
A Prototype Evaluation of a Tamper-resistant High Performance
Blockchain-based Transaction Log for a Distributed Database

Leonardo Aniello, Roberto Baldoni, Edoardo Gaetani and Federico Lombardi
CIS Sapienza - University of Rome

{aniello;baldoni;gaetani;lombardi}@dis.uniroma1.it

Andrea Margheri and Vladimiro Sassone
University of Southampton

{a.margheri;vsassone}@soton.ac.uk

Abstract—As data is having an increasingly relevant role
in different business fields, ensuring integrity has become
fundamental. Modern databases rely on transaction history
written on redo logs to allow for data restore. However, if
redo logs are (maliciously) forged, data can actually be lost or
altered. Due its strong data integrity guarantees, blockchain
technology can be employed to ensure log integrity, but its
current performance limitations hinder actual exploitations.

In previous work, we proposed a layered blockchain-based
architecture for distributed (federated) database redo logs: a
fast first layer blockchain, anchored to a secure second layer
blockchain, based on proof-of-work to achieve strong integrity.
Here, we present an implementation and an experimental
evaluation of a prototype of that architecture, which employs a
total consensus algorithm on the first layer blockchain. Finally,
to improve availability and scalability, we refine our solution
by investigating, respectively, a Byzantine Fault Tolerant con-
sensus and a Distributed Hash Table solution to shard the first
layer blockchain ledger among available nodes.

Keywords-Blockchain, Cloud Federation, BFT, DHT

I. Introduction

As a critical component of many systems, data have
an appealing target for cyber-attacks. Tampering with data
can go undetected and drive malicious operations, e.g. data
alteration and deletion. Most of all, differently from avail-
ability loss, data integrity can be hardly restored once lost.
Modern database systems use logging mechanisms to track
data changes, e.g. Write-Ahead Logging of PostgreSQL1 and
Redo Log of Oracle2. However, if such logging files are
forged, recognising an attack or a failure is awkward as data
integrity relies too intimately on the system itself. Typically,
Remote Data Auditing mitigations are employed, but they
come with high costs and rely on trusted third parties [10].

In recent years blockchain came to prominence through
the Bitcoin system [7], and have emerged since as a powerful
technology to provide strong data integrity guarantees in
trust-less networks. Blockchain ensures integrity by means
of proof-of-work (PoW), a consensus schema based on
solving a crypto-puzzles that is considered computation-
ally inviolable [5]. Blockchain also offers so-called smart
contracts, immutable programs deployed and executed on

1postgresql.org/docs/9.1/static/wal-intro.html
2docs.oracle.com/cd/B19306 01/server.102/b14231/onlineredo.htm

top of a blockchain system, e.g. Ethereum [11], to realise
decentralised applications where no involved party is in
control neither of the code nor of the data.

Regardless of strong integrity guarantees, exploiting
blockchain to strengthen (distributed) database systems im-
plies coping with overwhelming performance penalties:
viz., high latency and low throughput. Indeed, preliminary
blockchain-based database solutions rationalise blockchain
features: BigchainDB [1] replaces PoW (and its security)
with a lightweight protocol; RSCoin [3] (re)introduces cer-
tain degree of centralisation in the system.

In [4] we proposed a blockchain-based architecture for
distributed (federated) database transaction (or redo) logs,
which permits achieving both high performance and ade-
quate integrity guarantees. Specifically, we defined a layered
architecture that makes use of a first layer blockchain assur-
ing low latency and high throughput, anchored to a second
layer blockchain featuring PoW to ensure data integrity.

In this paper, we present a prototype implementation of
that architecture, which features a total consensus algorithm
on the first layer blockchain, and its experimental evaluation.
Then, to cope with faults and Denial-of-Service (DoS)
attacks, we investigate a Byzantine Fault Tolerant (BFT)
consensus. Finally, to improve scalability, we investigate a
Distributed Hash Table (DHT) as redo log of the first layer.

As a case study, we address the distributed database
underlying FaaS [8], a recent Cloud Federation solution put
forward by the EU H2020 SUNFISH project. FaaS offers a
democratic federation of Clouds which crucially relies on a
distributed database to ensure that no federation member can
tamper with federated data. Clearly, application requirements
demand also for adequate performance. Deploying a fast
and secure blockchain-based system is paramount to achieve
both performance and democracy requirements of FaaS.

Paper structure. §II introduces the architecture; §III presents
and evaluates the prototype. §IV illustrates the proposed
extensions. §V concludes and discusses future work.

II. Background

In [4] we posed some important open research questions
on the issues of employing blockchain “as-is” in database

Figure 1. 2LBC architecture for a FaaS federation

settings, and pointed out practical research directions to-
wards its effective employment: improving performance
while ensuring data integrity. To this aim, we proposed a 2-
layer blockchain architecture (2LBC), enabling a replicated,
trustworthy redo log for a distributed (federated) database.

2LBC consists of a permissioned blockchain on the first
layer and a public permissionless blockchain on the second
layer. The first layer features a fast consensus algorithm
based on a leader rotation approach: the time is split into
rounds each of which has a designed leader (i.e., a miner)
chosen according to a deterministic fair policy. The leader
defines the ordering of transactions (txns) containing the
operations tracked in the redo log (aka ledger). Transactions
are stored, once signed with asymmetric cryptography by all
members, in each ledger replica.

Figure 1 shows the 2LBC architecture in the context
of a FaaS federation. Specifically, each federation member
contributes to 2LBC with one miner –distinguished network
nodes building the integrity of blockchain– keeping both
database and ledger replicas. The second layer features PoW
and is used to guarantee the integrity of the first layer. Peri-
odically, the hash of the first layer blockchain is here stored
via the Anchoring Manager. PoW ensures the immutability
of such hashes. These hashes, so, act as forensic evidences
of the first layer: if a malicious miner maliciously tries to
alter the redo log, the first layer blockchain will result forged
as the hash stored in the second layer will be different.

III. Prototype Implementation and Evaluation

We developed the first layer blockchain in Java. Miners
join a p2p network and communicate through txns composed
by a payload (i.e., client operation, a sequence number
and a timestamp) and a certificate with miners’ signatures.
Miners trade messages either directly through JavaRMI or in
broadcast through JGroup (http://jgroups.org/). Clients can
operate on the database by issuing to all miners, through
JavaRMI, two kind of operations: (i) set(k,v) to assign
a value v to a key k (it returns to the client a boolean

confirmation); (ii) get(k) to obtain the value stored to key
k by returning the txn related to the last set toward k.
Consensus. In case of set(k,v), miners have to achieve
consensus to give confirmation to the client. The consensus
is based on a three-phase commit protocol [9]. Practically, a
client broadcasts a seti operation to all miners which verify
its correctness through a Verify Manager and add it to a
queue. Once the current leader (who is in charge of ordering
txns) proposes txni related to seti, other miners remove
it from their queue and broadcast their signatures to build
the corresponding certificate. When the certificate contains
all the signatures, all miners commit the txn in their ledger
replica and trigger the update in the database replica.

In case of get(k), every miner answers to the client with
the last txn related to a set(k,v). The client can obtain the
value v from the most recent txn among those received, and
verify its correctness via the miners’ signatures.
Anchoring. When the round time of a leader terminates, it
triggers a leader change, which amounts to store a special
txn, and the anchoring procedure. Specifically, the abdicating
leader computes the SHA-1 hash of the first layer blockchain
and sends a witness txn to a dedicated witness smart-contract
on the second layer implemented with Ethereum.
Evaluation. We evaluated our prototype on a private cluster
composed by N = 6 Ubuntu 16.04 Virtual Machines (VMs)
each one running a miner process, deployed on 4 blade
servers IBM HS22, equipped with 2 Quad-Core Intel Xeon
X5560 2.28 GHz CPUs and 24 GB RAM.

Network latency between miners is simulated according
to a Poisson distribution in the range 5-20 ms. Operations
set and get on random keys are injected with different
rates via 2 multi-thread clients deployed on 2 further VMs.
To evaluate 2LBC performances, we measured throughput
and response time of the operations over time.

For set operations, Figure 2(a) (resp., 2(b)) reports
throughput (resp., latency) results that, as expected, are much
higher (resp., lower) than Ethereum. Above 240 Op/s, they
become unstable for resource saturation due to exchanged
messages: the total consensus algorithm requires miners to
trade all their signatures for each operation. Additionally,
leader rotation introduces an overhead on the enqueued
operations during leader changes; we refer to transient state
as the transitory period where latency exceeds 50% of the
average latency. As shown in Figure 3, increasing the round
time makes the transient state shorter. On the contrary,
frequent leader changes increase such overhead.

For get operations, Figures 2(c) and 2(d) report through-
put and latency results. As there is no transient state for get
(i.e., miners just send their last local value), the results are
comparable with and without leader rotation.
Security Analysis. We modelled three possible kinds of
attack: A1 tampering, if a miner tries to modify the log;
A2 forgering, if a miner tries to send a fake txn, i.e. by

10

100

1000

0 50 100 150 200 250 300 Th
ro

u
gh

p
u

t
 (

O
p

/s
)

Time (s)

Input Rate = 80 Op/s Input Rate = 160 Op/s
Input Rate = 205 Op/s Input Rate = 240 Op/s
Ethereum average thr.

(a) Throughput of set operations for different input rates

0,001

0,01

0,1

1

10

0 50 100 150 200 250 300 R
es

p
o

n
se

 T
im

e
 (

s)

Time (s)
Input Rate = 80 Op/s Input Rate = 160 Op/s
Input Rate = 205 Op/s Input Rate = 240 Op/s
Ethereum average r.t.

(b) Response Time of set operations for different input rates

450

500

550

600

650

0 50 100 150 200 250 300

Th
ro

u
gh

p
u

t
 (

O
p

/s
)

Time (s)

No Leader's Change Round 30s

(c) Throughput for get operations while injecting ≈ 500 op/s
without changing leader and with 30s leader round time

0,004

0,005

0,006

0,007

0,008

0 50 100 150 200 250

R
es

p
o

n
se

 T
im

e
 (

s)

Time (s)

No Leader's change Round 30s

(d) Response Time for get operations while injecting ≈ 500
op/s without changing leader and with 30s leader round time

Figure 2. Throughput and Response Time evaluation of 2LBC for set and get operations

0

5

10

15

20

25

30

35

40

10 30 50

A
ve

ra
ge

 T
ra

n
si

en
t

 S
ta

te

D
u

ra
ti

o
n

 (
s)

Round Time (s)
Input Rate = 80 Op/s Input Rate = 160 Op/s
Input Rate = 205 Op/s Input Rate = 240 Op/s

Figure 3. Analysis of the relation between round time (x axis) and transient
state duration (y axis) for different input rates

forging a client operation; A3 DoS, either a miner does not
sign a txn or a leader does not broadcast a txn.

In our approach a valid txn must contain a certificate with
all miners’ signatures. This avoids miners from maliciously
update values without informing other members (A1), and
from creating fake txns (A2) (unless it can obtain the private
keys of all other miners). Moreover, hashes stored in the
second layer blockchain are immutable, hence, though the
attacker is able to compromise the first layer by stealing
all miners’ keys, A2 might be detected by comparing the
hash of the first layer with the hash evidence stored on
the second layer; to compromise also hashes in the second

layer the attacker should obtain a significant, unfeasible
computational power [5]. Furthermore, the leader cannot
forward fake txns (A2), because miners sign only txns related
to operations that they enqueued. Specifically, miners verify
the correctness of txn fields being sure that are not forged.

Our approach is instead vulnerable to DoS attacks (A3):
a single malicious miner can block set operations not
sending its signature or a malicious leader (during its leading
periods) can avoid to forward a txn. This cannot happen
with get operations, as miners return their response indepen-
dently. Indeed, if there is at least one honest miner, a client
can obtain the value by its corresponding txn and verify the
signatures in the certificate to prove the authenticity.

IV. Improving Availability and Scalability

The main limitations of the current 2LBC prototype are
related to availability issues (as explained in last section)
and scalability. Indeed, overall system performance does
not scale adding new nodes, as the used total consensus
algorithm has lower performance with additional nodes. In
this section we propose the solutions to cope with them.

Availability. To mitigate such limitations, we propose a
Byzantine Fault Tolerant solution based on PBFT [2]. To
tolerate up to f Byzantine miners it requires 3 f + 1 miners
to provide both safety and liveness. This leads to higher
availability level as honest miners need to wait just f +1 valid
signatures to commit a txn. We can so tolerate up to f silent

Figure 4. Example of the DHT-based ledger solution to achieve total
replication in the FaaS scenario. The federation is composed by M = 3
members (each one marked with a proper color), each one exposing N = 2
miners (identified by a proper letter). Miners are disposed on the ring so
as each member has all keys of the database sharded between its miners.
The single miners keep only a subset proportional to the replication factor.
In the example, the replication factor is M = 3 and each miner maintains
only 1/N = 1/2 of database keys.

miners at the cost of weaker integrity guarantees; indeed data
corruption is possible with just f + 1 compromised miners,
rather than all N when total consensus is used. Anyway, the
integrity of txns already witnessed in the second layer is still
ensured thanks to the PoW.

Scalability. To improve scalability, we propose a data
sharding solution for permissioned (federated) blockchain,
similar to [6] for permissionless blockchain. Specifically,
we introduce a DHT-based ledger in which each miner, on
the base of a keyspace partitioning, only handles txns for
specific subsets of keys. This approach permits tuning txn
loads on miners and, consequently, makes the system more
scalable. Furthermore, each key range has a configurable
replication factor to enable fault tolerance. In our solution,
contrarily to common DHT implementations, the miners
involved in a set operation must achieve consensus before
writing the operation in the local replica (hence in the
local keyspace) of the redo log. This permits achieving
strong consistency, hence avoiding consistency issues which
mar well known DHT-based NoSQL databases, such as
DynamoDB (aws.amazon.com/dynamodb/) and Cassandra
(wiki.apache.org/cassandra/). Clearly, this comes at the cost
of performance penalties, whose quantification depends on
the technology and is beyond our scope here.

The solution to the FaaS scenario can e.g. change as
follow: let M be the number of federation members, each
providing N (rather than a single) miners. The DHT ring
includes M · N nodes, the replication factor is set to M, and
miners can be placed over the ring so that the miners of
each federation member collectively manage all the keys.
Figure 4 shows an example of a FaaS federation composed
by M = 3 members, each exposing N = 2 miners.

V. Conclusion
We evaluated a prototype of 2LBC, a 2-layered architec-

ture for a blockchain-based database able to provide both
high performance and strong data integrity guarantees in
a totally decentralised environment. We proposed also a
solution to cope with current availability issues and a DHT-
based ledger to shard data and make the system scalable.

In the future, we will continue developing and evaluating
our prototype by implementing the PBFT and DHT solu-
tions. To compare outcomes, we plan to develop a metric
for data integrity based on the effort required for an attacker
to tamper with data without being noticed. This enables
evaluating varying tradeoffs between system availability,
integrity and performance. Finally, we aim to evaluate the
architecture according to a varying number of miners and
members exposing different pools of miners.

Acknowledgment
This work has been supported by the EU H2020 SUN-

FISH project, grant N.644666.

References

[1] BigchainDB GmbH. BigchainDB: A Scalable Blockchain
Database, 2016. https://www.bigchaindb.com/whitepaper/.

[2] M. Castro and B. Liskov. Practical byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[3] G. Danezis and S. Meiklejohn. Centrally Banked Cryptocur-
rencies. In NDSS. The Internet Society, 2016.

[4] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri,
and V. Sassone. Blockchain-based database to ensure data
integrity in cloud computing environments. In ITA-SEC,
volume 1816. CEUR-WS.org, 2017.

[5] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In EUROCRYPT,
volume 9057 of LNCS, pages 281–310. Springer, 2015.

[6] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena. A secure sharding protocol for open blockchains.
In CCS, pages 17–30. ACM, 2016.

[7] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2008. https://bitcoin.org/bitcoin.pdf.

[8] F. P. Schiavo, V. Sassone, L. Nicoletti, and A. Margheri (Eds.).
Faas: Federation-as-a-service. CoRR, abs/1612.03937, 2016.

[9] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed system. IEEE Transactions on
Software Engineering, (3):219–228, 1983.

[10] M. Sookhak, A. Gani, H. Talebian, A. Akhunzada, S. U.
Khan, R. Buyya, and A. Y. Zomaya. Remote Data Auditing in
Cloud Computing Environments: A Survey, Taxonomy, and
Open Issues. ACM Comput. Surv., 47(4):65:1–65:34, 2015.

[11] G. Wood. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum Project Yellow Paper, 2014.

