussed before. The results show that |ε/R| & 2×
102, which implies that the star has a highly oblate shape and thus the spherical
symmetry is strongly broken. Therefore, in order to consider the effect of the
deformation caused by the presence of the magnetic field a more consistent
calculation that considers cylindrical symmetry (see, e.g. Chandrasekhar and
Fermi, 1953; Ostriker and Hartwick, 1968) is mandatory. It is worth mentioning
that if we consider the quantum nature of the equation of state of a Fermi gas
subjected at fields B � Bc, the actual shape of equilibrium is defined by the
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total (matter+field) pressures parallel and perpendicular to the magnetic field,
pressures that are different and that vanish at the star surface (Chaichian et al.,
2000; Pérez Martínez et al., 2003, 2008; Strickland et al., 2012).

3.3.6 General Relativistic effects

As we mentioned before the solution obtained by Das and Mukhopadhyay (2013)
used the hydrostatic equilibrium equations of a magnetic fluid, something which
can be used only when the contribution of the magnetic field to the total energy
density is negligible compared with the matter density. However, it is easy to
check that this requirement is violated by the configurations considered by Das
and Mukhopadhyay (2013), where the magnetic fields are so intense that their
contribution to the energy density turns out to be equal or greater than the con-
tribution of the matter, making invalid the Newtonian approach. To see this we
can calculate for the maximum white dwarf mass of Das and Mukhopadhyay
(2013), equation (3.10), which is obtained for a magnetic field B ≈ 108 G, the
contribution of the magnetic field to the total energy density, which turns out
to be ρB ≈ B2/(8πc2) ≈ 4.4× 1013 g cm−3. This value is larger than the matter
density of the configuration and cannot be neglected in the energy-momentum
tensor of the system. However, as we have shown before, due to different insta-
bility effects, such large magnetic fields cannot be reached in the star.

On the other hand, when the maximum mass (equation (3.10)) is approached
for magnetic fields BD & 104, the central density of the system is given ρc &
4× 1012 g cm−3, according to equation (3.9). In particular, the maximum mass
configuration would have a radius R ≈ 70 km and therefore a central density
ρc ≈ 1.2× 1013 g cm−3, only one order of magnitude less than the nuclear sa-
turation density. These values imply that the mass, radius and density of the
ultra-magnetic white dwarfs considered by Das and Mukhopadhyay (2013) are
much more similar to the typical parameters of a neutron star rather than those
of a white dwarf. Therefore we could ask whether or not the compactness of the
star is such to require a full general relativistic treatment. For the above star pa-
rameters close to the maximum mass configuration, it is obtained a compactness
GM/(c2R) ≈ 0.05, a value in clear contrast with a Newtonian treatment of the
equilibrium equations.

In this line, the results of Rotondo et al. (2011a) become relevant. It was found
there that in the case of carbon white dwarfs, general relativistic instability sets
in at a density ρcrit ≈ 2× 1010 g cm−3, before the onset of the inverse β-decay
instability. Such a density is much lower than the densities of the ultra-magnetic
white dwarfs of Das and Mukhopadhyay (2013).

3.3.7 Evolutionary path

In order to explain how those white dwarfs with such huge magnetic fields could
exist in nature, Das and Mukhopadhyay (2013); Das et al. (2013) proposed that
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the star by accretion could increase its central density and its magnetic field ow-
ing to magnetic flux conservation. However, it is unlikely that such an accretion
could bring the white dwarf to such extreme regimes without passing through
the instability channels we have analysed before.

Flux conservation implies that an uniform magnetic field, as the one assumed
by Das and Mukhopadhyay (2013), satisfies B f /B0 = (R0/R f )

2, where the sub-
scripts 0 and f stand for initial and final values. It is known that in the New-
tonian treatment the critical mass is reached at infinite densities, so when the
radius tends to zero it causes an unphysical large increase of the above mag-
netic field when approaching the critical mass value. Therefore it is essential
for this computation to take into due account the general relativistic and micro-
scopic instabilities leading to a finite critical density and radius for the critical
mass configuration. For this purpose, we use the mass-radius relation obtained
by Rotondo et al. (2011a). If we start an accretion process on a carbon white
dwarf with an initial mass M ∼ M� (R0 ≈ 5587.43 km), a mass typical of white
dwarfs with high magnetic field (see Ferrario et al., 2005, for details), we obtain
that the magnetic field increases only by a factor B f /B0 ≈ 28 up to the final
mass M f = Mcrit ≈ 1.39 M� (R f ≈ 1051.44km). Indeed, the magnetic flux is
Φacc ∼ B0R2

0 ≈ 3.1× 1025(B0/108) G cm2, to be contrasted with the much higher
value of the frozen value Φfrozen ≈ 8.7× 1031 G cm2, inferred in section 3.3.3
for the maximum mass solution of Das and Mukhopadhyay (2013). This im-
plies that the accretion most likely will lead to the triggering of the white dwarf
gravitational collapse either to a neutron star or to an ordinary Type Ia super-
nova before reaching a stage where the magnetic field can cause and appreciable
changes to the equation of state and to the structure of the star.

One could think that the white dwarf has already a huge magnetic field
(& 1015 G) before starting the accretion process. However, we know from what
we have shown in section 3.3.3 that the virial theorem imposes a limit to the
magnetic flux of Φmax ≈ 1.1× 1030

√
4/(5− n)(M/M�) G cm2, where n is the

polytropic index. In addition, huge seed magnetic fields in the interior of a so-
las mass white dwarf appear to be in contradiction with observations since the
non-magnetic mass-radius relation reproduces with appreciable accuracy the ob-
servational data (see, e.g., Provencal et al., 1998; Vauclair et al., 1997).

3.3.8 Recent discussion on ultra-magnetic white dwarfs

Besides this work, other works have also pointed out the stability problems of
the ultra-magnetic white dwarfs proposed in Das and Mukhopadhyay (2013)
(see Chamel et al., 2013; Dong et al., 2014; Nityananda and Konar, 2014, 2015,
for further details on some of the same points considered in this chapter and on
other issues such as the neglected effect of the Lorentz force, i.e., the magnetic
field gradient).

More recently Das and Mukhopadhyay (2014), taking into account some of
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the criticisms raised by us and several researchers, obtained new solutions for
ultra-magnetic super-Chandrasekhar white dwarfs, improving in this way the
previous treatment exposed in Das and Mukhopadhyay (2013). They solved the
general relativistic equations of hydrostatic equilibrium within the assumption
of spherical symmetry, including the magnetic pressure gradient. The effect of
the magnetic field gradient was introduced through a phenomenological mag-
netic field profile. They solved the equations for two different conditions on the
parallel pressure:

1. That the spherically averaged paralled pressure be positive throughout the
star (case 1).

2. The parallel pressure be positive throughout (case 2).

The total pressure was assumed to be isotropic and increased by an isotropized
magnetic field contribution given by:

1
3

B2

8π
=

B2

24π
. (3.22)

Clearly this isotropic increase of the matter pressure could give, in principle,
systems with higher masses than those of the non-magnetic case, something in-
deed obtained by Das and Mukhopadhyay (2014). They find that:

1. For case 1, for some choice of the phenomenological parameters that cha-
racterize the magnetic field profile, the maximum mass could be as high as
Mmax ≈ 3.3M�.

2. For case 2, Mmax ≈ 2.1M�.

The magnetic field at the center in these configurations is Bcenter ≈ 6.8× 1014

G. Those solutions, although interesting, use a phenomenological magnetic field
not coming from the self-consistent solution of the Maxwell equations coupled
to the Einstein equations. It is not clear that the self-consistent solution will have
a distribution of the magnetic field similar to the one employed in that work and
with a value showing such a high excursion from the center of the surface. A
good example for the latter is the self-consistent solution presented by Ferraro
(1954), for which the magnetic field at the center is only five times larger than
its value at the surface. Possibly a more self-consistent calculation has been re-
cently performed by Bera and Bhattacharya (2014), which includes the break of
the spherical symmetry and the effect of the quantum pressure anisotropy. they
obtain white dwarf masses as large as 1.9M�. However, the maximum mass so-
lution they obtained corresponds to an electron Fermi energy that overcomes the
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limiting value for the inverse β-decay analysed in this work and in Chamel et al.
(2013).

As a positive support for their model, Das and Mukhopadhyay (2014) re-
called the recent mathematical analysis of Federbush et al. (2015), who showed
that there exist solutions for magnetic self-gravitating n = 1 polytropes for a
specific ansatz of the current J = βrρ, where r is the cylindrical coordinate, ρ is
the matter density and β is a constant. For the case of constant density, the above
ansatz redusces to the one introduced by Ferraro (1954). Federbush et al. (2015)
proved that there exist solutions providing the constant β is properly bound by
a sufficiently small value. However, the solutions found by Das and Mukhopad-
hyay (2013) do not conform to such an ansatz of the current and therefore the
analysis of Federbush et al. (2015) does not apply to such a specific solution. It is
noteworthy that, in addition, Federbush et al. (2015) provides a simple proof of
the non-existence of magnetic stars in the spherically symmetric case since the
only possible solution has a magnetic field with a singularity as the center.

3.3.9 Concluding remarks

There are some restrictions coming from the virial theorem and general rela-
tivity. For a Chandrasekhar white dwarf with M = 1.44M�, R ∼ 3000 km,
consistent with the recent calculation of massive white dwarfs computed by
Boshkayev et al. (2013), the maximum magnetic field permitted by the virial the-
orem is Bmax ∼ 1.7 × 1013 G< Bc = 4.4 × 1013 G � 1018 G. Besides, for the
magnetic fields considered considered in Das and Mukhopadhyay (2012, 2013),
e.g. B ≈ 1018 G, the contribution of the magnetic field to the total energy density
of the system is ρB ≈ B2/(8πc2) ≈ 4.4× 1013 g cm−3. This value is, indeed, larger
than the matter density of the configuration and, therefore, cannot be neglected
in the energy-momentum tensor of the system. This invalidates the treatment
used in Das and Mukhopadhyay (2013) based on the Newtonian hydrostatic
equilibrium equations because the general relativistic effects are ignored.

As a larger magnetic field is considered, the eccentricity it generates, the
dynamical instabilities that come into play, and the microscopic instabilities, re-
levant when the electron energies increase significantly, make very unlikely the
existence of such extremely magnetic white dwarfs since they would make a
white dwarf either collapse or explode long before reaching such a hypotheti-
cal structure. The construction of equilibrium configurations of ultra-magnetic
white dwarfs needs the inclusion of several effects not accounted for in Das
and Mukhopadhyay (2013), and therefore the acceptance of such ultra-magnetic
white dwarfs as possible astrophysical objects has to be considered with caution
On the contrary, sub-Chandraselhar white dwarfs (or those that slightly exceed
the Chandrasekhar limiting value thanks, for example, to rotation) with surface
magnetic fields in the observed range, i.e., B ∼ 106 − 1010 G, can be safely de-
scribed using a non-magnetic approximation for the calculation of the structure
parameters such as the mass or the radius.
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We would also like to mention that in Nityananda and Konar (2014), the
importance of the gradient of the magnetic pressure, which was also neglected in
Das and Mukhopadhyay (2012, 2013), was pointed out. The results of this work
confirm the traditional Chandrasekhar mass limit and invalidate the recently
proposed new mass limit for white dwarfs.
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Chapter 4

Soft Gamma-ray repeaters and
Anomalous X-ray Pulsars in the
White Dwarf Model

As we saw in the preceding chapter, the increasing data from observational cam-
paigns leave no room for doubts on the existence of massive (M ∼ 1 M�) white
dwarfs (WDs) with magnetic fields comprised in the range B ∼ (106 − 109) G
(Ferrario et al., 2015; Kepler et al., 2010, 2013, 2015; Külebi et al., 2009). The ob-
served magnetic white dwarfs (MWDs) are usually massive, for example, REJ
0317-853 with M ∼ 1.35 M� and B ∼ (1.7− 6.6)××108 G (Barstow et al., 1995;
Külebi et al., 2010); PG 1658+441 with M ∼ 1.31 M� and B ∼ 2.3× 106 G (Liebert
et al., 1983; Schmidt et al., 1992); and PG 1031+234 with B ∼ 109 G (Külebi et al.,
2009; Schmidt et al., 1986).

The highly magnetic white dwarfs (MWDs) observed up to now have very
large periods (compared with those of pulsars), something that make them in-
active as pulsars. However, Usov (1988) advanced the possibility that MWDs (he
assumed, for instance, B ∼ 108 G) that rotate very fast (with angular veloci-
ties Ω ∼ 1 rad/sec) would behave like a pulsar. However, due to the lack of
observational evidence of fast rotating and highly MWDs, this possibility was
dismissed or at least, considered highly improbable. But the discovery of pulsed
emission in the white dwarf (WD) primary of AE Aquarii (Terada et al., 2008),
a cataclysmic variable binary, brought back the attention to the idea of a pulsar-
like WD, which was the first of these objects reported with such a behaviour.
Notice that the reported period of this WD is P ∼ 33 s, one of the smallest of
all the periods reported in rotating white dwarfs (RWDs), and close to the range
of periods of AXPs/SGRs and of course, of some slow and rotationally powered
pulsars (RPPs).

More recently, Marsh et al. (2016) pointed to the pulsar behaviour of another
MWD, AR Scorpii (AR Sco). It is interesting that, as in the well known case of
AE Aquarii, also this WD belongs to a binary system. It is well known from ob-
servations that isolated WDs emit most of their electromagnetic emission from
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ultraviolet to near-infrared wavelengths, while when they are in close orbits with
a binary companion the resulting mass transfer due to gravitational strip gen-
erates atomic line emission (Szkody et al., 2011), emission in X-ray wavelengths
(Revnivtsev et al., 2008) and in the case the WD is also magnetic they emit near
and mid-infrared radiation (Parsons et al., 2013). However, whether the WDs are
isolated or in binaries, it is highly unusual they be detected at far-infrared or
radio frequencies. But the WD of AR Scorpii is detected in these wavelenghts,
specifically from X-ray to radio wavelengths (Marsh et al., 2016).

Besides those characteristics that make the WD analyzed in Marsh et al.
(2016) unique among WDs, it was also discovered that the emission in radio
and optical was pulsed and the period of the pulsations is ∼ 1.97 min, similar to
the period of the WD of AE Aquarii. Marsh et al. (2016) associated this pulsation
with the spin of the MWD. Furthermore, Marsh et al. (2016) concluded that the
emission was rotationally powered because the spin-down power of the WD is
an order of magnitude larger than the power of the electromagnetic radiation.
So, up to now, two well known WDs have shown a pulsar-like behaviour and
both happen to belong to binary systems, while the ordinary RPPs either belong
to a binary system or are isolated. We remark that the pulsar-like behaviour can
be observed from WDs in binaries when they can be considered approximately
as isolated objects, as in the case of detached binaries, or in binaries in a pro-
peller case.

The aforementioned discoveries are a fundamental support for the WD pulsar
model for AXPs/SGRs. However, despite a WD could not be the only explana-
tion for AXPs/SGRs because there are several proposed models, this raises the
possibility that more pulsar WDs could be discovered in the future. WDs with a
pulsar-like behaviour must be a very tiny percentage of the total MWDs due to
the fact the conditions on the rotational period are extremely restrictive.

In this chapter we will review the main progress done on the WD model for
AXPs/SGRs, beggining with the original idea and the first papers that proposed
the model. Then we will talk about the bounds on the parameters of the WD of
this model that come out from the structure and stability of an uniformly RWD,
following closely chapter 2. Then we will talk about the glitches and outbursts
observed in AXPs/SGRs and how the WD model can explain them from the en-
ergetic point of view. Finally we will talk about the emission in optical and near
infra-red of some of these objects, where we will also mention a key ingredient
of this model, the fact that in the case AXPs/SGRs are WDs they are most likely
the outcome of a merger of two WDs. This is important in the model because
several AXPs/SGRs have been associated with supernovae remnants and in the
case of this model this remnant should come from the merger of these two WD
progenitors.
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4.1 Rotationally powered pulsar-like white dwarfs:
structure and stability

Despite always pulsars were indisputably assumed to be neutron stars (NSs), the
idea that a WD could have a pulsar-like behaviour was advanced, although not
much attention was given to it because most of highly MWDs rotate very slowly
(see chapter 3). From several considerations of the different pulsar models it was
concluded that fast rotation is a requirement to have a pulsar-like behaviour.
How much a star has to rotate to become an active pulsar will depend on the
magnetospheric emission model and on parameters such as the rotational pe-
riod (given directly by observations) and the surface magnetic field (inferred
indirectly through the dipole formula (1.6)). These conditions will determine a
condition called death line (see chapter 5).

NSs usually rotate fast thanks to the conservation of angular momentum af-
ter the collapse of a normal star to a neutron star (NS). On the contrary WDs
rotate slower because they are bigger, but in principle, if they possess an appro-
priate rotational angular velocity, they can behave also as active pulsars. This
possibility made Usov to be the first to advance this hypothesis in 1988 (Usov,
1988), where he assured that WDs with magnetic fields of the order B ∼ 108 G
and rotational velocities Ω ∼ 1 rad/sec would behave like a pulsar. In that paper
Usov showed that under these conditions the WD becomes a source of γ-rays
like an active pulsar, suggesting also for the first time the existence of pulsar-like
WDs. Then, in the same year, Morini et al. (1988) were the first to suggest that
the pulsar 1E 2259+586, that was associated with the supernova remnant G109.1-
1.0, could be a fast RWD, proposing that any work on this direction could give
a good explanation to the apparent anomaly observed in this pulsar (e.g., when
assumed as a canonical NS satisfy the relation (1.1)). However, they did not enter
into further details of this proposed WD model.

Then, Paczynski (1990) explored more the possibility of 1E 2259+586 as a fast
rotating highly MWD, suggesting that in such a case it would be a WD formed
from the merger of two WDs. Such a merger scenario was proposed before to
explain Type Ia Supernovae (Iben and Tutukov, 1984; Paczynski, 1985). Different
works point to a likely result of a final WD and a stellar remnant coming out
from these kind of mergers (Benz et al., 1990; Iben, 1990; Mochkovitch and Livio,
1989) and these results were known when Paczynski addressed this hypothesis
for 1E 2259+586.

The main reason behind Paczynski’s hypothesis was that the rotational en-
ergy loss ĖWD of a WD can explain from the energetic point of view the ob-
served luminosity Lobs in X-rays and γ-rays (Malheiro et al., 2012; Paczynski,
1990; Usov, 1993) detected in 1E 2259+586 (and in all other AXPs/SGRs), i.e., it
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does not have the problem represented by relation (1.1); instead:

ĖWD := −4π2 IWD
Ṗ
P3 � Lobs, (4.1)

where IWD is the moment of inertia of the WD, P is its period of rotation and Ṗ
its time derivative. Just compare this to the relation obtained if we consider 1E
2259+586 (and in most of AXPs/SGRs) as a NS, i.e., to relation (1.1):

ĖNS := −4π2 INS
Ṗ
P3 < Lobs,

where, we just remind, INS is the moment of inertia of a typical NS. The rea-
son for this is that the typical moment of inertia of WDs (≈ 1049 g cm2) is
several orders of magnitude larger than the typical moment of inertia of NSs
(≈ 1045 g cm2), making possible in principle, from an energetic point of view,
to explain 1E 2259+586, the first AXP detected and reported by Fahlman and
Gregory (1981), as a rotationally powered pulsar-like WD. However, the WD
hypothesis was forgotten due to the popularization of the model developed by
Duncan and Thompson, the magnetar model. But after the works of Paczynski
and Usov were almost forgotten, this idea has been again considered in recent
papers (see, e.g. Boshkayev et al., 2013; Cáceres et al., 2017; Coelho and Malheiro,
2014; Lobato et al., 2016; Malheiro et al., 2012; Rueda et al., 2013).

Malheiro et al. (2012) checked if the relation (1.1) holds for all AXPs/SGRs
up to now observed. They used fiducial parameters of typical NSs, I ≈ 1045 g
cm2, M = 1.4 M� and R = 10 km. They discovered that this relation was true for
all the sources, except for 4, as can be seen in figure 4.1. These 4 sources are 1E
1547.0-5408, SGR 1627-41, PSR J1622-4950 and XTE J1810-197. The reason for this
is that there is not an unique criterion to define AXPs/SGRs. Some of them were
defined because they satisfied relation (1.1). Others were defined as AXPs/SGRs
thanks to their transient emission. This means these four sources could in prin-
ciple be modelled as rotationally powered NSs. Indeed, after that paper, Coelho
et al. (2017) explored further this possibility. That work is explained in chapter
6.

Malheiro et al. (2012) also checked if the WD hypothesis could explain en-
ergetically all AXPs/SGRs. Like in the case for NSs, they considered fiducial
values of a typical massive WD: M = 1.4 M�, R = 103 km and I ≈ 1049 g cm2.
As we can see from figure 4.2, taken from Malheiro et al. (2012), the rotational
energy loss of a typical WD is well above any observed luminosity in X-rays
for all AXPs/SGRs observed up to now. So, the original hypothesis proposed
by Paczynski (1990) to explain 1E 2259+586 as a WD can be applied also to the
other members of the AXPs/SGRs family.

A crucial question for the model is the stability of WDs that rotate as fast
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Figure 4.1: Luminosity in X-rays (LX) compared with the loss of rotational energy of
AXPs/SGRs when they are considered as Neutron Stars. This figure is taken from Malheiro
et al. (2012). The green star corresponds to SGR 0418+5729, using an observational upper
limit for the time derivative of the period (Ṗ < 6.0× 10−15). However, this value is outdated
because now we have a more accurate measurement of Ṗ = 4(1)× 10−15, not an upper limit
(Rea et al., 2013). The blue squares are the four sources that satisfy LX < ĖNS

rot .

Figure 4.2: Luminosity in X-rays (LX) compared with the loss of rotational energy of a WD
model of AXPs/SGRs. This figure is taken from (Malheiro et al., 2012). The green star and
the green triangle correspond to SGR 0418+5729, using respectively an upper limit and a
lower limit for Ṗ, respectively. The upper limit corresponds to an observational upper limit of
Ṗ < 6.0× 10−15, while the lower limit is Ṗ ≥ 1.18× 10−16, which is obtained when we make
ĖNS

rot = LX. However, this is updated because now we have a more accurate measurement of
Ṗ, not an upper limit (Rea et al., 2013). The blue squares are the four sources that satisfy
LX < ĖNS

rot (see figure 4.1).
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as AXPs/SGRs. This is one of the main criticisms done to the model, because,
as we know from chapter 2, when WDs rotate too fast they approach the mass-
shedding limit and when they overcome that limit they are rotationally unstable.
Therefore a confirmation of their stability is important to determine whether or
not a WD model can be applied to these objects. The question of the stability
was implicitly assumed in Malheiro et al. (2012). However, this question was
addressed later by Boshkayev et al. (2013), who improved the analysis done by
Malheiro et al. (2012) considering the structure and stability of uniformly RWDs
following closely the model constructed in Boshkayev et al. (2013). As we saw
in chapter 2, Boshkayev et al. (2013) constructed solutions to the Einstein Field
Equations within the Hartle’s formalism for uniformly RWDs and used the rel-
ativistic Feynman-Metropolis-Teller equation of state to describe their matter
properties.

Within the formalism developed by Boshkayev et al. (2013) we can deter-
mine whether or not hypothetical WDs could rotate with the rotational periods
of AXPs/SGRs. To answer that question let’s remember (see chapter 2) that in
this formalism, for each nuclear composition (4He, 12C, 16O and 56Fe WDs are
considered), a minimum rotational period Pmin is determined; this minimum ro-
tational period of WDs is obtained when we consider a configuration rotating
at Keplerian angular velocity and at a critical density for the onset of inverse
β-decay instability. This extreme configuration corresponds to the point of inter-
section between the mass-shedding and the inverse β-decay boundaries. These
boundaries and their corresponding intersection point can be appreciated in fig-
ure 4.3, taken from Boshkayev et al. (2013). The minimum rotation periods for all
the four compositions can be seen in table 2.3. As we can see, the minimum rota-
tional periods, considering the different compositions, are in the range (0.3− 2)
s. This allows us to conclude that WDs that rotate as fast as AXPs/SGRs are
dynamically stable.

With the stability analysis that this formalism allows us to do it is possible
to obtain and constrain the range of possible parameters for quantities such as
the radius, the mass or the moment of inertia for a given period and of course,
for a given nuclear composition. As we mentioned before, in figure 4.3 is plotted
the mass versus the equatorial radius of RWDs with 12C as nuclear composite.
Besides the Keplerian sequence and the inverse β-decay instability boundaries,
there are plotted other instability limits such as the secular and pycnonuclear
instabilities. Also are plotted sequences of constant period of rotation, these se-
quences are represented by the thin dashed colored lines. These curves of con-
stant period or angular velocity intersect the Keplerian sequence and the insta-
bility boundaries of inverse β-decay or secular instability. We can see that there
can exist sequences of constant period that would not intersect the gray dashed
region, this is because their rotational velocity would be below the minimum
reported in table 2.3.

The intersections of configurations of constant period P > Pmin with the
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different boundary limits determine the range of possible values for the mass,
radius and magnetic field (calculated indirectly using equation (4.2)) for an uni-
formly rotating and MWD; the constant period curves determine all the possible
configurations for that given period of rotation within the limits imposed by
instability boundaries. Looking at figure 4.3, the curves of constant but large pe-
riods are very close to the static configuration curve, as it should be. As long as
we increase the angular velocity (or decrease the period), the curves of constant
period start to go up and separate from the static curve. We can appreciate that
the mass M is monotonically decreasing with the equatorial radius Req, but as
long as we decrease the period this tendency is gradually reversed and at some
point the curves are monotonically increasing. This happens for curves of very
small periods, close to the limit period Pmin. We can also appreciate that the
minimum equatorial radius Rmin

eq will be given by the intersection between the
curve of constant period and the boundary curve of either the secular axysim-
metric instability or the inverse β-decay instability while the maximum radius
Rmax

eq will be given by the intersection with the Keplerian sequence curve. For
the case of WDs rotating with velocities similar to those of AXPs/SGRs, despite
their very small period, they still behave more like WDs described by the curves
close to the static curve, i.e., they are similar to the curves that are monotonically
decreasing. Therefore Rmin

eq will correspond to a maximum mass while Rmax
eq will

correspond to a minimum mass. Therefore, for each curve of constant period
it is possible to obtain these intersections and find these limiting values for the
mass and the radius. In this way Rueda et al. (2013) calculated the maximum
and minimum masses, the equatorial Req and mean R̄ radii (R̄ = (2Req + Rp)/3,
where Rp is the polar radius of the star), the corresponding minimum and maxi-
mum moments of inertia and the corresponding maximum and minimum dipole
magnetic field of 4U 0142+61, assuming 12C WD, while Boshkayev et al. (2013)
did it for three sources, SGR 0418+5729, Swift J 1822.3-1606 and 1E 2259+586,
but for WDs with the four compositions considered (4He, 12C, 16O and 56Fe). In
table 4.1 we report all these values for 12C for all these four sources. The dipole
magnetic field was calculated using equation (1.6), but as we are considering
non-spherical WDs (see section 2.3) we have to use the mean radius R̄, i.e.:

Bdp =

√
3c3

8π2
I

R̄6 PṖ. (4.2)
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Figure 4.3: Mass versus equatorial radius of rotating 12C white dwarfs (taken from Boshkayev
et al., 2013). The gray region denotes the region of stability, all the points in this region describe
all possible configurations allowed in this model. This region is bounded by the sequence of static
configurations (denoted by the black thick line) and by the different instabilities such as the
secular instability, the inverse β-decay instability, the Keplerian seuence or mass shedding limit
and the pycnonuclear instabilities of C+C fusion with reaction mean times τpyc = 10 Gyr and
τpyc = 0.1 Myr. The thin dashed colored lines correspond to sequences of constant period
of rotation. In this picture we can see that these curves corresponding to a constant period
or angular velocity intersect the Keplerian sequence and the instability boundaries of inverse
β-decay or secular instability. These intersections will determine the range of possible values of
the mass, radius and magnetic field for a MWD rotating with a particular angular velocity.
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Source Rmax
eq Rmin

eq R̄max R̄min Mmin Mmax Imin
48 Imax

50 Bmin Bmax

SGR 0418+5729 6.82 1.05 6.18 1.05 1.15 1.39 2.86 1.42 1.19× 107 3.49× 108

Swift J 1822.3-1606 6.55 1.05 5.93 1.05 1.17 1.39 2.86 1.32 4.87× 107 1.31× 109

1E 2259+586 5.88 1.04 5.34 1.04 1.24 1.39 2.84 1.08 1.27× 108 2.76× 109

4U 0142+61 6.66 1.05 6.03 1.05 1.16 1.39 2.90 1.40 2.30× 108 6.26× 109

Table 4.1: Bounds on the properties of four different AXPs/SGRs modelled as 12C white dwarfs. The radii Rmax
eq , Rmin

eq , R̄max and R̄min are given in
units of 108 cm. The masses Mmin = M(Rmax

eq ) and Mmax = M(Rmin
eq ) are given in units of M�, and the moments of inertia Imin

48 = I(Rmin
eq ) and

Imax
50 = I(Rmax

eq ) are given in units of 1048 g cm2 and 1050 g cm2 respectively. The magnetic fields Bmin = Bdp(R̄max) and Bmax = Bdp(R̄min) were
calculated using formula (4.2) and are in units of G. These values are taken from Boshkayev et al. (2013) and Rueda et al. (2013).
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4.2 Glitches and outbursts in SGRs and AXPs

Usov (1994) showed that starquakes could be the reason for the decrease of the
mean spin-down rate observed for the source 1E 2259+586, considering it again
as a MWD. The main idea behind it is that when a fast rotating MWD slows
down due to the electromagnetic torque and the stellar wind, centrifugal forces
on the core decrease and gravity, pulling it to a less oblate more spherical shape,
stresses it. This stress accumulates until a critical value is reached, then it is
released, generating a starquake. This idea was borrowed from previous works
studying the glitches observed in pulsars (Baym and Pines, 1971; Pines et al.,
1972; Ruderman, 1969). The release of those stresses leads to a decrease of the
moment of inertia, and hence, by conservation of angular momentum, to an
increase of rotational velocity:

∆I
I

= 2
∆R
R

=
∆P
P

= −∆Ω
Ω

. (4.3)

This change in the period of rotation and the moment of inertia lead to a change
of gravitational energy and a gain of rotational energy in the spin-up process
during the glitch given respectively by:

∆Eg =
GM2

R
∆R
R
∼ 2.5× 1051 ∆P

P
erg, (4.4)

∆Erot = −
2π2 I

P2
∆P
P

= −1.98× 1050 ∆P
P3 erg. (4.5)

Using formulae for starquakes in NSs and extrapolating it to the WD Usov (1994)
showed that glitches would occur in magnetic white dwarfs with regular peri-
odic times given by the characteristc time (Baym and Pines, 1971; Usov, 1994):

δtq =
2D2

B
|∆P|

P|Ėrot|
, (4.6)

where Ėrot is the loss of rotational energy, B = 0.33(4π/3)R3
ce2Z2[ρ̄c/Amp]4/3,

D = (3/25)GM2
c /Rc, Mc, Rc and ρ̄c are the mass, the radius and the mean den-

sity of the solid core respectively, and mp is the proton mass. This equation was
obtained assuming the solid core is a rotating self-gravitating sphere composed
of incompressible matter of uniform shear modulus (Usov, 1994).

Using this equation and assuming 1E 2259+586 is a WD with parameters
M = 1.45 M�, R ' 3× 108 cm, Mc ' 1 M�, Rc ' 2× 108 cm, ρ̄c = Mc/(4π/3)R3

c ,
and IWD ' 1050 g cm2, Usov (1994) estimated a recurrence time for glitches:
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δtq ' 7× 106 ∆P
P

yr. (4.7)

Assuming the existence of glitches as the main cause of the instability of Ṗ with
∆P = −(1− 2)× 10−5, Usov (1994) estimated a recurrence time δtq ' 10− 20 yr,
with an uncertainty of a factor of 2 or 3. As can be seen on figure 4.4, this
value of tq is consistent with data on the evolution of the pulse period of 1E
2259+586. So, he concluded that if this object is a WD within some years a
glitch with such characteristics could be observed in that object. And indeed,
Kaspi et al. (2003); Woods et al. (2004) reported the observation in 2002 of
changes of the order ∆P/P ≈ −4× 10−6 associated with an outburst (see figure
4.5). In this case, equation (4.5) gives us a change in the rotational energy of
|∆Erot| ∼ 1.7× 1043 erg, which can explain energetically the energy released in
the outburst, ∼ 3× 1041 erg. Another glitch was observed on 26 March 2007 in
the source 1E 1048.1-5937 (Dib et al., 2009). In that case the observed change in
the period was ∆P/P ∼ −1.63× 10−5, which imply |∆Erot| ∼ 7.73× 1043 erg,
large enough to be able to explain energetically the energy released in the out-
burst, ∼ 4.3× 1042 erg (Dib et al., 2009).

As we saw in the previous section, Boshkayev et al. (2013) and Rueda et al.
(2013) calculated more accurate values for the mass, the radius and the moment
of inertia of SGRs/AXPs modelled as white dwarfs, instead of using fiducial
values. The central density is also calculated, and therefore, this can improve the
estimate of the recurrence time. For the case of 1E 2259+586 we have a recurrence
time for the maximum and minimum mass configurations given by (Boshkayev
et al., 2013):

δtq >

{
4.5× 107(|∆P|/P) yr M = Mmin

1.2× 1010(|∆P|/P) yr M = Mmax,
(4.8)

which for typical changes of period |∆P|/P ∼ 10−6 gives δtq > 45 yr and
δtq > 1.2× 104 yr for Mmin and Mmax respectively. These values indicate that
1 E 2259+586 is a very active source in which glitches and outbursts occur with
a frequency of years, if we consider our configuration is closer to the minimum
mass. It changes drastically if we are near the maximum mass. Notice also that
glitches of minor intensity, |∆P/P| ∼ 10−7 occur with more frequency, δtq . 4 yr.

In the case of giant flares there has not been found evidence linking them to
glitches. Considering that they are energetically in the range (1044 − 1047) erg,
fractional changes in the period of the order ∆P/P ∼ −(10−5 − 10−3) could
explain them.
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Figure 4.4: Pulse period history of 1E 2259+586 from 1978 to 1990. The solid line represents
the best fit before 1989 assuming no glitches. The dashed lines show the fit with glitches. The
amplitude of the glitches is in the range (1− 2) × 10−5 s. The characteristic time between
glitches seem to be in agreement with the predicted one by Usov (1994), paper from which we
have taken this figure. This is an argument in favor of the WD model.
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Figure 4.5: Timing and pulsed emission of the glitch-outburst episode observed on 1E
2259+586 on June 2002. The reported energy release during the outburst is ∼ 3× 1041 erg
and the change in the rotational period reported was ∆P/P = −∆Ω/Ω ∼ −4× 10−6 (Woods
et al., 2004). Figure taken from (Malheiro et al., 2012).
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4.3 Infrared, Optical and Ultraviolet emission

AXPs/SGRs are variable sources at optical and near-infrared wavelengths. Up to
now only seven AXPs/SGRs have been confirmed 4U 0142+61, SGR 0501+4516,
1E 1048.1-5937, 1E 1547.0-5408, SGR 1806-20 XTE J1810-190 and 1E 2259+586 (see
Olausen and Kaspi, 2014, and references therein). There are also suggested, but
yet unconfirmed, optical counterparts for CXOU J010043.1-721134, 1E 1841-045
and SGR 1900+14.

Two sources, 1E 2259+586 and 4U 0142+61, have been detected in the K band,
indicating an excess in the near-infrared, something that, in the traditional mag-
netar model, has been atributed to the presence of a fallback disk around a NS.
But this emission has also been explained in the WD model, in particular for
these two sources, in Boshkayev et al. (2013) and Rueda et al. (2013).

Let’s remember that the white dwarfs that model AXPs/SGRs are massive
and very magnetic. In the WD model it is necessary also to explain that some of
these sources are associated with supernovae remnants. This prompted Paczyn-
ski (1990) to suggest that these massive and highly magnetic white dwarfs should
come from the merger of two white dwarfs. Well before he formulated his
hypothesis, these mergers were already proposed as an explanation for Type
Ia supernova outbursts (Iben and Tutukov, 1984; Webbink, 1984). More recent
smoothed particle hydrodynamics (SPH) simulations of the coalescence process
of double degenerate stars indicate that the outcome of the merging process
is a WD that contains the mass of the undisrupted primary surrounded by a
hot corona made of about half of the mass of the disrupted secondary (Lorén-
Aguilar et al., 2009). This rapidly rotating corona is convective and an efficient
αω dynamo can produce magnetic fields as large as B ≈ 1010 G (García-Berro
et al., 2012). And a rapidly rotating Keplerian disk is formed with the rest of
the material of the secondary. In this scenario the WD model could explain the
near-infrared excess coming from this Keplerian disk.

We mention that besides the binary WD merger scenario proposed by Paczyn-
ski (1990), another scenario was proposed by Malheiro et al. (2012) where a late-
evolved star, gravitationally bound to a WD, collapses gravitationally either to
a NS or a black hole. In the case the loss of mass in the supernova explosion
is Mloss < M/2, where M is the total mass of the binary, the system remains
bound and therefore the object will remain close to the center of the supernova
remnant (see Ruffini, 1973, for details). So, we have two different scenarios to
give account for the existence of supernova remnants for AXPs/SGRs that have
been associated with them.

Boshkayev et al. (2013) and Rueda et al. (2013) analyzed the infrared, opti-
cal and ultraviolet observation of four sources. Two sources were observed in
one or more of these wavelength ranges, 1E 2259+586 (Boshkayev et al., 2013)
and 4U 0142+61 (Rueda et al., 2013), while two sources were undetected, SGR
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0418+5729 and Swift J1822.3-1606 (see Boshkayev et al., 2013), which allowed to
put observational upper limits to their intrinsic luminosity. The observations or
the observational upper limits (in the case of the undetected sources) are ana-
lyzed and compared with the expected emission from the system composed of
the WD and the aforementioned disk produced during the merger. The infrared
emission is in these cases associated with the blackbody emission of the disk, but
when this infrered emission is not detected is assumed the surface emission of
the single WD. We now present the analysis for the four aforementioned sources.

4.3.1 4U 0142+61

As we mentioned before, this source has a confirmed infrared excess (Hulleman
et al., 2000). This source has been detected also in the optical bands. Assuming a
WD this emission should be explained as the sum of two components, a black-
body coming from the surface of the WD and a blackbody disk model. The first
is given by:

FBB = π
2h
c2

(
RWD

d

)2 ν3

ehν/(kB)Teff
, (4.9)

where RWD and Teff are, respectively, the radius and effective temperature of
the WD. Regarding the disk emission, Rueda et al. (2013) adopted the model of
Chiang and Goldreich (1997), a model of a passive, opaque, flat circumstellar
disk initially proposed by the authors for T Tauri stars, but then adopted also
to white dwarfs (García-Berro et al., 2007; Jura, 2003). In this disk model the
energy absorbed by the disk is reemitted in infrared, which would explain the
infra-red excess emission from T Tauri stars (see Adams et al., 1987; Mendoza V.,
1968; Shu et al., 1987, and references therein), an idea then extended to explain
also the infrared excess emission in some white dwarfs (García-Berro et al., 2007;
Jura, 2003). The emission from this disk model is given by:

Fdisk = 12π1/3 cos i
(

RWD

d

)2(2kBTeff

3hν

)8/3 (hν3

c2

)
×
∫ xout

xin

x5/3

ex − 1
dx, (4.10)

where i is the inclination angle of the disk and x = hν/(kBT). In this model the
disk’s temperature T varies as r−3/4, with r the distance from the center of the
WD.

Using the data in ultraviolet and infrared, Rueda et al. (2013) fitted the spec-
trum within this WD+disk model. The best fit is shown in figure 4.6, where
the spectrum parameters corresponding to this best fit are: RWD ≈ 0.006R�,
Teff ≈ 1.31× 105, inner and outer disk radii Rin = 0.97R�, Rout = 51.1R� and
inner and outer disk temperatures Tin ≈ 1950 K and Tout ≈ 100 K. We can see
the excellent agreement between the composite spectrum and the observational
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Figure 4.6: Observed and fitted spectrum of 4U 0142+61 shown in Rueda et al. (2013). It is
shown the average of all the existing data of the sources in the different bands, this due to the
high variability of the source in the optical bands. The data come from observations between
1994 October 1994 and 2005 July 26 (Dhillon et al., 2005; Durant and van Kerkwijk, 2006;
Hulleman et al., 2000, 2004; Morii et al., 2005, 2009). For further details see (Rueda et al.,
2013).

data, proving in this way that the WD model is compatible with the observed
photometry. However, keep in mind that these data is extremely variable, and
this variability can lead to changes in the optical fluxes of up to one order of
magnitude (Durant and van Kerkwijk, 2006).

We remind that the simulations of the coalescence process of two degenerate
stars show that the result of the merger is a WD that contains the mass of the
undisrupted primary, surrounded by a hot corona made of about half of the mass
of the disrupted secondary and a rapidly rotating Keplerian disk, which contains
the rest of the material of the secondary, and with a little mass ejected from
the system during the merging process. Therefore, in order to check whether
the double degenerate merger hypothesis is a realistic and consistent model for
4U 0142+61, Rueda et al. (2013) ran a Smoothed Particle Hydrodynamics (SPH)
simulation of the merger of a 0.6+1.0 M� binary WD, which resulted in a central
remnant of ≈ 1.1M�, with a radius RWD ≈ 0.006R�, and a surrounding disk
of mass Mdisk ≈ 0.5M�. The value of the radius, as we can see, is in good
agreement with the photometric value. Moreover, the rotation period is P ≈ 15.7
s, of the same order of the reported period for this source (8.69 s, Dib et al.,
2007).

4.3.2 1E 2259+586

Hulleman et al. (2001) established a near-infrared counterpart of 1E 2259+586 of
magnitude K = 21.7± 0.2. Unlike in the case of 4U 0142+61, for this source were
obtained only upper limits in the optical band, given by: R = 26.4, I = 25.6 and
J = 23.8. Like for the previous source, the spectrum was fitted using equations

92



4.3. Infrared, Optical and Ultraviolet emission

Figure 4.7: Observed and fitted spectrum of 1E 2259+586. The circle is the observed flux in
the K band (infrared), while the triangles correspond to upper limits in the R, I and J bands.
The parameters of the blackbody+disk spectrum are RWD = 3× 108 cm, T = 7× 104 K,
Tin = 2× 103 K and Rout = R�. The blue-dashed curve is the contribution of the disk and the
red-dashed curve is the contribution from the surface of the , that is modelled by a blackbody.
The sum of these two gives the total spectrum that is represented by the black curve. Figure
taken from Boshkayev et al. (2013).

(4.9) and (4.10). For this case the fit is more complicated because we don’t have
enough data and we have just upper limits in the optical band. To overcome
this inconvenience Boshkayev et al. (2013) assumed a value for the WD RWD =
3 × 108 cm, a value in the interval of stability, and a value for the outer disk
of Rout = R�. They found that the good fitting values of the other parameters
are T = 7.0× 104 K and Tin = 2.0× 103 K. We show in figure 4.7 the observed
spectrum in the optical, infrared and ultraviolet bands and the corresponding fit
spectrum of the blackbody+disk model. This implies that further observations
with lower limits could confirm or reject the model. Up to now, we only can
assure that the infrared excess can be well explained with a disk surrounding a
WD.

4.3.3 SGR 0418+5729

Using the information provided by Rea et al. (2010) about the position (and
its positional error circle) of SGR 0418+5729, Durant et al. (2011) observed this
source with two wide filters of the Hubble Space Telescope, F606W (well approx-
imated by the V-band, λ ∼ 588 nm, in the visible part of the electromag-
netic spectrum) and F110W (well approximated by the j-band, λ ∼ 1159 nm,
in the near-infrared part of the electromagnetic spectrum). The derived upper
limits for the apparent magnitudes are mF606W > 28.6 and mF110W > 27.4.
This allowed Boshkayev et al. (2013) to obtain upper limits for the luminos-
ity, LF606W < 5× 1028 erg s−1 and LF110W < 6× 1028 erg s−1. Considering that
the emission from the surface is very well approximated by a blackbody and
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Figure 4.8: Constraint on temperature according to equation (4.11). The gray region cor-
responds to the possible values of temperature and radius in the case SGR 0418+5729 is an
uniformly RWD. The range of values for the radius corresponds to the limits obtained in the first
section of this chapter, where the instability boundaries were consistently taken into account.
Figure taken from Boshkayev et al. (2013).

that the luminosity of a blackbody depends directly on the temperature, we can
realise that these upper limits also imply limits on the temperature. Specifically,
they put upper limits on the temperature, which in terms of the radius R of the
star are given by (see Boshkayev et al., 2013, for details):

T <

{
1.3× 104[ln(1 + 0.44R2

8)]
−1 K, F110W

2.4× 104[ln(1 + 6.35R2
8)]
−1 K, F606W,

(4.11)

where R8 is R in units of 108 cm. As we saw before in this chapter, the values
for the mass or radius of the WD that model each AXP/SGR are constrained
according to their rotational angular velocity. Following the previous equation
we can plot the upper limits on the temperature as a function of radius within
the limits imposed by the stability criteria. We show this in figure 4.8. The gray
region corresponds to the possible values of temperature and radius and this
region has the following upper limits:

T <

{
4.3× 103 K, R = Rmax, F101W,
1.2× 104 K, R = Rmin, F606W.

(4.12)

The minimum upper limit for the temperature corresponds to the maximum
radius and the upper limit imposed by the measurement of the F110W filter,
while the opposite maximum upper limit corresponds to the minimum radius
and the upper limit imposed by the measurement done by the F606W filter. We
have to remark also that this upper limits for the temperature are similar to
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Figure 4.9: Expected optical magnitudes of SGR 0418+5729 assuming a blackbody spectral
emission with temperature T = 104 K and radius R = 1.5 × 108 cm. Figure taken from
Boshkayev et al. (2013).

the observed surface temperatures of massive and isolated white dwarfs. For
example, Ferrario et al. (2005) report values in the range 1.14× 104 K < T <
5.52× 104 K.

Given a temperature and radius is possible to obtain the expected optical
magnitude. Choosing the smallest radius (that corresponds in figure 4.8 to the
maximum upper limit), R = 1.5× 108 cm, a temperature of T = 104 K, and a
distance of 2 kpc, is obtained the expected optical magnitude shown in figure
4.9.

4.3.4 Swift J1822.3-1606

Three sources were detected in the J, H and K bands associated with the position
determined for SGR 1822-1606. However, all these three sources are too luminous
to be associated with a WD at such a distance (≈ 5 kpc). In this case due to the
very large distance associated with this source, we don’t have strong constraints
on the temperature or the radius of the WD. Therefore, there can be assumed
values of T = 104 K and R = 1.5× 108 cm, like in the previous case, obtaining
an expected optical magnitude shown in figure 4.10.

4.4 The age and magnetic field of 4U 0142+61

The predictions of the proposed scenario of the formation of massive and highly
MWDs due to the merging of two degenerate stars can be compared with the in-
formation provided by observations of AXPs/SGRs, in particular, of 4U 0142+61.
After their merger the interaction of the disk formed with the MWD will play
a key role in the evolution of its rotation period. As we will see, its main role
is played at the beggining of the life of the WD recently born from the coa-
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Figure 4.10: Expected optical magnitudes of SGR 1822-1606 assuming a blackbody spectral
emission with temperature T = 104 K and radius R = 1.5 × 108 cm. Figure taken from
Boshkayev et al. (2013).

lescence. However, this interaction disappears after a certain time and the WD
will spin-down like any other isolated WD, i.e., only thanks to the traditional
magneto-dipole braking.

In order to model the evolution of the rotational period of 4U 0142+61, Rueda
et al. (2013) adopted the phenomenological model of Armitage and Clarke (1996),
which assumes that the magnetic field lines threading the disk are closed. In this
model the evolution of the angular velocity ω is governed by the equation:

ω̇ = −2B2〈T〉6ω3

3Ic3 sin2 θ +
B2R̄6

3I

[
1

R3
mag
− 2

(RcRmag)3/2

]
+

ṀR2
magω

I
, (4.13)

where θ is the angle between the rotation axis and the magnetic dipole moment,

Rmag =

[
B2R̄6

Ṁ
√

2GM

]2/7

(4.14)

is the magnetospheric radius (Chatterjee et al., 2000; Matt et al., 2012; Rueda and
Ruffini, 2012; Toropina et al., 2012), and

Rc =

(
GM
ω2

)1/3

(4.15)

is the corotation radius. The first term in equation (4.13) corresponds to the tra-
ditional magneto-dipole braking, the second one is the star-disk coupling and
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the last one describes the angular momentum transfer from the disk to the WD.

The integration of equation (4.13) allowed Rueda et al. (2013) to obtain P and
Ṗ as a function of time. Adopting a misalignment angle θ = π/2 they obtained
that for a wide range of magnetic fields, at early stages Rmag ≈ RWD. The in-
tegration of equation (4.13) can be appreciated in figure 4.11. We can see that
initially the star is spun-up, this because of the large accretion rates. However,
after approximately 1 kyr the disk cannot torque any more the WD and from
that moment the disk and the star evolve independently and accretion onto
the magnetic poles stops. This is because the inner radius of the disk, which
is given approximately by the magnetospheric radius, becomes larger than the
light cylinder radius, Rlc = c/ω. When the interaction between the disk and the
star stops, the star spins-down by magneto-dipole radiation (Chatterjee et al.,
2000; Lamb et al., 1973).

We can see from figure 4.11 that approximately at an age of τsd = 64 kyr the
star will reach the values of P and Ṗ reported in the literature. It is remarkable
this age estimate is comparable with the characteristic age P/(2Ṗ) ≈ 68 kyr.
When a mass M = 1.2M� is adopted, the surface magnetic field needed to fit
the observed values of P and Ṗ is B ≈ 2.3× 108 G, at the aforementioned age
τsd = 64 kyr. We can compare this surface magnetic field with the magnetic
field obtained with the magnetic dipole formula (4.2). From the observed values
P = 8.69 s and Ṗ = 2.03× 10−12 (Hulleman et al., 2000), we obtain B = 2.3× 108

G for Mmin, and 6.2× 109 G for Mmax (see table 4.1), in agreement with the result
obtained integrating equation (4.13).

4.5 Concluding Remarks

We have seen in this chapter how different works have confirmed the first hy-
potheses of the WD model for AXPs/SGRs. Specifically it has been possible to
determine that white dwarfs rotating as fast as AXPs/SGRs are within the limits
stablished by the instability boundaries. We have also seen that more accurate
values for the radius and mass of these highly rotating white dwarfs have been
obtained. From the values obtained for the mass it is concluded that these highly
rotating and magnetic white dwarfs are also very massive, something remark-
able, considering that also, on average, magnetic white dwarfs are more massive
than their non-magnetic counterparts (see chapter 3).

On the other hand, both the persistent and transient emission of these ob-
jects could be explained from the energetic point of view in the WD model. We
saw that spin-down power of these hypothetical highly rotating white dwarfs
can explain the luminosity observed coming from AXPs/SGRs, so the persistent
emission can be explained within a rotationally powered pulsar model. And the
transient emission represented by the outbursts observed can be explained also
with a WD subjected to strain forces produced by the spin-down of the star be-
cause the outbursts have been associated with glitches that have changed the
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Figure 4.11: Time evolution of the period (top panel) and period derivative (bottom panel) of
4U 0142+61. The insets show the early evolutionary phases of the system. Figure taken from
Rueda et al. (2013).
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rotational period of the compact object.

In the last part we saw that the hypothesis of formation of these highly mas-
sive and magnetic white dwarfs can give account of an infrared excess detected
in some AXPs/SGRs. Besides this infrared excess, in some cases there has been
detected emission in the optical and ultraviolet spectrum. In the WD model this
emission is naturally associated with the surface emission coming from the WD.
An important factor that makes it difficult to detect a possible optical emission
is the distance, the usual distances of AXPs/SGRs are of the order of 1 or more
kpc, while most of the observed WDs, more exactly a 98%, are at a distance less
than 1 kpc (Napiwotzki, 2009). This severely limits the possibility to check the
theory with a direct observational evidence of the existence or not of the black-
body surface emission of the WD.

This difficulty to detect observationally the surface emission from the WD, as
we previously saw where only upper limits were obtained for some cases, con-
strains us to find other methods to validate or dismiss the WD hypothesis. As
we know, the AXPs/SGRs were observed in the X-ray wavelengths. In the next
chapter we will deal with part of this emission, considering always a rotation-
ally powered model and using several ideas used in the traditional rotationally
powered pulsar model.
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Chapter 5

Surface thermal X-ray emission of
highly magnetic white dwarfs:
Application to Anomalous X-ray
Pulsars

5.1 Introduction

We saw in the previous chapter how the white dwarf model of AXPs/SGRs
can be tested considering the association between glitches and outbursts, one of
the main characteristics of AXPs/SGRs that distinguish them from normal radio
pulsars, and also considering the emission in the optical, infrared and ultraviolet
bands. Is in these wavelengths where the surface emission of white dwarfs is de-
tected and observations in these wavelengths with lower thresholds could easily
rule out or keep alive this model or hypothesis. However, the X-ray emission
was not considered and the purpose of this chapter is to examine it within the
proposed white dwarf model.

As it was mentioned briefly in chapter 1, if a white dwarf is rotating fast
enough, there are some conditions on the magnetosphere that will render it
similar to the magnetosphere of pulsars. This magnetosphere creates propitious
conditions for the production of electron-positron pairs and for the generation
of high energy photons through different radiative processess such as curvature
radiation, inverse Compton scattering or synchrotron radiation. In this chapter
we will review the main aspects of the traditional pulsar model and we will
examine the X-ray emission within the framework of this model applied to the
white dwarf hypothesis. So, in section 5.2 a brief summary of the pulsar magne-
tosphere model will be presented. Then, in section 5.3 an application of a specific
emission model will be applied to some AXPs/SGRs, more specifically, will be
considered the thermal X-ray emission produced by the particles produced in
the magnetosphere that hit the surface of the star. Then, in section 5.4 we con-
sider the pulsed fraction caused by this emission and finally in section 5.5 we
give the concluding remarks.
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5.2 Pulsar-like White Dwarf magnetosphere

After the hypothesis of a rotating neutron star became the most plausible ex-
planation to the observed pulsed emission, there appeared a series of papers
directed to solve the magnetosphere and hence, the problem of explaining the
emission mechanism of pulsars. Hoyle et al. (1964) and Pacini (1967, 1968), con-
sidering the small density scale height (∼ 1 cm) and the huge gravitational
binding energies for electrons (∼ 8× 104 eV) and protons (∼ 1.4× 108 e V) at
the surface of a typical neutron star, concluded that the plasma density sur-
rounding a rotating magnetic neutron star must be very low, practically empty.
If that were the case, the most appropiate solution to the Maxwell equations in
the magnetosphere should be the one calculated by Deutsch (1955). In fact, this
solution has been taken as a reference point for other studies of pulsar magneto-
spheres (Bonazzola et al., 2015; Pétri, 2013, 2015, 2016). However, Goldreich and
Julian (1969) showed that this was not correct and instead a corotating plasma
must surround the star. This due to the existence of huge electric fields (due to
unipolar induction) that easily overcome the huge gravitational binding fields.
However, the idea of a corotating magnetosphere was not new (see Davis, 1947;
Ferraro and Bhatia, 1967; Ferraro and Unthank, 1949; Gold, 1962; Hones and
Bergeson, 1965).

A rotating conducting star modelled as a rotating magnetic dipole field B
creates an induction (quadrupole) electric field E in a vacuum whose parallel
component is given by:

E‖ =
E · B

B
∼ RΩB0

(
R
r

)4

cos3 θ. (5.1)

where B = |B|, Ω is the angular velocity, R is the radius of the star, B0 is the
magnetic field at the surface and r and θ are the spherical coordinates, where
the origin is considered at the center of the pulsar. Here the z axis is defined by
the axis of the magnetic dipole field.

This electric field gives a force greatly exceding gravity on any charged parti-
cle near the pulsar surface. For example, for a typical pulsar such as the famous
Crab pulsar whose estimated magnetic field is ∼ 4× 1012 G and has a measured
period of ∼ 33 ms, for a singly ionized iron ion, the ratio of gravitational to elec-
tric force would be mg/(eE‖) ∼ 1.5× 10−9. This makes the gravitational force
negligible compared to the electrical force, making the charged particles on the
surface to be pulled out and replenish the exterior of the neutron star. So, in this
way, Goldreich and Julian (1969) set the "standard" picture of pulsar magneto-
spheres.

The Goldreich Julian model considers an aligned neutron star, i.e., the axis of
the magnetic dipole field aligned with the rotational axis. As done in previous
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articles that treated the case of a generic magnetic star (Davis, 1947; Hones and
Bergeson, 1965), not necessarily a neutron star, they assumed that the star is im-
mersed in a tenuous plasma of infinite conductivity parallel to the external mag-
netic field lines and of zero conductivity normal to these lines. This anisotropic
conductivity of the plasma is equivalent to the condition E · B = 0, where E and
B are the external electric and magnetic fields. This is also known as the exact
Magneto Hydrodynamic (MHD) condition. One consequence of this condition
is that the magnetic field lines become electric equipotentials, and as mentioned
before, a corotating magnetosphere is enforced up to a maximum distance given
by Rlc = c/Ω = cP/(2π), known as light cylinder radius, where c is the speed
of light and Ω is the angular velocity of the star. Corotation at larger distances
would imply superluminal velocities for the magnetospheric particles. And with
this MHD condition it is also possible to calculate from Maxwell equations the
local density of charged plasma, which within the corotating magnetosphere is
given by the famous Goldreich-Julian density (Goldreich and Julian, 1969):

ρGJ = −
Ω · B
2πc

1
1− (Ωr⊥/c)2 , (5.2)

where r⊥ = r sin θ. A general picture of this model is shown in figure 5.2. The last
B-field line closing within the corotating magnetosphere can be easily located
from the equation for a magnetic dipole:

r/ sin2 θ = constant = Rlc, (5.3)

and is located at an angle from the star’s magnetic pole given by:

θpc = arcsin (
√

R/Rlc) ≈
√

R/Rlc =
√

RΩ/c =
√

2πR/(cP), (5.4)

with R the radius of the star. The B-field lines that originate in the region be-
tween θ = 0 and θ = θpc (known as magnetic polar cap) cross the light cylinder
and are called open field lines. The size of the polar cap is given approximately by
the polar cap radius

Rpc = Rθpc ≈ R
√

2πR/(cP). (5.5)

By symmetry reasons, there are two antipodal polar caps on the stellar surface.

From the picture it can be seen that contrary to the open field lines, the close
field lines do not cross the light cylinder and are characterized by having a polar
angle larger than θpc. The particles that are attached to these closed magnetic
field lines corotate on average and comprise what is called the corotating mag-
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Figure 5.1: Schematic figure showing the standard picture of the Goldreich-Julian model.
We can see that the light cylinder serves as a limit for the corotating magnetosphere, where
magnetic lines are closed. On the other hand, the magnetic field lines coming from the polar
cap are open and particles from the surface of the star follow these lines emitting radiation.
Figure taken from Goldreich and Julian (1969).

netosphere. On the contrary, particles in the open field line region stream out
along the magnetic field lines. The lines are called open but in fact, they should
close in the boundary region, a region full of plasma that comes from the su-
pernova remnant that came out at the birth of the neutron star. The feet of the
critical magnetic field lines are at the same electric potential as the interstellar
medium. This critical magnetic field line divides the open field lines into electron
lines (higher-latitude lines) and proton lines (lower-latitude lines).

5.3 Vacuum inner gap model and polar cap heating

The different models that intend to explain pulsar emission rely on particle ac-
celeration in regions where the corotation condition (equivalent to E · B = 0) is
no longer satisfied. So, different models were elaborated to deal with this prob-
lem of particle acceleration defining different regions where a deficit of charge
would lead to the departure of corotation and hence to E‖ := E ·B 6= 0. Basically
there are two kinds of models, the Polar Cap (PC) models and the Outer Gap
(OG) models. The PC models consider the accelerating electric field E‖ (paral-
lel to the magnetic field), and hence the particle acceleration, in the open field
region near the surface of the neutron star. There are two models of PC accelera-
tion, the vacuum gap model, proposed by Ruderman and Sutherland (1975), and
the space-charge limited flow model (Arons and Scharlemann, 1979; Harding and
Muslimov, 1998, 2001, 2002; Harding et al., 2002; Zhang and Harding, 2000). The
first of these models assumes the ions are trapped in the Neutron Star crust (a

104



5.3. Vacuum inner gap model and polar cap heating

high work function due to the huge magnetic fields present) while the second
one assumes the surface temperature is high enough to overcome the binding
or cohesive forces on charged particles due to the lattice structure in the strong
magnetic field. On the other hand, OG models consider that particle acceler-
ation takes place in the outer magnetosphere (Cheng et al., 1986a,b; Hirotani,
2006, 2013; Zhang and Cheng, 1997).

After the famous article of Goldreich and Julian of 1969, Sturrock (1971)
showed that due to the huge magnetic fields present in the star, an avalanche
of electron-positron pairs is expected to occur in the magnetosphere, thanks to
the electrodynamical process γ + B → e+ + e− of the neutron stars and this
avalanche screens the electric field. The PC models rely on the avalanche of
electron-positron pairs produced as an essential phenomenon to explain not only
the detected emission in radio (the first pulsars detected were radio pulsars) but
also in X-rays and γ-rays of isolated non-accreting neutron stars. In the same
way, the OG models consider the avalanche of electron-positron pairs to model
the electromagnetic pulsed emission coming fron Neutron Stars, but, unlike in
the case of the PC models, the electrodynamical process γ + B → e+ + e− is
no longer possible because at high altitudes the magnetic field B is not high
enough to trigger this process. Instead a γ− γ pair production comes into place
where γ-rays produced in the outer gap interact with the X-ray photons coming
from the surface of the neutron star producing electron-positron pairs (see Vi-
ganò et al., 2015; Zhang and Cheng, 1997, for details). But despite the different
models varied on their fundamental assumptions, they relied on the rotational
energy as the energy source to explain the observed emission.

In the vacuum inner gap model proposed by Ruderman and Sutherland (1975)
the potential drop generated by the unipolar effect and that accelerates the elec-
trons along the open B-field lines above the surface is given by:

∆V =
BSΩh2

c
, (5.6)

where h is the height of the vacuum gap and BS is the surface magnetic field,
which does not necessarily coincide with the dipole field Bdp.

The electrons (or positrons) accelerated through this potential and following
the B-field lines will emit curvature photons whose energy depends on the γ-
factor, γ = e∆V/(mc2), and on the B-field line curvature radius rc, i.e. ωc =
γ3c/rc. Following Chen and Ruderman (1993), we adopt the constraint on the
potential ∆V for pair production via γ + B→ e− + e+,

1
2

(
e∆V
mc2

)3 λ

rc

h
rc

BS

Bc
≈ 1

15
, (5.7)
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or in terms of a condition on the value of the potential,

∆V ≈
(

2
15

)2/7 (rc

λ

)4/7
(

λΩ
c

)1/7 (BS

Bc

)−1/7 mc2

e
, (5.8)

where we have used Eq. (5.6), and where λ = h̄/(mc) is the "‘reduced"’ Compton
wavelength of the electron and Bc ≡ m2c3/(eh̄) = 4.4× 1013 G is the quantum
electrodynamic field, with h̄ the reduced Planck’s constant.

For a magnetic dipole geometry, i.e. BS = Bdp and rc =
√

Rc/Ω. The potential
drop ∆V cannot exceed the maximum potential (i.e. the potential for h = hmax =

Rpc/
√

2), which for a magnetic dipole field will be given by:

∆Vmax =
BdpΩ2R3

2c2 . (5.9)

We are here interested in the possible magnetospheric mechanism of X-ray emis-
sion from magnetized WDs, thus we will consider the heating of the polar caps
by the inward flux of pair-produced particles in the magnetosphere. These parti-
cles of opposite sign to the parallel electric field move inward and deposit most
of their kinetic energy on an area

Aspot = f Apc, (5.10)

i.e. a fraction f ≤ 1 of the polar cap area Apc = πR2
pc. The temperature Tspot

of this surface hotspot can be estimated from the condition that it re-radiates
efficiently the kinetic energy deposited, as follows: the rate of particles flowing
to the polar cap is Ṅ = JApc/e, where J = ηρGJc is the current density in the gap,
and η < 1 is a parameter that accounts for the reduction of the particle density
in the gap with respect to the Goldreich-Julian value (Cheng and Ruderman,
1977 used η = 1 for order-of-magnitude estimates). In this model the filling
factor f is not theoretically constrained and it has been estimated from pulsar’s
observations in X-rays that its value can be much smaller than unity (Cheng and
Ruderman, 1977). The condition that the hotspot luminosity equals the deposited
kinetic energy rate reads

AspotσT4
spot = e∆VṄ = JApc∆V = ηρGJ(R)cApc∆V, (5.11)

where σ is the Stefan-Boltzmann constant. From Eqs. (5.2), (5.10) and (5.11) we
obtain the spot temperature

Tspot =

(
η

Bdp∆V
σ f P

)1/4

. (5.12)

It is worth mentioning that in the above estimate we have assumed a full effi-
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ciency in the conversion from the deposited kinetic energy to the hotspot emis-
sion. This assumption is accurate if the heating source, namely the energy depo-
sition, occurs not too deep under the star’s surface and it is not conducted away
to larger regions being mainly re-radiated from the surface area filled by the
penetrating particles (Cheng and Ruderman, 1980). In appendix A we estimate
the cooling and heating characteristic times and the heating and re-radiation ef-
ficiency. For the densities and temperatures of interest here we show that the
polar cap surface re-radiates efficiently most of the kinetic energy deposited by
the particle influx, validating our assumption.

Now, considering the application of this polar cap model to two sources,
1E 2259+586 and 4U 0142+61, we need an estimate of the white dwarf magnetic
dipole field. For this we use the traditional dipole formula, that has been already
mentioned in previous chapters:

Bdp =

(
3c3

8π2
I

R6 PṖ
)1/2

, (5.13)

where I is the moment of inertia of the star, P is the rotation period, Ṗ ≡ dP/dt
is its first time derivative (spin-down rate), and an inclination angle of π/2 be-
tween the magnetic dipole and the rotation axis has been adopted. It is worth
recalling that the estimate of the B-field by equation (5.13) is not necessarily in
contrast, from the quantitative point of view, with an estimate using an aligned
field but introducing a breaking from the particles escaping from the magneto-
sphere, since also in this case a quantitatively and qualitatively similar energy
loss is obtained (see, e.g., Contopoulos and Spitkovsky, 2006; Harding et al.,
1999; Spitkovsky, 2006).

As we already learned from chapters 2 and 4, for a given rotation period P,
the WD structure parameters such as mass M, radius R, and moment of inertia
I are bounded from below and above if the stability of the WD is requested
(Boshkayev et al., 2013). From those bounds are established the lower and upper
bounds for the field Bdp of the WD.

5.3.1 1E 2259+586

We apply the above theoretical framework to a specific source, AXP 1E 2259+586.
This source, with a rotation period P = 6.98 s (Fahlman and Gregory, 1981) and
a spin-down rate Ṗ = 4.8× 10−13 (Davies et al., 1990), has a historical impor-
tance since Paczynski (1990) was the first to point out the possibility this object
could be a WD. This object produced a major outburst in 2002 (Kaspi et al., 2003;
Woods et al., 2004), in which the pulsed and persistent fluxes rose suddenly by a
factor of ≥ 20 and decayed on a time-scale of months. Coincident with the X-ray
brightening, the pulsar suffered a large glitch of rotation frequency fractional
change 4× 10−6 (Kaspi et al., 2003; Woods et al., 2004). It is worth recalling that
the observed temporal coincidence of glitch/bursting activity, as first pointed
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out by Usov (1994) in the case of 1E 2259+586, and then extended in Malheiro
et al. (2012) and Boshkayev et al. (2013), can be explained as due to the release
of the rotational energy gained in a starquake occurring in a total or partially
crystallized WD. Since we are interested in the quiescent behaviour, we will not
consider this interesting topic here. Therefore, only X-ray data prior to this out-
burst event will be used in this work (Zhu et al., 2008).

The soft X-ray spectrum of 1E 2259+586 is well fitted by a blackbody plus
a power-law model. The blackbody is characterised by a temperature kTbb ≈
0.37 keV (Tbb ≈ 4.3× 106 K) and an emitting surface area Abb ≈ 1.3× 1012 cm2

(Zhu et al., 2008). These values of temperature and area are inconsistent (too
high and too small, respectively) with an explanation based on the cooling of
a hot WD, and therefore such a soft X-ray emission must be explained from
a spotty surface due to magnetospheric processes, as the one explored in this
work.

The stability of the WD for such a rotation period constrains the WD ra-
dius to the range R ≈ (1.04–4.76) × 108 cm. For example, in the case of a
WD with radius R ≈ 108 cm, the polar cap area is Apc = 6.6 × 1014 cm,
hence using equation (5.10) we have f ≈ 0.002. From equation (5.12) the spot
temperature kTspot ≈ 0.37 keV can be obtained using Bdp ≈ 6 × 109 G from
the dipole formula (5.13), a potential drop ∆V ≈ 3.5× 1011 Volts (lower than
∆Vmax ≈ 5.4× 1012 Volts), and using the typical value η = 1/2 of the reduced
particle density in the gap adopted in the literature. These parameters suggest a
height of the gap, obtained with equation (5.6), h ≈ 0.11Rpc.

The smallness of the filling factor, which appears to be not attributable to
the value of h, could be explained by a multipolar magnetic field near the sur-
face. It is interesting that the existence of a complex multipolar magnetic field
close to the surface of white dwarfs is observationally supported (see, e.g., Fer-
rario et al., 2015). It is important to clarify that the above defined filling factor
has only a physical meaning when besides a strong non-dipolar surface field,
the physical parameters of the star (magnetic field and rotational velocity) fulfill
the requirement for the creation of electron-positron pairs in such a way that
an avalanche of particles hits the surface. This is given by the request that the
potential drop (5.8) does not exceed the maximum value (5.9). For example, for
the largest magnetic field measured in White Dwarfs, B ∼ 109G, and for white
dwarf radii (108 − 109) cm, the maximum period that allows the avalanche of
electron-positron pairs is P ∼ (4− 100)s, values much shorter thatn the value of
typical rotation periods measured in most of magnetic white dwarfs, P & 725 s
(see, e.g., Ferrario et al., 2015). It is interesting to note that the condition of e+e−

pair creation in the white dwarf magnetosphere could explain the narrow range
of observed rotation periods of SGRs/AXPs, P ∼ 2− 12 s. Such a local, strong
non-dipolar field in the surface, diminishes the area bombarded by the incom-
ing particles and, via magnetic flux conservation, the filling factor establishes
the intensity of the multipolar magnetic field component as (see, e.g., Cheng
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Figure 5.2: Surface to dipole magnetic field ratio given by magnetic flux conservation (5.14)
for the AXPs 1E 2259+586 and 4U 0142+61.

and Zhang, 1999; Gil and Melikidze, 2002; Gil and Sendyk, 2000, and references
therein):

BS =
Bdp

f
, (5.14)

which implies that, close to the surface, there could be small magnetic domains
with magnetic field intensities as large as (1011 − 1012) G (see figure 5.2).

5.3.2 4U 0142+61

We can repeat the above analysis for the case of 4U 0142+61. This source, with a
rotation period P ≈ 8.69 s, was first detected by Uhuru (Forman et al., 1978). The
measured period derivative of this source is Ṗ = 2.03× 10−12 (Hulleman et al.,
2000). The time-integrated X-ray spectrum of 4U 0142+61 is also described by a
blackbody plus a power-law model. The blackbody component shows a temper-
ature kTbb = 0.39 keV (Tbb ≈ 4.6× 106 K) and a surface area Abb ≈ 5.75× 1011

cm2 (Göhler et al., 2005). As for the above case of 1E 2259+5726, such a black-
body cannot be explained from the cooling of a white dwarf but instead from a
magnetospheric hotspot created by the heating of the polar cap.

For a white dwarf radius R = 108 cm and a magnetic field Bdp ≈ 1010 G
for a rotating dipole (5.13), we have a filling factor f ≈ 0.001, a potential drop
∆V ≈ 1.4× 1011 V (smaller than ∆Vmax ≈ 5.8× 1012 Volts) and a gap height
h ≈ 0.06Rpc. Again a filling factor suggest the presence of a strong multipolar
component as shown in figure 5.2.

We show in figures 5.3 and 5.4 the potential drop inferred from equation
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Figure 5.3: White dwarf polar gap potential drop ∆V inferred via equation (5.12) using the
blackbody observed in soft X-rays of 1E 2259+586. In this plot, we check the potential drop
developed in the white dwarf polar gap does not exceed the maximum potential reachable
∆Vmax given by equation (5.9).
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Figure 5.4: White dwarf polar gap potential drop ∆V inferred via equation (5.12) using the
blackbody observed in soft X-rays of 4U 0142+61. In this plot, we check the potential drop
developed in the white dwarf polar gap does not exceed the maximum potential reachable
∆Vmax given by equation (5.9).

(5.12) using the X-ray blackbody data for the above two sources. We check that
for all the possible stable white dwarf configurations, the potential drop satisfies
the self-consistent condition ∆V < ∆Vmax, where the latter is given by equation
5.9.
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5.4 Flux profiles and pulsed fraction

We now show the effect of these hotspots on the flux profile following the treat-
ment exposed in Turolla and Nobili (2013). In this treatment general relativis-
tic effects are considered and it is assumed that the exterior of the star can be
described, with very good approximation, by the Schwarschild metric. We con-
sider General Relativity despite the gravitational field of white dwarfs is not
very strong.

In figure 5.4 we can appreciate the photon trajectory from the surface of the
star to the observer. We assume the star has a mass M and a radius R. Assuming
a (r, θ, φ) spherical coordinate system centred on the star and the line-of-sight
(LOS) being the polar axis, we consider the observer is located at r → ∞ and a
photon arising from the star’s surface making an angle α with the local surface
normal, with 0 ≤ α ≤ π/2. Due to space-time curvature, the photon path is
bended an additional angle β, so it reaches the observer with an angle ψ = α+ β.
Due to the spherical coordinate system we have defined, we have that ψ = θ
(see figure 5.4). Beloborodov (2002) showed that a simple approximate formula
relates the emission angle α to the final angle θ:

1− cos α = (1− cos θ)

(
1− Rs

R

)
, (5.15)

where Rs = 2GM/c2 is the Schwarschild radius and G is the gravitational con-
stant.

For an emission with a local Planck spectrum, the intensity is given by a
blackbody of temperature T, Bν(T), where ν is the photon frequency. The flux
is proportional to the visible area of the emitting region (SV) plus a relativistic
correction proportional to the surface, given by the equation

Fν =

(
1− RS

R

)
Bν(T)

∫
cos α

d cos α

d(cos θ)
ds

=

(
1− RS

R

)2

Bν(T)(Ip + Is) (5.16)

where

Ip =
∫

SV

cos θ sin θdθdφ, Is =
∫

SV

sin θdθdφ. (5.17)

In polar coordinates, the circular spot has its center at θ0 and a semi-aperture θc.
The spot is bounded by the function φb(θ), where 0 ≤ φb ≤ π, and since we must
consider just the star visible part, the spot must be also limited by a constant θF.
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Figure 5.5: View of the photon trajectory and angles θ, α and β.

112



5.4. Flux profiles and pulsed fraction

For a given bending angle β, the maximum θF is given by the maximum emission
angle α, i.e. α = π/2. One can see that in Newtonian gravity, where β = 0, the
maximum visible angle is θF = π/2 which means half of the star is visible, while
in a relativistic star, values θF > π/2 are possible, as expected. Then

Ip = 2
∫ θmax

θmin

cos θ sin θφb(θ)dθ,

Is = 2
∫ θmax

θmin

sin θφb(θ)dθ, (5.18)

where θmin, θmax are the limiting values to be determined for the spot consid-
ered. Turolla and Nobili (2013) showed how to solve these integrals and how to
treat carefully the limiting angles. The Ip and Is integrals can be then written as
Ip,s = I1,2(θmax)− I1,2(θmin) and we refer the reader to that work for the precise
expressions.

Finally, the flux (5.16) is written as

Fν =

(
1− RS

R

)2

Bν(T)Aeff(θc, θ0) , (5.19)

where Aeff is the effective area, given by

Aeff(θc, θ0) = R2
[

RS

R
Is +

(
1− RS

R

)
Ip

]
. (5.20)

The total flux produced by two antipodal spots, with semi-apertures θc,i and
temperatures Ti (i=1,2), can be calculated by adding each contribution, so we
have

FTOT
ν =

(
1− RS

R

)2

[Bν(T1)Aeff(θc,1, θ0) + Bν(T2)Aeff(θc,2, θ0 + π/2)]. (5.21)

Besides, the pulse profile in a given energy band [ν1, ν2] for one spot is given by

F(ν1, ν2) =

(
1− RS

R

)2

Aeff(θc, θ0)
∫ ν2

ν1

Bν(T)dν . (5.22)

The star rotates with a period P (angular velocity Ω = 2π/P), so we consider r̂
the unit vector parallel to the rotating axis. It is useful to introduce the angles ξ,
the angle between the LOS (unit vector l̂) and the rotation axis, and the angle χ
between the spot axis (unit vector ĉ) and the rotation axis, i.e., cos ξ = r̂ · l̂ and
cos χ = r̂ · ĉ. As the star rotates, the spot’s center θ0 changes. Let γ(t) = Ωt be
the rotational phase, thus by geometrical reasoning we have

cos θ0(t) = cos ξ cos χ− sin ξ sin χ cos γ(t) , (5.23)

113



5. Surface thermal X-ray emission of highly magnetic white dwarfs: Application to
Anomalous X-ray Pulsars

0.0 0.2 0.4 0.6 0.8 1.0
t/P

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N

o
rm

a
liz

e
d
 f

lu
x

Figure 5.6: Flux profiles for different configurations of antipodal spots as a func-
tion of the phase. The semi-aperture for all the lines is θc = 3◦. The WD param-
eters correspond to the ones of the WD of minimum radius adopted for AXP 1E
2259+586.

where it is indicated that ξ and χ do not change in time. When the total flux
(5.21) is calculated for a given configuration (ξ, χ) in the whole period of time,
the typical result is a pulsed flux with a maximum (Fmax) and a minimum flux
(Fmin). As an example, we show in Fig. 5.6 flux profiles for different configu-
rations of antipodal spots as a function of the phase for the WD of minimum
radius in the case of AXP 1E 2259+586 used in section 5.3.

We can measure the amount of pulsed emission by defining the pulsed fraction

PF =
Fmax − Fmin

Fmax + Fmin
, (5.24)

which is shown in figure 5.7 as a function of the angles ξ and χ, for AXP 1E
2259+586. In the left panel of this figure we consider only the flux given by
the blackbody produced by the two antipodal hotspots on the WD. We can
see that indeed pulsed fractions as small as the above values can be obtained
from magnetic WDs, for appropriate values of the geometric angles ξ and χ.
However, the soft X-ray spectrum shows a non-thermal power-law component,
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Figure 5.7: Theoretical PF as a function of the angles ξ and χ, computed in
this work for the source 1E 2259+586 modelled as a WD of radius Rmin ≈
1.04× 108 cm. The left-hand panel shows the results of the PF produced by the
blackbody given by the two antipodal hotspots. The right-hand panel shows the
results for the total flux given by the blackbody plus the non-thermal power-law
component, both pulsed. The observed total PF of this source in the 2–10 keV is
about 20 per cent (Zhu et al., 2008).

additional to the blackbody one. As we have shown, the blackbody itself can
contribute to the PF if produced by surface hotspots and thus the observed to-
tal PF of a source in those cases includes both contributions, mixed. It is thus
of interest to explore this problem from the theoretical point of view. To do
this we first recall that total intrinsic flux of this source in the 2–10 keV band
is Ftot ≈ 1.4× 10−11 erg cm−2 s−1, and the power-law flux is FPL ≈ 1.8Fbb ≈
8.5× 10−12 erg cm−2 s−1 (Zhu et al., 2008). The right panel of Fig. 5.7 shows the
PF map for this source taking into account both the blackbody and the power-
law components. By comparing this PF map with the one in the left panel which
considers only the pulsed blackbody we can see that they are very similar each
other. This means that in these cases where both pulsed components are in phase
and have comparable fluxes it is difficult (although still possible if good data are
available), to disentangle the single contributions.

5.5 Conclusions

We exploited the analogy with pulsars to investigate whether or not massive,
highly magnetic, fast rotating WDs, can behave as neutron star pulsars and emit
observable high-energy radiation. We conclude the following:

1. We showed that WDs can produce e−e+ pairs in their magnetosphere from
the decay of curvature radiation photons, i.e., we infer the structure pa-
rameters for which they are located above the WD pulsar death-line. We
evaluated the rate of such a process. Then, we calculated the thermal emis-
sion produced by the polar cap heating by the pair-created particles that
flow back to the WD surface due to the action of the induction electric field.
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2. In order to give a precise example of the process, we applied the theoretical
results to the case of the WD model of SGRs and AXPs. We have shown
that the inferred values of the WD parameters obtained from fitting with
this magnetospheric emission, the blackbody spectrum observed in the soft
X-rays of SGRs and AXPs, are in agreement with our previous estimates
using the IR, optical, and UV data, and fall within the constraints imposed
by the gravitational stability of the WD.

3. We have related the size of the spot with the size of the surface under
the polar cap filled by the inward particle bombardment. We have shown
that the spot area is much smaller than the polar cap area pointing to the
existence of strong non-dipolar magnetic fields close to the WD surface.

4. We have used the heat transport and energy balance equations to show
that, for the actual conditions of density and temperature under the polar
cap, the hot spot re-radiates efficiently the heat proportioned by the inward
particle bombardment.

5. The spot, which is aligned with the magnetic dipole moment of the WD,
produces a pulsed emission in phase with the rotation period of the object.
We showed that the theoretically inferred pulsed fraction of the WD spans
from very low values all the way to unity depending on the viewing angles.
Therefore it can also account for the observed pulsed fraction in SGRs and
AXPs for appropriate choices of the viewing angles. In addition, the low-
energy tail of the blackbody spectrum of the hotspot could produce a non-
null pulsed fraction of the flux in the optical bands as well. However, this
depends on the flux produced by the surface temperature of the WD which
certainly dominates the light curve at low energies. From the quantitative
point of view, the size of the surface area of the spots is crucial for the
explanation of the observed pulsed fraction in soft X-rays.

6. We have also shown that the addition of a pulsed power-law component
as the one observed in SGRs/AXPs does not modify appreciably the above
result. The reason for this is that the non-thermal power-law component
and the blackbody due to the surface hotspot have comparable fluxes and
are in phase with each other. In those cases it is difficult to disentangle the
single contributions to the pulsed fraction.

We have shown that, as advanced in Rueda et al. (2013), indeed the black-
body observed in the optical wavelengths of SGRs and AXPs can be due to the
surface temperature of the WD, while the one observed in the X-rays can be
of magnetospheric origin. For the power-law component, also observed in the
soft X-rays, a deeper analysis of processes such as curvature radiation, inverse
Compton scattering, as well as other emission mechanisms, is currently under
study.

There is also room for application and extension of the results presented in
this work to other astrophysical phenomena. WD mergers can lead to a system
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formed by a central massive, highly magnetic, fast rotating WD, surrounded by
a Keplerian disk (see Rueda et al., 2013, and references therein). At the early
stages, the WD and the disk are hot and there is ongoing accretion of the disk
material onto the WD. In such a case, the WD surface shows hot regions that
deviate from the spotty case, e.g. hot surface rings. That case is also of interest
and will be presented elsewhere.
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Chapter 6

Soft Gamma-ray Repeaters and
Anomalous X-ray Pulsars as
Rotationally Powered Neutron Stars

6.1 Introduction

As we mentioned in chapter 4, Malheiro et al. (2012) could check that in 4
AXPs/SGRs (1E 1547.0-5408, SGR 1627-41, PSR J1622-4950 and XTE J1810-197),
when they are considered as neutron stars with a fiducial value for the moment
of inertia of INS ≈ 1045 g cm2, the observed luminosity was less than the spin-
down power:

Lobs < ĖNS = −4π2 INS
Ṗ
P3 . (6.1)

This would make these four sources similar to the canonical rotationally pow-
ered pulsars. One of the main criteria to define a pulsar as a member of the
family AXPs/SGRs is that precisely equation (6.1) is not satisfied. However, this
is not the only criterion that defines AXPs/SGRs, being the transient activity, not
seen in common pulsars, as one of the main characteristics of these objects.

On the other hand several works (Belvedere et al., 2014, 2012; Rotondo et al.,
2011c; Rueda et al., 2011) considered the equations of equilibrium of neutron
stars taking into account strong, weak, electromagnetic and gravitational inter-
actions within the framework of General Relativity. These works allowed to ob-
tain realistic neutron star parameters (such as mass M, radius R or moment of
inertia I) which can differ significantly from the fiducial values adopted in Mal-
heiro et al. (2012) and in most of estimates done in the literature of the magnetic
field or efficiency of any pulsar (usually are assumed neutron stars with mass
M = 1.4M�, radius R = 10 km and moment of inertia I = 1045 g cm2).

In this way, using the realistic parameters of uniformly rotating neutron stars
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obtained in Belvedere et al. (2014) and using a formula that generalised the
dipole formula taking into account the effects of General Relativity (see section
6.3), Belvedere et al. (2015) showed that the estimates of the magnetic field and
radiation efficiency LX/Ėrot lead to values that are very different from estimates
based on the fiducial parameters usually assumed for pulsars. They focused
on objects that belong to the high-magnetic field pulsars class (see, e.g. Ng and
Kaspi, 2011). One of the characteristics of this class of pulsars is that usually they
have magnetic fields of the order or larger than the critical field for quantum
electrodynamical effects (Ng and Kaspi, 2011; Zhu et al., 2011),

Bc =
m2

ec2

eh̄
= 4.41× 1013 G. (6.2)

and they also, in some cases have luminosities higher than the rotational power
of the neutron star, LX > |Ėf

rot|, where the f stands for fiducial values. As we can
see, they have properties similar to magnetars, but unlike these, they emit in ra-
dio wavelengths. For this reason it has been suggested that these high-magnetic
field pulsars should be a transition class between rotationally powered pulsars
and the so called magnetars.

The formula (6.4), obtained by Rezzolla and Ahmedov (2004), generalises the
dipole formula (6.3) and the classical solution in vacuum obtained by Deutsch
(1955) by taking into account the effects of General Relativity. Belvedere et al.
(2015), using the aforementioned equation (6.4) and using the results from Belvedere
et al. (2014), calculated the surface magnetic field and the efficiencies LX/|Ėrot|
for several high-magnetic field pulsars as we said before, obtaining in this way
estimates smaller than the magnetic field using fiducial values. They also con-
cluded that the use of the classical Newtonian formula (6.3) can overestimate
the surface magnetic field of up to one order of magnitude with respect to the
general relativistic one. This made that several pulsars that were considered
overcritical actually turn out to be undercritical, when they are calculated with
the new formula and with the realistic neutron star parameters.

Coelho et al. (2017) following closely Belvedere et al. (2015), applied realistic
parameters of the neutron star to model the AXPs/SGRs, in this way generalis-
ing the analysis of Malheiro et al. (2012). Coelho et al. (2017) also completed the
work of (Boshkayev et al., 2013) and (Rueda et al., 2013), which also generalised
the treatment of Malheiro et al. (2012), but instead considering realistic values of
highly rotating white dwarfs. And the main contribution of Coelho et al. (2017)
was to extend the group of the 4 aforementioned AXPs/SGRs that could be ro-
tationally powered pulsars to other 5 sources, i.e., that the equation (6.1) also
apply to 5 additional AXPs/SGRs.

Radio emission, which is usually absent in AXPs/SGRs but very common in
rotationally powered pulsars, has been also observed in four of these sources
(Camilo et al., 2007, 2006; Eatough et al., 2013; Halpern et al., 2005; Levin et al.,
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2010, 2012). And it was also shown in Coelho et al. (2017) that the energetics
of the observed outbursts can be explained from the gain of rotational energy
during an accompanied glitch. This test is crucial for the model of AXPs/SGRs
as ordinary rotationally powered pulsars. All these results make that the model
of these AXPs/SGRs as rotationally powered pulsars should not be completely
dismissed. Although this explanation is not possible for the other sources, It can
not be completely dismissed as a possible explanation for the 9 aforementioned
sources.

Here we will show the main results presented in Coelho et al. (2017). First we
will give a review in section 6.2 of the Neutron Star structure properties, which
are based mostly on the model developed in Rotondo et al. (2011c), Rueda et al.
(2011), Belvedere et al. (2012) and Belvedere et al. (2014). Then in section 6.3 are
presented the estimates of the surface magnetic field, where is used the recently
generalization of the famous magnetic dipole formula where are considered gen-
eral relativistic effects (Rezzolla and Ahmedov, 2004). For the calculation of the
magnetic field are used the realistic structure parameters presented in section
6.2. After this we proceed in section 6.4 to estimate the efficiencies of AXPs/SGRs
as rotationally powered pulsars calculating the ratio LX/Ėrot in all the range of
possible values for the masses of the Neutron Star masses, something which
allows us to conclude, as we stated before, that only 9 sources could be consid-
ered as rotationally powered Neutron Stars. After this we proceed in section 6.5
to analyze the glitch/outburst connection in this model. Finally we present the
main conclusions of this analysis in section 6.7.

6.2 Neutron star structure

In several works (Belvedere et al., 2014, 2012; Rotondo et al., 2011c; Rueda et al.,
2011), the equations of equilibrium of neutron stars taking into account strong,
weak, electromagnetic and gravitational interactions within the framework of
genera relativity were considered. Considering previous works, where the pos-
sible existence of overcritical electric fields at the core of neutron stars (see
Ruffini, 2008), the Einstein-Maxwell system of equations coupled to the gen-
eral relativistic Thomas-Fermi equations of equilibrium were assumed, giving
rise to what has been called the Einstein-Maxwell-Thomas-Fermi (EMTF) equa-
tions (see Belvedere et al., 2014, 2012; Rotondo et al., 2011c; Rueda et al., 2011).
Rotondo et al. (2011c) showed that in the most simple case, where strong interac-
tions are neglected, the local charge neutrality condition was incompatible with
matter made of neutrons, protons and electrons in β-equilibrium and modelled
by the EMTF equations. This because these equations imply that the neutron
Fermi energy would be constant throughout the configuration as well as the
sum of the electron and proton Fermi energies, but not the individual Fermi en-
ergies of these two components. As we know from chapter 2, the Fermi energy
has to be constant throughout the whole star, whether the star is a white dwarf
or a neutron star, otherwise this would lead to a microscopic instability. This
imply that for these systems a less restrictive condition of global charge neutral-
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ity has to be imposed instead of the usual local charge neutrality, which is used
when the neutron stars are modelled through the Tolman-Oppenheimer-Volkoff
(TOV) system of equations (Oppenheimer and Volkoff, 1939; Tolman, 1939). In
this chapter we present the effects of both the local and global charge neutrality
on the structure of the star.

Several works generalised the treatment of Rotondo et al. (2011c) considering
the strong interaction in a static (Belvedere et al., 2012; Rueda et al., 2011) or an
uniformly rotating neutron star (Belvedere et al., 2014), which is important to
describe the properties of the core of the neutron star. The neutron star interior
is made up of a core and a crust. The core has densities higher than the nuclear
density, ρnuc ≈ 3× 1014 g cm−3 and is composed of a degenerate gas of baryons
(e.g.. neutrons, protons or hyperons) and leptons (e.g. electrons and muons). In
this high density range the physical properties of matter are still uncertain. It
is so not only because the correct form of the nuclear potential is still uncer-
tain but also because a totally satisfactory many-body computational method to
solve the Schrödinger equation, given the potential, is still not completely de-
veloped. On the other hand, the properties of matter in the crust are reasonably
well understood because there are not significant uncertainties on the knowl-
edge of the equation of state in the density regime that applies to the crust. The
inner region of the crust is composed of ions, electrons and free neutrons and its
density satisfies ρdrip < ρ < ρnuc, where ρdrip ≈ 4.3× 1011 g cm−3 is the neutron
drip density; this density defines when the ratio n/p reaches such a critical level
that neutrons start to "drip" from the nuclei and become free. And finally, in the
outer region we have densities that satisfy ρ 6 ρdrip and the matter is composed
of ions and electrons.

For the crust can be adopted the Baym-Pethick-Sutherland (BPS) equations
of state (EOS) (Baym et al., 1971), which is based on Baym et al. (1971). For the
core were adopted the relativistic mean-field (RMF) theory models, specifically
an extension of the Boguta and Bodmer (1977) formulation with a massive scalar
meson (σ) and two vector mesons (ω and ρ) mediators, and possible interactions
amongst them. Three sets of parameterizations of these models were adopted
(see table 6.1): the NL3 (Lalazissis et al., 1997), the TM1 (Sugahara and Toki,
1994), and the GM1 Glendenning and Moszkowski (1991) equations of state.
The behaviour of these three different equations of state can be appreciated in
figure 6.1.

As AXPs/SGRs are rotating it is natural to model their structure with the
model of uniformly rotating neutron stars presented in Belvedere et al. (2014),
where are considered small rotation perturbations from the spherically symmet-
ric configuration using the Hartle’s formalism (Hartle, 1967). In this method are
computed rotating configurations, accurate up to second-order in Ω, with the
same central density as the seed static non-rotating configurations. But given
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Figure 6.1: Equation of state of the models NL3, TM1 and GM1 (see table 6.1). The behaviour
is shown at sub and supranuclear densities. This figure appears in Coelho et al. (2017).

NL3 TM1 GM1
M(MeV) 939.00 938.00 938.93
mσ(MeV) 508.194 511.198 512.000
mω(MeV) 782.501 783.000 783.000
mρ(MeV) 763.000 770.000 770.000

gσ 10.2170 10.0289 8.9073
gω 12.8680 12.6139 10.6089
gρ 4.4740 7.2325 4.0972

Table 6.1: Meson masses and coupling constants in the parameterizations NL3, TM1 and
GM1.
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Figure 6.2: Mass-radius relation for the NL3, TM1 and GM1 equations of state in the cases of
global (solid curves) and local (dashed curves) charge neutrality. This figure appears in Coelho
et al. (2017).

that the rotational periods are very large for a neutron star, the effects of rota-
tion are almost negligible and the mass-radius relation, in both global and local
charge neutrality cases, is practically identical to the one for non-rotating config-
urations (see figure 1 of Belvedere et al. (2015)). Therefore, we can use as a good
approximation the non-rotating configurations to model AXPs/SGRs. In figure
6.2 we can see the mass-radius relation for non-rotating configurations in the
cases of global and local charge neutrality and where are considered the three
aforementioned equations of state, NL3, TM1 and GM1. We can appreciate that
the general effect of the global charge neutrality is to make the stars less dense,
for a given mass the radius in the global charge neutrality configuration is larger
than in the local charge neutrality one.

Another important quantity besides mass and equatorial radius is the mo-
ment of inertia I. In figures 6.3 and 6.4 we can see the moment of inertia as
a function of the neutron star mass for global and local charge neutrality, re-
spectively. Again, there are shown the three equations of state. This quantity is
important to estimate the dipole magnetic field, which we will talk about in the
next section

6.3 Estimate of the magnetic field

The simplest model that has allowed astrophysicists to estimate the magnetic
field of the neutron stars is the one that assumes a magnetic dipole µ = BR3 at
the center of the star of radius R and which rotates with angular velocity Ω. If an
angle of π/2 is assumed between the dipole axis and the axis of rotation, then
the magnetic field, according to this simple model is estimated with the relation
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Figure 6.3: Moment of inertia I as a function of the neutron star mass for the NL3, TM1 and
GM1 equations of state in the case of global charge neutrality. Compare with the case of local
charge neutrality shown in figure 6.4. This figure appears in Coelho et al. (2017).
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Figure 6.4: Moment of inertia I as a function of the neutron star mass for the NL3, TM1 and
GM1 equations of state in the case of local charge neutrality. Compare with the case of global
charge neutrality shown in figure 6.3. This figure appears in Coelho et al. (2017).
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(Landau and Lifshitz, 1975):

Bdp =

(
3c3

8π2
I

R6 PṖ
)1/2

, (6.3)

where P = 2π/Ω is the period of rotation and Ṗ is its time derivative. But this
is the simplest formula and several improvements have been calculated. For ex-
ample, the famous classical solution of Deutsch (1955) generalizes the dipole
model considering the solution to the Maxwell equations of an uniformly rotat-
ing perfectly conducting star with a misaligned magnetic dipole. Deutsch (1955)
obtained the exterior electromagnetic field, assuming the exterior is completely
vacuum. The generalization of the Deutsch’s solution to the general relativis-
tic case in the slow rotation regime, and for a general misaligned dipole was
obtained in analytic form in the near zone (r � c/Ω = 1/k = λ/2π) by Rez-
zolla et al. (2001, 2003) and, for the wave zone by Rezzolla and Ahmedov (2004).
This allowed them to obtain a formula for the magnetic field that generalised
equation (6.3):

BGR =
N2

f

(
3c3

8π2
I

R6 PṖ
)1/2

, (6.4)

where

f = −3
8

(
R
M

)3 [
ln(N2) +

2M
R

(
1 +

M
R

)]
, (6.5)

and

N =

√
1− 2M

R
. (6.6)

We have to remind that equation (6.4) has been obtained for a rotating magnetic
dipole in electrovacuum, neglecting the torque produced by the magnetospheric
plasma. The effect of this torque certainly leads to values still lower of the mag-
netic field.

In figures 6.5 and 6.6 we can appreciate the theoretical prediction for the sur-
face magnetic fields of the SGRs/AXPs as a function of the neutron star mass,
using equation (6.4). We show it only for the GM1 equation of state and for the
global and local charge neutrality cases, respectively. In both cases some of the
sources have inferred magnetic fields lower than the critical value Bc of quan-
tum electrodynamics, for some range of neutron star masses. This set of sources
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Figure 6.5: Magnetic field BGR given by equation (6.4), in units of Bc = mec3/(eh̄) =

4.4× 1013 G, as a function of the mass (in solar masses) in the global charge neutrality case.
This figure appears in Coelho et al. (2017).

includes SGR 0418+5729, Swift J1822.3-1606 and 3XMM J185246.6+003317, which
already before gave magnetic fields lower than Bc where instead of the realistic
parameters are used fiducial parameters and where is used the classical mag-
netic dipole equation (6.3) (see, e.g., Olausen and Kaspi, 2014).

6.4 Efficiency of SGRs and AXPs as rotationally pow-
ered neutron stars

The spin-down power depends proportionally on the moment of inertia:

Ėrot = −4π2 I
Ṗ
P3 . (6.7)
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Figure 6.6: Magnetic field BGR given by equation (6.4), in units of Bc = mec3/(eh̄) =

4.4× 1013 G, as a function of the mass (in solar masses) in the local charge neutrality case.
This figure appears in Coelho et al. (2017).
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For pulsars P and Ṗ are given by observations but the moment of inertia will
depend on the model and the equation of state. We can appreciate in figures 6.3
and 6.4 that the moment of inertia is larger than the assumed fiducial values
of 1045 g cm2. This means that the efficiency, given by LX/Ėrot will be smaller
and this makes that some sources could now classify as potential rotationally
powered pulsars. All we have to do is to plot this efficiency in the range of all
possible values of mass for all sources. As we know, the dominant emission of
these objects is in X-rays, that is why we consider the luminosity LX in soft X-
rays to calculate the efficiency, which is plotted in figures 6.7 and 6.8 for global
and local charge neutrality, respectively, and considering only the GM1 equa-
tion of state. We can see that some SGRs/AXPs allow a wide range of masses
for which LX/Ėrot . 1, implying a possible rotation-powered nature for those
sources. We can see from figures 6.7 and 6.8 that 9 out of 23 AXPs/SGRs could
have masses in which LX < Ėrot is satisfied. Such sources are: Swift J1834.9-0846,
PSR J1846-0258, 1E 1547.0-5408, SGR J1745-2900, XTE J1810-197, PSR J1622-4950,
SGR 1627-41, SGR 0501+4516 and CXOU J171405.7381031. It is possible to see
the properties of these sources in table 6.2.
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Figure 6.7: Radiation efficieny LX/Ėrot as a function of the neutron star mass, in solar masses,
for the global charge neutrality case and with the GM1 equation of state. This figure appears
in Coelho et al. (2017).
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Figure 6.8: Radiation efficieny LX/Ėrot as a function of the neutron star mass, in solar masses,
for the local charge neutrality case and with the GM1 equation of state. This figure appears in
Coelho et al. (2017).
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Source P Ṗ d LX Lhard
X Obs. gltchs. Burst SNR. ass. Transient Lradio

SGR 0501+4516 5.8 0.59 2 0.81 40.2 No Yes HB 9(?) Yes -
1E 1547.0-5408 2.07 4.77 4.5 1.3 193.9 Yes Yes G327.24-0.13 Yes 1.19
PSR J1622-4950 4.33 1.7 9 0.44 - No No G333.9+0.0 Yes 5.18

SGR 1627-41 2.59 1.9 11 3.6 - No Yes G337.0-0.1 Yes -
CXOU J171405.7-381031 3.8 6.4 13.2 56 - No No CTB 37B No -

SGR J1745.2900 3.76 1.38 8.5 0.11 57.9 No Yes - Yes 84.6
XTE J1810-197 5.54 0.77 3.5 0.043 - No Yes - Yes 0.98

Swift J1834.9-0846 2.48 0.79 4.2 0.0084 - No Yes W41 Yes -
PSR J1846-0258 0.33 0.71 6 19 - Yes Yes Kes 75 No -

Table 6.2: Some properties of the 9 AXPs/SGRs potential rotation-powered neutron stars. In column 2 the period is in seconds and in column 3 Ṗ is
in units of 10−11. In column 4 the distance to the source is in units of kpc. In column 5 the X-ray luminosity in the soft band (2-10) keV is in units of
1033 erg s−1. In column 6 the hard X-ray luminosity (20-150 keV) is in units of 1033 erg s−1. In columns 7 and 8 we report if there have been observed
glitches and outbursts, respectively. in column 9 we report if the source has a reported associated supernova and in column 10 if it is considered as
a transient X-ray luminosity in the sense that show flux variations by a factor ∼ (10− 1000) over the quiescent level (Turolla et al., 2015). Finally
we report in column 11 the radio luminosity per solid angle at the frequency f0 = 1.4 GHz, i.e., Lradio = S1.4d2 in units of 1028 sr−1 erg s−1, where
S1.4 is the measured flux density at f0. In the case of SGR J1745-2900 we report the luminosity per beam at the frequency of 41 GHz according to
Yusef-Zadeh et al. (2015). Data taken from Olausen and Kaspi (2014).
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6.4. Efficiency of SGRs and AXPs as rotationally powered neutron stars

Due to the poorly constrained determination of the distance to the sources
there is still the possibility that SGR 1900+14 and SGR 1806-20 could be con-
sidered as rotationally powered pulsars due to their proximity (but from above)
of these sources to the line LX = Ėrot. This would enlarge the list from 9 to 11
sources. But this can only be clarified when better estimates of the distances
will be available. And we have to consider also that the soft X-ray spectra of
AXPs/SGRs are usually fitted with a blackbody + power-law spectrum model
(Mereghetti, 2008). The blackbody temperature is usually of the order kTBB ∼ 0.5
keV and the surface radii of the emitting region is usually ∼ 1 km. When these
objects are modelled as neutron stars, it is possible to interpret such a thermal
component as due to the surface temperature of the star. On the other hand, the
power-law component must still be considered as a consequence of the rotational
power of the star and produced by several magnetospheric processes, which are
connected themselves with the rotational energy. In this way we should consider
only the power-law component to calculate the efficiency because the thermal
component is clearly not of rotational origin. Following this line of thought, we
proceed to calculate the new efficiencies considering only the power-law compo-
nent of these two sources in order to explore more the possibility these sources
could still be rotationally powered.

SGR 1900+14: The blackbody component of the spectrum is characterised by
kTBB = 0.47, and a surface radius of RBB = 4.0 km, assuming a distance of
15 kpc (Mereghetti et al., 2006). The total flux in the (2-10) keV energy band is
FX = 4.8× 10−12 erg cm−2 s−1. With the above data, we infer that the blackbody
and the power-law components contribute respectively 28% and 72% to the total
flux, i.e., FBB

X = 0.28FX and FPL
X = 0.72FX. This leads to LPL

X = 9.3× 1034 erg s−1.

SGR 1806-20: In this case we have kTBB = 0.55 keV and RBB = 3.7 km, assum-
ing a distance of 15 kpc (Esposito et al., 2007). For this source FX = 1.8× 10−11

erg cm−2 s−1, and we infer FBB
X = 0.16FX and FPL

X = 0.84FX. This leads to
LPL

X = 4.1× 1035 erg s−1. If we use instead the revised distance of 8.7 kpc (Bibby
et al., 2008), we have LPL

X = 1.4× 1035 erg s−1.

In figures 6.9 and 6.10 we show the ratio LPL
X /Ėrot as a function of the neu-

tron star mass in the case of the two above mentioned sources, SGR 1900+14
and SGR 1806-20, adopting the GM1 equation of state and assuming a distance
of 15 kpc for both sources. It is clear that the substraction of the contribution
from the thermal component to the total flux in soft X-rays can be important for
the correct identification of the nature of these sources. We should remark that
besides the fact the distances to the sources are not well known, something that
could diminish (or increase) the efficiency, the spectrum of both sources could
be equally well fitted by a different spectral model, for instance a double black-
body, and this fact would change completely the interpretation. And another
factor that adds uncertainty to these calculations is the fact that the equation of
state of the neutron star is still unknown, making the moment of inertia and the
radius could be different. All these effects could alter significantly the value of
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Figure 6.9: Radiation efficiency LPL
X /Ėrot as a function of the neutron star mass, in solar

masses, for the global charge neutrality case and with the GM1 equation of state. This figure
appears in Coelho et al. (2017).
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Figure 6.10: Radiation efficiency LPL
X /Ėrot as a function of the neutron star mass, in solar

masses, for the local charge neutrality case and with the GM1 equation of state. This figure
appears in Coelho et al. (2017).

the efficiency and of course, of the inferred magnetic field.

We have to mention that besides the emission in the soft X-ray band that is
detected in all AXPs/SGRs, some sources have shown non-thermal hard X-ray
emission (above 10 keV). This emission has been revealed by missions such as
RXTE, INTEGRAL, Suzaku and NuSTAR. From the aforementioned 9 sources
that satisfy LX < Ėrot for a determined range of values of the mass, only three
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6.5. Glitches and outbursts

Figure 6.11: Radiation efficiency LHard
X /Ėrot as a function of the neutron star mass, in solar

masses, for the global charge neutrality case and with the GM1 equation of state. This figure
appears in Coelho et al. (2017).

have shown persistent hard X-ray emission (see again table 6.2): SGR 0501+4516,
1E 1547.0-5408 and SGR J1745-2900. It is therefore necessary to check if also the
emission in hard X-rays satisfies the requirement Lhard

X < Ėrot. In figures 6.11 and
6.12 we show the ratio LHard

X /Ėrot as a function of the neutron star mass in the
case of SGR 0501+4516, 1E 1547.0-5408 and SGR J1745-2900. After including the
hard X-ray component in these three sources, 1E 1547.0-5408 stands still below
the line LX/Ėrot = 1, while the other two sources appear above it. This would
exclude these sources from the group of potential rotationally powered pulsars.

We have to point out that the mechanisms responsible for the hard X-ray
emission are still poorly understood and still considered an open issue. We have
to remark that since these sources that emit in hard X-rays are also associated
with supernova remnants (see Olausen and Kaspi, 2014, and references therein),
the emission in these bands could be contaminated by the remnant emission.
The disentanglement of the contributions of the remnant and the central pulsar
to the total emission is an issue that should be explored, in addition to the re-
finement of the estimates of the distances to these sources. If the above numbers
are confirmed, then, as we said in the previous paragraph, this would imply that
the number of potential rotation-powered AXPs/SGRs should be only 7.

6.5 Glitches and outbursts

Following Malheiro et al. (2012), we also intend to explore the possibility that
rotational power of neutron stars could give account not only of the persistent
emission but also could explain, from the energetic point of view, the tran-
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Figure 6.12: Radiation efficiency LHard
X /Ėrot as a function of the neutron star mass, in solar

masses, for the local charge neutrality case and with the GM1 equation of state. This figure
appears in Coelho et al. (2017).

sient phenomena observed in these sources. The key idea in this discussion
is the glitch-outburst connection. We therefore scrutinize the outburst data of
AXPs/SGRs to seek for associated glitches and compare the energetics of the
bursting activity with the gain of rotational energy during an associated (ob-
served or unobserved) glitch.

We therefore remember concepts and equations exposed in chapter 4. In a
glitch, the release of the accumulated stress leads to a sudden decrease of the
moment of inertia and hence, because angular momentum is conserved, we have
the relation:

J = IΩ = (I + ∆I)(Ω + ∆Ω) = constant. (6.8)

We have also a decrease of both the rotational period (e.g., a spin-up) and the
radius:

∆I
I

= 2
∆R
R

=
∆P
P

= −∆Ω
Ω

. (6.9)

The sudden spin-up leads to a gain of rotational energy:

∆Erot = −
2π2 I

P2
∆P
P

, (6.10)
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energy gain that is paid by the gravitational energy gain by the star’s contraction
(see chapter 4 and Malheiro et al. (2012)).

We therefore proceed to infer theoretically the fractional change of rotation
period |∆P|/P, which explains energetically the bursts of the nine AXPs/SGRs
that satisfy LX < Ėrot and that we have presented in this chapter. We assume that
|∆Erot|, given by equation (6.10), equals the observed energy of the burst event,
Eburst, i.e.:

|∆P|
P

=
EburstP2

2π2 I
. (6.11)

It is clear from table 6.2 that from the set of 9 potential rotation-powered pul-
sars only two have a firmly established glitch-outburst connection. These two
sources are also the only sources with glitches detected and are: PSR J1849-0258
with a measured fractional change of period |∆P|/P ∼ (2− 4.4)× 10−6 (Kuiper
and Hermsen, 2009) and 1E 1547.0-5408 with |∆P|/P ≈ 1.9× 10−6 (Kuiper et al.,
2012). One way to compare the theory with observations is to plot the value of
∆P/P as a function of the neutron star mass (according to equation (6.11)) and
compare the values theoretically predicted with the value given by observations.
In figures 6.13 and 6.14 we plot this equation (6.11) as a function of the mass
for the 7 of the 9 sources for which have been reported the observation of out-
bursts (see table 6.2). Is also plotted the observed value (gray-shaded area) of
PSR J1846-0258 with the corresponding uncertainty. From this is possible infer
a minimum mass for the neutron star by requiring that the entire moment of
inertia is involved in the glitch and that the theoretical value of |∆P|/P coin-
cides with the observed value. For the case of PSR J1846-0258 are obtained two
minimum masses, Mmin = 0.72M� and Mmin = 0.61M�, for the global and local
charge neutrality cases, respectively.

Another way to compare the theory with the observational data is substitut-
ing in equation (6.11) the moment of inertia I by Iglitch = η I, where η ≤ 1, being
Iglitch the moment of inertia powering the glitch. This allows to obtain a lower
limit for the parameter η, ηmin = 0.20 for the global charge neutrality case and
η = 0.18 for the local charge neutrality case. In table 6.3 we show the theoreti-
cally predicted value of |∆P|/P for the seven sources with known bursts energy,
assuming the mass of the neutron star is larger than 1 M� and η = 1, in the
cases of global and local charge neutrality.
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Figure 6.13: Inferred fractional change of rotation period during the glitch, ∆P/P, obtained
by equating the rotational energy gained during the glitch, ∆Erot, to the energy of the burst,
for globally neutral neutron stars that obey the GM1 equations of state. The gray-shaded area
corresponds to the value of |∆P|/P in the observed glitch of PSR J1846-0258 in June 2006
(Kuiper and Hermsen, 2009). This figure appears in Coelho et al. (2017).
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Figure 6.14: Inferred fractional change of rotation period during the glitch, ∆P/P, obtained
by equating the rotational energy gained during the glitch, ∆Erot, to the energy of the burst,
for locally neutral neutron stars that obey the GM1 equations of state. The gray-shaded area
corresponds to the value of |∆P|/P in the observed glitch of PSR J1846-0258 in June 2006
(Kuiper and Hermsen, 2009). This figure appears in Coelho et al. (2017).

138



6.5.G
litches

and
outbursts

Source Year of burst Tot. isot. burst en. (erg) |∆P|/P (M > 1M�, GCN) |∆P|/P (M > 1M�, LCN)
PSR J1846-0258 2006 4.8× 1041 8.8× 10−7 − 2.6× 10−6 7.9× 10−7 − 2.2× 10−6

1E 1547.0-5408 2009 1.1× 1041 8.1× 10−6 − 2.4× 10−5 7.2× 10−6 − 2.0× 10−5

XTE J1810-197 2004 4.0× 1037 2.1× 10−8 − 6.3× 10−8 1.9× 10−8 − 5.3× 10−8

SGR 1627-41 1998 1.0× 1041 1.0× 10−5 − 3.8× 10−5 1.1× 10−5 − 3.2× 10−5

SGR 0501+4516 2008 1.0× 1040 5.7× 10−6 − 1.7× 10−5 5.0× 10−6 − 1.4× 10−5

Swift J1834.9-0846 2011 1.5× 1037 1.6× 10−9 − 4.8× 10−9 1.4× 10−9 − 3.0× 10−9

SGR 1745.2900 2013 6.7× 1037 1.61× 10−8 − 4.0× 10−8 1.4× 10−8 − 4.1× 10−8

Table 6.3: Predicted values of |∆P|/P assuming a rotationally powered model for global (GCN, column 4) and local (LCN, column 5) charge
neutrality.
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As we mentioned before, in table 6.2 we can appreciate that of the seven
sources for which have been observed outburst explosions only two have ob-
served glitches, i.e., there have been established a clear glitch-outburst connec-
tion. For the other sources which have not such a connection there are two pos-
sibilities: 1.) The glitch is missing due to the absence of timing monitoring of the
source, as is the case of sources detected thanks to an outburst. 2.) The source
timing was monitored and indeed the glitch was not detected when the outburst
was observed. In this case, the outburst should have a magnetospheric origin.

By the way, we remind that there are also observed glitches without associ-
ated outburst activity (Pons and Rea, 2012). We remind also that a recent system-
atic analysis of the glitch-outburst connection in 5 AXPs done by Dib and Kaspi
(2014) concluded: 1.) Glitches associated and not associated with outbursts or
radiative changes show similar timing properties, i. e., outburst activity is not
necessarily associated with large glitches. 2.) All glitches observed point to have
their origin in the neutron star interior. This conclusion gives theoretical support
to our interpretation of glitches associated to cracking occurring in the neutron
star’s interior. Whether a glitch can or not lead to observable radiative changes
depends on specific properties of the phenomenon such as the energy budget
and the localisation of the event in the star’s interior (Dib and Kaspi, 2014), as
well as the efficiency in converting mechanical energy into radiation, being this
last aspect analysed in this chapter.

This glitch-outburst connection remains one of the most fundamental prob-
lems in the physics of AXPs/SGRs. We have seen that several issues deserve
further investigation, whether observational or theoretical.

6.6 Possible additional evidence

Four of the nine sources considered here as potential rotationally-powered pul-
sars, namely 1E 1547.0-5408, SGR J1745-2900, XTE J1810-197 and PSR J1622-4950,
are the only AXPs/SGRs with detected radio emission (see, e.g. Camilo et al.,
2007, 2006, 2008; Eatough et al., 2013; Halpern et al., 2005; Kramer et al., 2007;
Levin et al., 2010, 2012; Lobato et al., 2015; Olausen and Kaspi, 2014; Yusef-Zadeh
et al., 2015). This property is common but not always present in ordinary rota-
tionally powered pulsars, and in general is absent in AXPs/SGRs. In the case of
the radio emission observed in these 4 AXPs/SGRs we have Lradio � LX, a char-
acteristic shared with ordinary rotationally powered pulsars. New observational
facilities such as the Square Kilometer Array (SKA) are expected to bring light
to the differences and similarities between different sources of radio emission
such as rotating radio transients (RRATS), high field pulsars, AXPs/SGRs and
ordinary radio pulsars (Tauris et al., 2015).

Eleven AXPs/SGRs have been identified as transient sources, showing flux
variations by a factor ∼ (10− 1000) over the quiescent level in timescales from
days to months (see, for instance, Turolla et al., 2015). Seven of the nine potential
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rotationally powered sources shown in table 6.2 are transient sources. The theo-
retical analysis of the evolution of the X-ray flux can constrain the properties of
the neutron star and the emission geometry (see, e.g. Albano et al., 2010). Such
constraints can help to constrain also the properties of the radio emission. Such
an analysis is out of the scope of the present work and opens a window of new
research which is worthy to be explored.

Another observational fact that gives support to the hypothesis of a neutron
star nature for these 9 sources of table 6.2 is that six of them have possible asso-
ciations with supernova remnants. If these associations are fully confirmed, then
it is clear that the neutron star was born from the core-collapse of a massive star
which triggered the supernova explosion. Further analysis of the supernova rem-
nant and/or pulsar wind nebulae energetics and emission properties is ncessary
to check their consistency with the hypothesis presented here of neutron star
rotationally powering these sources.

6.7 Conclusions

Just as the analysis of Malheiro et al. (2012) was later improved by works like
(Boshkayev et al., 2013) and (Rueda et al., 2013), where instead of assuming
fiducial values it is assumed the structure of uniformly rotating white dwarfs to
determine in a more accurate way the range of values for the radius or mass, in a
similar way the analysis of Malheiro et al. (2012) of AXPs/SGRs as neutron stars
with fiducial values was improved by the recent work of Coelho et al. (2017)
where the entire range of Neutron Star parameters was explored considering
the conditions of stability of the star.

It was found that fiducial parameters overestimate both the radiation effi-
ciency and the surface magnetic field of pulsars. The number of potential rota-
tionally powered pulsars was enlarged from 4 to 9. It was also obtained lower
mass limits from the request Ėrot ≥ LX. Then, an analysis was done of the
hard X-ray emission, allowing to dismiss two sources, SGR J1745-2900 and SGR
0501+4516. However, in order to fully confirm these sources cannot longer be
considered as potential rotationally powered pulsars, it is necessary to verify the
accuracy of the estimated distances and to explore the possible contribution of
their associated supernova remnants to the hard X-ray emission.

We also showed that if it is assumed that the blackbody component in the
soft X-ray band of two additional sources, SGR 1900+14 and SGR 1806-20, is
produced by the thermal reservoir of the neutron star, then the rotational energy
loss is enough to cover their non-thermal X-ray luminosity. This implies that up
to 11 AXPs/SGRs could be rotationally powered neutron stars. this argument
could also, in principle, be applied to the other sources, lowering even more
their radiation efficiency LX/Ėrot. We therefore argue that the observational un-
certainties in the determination of the distances and/or luminosities, as well as
the uncertainties in the neutron star nuclear equation of state, and as well as the
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different interpretations of the observed spectrum still leave room for a possible
explanation of the observed spectrum in terms of spin-down power for addi-
tional sources.

The transient activity was also checked within this model. It was explored
the possibility that the energy released in outbursts, Eburst, could be explained
from the rotational energy gained in an associated glitch, ∆Erot. The fact that this
glitch outburst connection could be explained within this model reinforces the
hypothesis that these sources are indeed rotationally powered (e.g., the cases of
PSR J1846-0258 and PSR J1119-6127).

Finally, in section 6.6 we discussed possible additional evidence that supports
the rotation-power nature of these sources: the radio emission is observed in
four of the AXPs/SGRs and all of them are part of these nine sources. The radio
emission is typical of ordinary pulsars but generally is absent in AXPs/SGRs.
We also point out that seven of the nine sources belong to the group of the so-
called transient sources (which are eleven in total). Within these seven transient
rotation-powered objects we find four showing radio emission. We argue that the
analysis of the varying X-ray flux can provide information on the neutron star
properties and its magnetospheric geometry, improving also our understanding
of the properties of the radio emission.

All this work shows us that, despite not all AXPs/SGRs are describable as
rotationally powered pulsars, the fact that some of them do and some of them
share properties with the traditional rotationally powered pulsars invites to pro-
ceed with the exploration of this possibility as a solution to solve the puzzle
posed by these sources. Further investigation on the magnetospheric activity of
these objects from a theoretical point of view could help to clarify many of the
properties of these objects. It still remains open the explanation of the other
objects that are not rotationally powered pulsars.
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We have shown that the hypothetical ultra-magnetic super-Chandrasekhar WDs
proposed by Das and Mukhopadhyay (2012, 2013) cannot exist in nature. Be-
fore reaching those stages where magnetic fields could have a significant non-
negligible impact on the equation of state and the structure of the WD, they will
be subjected to several instabilities that will forbid them to reach such levels of
ultra-magnetism (B ∼ 1018 G). Several effects come into play, such as the inverse
β-decay, the pynonuclear fusion reactions, the General Relativity instabilities, the
breaking of the spherical symmetry or the General Relativity effects on the equa-
tion of state, as well as the violation of the Virial theorem. All these effects were
ignored by the aforementioned authors, effects that have always been considered
in the traditional treatment of WDs. Despite this analysis was done following the
relativistic Feynman-Metropolis-Teller equation of state that does not consider
the effects of the magnetic field, the instabilities come to place well before the
magnetic field can have an appreciable or significant effect on the equation of
state.

The magnetic WDs and their observational properties give us information
about their possible origin and evolutionary channel. The answer is not unique
and several models have been proposed. One of these evolutionary channels,
the double degenerate merger, has been proposed as the most likely origin for
the pulsar-like WD that could explain AXPs/SGRs. Despite not necessarily a
WD could be the only explanation for AXPs/SGRs, as we have several proposed
models besides this model and the magnetar model, the possibility of the exis-
tence of pulsar-like WDs could not be completely dismissed. Most of magnetic
WDs, however, are very slow rotators, but at the beggining of their lifes, if they
are the product of the merger of two white dwarfs, they should rotate relatively
fast.

We have seen how the consideration of WD configurations with the most
realistic equations of state can greatly improve the analysis on the parameters
of the WD model. We therefore saw how we can get more precise values of
the mass, radii, moment of inertia or magnetic field of WDs that rotate as fast
as some of the reported AXPs/SGRs. This analysis shows us, for example, that
the WDs rotating like AXPs/SGRs must be among the most massive WDs. We
could see this as a consequence to ensure stability, the faster a WD rotates more
mass is required to keep it gravitationally bound. This fact is also something re-
markable, considering that also, on average, MWDs are more massive than their
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non-magnetic counterparts (see chapter 3).

However, there is a limit where gravitation cannot longer counterbalance
rotation and beyond it rotation tears up the star, being this limit known as
the mass-shedding limit. We could verify that non of the reported AXPs/SGRs
would violate this limit if they were WDs because their periods of rotation are
clustered in the range (2 − 12) s, while the minimum rotational periods for
WDs obeying the relativistic Feynman-Metropolis-Teller equation of state are
∼ 0.3, 0.5, 0.7 and 2.2 s for 4He, 12C, 16O and 56 Fe WDs. So, the WDs rotating as
fast as AXPs/SGRs are within the limits stablished by the instability boundaries.

The hypothesis of formation of these highly massive and MWDs as the out-
come of double degenerate mergers can give account of an infrared excess de-
tected in some AXPs/SGRs (see chapter 4). Besides this infrared excess, in some
cases there is reported emission in the optical and ultraviolet spectrum. In the
WD model this emission is naturally associated with the surface emission. How-
ever, it is difficult to detect a possible optical emission (if the WD model is
correct) because of the large distances of AXPs/SGRs, their usual distances are
of the order of several kpc, while most of the observed WDs, more exactly a
98%, are at a distance less than 1 kpc (Napiwotzki, 2009). This severely limits
the possibility to check the theory with a direct observational evidence of the
existence or not of the blackbody surface emission of the WD.

We showed that highly rotating WDs can produce e−e+ pairs in their mag-
netosphere from the decay of curvature radiation photons, i.e., we infered the
structure parameters for which they are located above the WD pulsar death-
line. We calculated the thermal emission produced by the polar cap heating by
the pair-created particles that flow back to the WD surface due to the action of
the induction electric field. Then, regarding the application to the WD model of
AXPs/SGRs and to the emission in X-rays of these objects, we have shown that
the inferred values of the WD parameters obtained from fitting with the mag-
netospheric emission, i.e. the blackbody spectrum observed in the soft X-rays of
SGRs and AXPs, are in agreement with our previous estimates using the IR, op-
tical, and UV data, and fall within the constraints imposed by the gravitational
stability of the WD.

We have related the size of the spot of the blackbody component of AXPs/SGRs
in X-rays with the size of the surface under the polar cap filled by the inward
particle bombardment. We have shown that the spot area is much smaller than
the polar cap area pointing to the existence of strong non-dipolar magnetic fields
close to the WD surface.

We have used the heat transport and energy balance equations to show that,
for the actual conditions of density and temperature under the polar cap, the hot
spot re-radiates efficiently the heat proportioned by the inward particle bom-
bardment.
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The spot, which is aligned with the magnetic dipole moment of the WD,
produces a pulsed emission in phase with the rotation period of the object. We
showed that the theoretically inferred pulsed fraction of the WD spans from
very low values all the way to unity depending on the viewing angles. There-
fore it can also account for the observed pulsed fraction in SGRs and AXPs for
appropriate choices of the viewing angles. In addition, the low-energy tail of the
blackbody spectrum of the hotspot could produce a non-null pulsed fraction of
the flux in the optical bands as well. However, this depends on the flux produced
by the surface temperature of the WD which certainly dominates the light curve
at low energies. We have also shown that the addition of a pulsed power-law
component as the one observed in SGRs/AXPs does not modify appreciably the
above result. The reason for this is that the non-thermal power-law component
and the blackbody due to the surface hotspot have comparable fluxes and are
in phase with each other. In those cases it is difficult to disentangle the single
contributions to the pulsed fraction.

We therefore have shown that, as advanced in Rueda et al. (2013), indeed the
blackbody observed in the optical wavelengths of SGRs and AXPs can be due to
the surface temperature of the WD, while the one observed in the X-rays can be
of magnetospheric origin. For the power-law component, also observed in the
soft X-rays, a deeper analysis of processes such as curvature radiation, inverse
Compton scattering, as well as other emission mechanisms, could be done in a
future work.

Just as the analysis of Malheiro et al. (2012) was later improved by works
like (Boshkayev et al., 2013) and (Rueda et al., 2013), where instead of assuming
fiducial values it is assumed the structure of uniformly rotating white dwarfs to
determine in a more accurate way the range of values for the radius or mass, in a
similar way the analysis of Malheiro et al. (2012) of AXPs/SGRs as neutron stars
with fiducial values was improved by the recent work of Coelho et al. (2017)
where the entire range of Neutron Star parameters was explored considering
the conditions of stability of the star.

It was found that fiducial parameters of NSs overestimate both the radiation
efficiency and the surface magnetic field of pulsars. The number of potential ro-
tationally powered pulsars (NSs) was enlarged from 4 to 9. It was also obtained
lower mass limits from the request Ėrot ≥ LX. Then, an analysis was done of the
hard X-ray emission, allowing to dismiss two sources, SGR J1745-2900 and SGR
0501+4516. However, in order to fully confirm these sources cannot longer be
considered as potential rotationally powered pulsars, it is necessary to verify the
accuracy of the estimated distances and to explore the possible contribution of
their associated supernova remnants to the hard X-ray emission.

We also showed that if it is assumed that the blackbody component in the
soft X-ray band of two additional sources, SGR 1900+14 and SGR 1806-20, is
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produced by the thermal reservoir of the NS, then the rotational energy loss is
enough to cover their non-thermal X-ray luminosity. This implies that up to 11
AXPs/SGRs could be rotationally powered neutron stars. this argument could
also, in principle, be applied to the other sources, lowering even more their radi-
ation efficiency LX/Ėrot. We therefore argue that the observational uncertainties
in the determination of the distances and/or luminosities, as well as the uncer-
tainties in the neutron star nuclear equation of state, and as well as the different
interpretations of the observed spectrum still leave room for a possible expla-
nation of the observed spectrum in terms of spin-down power for additional
sources.

The transient activity was also checked within this model. It was explored
the possibility that the energy released in outbursts, Eburst, could be explained
from the rotational energy gained in an associated glitch, ∆Erot. The fact that this
glitch outburst connection could be explained within this model reinforces the
hypothesis that these sources are indeed rotationally powered (e.g., the cases of
PSR J1846-0258 and PSR J1119-6127).

In section 6.6 we discussed possible additional evidence that support the
rotation-power nature of these sources: the radio emission is observed in four
of the AXPs/SGRs and all of them are part of these nine sources. The radio
emission is typical of ordinary pulsars but generally is absent in AXPs/SGRs.
We also point out that seven of the nine sources beling to the group of the so-
called transient sources (which are eleven in total). Within these seven transient
rotation-powered objects we find four showing radio emission. We argue that the
analysis of the varying X-ray flux can provide information on the neutron star
properties and its magnetospheric geometry, improving also our understanding
of the properties of the radio emission.

Despite not all AXPs/SGRs are describable as rotationally powered pulsars,
the fact that some of them do and some of them share properties with the tra-
ditional rotationally powered pulsars invites to proceed with the exploration of
this possibility as a solution to solve the puzzle posed by these sources. Further
investigation on the magnetospheric activity of these objects from a theoretical
point of view could help to clarify many of the properties of these objects. It
still remains open the explanation of the other objects that are not rotationally
powered pulsars.
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Appendix A

Heating and cooling of particle
influx bombardment

We estimate in this appendix the efficiency of the particle bombardment in heat-
ing (and re-radiating) the surface area they hit. We follow the discussion in Gil
and Melikidze (2002) and Gil et al. (2003) for the heat flow conditions in the
polar cap surface of neutron stars, and extend it to the present case of magnetic
WDs.

The particles arriving to the surface penetrate up to a depth that can be
estimated using the concept of radiation length (Cheng and Ruderman, 1980). For
a carbon composition, the radiation length is Σ ≈ 43 g cm−2 (Tsai, 1974), so an
electron would penetrate the WD surface up to a depth

∆z ≈ Σ
ρ
= 4.3× 10−3 cm

(
104 g cm−3

ρ

)
. (A.1)

With the knowledge of the thickness of the layer under the surface where the
energy deposition occurs, we can proceed to estimate the properties of the dif-
fusion and re-radiation of the kinetic energy of the particle influx using the heat
transport and energy balance equations on the star’s surface corresponding to
the polar cap. The typically small distances (see equation (A.1)) allow us to in-
troduce a plane-parallel approximation in the direction parallel to the magnetic
field lines, say in the direction z orthogonal to the surface.

The energy balance can be simply written as

Frad = Fheat + Fcond, (A.2)

where Fheat = e∆VηρGJc, Fcond = −κ∂T/∂z and Frad = σT4, with κ the thermal
conductivity (along the z-direction).

Let us first estimate the characteristic cooling time. To do this, we switch off
energy losses and heating terms in the energy balance equation (A.2), i.e., the
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radiation flux is only given by conduction:

σT4 = −κ
∂T
∂z

, (A.3)

which leads to the heat transport equation

cv
∂T
∂t

=
∂

∂z

(
κ

∂T
∂z

)
. (A.4)

where cv is the heat capacity per unit volume. We can therefore obtain the charac-
teristic (e-folding) cooling and heating time assuming the quantities are uniform
within the penetration depth ∆z, i.e.

∆tcool =
∆z2cv

κ
, ∆theat =

cv∆z
σT3 . (A.5)

We can now introduce the radiation to heating efficiency parameter

ε ≡ Frad

Fheat
=

1
1 + ∆theat/∆tcool

=
1

1 + κ/(σT3∆z)
, (A.6)

which shows that in equilibrium, ∆theat = ∆tcool, we have ε = 1/2.

In estimating the spot temperature (5.12) we have assumed in equation (5.11)
full re-radiation of the influx, namely we assumed ε = 1. We proceed now to es-
timate the realistic values of ε from equation (A.6) to check our assumption. We
compute the thermal conductivity from Itoh et al. (1993) and the heat capacity
from Chabrier and Potekhin (1998); Potekhin and Chabrier (2000). For example,
at a density ρ = 103 g cm−3 and T = 106 K, we have cv = 2.7× 1010 erg cm−3 K−1

and κ ≈ 4× 1011 erg cm−1 s−1 K−1, and equation (A.6) gives ε ≈ 0.86. At T =
107 K, we have cv = 3.8× 1011 erg cm−3 K−1 and κ ≈ 3.4× 1013 erg cm−1 s−1 K−1

and ε ≈ 1.
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Kaneko, Y., E. Göǧüş, C. Kouveliotou, J. Granot, E. Ramirez-Ruiz, A. J. van der
Horst, A. L. Watts, M. H. Finger, N. Gehrels, A. Pe’er, M. van der Klis, A. von
Kienlin, S. Wachter, C. A. Wilson-Hodge, and P. M. Woods (2010, February).
Magnetar Twists: Fermi/Gamma-Ray Burst Monitor Detection of SGR J1550-
5418. ApJ 710, 1335–1342.

161



BIBLIOGRAPHY

Kaplan, D. L., S. R. Kulkarni, M. H. van Kerkwijk, R. E. Rothschild, R. L. Lin-
genfelter, D. Marsden, R. Danner, and T. Murakami (2001, July). Hubble Space
Telescope Observations of SGR 0526-66: New Constraints on Accretion and
Magnetar Models. ApJ 556, 399–407.

Kaspi, V. M. (2007, April). Recent progress on anomalous X-ray pulsars.
Ap&SS 308, 1–11.

Kaspi, V. M., F. P. Gavriil, P. M. Woods, J. B. Jensen, M. S. E. Roberts, and
D. Chakrabarty (2003, May). A Major Soft Gamma Repeater-like Outburst
and Rotation Glitch in the No-longer-so-anomalous X-Ray Pulsar 1E 2259+586.
ApJ 588, L93–L96.

Kawka, A. and S. Vennes (2012, September). A study of high proper-motion
white dwarfs - I. Spectropolarimetry of a cool hydrogen-rich sample. MN-
RAS 425, 1394–1412.

Kemp, J. C. (1970, October). Circular Polarization of Thermal Radiation in a
Magnetic Field. ApJ 162, 169.

Kemp, J. C., J. B. Swedlund, J. D. Landstreet, and J. R. P. Angel (1970, August).
Discovery of Circularly Polarized Light from a White Dwarf. ApJ 161, L77.

Kepler, S. O., S. J. Kleinman, A. Nitta, D. Koester, B. G. Castanheira, O. Gio-
vannini, A. F. M. Costa, and L. Althaus (2007, March). White dwarf mass
distribution in the SDSS. MNRAS 375, 1315–1324.

Kepler, S. O., S. J. Kleinman, I. Pelisoli, V. Peçanha, M. Diaz, D. Koester, B. G.
Castanheira, and A. Nitta (2010, November). Magnetic White Dwarfs in
the SDSS and Estimating the Mean Mass of Normal DA and DB WDs. In
K. Werner and T. Rauch (Eds.), American Institute of Physics Conference Series,
Volume 1273 of American Institute of Physics Conference Series, pp. 19–24.

Kepler, S. O., I. Pelisoli, S. Jordan, S. J. Kleinman, D. Koester, B. Külebi,
V. Peçanha, B. G. Castanheira, A. Nitta, J. E. S. Costa, D. E. Winget, A. Kanaan,
and L. Fraga (2013, March). Magnetic white dwarf stars in the Sloan Digital
Sky Survey. MNRAS 429, 2934–2944.

Kepler, S. O., I. Pelisoli, D. Koester, G. Ourique, S. J. Kleinman, A. D. Romero,
A. Nitta, D. J. Eisenstein, J. E. S. Costa, B. Külebi, S. Jordan, P. Dufour,
P. Giommi, and A. Rebassa-Mansergas (2015, February). New white dwarf
stars in the Sloan Digital Sky Survey Data Release 10. MNRAS 446, 4078–4087.

Kepler, S. O., I. Pelisoli, D. Koester, G. Ourique, A. D. Romero, N. Reindl, S. J.
Kleinman, D. J. Eisenstein, A. D. M. Valois, and L. A. Amaral (2016, February).
New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data
Release 12. MNRAS 455, 3413–3423.

Koester, D., R. Napiwotzki, N. Christlieb, H. Drechsel, H.-J. Hagen, U. Heber,
D. Homeier, C. Karl, B. Leibundgut, S. Moehler, G. Nelemans, E.-M. Pauli,

162



BIBLIOGRAPHY

D. Reimers, A. Renzini, and L. Yungelson (2001, November). High-resolution
UVES/VLT spectra of white dwarfs observed for the ESO SN Ia progenitor
survey (SPY). I. A&A 378, 556–568.

Kramer, M., B. W. Stappers, A. Jessner, A. G. Lyne, and C. A. Jordan (2007, May).
Polarized radio emission from a magnetar. MNRAS 377, 107–119.

Kuiper, L. and W. Hermsen (2009, July). High-energy characteristics of the
schizophrenic pulsar PSR J1846-0258in Kes 75. Multi-year RXTE and INTE-
GRAL observations crossing the magnetar-like outburst. A&A 501, 1031–1046.

Kuiper, L., W. Hermsen, P. R. den Hartog, and J. O. Urama (2012, April). Tem-
poral and Spectral Evolution in X- and γ-Rays of Magnetar 1E 1547.0-5408
since its 2008 October Outburst: The Discovery of a Transient Hard Pulsed
Component after its 2009 January Outburst. ApJ 748, 133.
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