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1 Elastic Symbiotic Scaling of Operators and
2 Resources in Stream Processing Systems
3 Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni

4 Abstract—Distributed stream processing frameworks are designed to perform continuous computation on possibly unbounded data

5 streams whose rates can change over time. Devising solutions to make such systems elastically scale is a fundamental goal to achieve

6 desired performance and cut costs caused by resource over-provisioning. These systems can be scaled along two dimensions: the

7 operator parallelism and the number of resources. In this paper, we show how these two dimensions, as two symbiotic entities, are

8 independent but must mutually interact for the global benefit of the system. On the basis of this observation, we propose a fine-grained

9 model for estimating the resource utilization of a stream processing application that enables the independent scaling of operators and

10 resources. A simple, yet effective, combined management of the two dimensions allows us to propose ELYSIUM, a novel elastic

11 scaling approach that provides efficient resource utilization. We implemented the proposed approach within Apache Storm and tested it

12 by running two real-world applications with different input load curves. The outcomes backup our claims showing that the proposed

13 symbiotic management outperforms elastic scaling strategies where operators and resources are jointly scaled.

14 Index Terms—Cloud, elasticity, elastic scaling, stream processing, storm

Ç

15 1 INTRODUCTION

16 STREAM processing systems (SPSs) process unbounded
17 streams of input tuples by evaluating them according to
18 a given set of queries. Queries are usually modeled as
19 graphs, where vertices represent processing elements called
20 operators and edges correspond to streams of tuples moved
21 between operators. This data processing model allows to
22 break down complex computations into simpler units (the
23 operators), independently parallelize them, and deploy the
24 resulting system over any number of computing machines.
25 Having the computation executed in parallel by several dis-
26 tinct operators on many machines is the core feature of dis-
27 tributed stream processing systems. Such flexibility allows to
28 scale horizontally in such a way to provide the computa-
29 tional power required to sustain a given tuple input loadwith
30 a reasonable processing latency. Thanks to these characteris-
31 tics, SPSs today represent a fundamental building block for a
32 large number of big data computing infrastructures [1].
33 A complex challenge SPSs need to cope with is input
34 dynamism. Such systems, in fact, are designed to ingest data
35 from heterogeneous and possibly intense sources like sensor
36 networks,monitoring systems, social feeds, etc. that are often
37 characterized by large fluctuations in the input data rates.
38 Solutions based on over-provisioning are considered cost-
39 ineffective in a world that moves toward on-demand
40 resource provisioning built on top of IaaS platforms.

41Recently, researchers introduced the idea of elastic SPSs
42that continuously adapt at runtime to changes in the input
43rates, to accommodate load fluctuations by provisioning
44more resources only when needed. The requirements for the
45controller of an elastic SPS have been informally defined in
46[2] as SASO properties [3]: stability,1 accuracy,2 short settling
47time3 and no overshoot.4 Several optimizations have been
48identified [4] and several approaches [5], [6] have been pro-
49posed to make SPSs elastically scale. These solutions scale
50the system by increasing operators’ parallelism (operator scal-
51ing or fission) and accordingly provisioning new computing
52resources (resource scaling). However, by looking at how SPSs
53work under stressing workloads, it is apparent that operator
54and resource scaling address two distinct aspects of a same
55problem. In particular, operator scaling allows to subdivide
56the load of the specific computation implemented by an
57operator, thus enabling efficient resource usage through
58load balancing. On the other hand, correct provisioning
59through resource scaling is crucial to avoid excessive conten-
60tion for the execution of the operators.
61In this paper we claim that, although both aspects must be
62taken into account, they don’t need to be always exercised
63jointly and that it is possible to build a more efficient elastic
64scaling solution for SPSs by accurately managing them. In
65particular, we advocate a “symbiotic”management of opera-
66tor and resource scaling, where their independent and/or
67combined effects increase the global efficiency of the system.
68We introduce Elastic Symbiotic Scaling of Operators and Resour-
69ces in Stream Processing Systems (ELYSIUM), a new elastic
70scaling solution for distributed SPSs that scales operators
71and resources in a symbiotic fashion to let the system work
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1. Stability: the system configuration does not oscillate.
2. Accuracy: the system configuration maximizes the throughput.
3. Short settling time: the system quickly reaches a stable configuration.
4. No overshoot: the systemdoes not usemore resource than necessary.
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72 always in a correctly provisioned configuration where the
73 least amount of resources are wasted (4th SASO property).
74 Scaling actions in ELYSIUM can be executed either in a reac-
75 tive or proactive fashion. Indeed, ELYSIUM employs a pre-
76 diction module to forecast variations in the input load and
77 periodically checks if the current provisioning configuration
78 needs to be scaled-in/out to accommodate for foreseeable
79 load fluctuations. A tunable assessment period parameter
80 allows ELYSIUM to avoid oscillations (1st SASO property);
81 ELYSIUM first adapts the parallelism for each operator used
82 by the application to avoid bottlenecks on operator instances.
83 Then it checks if the current resource provisioning is the
84 smallest that will let the system work without incurring any
85 performance degradations. For this last check, ELYSIUM lev-
86 erages a novel resource estimator to compute the expected
87 resource consumption, given an input load and a configura-
88 tion, so as to accurately and quickly adapt to the workload in
89 a single reconfiguration (2nd and 3rd SASO properties). A
90 monitoring system lets ELYSIUM collect at runtime fine-
91 grained information on resource usage that is then used to
92 decide how the system must be scaled. With this approach
93 ELYSIUM can scale independently operators and resources
94 as well as jointly scale them,whenever this is needed.
95 Summarizing, we provide the following contributions:

96 � we explain why operator and resource scaling impact
97 on two distinct aspects of SPSs scalability, and pro-
98 pose how to symbiotically manage them to elastically
99 provision the system in amore efficient way;

100 � we introduce ELYSIUM, a reactive/proactive elastic
101 scaling solution for SPSs that consider operator and
102 resource scaling as two distinct solutions that need
103 to be combined only when necessary; ELYSIUM
104 employs a fine-grained model of resource usage to
105 estimate how the SPS will behave under a given
106 load, which enables to properly choose how many
107 instances (for each operator) and resources to set;
108 � we provide an in-depth evaluation of ELYSIUM’s
109 performance by testing a prototype on real stream
110 processing applications under different workloads
111 and comparing it with a standard elastic scaling
112 solution employing only the joint scaling approach.
113 Paper Structure. Section 2 defines more formally the system
114 model and the problem to tackle, so that in Section 3 we can
115 present our approach. Section 4 presents the ELYSIUM
116 implementation on Apache Storm, while the experimental
117 evaluation is described in Section 5. Related works are dis-
118 cussed in Section 6 and, finally, Section 7 sums up the paper
119 and points out future work.

120 2 SYSTEM MODEL AND PROBLEM STATEMENT

121 We model a computation in a SPS as a directed acyclic graph
122 where vertices represent operators and edges represent
123 streams of tuples between pairs of operators (see Fig. 1). We
124 define such a graph as an application. Each operator carries
125 out a piece of the overall computation on incoming tuples
126 and emits downstream the results of its partial elaboration.
127 In general, an operator has ni input streams (0 for source
128 operators) and no output streams (0 for sink operators). An
129 application is also characterized by an input load that varies
130 over time and represents the rate of tuples fed to the SPS for

131such application (input rate). Each input tuple generates
132multiple tuples that traverse several streams in the appli-
133cation graph. The processing of some of these tuples may
134possibly fail; in this case we say that the tuple is failed.
135Conversely, if all the tuples generated in the graph are
136correctly processed, then we say that the corresponding
137tuple is acked. The rate of tuples that are acked over time is
138referred to as throughput.
139For the sake of simplicity, and without loss of generality,
140we assume that a stream connecting operators A (upstream
141operator) and B (downstream operator) can be uniquely
142identified by the pair ðA;BÞ, which means that no two dis-
143tinct streams can connect the same pair of operators. The
144selectivity for a stream ðA;BÞ is defined as the ratio between
145the tuple rate of ðA;BÞ and the sum of the tuple rates of all
146the input streams of A, i.e., the selectivity of ðA;BÞmeasures
147its tuple rate as a function of the total input rate of A [4]. In
148this paper we assume to work with SPS applications having
149constant average operators’ selectivities at runtime, simi-
150larly to applications presented in [7], [8], [9].
151To let the application scale at runtime each operator can be
152instantiated multiple times such that its instances will share
153the load provided by the input stream. However, the maxi-
154mum number of instances for an operator op is upper-
155bounded by an application parameter max parallop. Each
156operator instance runs sequentially and uses a single CPU
157core at a time.5 The number of available instances for a given
158operator is defined as its level of parallelism. As a consequence,
159a stream ðA;BÞ can be constituted by several sub-streams,
160each connecting one of the instances of operator A to one of
161the instances of operator B. To simplify the discussion, we
162assume that the SPS is able to fairly distribute the load among
163the available instances of each operator. This is achieved by
164means of grouping functions that manage how tuples in a
165stream aremapped in its sub-streams [12], [13], [14].
166When an application is run, the SPS uses a scheduler to
167assign the execution of each single operator instance to a
168worker node among the many available in a computing clus-
169ter. We assume that worker nodes in the cluster are homo-
170geneous (same configuration for CPU cores, speed,
171memory, etc.) and can be activated on-demand as for an
172IaaS provider. At each point in time the application configu-
173ration is defined by the parallelism for each operator and the
174number of used worker nodes. We define three possible
175states for a worker node at runtime by comparing its CPU
176usage6 to two thresholds (cpu_min_thr < cpu_max_thr):

177� cpu_low: CPU usage < cpu_min_thr
178� cpu_avg: cpu_min_thr � CPU usage � cpu_max_thr
179� cpu_stress: CPU usage > cpu_max_thr

Fig. 1. SPS computation model.

5. This operator execution model is common to several SPSs like
Apache Storm [10] and Apache Flink [11].

6. We consider the cumulative CPU usage on all its cores, averaged
over a sliding window to avoid oscillations.
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180 Similarly, we define three possible states for an operator
181 instance at runtime by comparing its CPU core usage to two
182 thresholds (core_min_thr < core_max_thr):

183 � oper_low: core usage < core_min_thr
184 � oper_avg: core_min_thr � core usage � core_max_thr
185 � oper_stress: core usage > core_max_thr
186 The configuration of a SPS is correct as long as no opera-
187 tor instance and no worker node is in the stress state. Note
188 that we are here considering CPU-bound applications. A
189 more complete model that considers memory and band-
190 width consumption is subject of our future work. Since we
191 assume a homogeneous cluster, we define minimal configu-
192 ration as a correct configuration having the minimum
193 number of worker nodes required to sustain a certain
194 input load.
195 The SPS can be scaled by tweaking the operator parallel-
196 ism or the number of available worker nodes. These two
197 operations can be performed independently as they address
198 two different issues: operator overloading and scarceness of
199 computing resources, respectively. In some cases, increas-
200 ing the level of parallelism for an operator, i.e., increasing
201 the number of instances for that operator, may also impact
202 resource provisioning demanding for further working
203 nodes. Furthermore, we cannot exclude that in some (unfre-
204 quent) cases scaling up the parallelism of an operator may
205 possibly induce a reduction of resource provisioning. The
206 operations of increasing or decreasing an operator parallel-
207 ism or the number of available worker nodes are named
208 scale out and scale in respectively.
209 We consider that reconfigurations have a cost (reconfigu-
210 ration overhead) due to (i) the elastic controller execution and
211 (ii) a period of performance degradation whose amplitude
212 and duration are mainly related to: (a) Rstate, i.e., the opera-
213 tor state migration time; (b) Rrestart, i.e., the time due to
214 topologies restarting; (c) Rqueue, i.e., the time to process
215 tuples queued during Rstate þRtime. These time periods
216 strictly depend on the specific strategies employed by the
217 SPS to handle application reconfigurations at runtime.
218 The problem we tackle in this paper is how to choose, at
219 runtime, configurations for a SPS in such a way that all will
220 be correct despite variations in the input load (i.e., number
221 of tuples per second injected in the system). Ideally, these
222 configurations should also be minimal but we cannot guar-
223 antee such a property.

224 3 ELYSIUM

225 3.1 Symbiotic Scaling Strategy

226 ELYSIUM is based on the following idea: stress at the opera-
227 tor instance level and stress at the worker node level are two
228 different issues that can be addressed by separately scaling-
229 in/out operators and worker nodes. In some cases, the two
230 issues are interrelated in such a way that both operators
231 and worker nodes will be scaled-in/out. Fig. 2 depicts the
232 different scaling strategies used by ELYSIUM. Fig. 2a
233 shows the operator scaling operation where for one or more
234 operators the number of parallel instances is decreased or
235 increased. This strategy can be adopted when an operator
236 instance is in a oper_stress status, as this may indicate that
237 a single instance is saturating a CPU core because it is
238 overloaded by incoming tuples. By increasing the operator

239parallelism we increase the probability that its load will be
240shared among other instances, thus alleviating its stress
241state. Fig. 2b shows the dual resource scaling operation per-
242formed to scale-in/out resources by adding or removing
243worker nodes assignable by the SPS scheduler. This strategy
244can be adopted when one or more worker nodes have their
245CPU in a cpu_stress status, as this may indicate that the
246resources available to the SPS scheduler are insufficient to
247handle the global application input load. By increasing the
248amount of available resources we decrease stress on pre-
249existing worker nodes, thus allowing the SPS to ingest more
250data for the application. Finally, Fig. 2c shows a joint scaling
251operation where resources and operators are scaled-in/out
252together. This strategy can be adopted when the scale-out of
253one or more operators saturates available resources, thus
254requiring a resource scale-out operation. This is the strategy
255employed by most of the elastic scaling solutions for SPS
256present in the state of the art (see Section 6). The picture
257shows that we don’t rule out the possibility of scaling-in
258resources after having scaled-out processes (and vice-versa).
259These counter-intuitive scenarios may arise in specific set-
260ting where, for example, after an operator scale-out deci-
261sion, the SPS scheduler is a able to better distribute
262instances over the available worker nodes, thus reducing
263the global load on the cluster.

2643.2 Architecture

265ELYSIUM profiles the SPS and the applications running
266on top of it with the aim of producing accurate estima-
267tions about the resource consumption a specific configura-
268tion can cause given a certain input load. By leveraging
269such estimations, ELYSIUM periodically calculates a new
270configuration to be adopted by the SPS during the next
271assessment period. This calculation is performed striving to
272minimize the number of used worker nodes, while pro-
273viding a configuration that will be correct with high prob-
274ability for the whole duration of the next period. The
275assessment period can be tuned depending on the specific
276cluster characteristics, and accordingly to the desired
277tradeoff between (i) the need to reduce the amount of
278time the system will run in a non correct configuration,
279and (ii) the reconfiguration overhead caused by adopting
280each new configuration.
281ELYSIUM can be used either in reactive or proactivemode.
282The difference lies in the input load used for the estimations:
283if the real current input load is used, then ELYSIUM scales
284reactively, otherwise, if input load is forecasted over a certain
285prediction horizon, then ELYSIUM scales proactively. In the
286former case the assessment is performed such that the new
287configuration is correct with respect to the recently observed
288input load. Conversely, in the latter case ELYSIUM uses the

Fig. 2. Scaling options in a distributed stream processing system.
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289 maximum predicted input load for the next assessment
290 period as ametric to identify correct configurations.
291 While working in reactive mode, ELYSIUM profiles the
292 applications to learn what would be the CPU usage for the
293 worker nodes in a certain configuration when a given input
294 load is fed to the SPS. This is accomplished by splitting ELY-
295 SIUM execution in two phases: a profiling phase, where it
296 learns these information, and an autoscaling phase, where it
297 makes periodical assessments leveraging learned applica-
298 tion profile. While working in proactive mode, the profiling
299 phase also includes an input load learning step used to
300 enable load prediction.
301 ELYSIUM’s architecture (Fig. 3) includes three subsys-
302 tems: (i) a Monitoring subsystem which collects and pro-
303 vides the metrics required to carry out the two phases, (ii)
304 an Application Profiler subsystem implementing the phase
305 1 and (iii) an AutoScaling subsystem for the phase 2.
306 Monitoring Subsystem. The Monitoring subsystem con-
307 sists of a set of monitoring agents deployed over the worker
308 nodes and ametric DBwhere metrics are stored. Each metric
309 agent monitors the operator instances running on the same
310 worker node where it is deployed, collects metrics and peri-
311 odically stores average values computed over a sliding time
312 window into the metric DB. Collected metrics are (i) inter-
313 operator instance traffic, measured as the tuple rate for each
314 pair of communicating operator instances, (ii) CPU usage of
315 each operator instance and (iii) CPU usage of the whole
316 worker node due the SPS. In proactive mode, also the input
317 load is collected, and it is measured as the tuple rate in
318 input to each application running in the SPS.
319 Application Profiler Subsystem. The Application Profiler
320 subsystem is in charge of learning specific characteristics of a
321 running application by analyzing the data stored in the met-
322 ric DB after that application ran for a sufficiently long period
323 of time (see Section 5). While working in reactive mode, it
324 includes three distinct profilers, each aimed at learning a spe-
325 cific aspect of an application: (i) the Selectivity Profiler (SP)
326 learns the selectivity of each operator (see Section 2), (ii) the
327 Operator CPU Usage Profiler (OCUP) learns how the CPU
328 usage of each operator instance varies as a function of its
329 input rate and (iii) the Overhead Profiler (OP) learns how the
330 CPU usage of a worker node varies depending on the sum of

331the CPU usages of its operator instances. The latter is
332required as, typically, SPSs impose some overhead over run-
333ning applications to provide basic services like process man-
334agement, message queue control threads, etc. Therefore, the
335worker node total CPU usage is the sum of the usage
336imposed by running operator instances and the overhead.
337While working in proactive mode, a further Input Load Pro-
338filer (ILP) is used, to learn input load patterns over time.
339The outputs from the profilers constitute the application
340description parameters (see Fig. 3) that will be used by the
341AutoScaling subsystem to estimate the state of worker nodes
342and operator instances (see Section 2). In the following, we
343detail the profilers and data they collect. For the sake of sim-
344plicity, the formalisms used to model managed data don’t
345include applications’ and operators’ identifiers when they
346are obvious.

347� SP—Extracts metrics related to inter-operator
348instance traffic from the metric DB to create a dataset
349with records in the form hup op; dn op; tuple ratei,
350where tuple rate is the average tuple rate of the
351stream from up op upstream operator instance to
352dn op downstream operator instance. The output of
353the SP is the selectivity for each stream, as defined in
354Section 2.
355� OCUP—Retrieves data from the metric DB to create
356a dataset having records for each operator instance
357structured as htuple rate; cpu usagei, where tuple
358rate is the average input rate of the operator
359instance, and cpu usage is the CPU usage (in Hz7)
360that the worker node needs to run the operator
361instance. The output of the OCUP is a function for
362each operator that, given the input rate, returns the
363expected CPU usage that one of its instance entails.
364� OP—Reads the metric DB to extract a dataset con-
365sisting of records in the form hcpu usage ops; cpu
366usage spsi. Each record maps the sum of CPU usages
367of all operator instances running on a worker node
368(cpu usage ops) with the CPU usage of that worker
369node (cpu usage sps). Its output is a function that
370returns the expected CPU usage of a worker node
371due to the SPS overhead, given the sum of CPU
372usages due to the operator instances running on it.
373� ILP—Profiles input load over time for each running
374application, on the base of data extracted from the
375metric DB. Such dataset includes records in the form
376hts; input loadi, where input load is the average
377input load observed during one minute8 starting at
378timestamp ts. The output of the ILP is a function that
379returns the maximum input load expected during
380the next prediction horizon, given in input the day of
381the week, the hour, the minute, and the input loads
382seen in the last nILP minutes, where nILP is a config-
383uration parameter whose value must be tuned
384empirically. This kind of input enables a combina-
385tion of prediction approaches: one simply based on

Fig. 3. ELYSIUM Architecture integrated in the SPS. The dotted blue line
indicates modules involved in the first phase of application profiling, the
red dotted one those involved in the second phase of autoscaling. The
Input Load Profiler, represented with a yellow background, is used only
when switching from reactive to proactive mode.

7. Using Hz as a metric for CPU usage allows our system also to
support heterogeneous nodes.

8. We considered a one minute granularity for collecting input load
data as this value, from our experimental evidence, provided the best
compromise for input load predictions [15].
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386 current time (the day of the week, the hour, the min-
387 ute) to profile periodic trends, and another based on
388 time series (input loads seen in the last n minutes) to
389 catch behaviors depending on patterns.
390 AutoScaling Subsystem. The AutoScaling subsystem starts
391 to work once the profiling phase ends, so that it can leverage
392 the application description parameters provided by the
393 Application Profiler subsystem. It includes two compo-
394 nents: (i) the Estimator, which uses fresh data from the met-
395 ric DB to compute functions provided by the profilers so
396 as to expose methods for obtaining estimations and predic-
397 tions on specific applications, and (ii) the AutoScaler, which
398 starts the assessments and leverages these Estimator’s meth-
399 ods to decide the new configuration to use.
400 The Estimator exposes four methods:

401 � getOperatorInputRate()—Traverses the appli-
402 cation graph and uses operator selectivities obtained
403 by the SP to compute the expected operator input
404 rates starting from the application input load.
405 � getOperatorInstanceCpuUsage()—Estimates
406 CPU usage of operator instances by dividing the
407 total expected input rate of an operator by its paral-
408 lelism and then using this value to feed the profile
409 function returned by OCUP.
410 � getCpuUsages()—Provides an estimation of the
411 CPU usage of worker nodes given (i) the allocation
412 of operator instances to worker nodes provided by
413 the SPS scheduler and (ii) expected CPU usage for
414 all operator instances. The estimation for a given
415 node is obtained by summing the CPU usage of
416 operator instances running on it, and then feeding
417 this value to the profile function returned by OP.

418� predictInputLoad()—This methods is used only
419in proactive mode and returns the maximum input
420load predicted for an application for the next predic-
421tion horizon. It is implemented by computing the
422function provided by the ILP on the inputs obtained
423from the metric DB.
424

425Algorithm 1. AutoScaling Algorithm

4261: function COMPUTECONFIG(Estimator E, Scheduler S,
427List h Application i apps, List h int i input loads)
4282: for all application ak in apps do
4293: for all operator oi in ak do
4304: iri  E:getOperatorInputRateðinput loadsk; oiÞ
4315: pi  1
4326: while E:getOperatorInstanceCpuUsageðoi; iripi Þ >
433core max thr & pi < max paralloi do
4347: pi  pi þ 1
4358: while E:getOperatorInstanceCpuUsageðoi; iripi Þ <
436core min thr & pi > 1 do
4379: pi  pi � 1
43810: worker nodes 1
43911: while true do
44012: allocation S:allocateðapps; worker nodesÞ
44113: cpu usages E:getCpuUsagesðallocation; input loadsÞ
44214: if 8x 2 cpu usages : x � cpu max thr then
44315: return worker nodes; fpig
44416: worker nodes worker nodesþ 1

445Fig. 4 shows an example of how the Estimator works.
446The AutoScaler module works by invoking periodically
447its computeConfig() method (reported in Algorithm 1)
448accordingly to the configured assessment period. This oper-
449ation allows to choose the configuration to apply in order to
450efficiently sustain an expected input load during the next
451assessment period. It takes as input (i) a reference to the
452Estimator component, (ii) a reference to the SPS scheduler
453used to compute allocations of operator instances to worker
454nodes, (iii) the list of applications currently running in the
455SPS, and (iv) the corresponding input loads. In reactive
456mode, these input loads are directly read from the metric
457DB, while in proactive mode they are predicted by the Esti-
458mator and obtained by calling the predictInputLoad()

459method for each running application. The computation of a
460new configuration is performed by two consecutive stages.
461First, the parallelism of each operator is adapted to avoid
462any CPU core overloading or under-utilization (operator par-
463allelism scaling). Then, the minimum number of worker
464nodes is identified to run all the operator instances without
465saturating the CPU of any worker node (resource scaling).
466Each stage decides a scaling action along a different dimen-
467sion, and the second one takes into account the possibly
468updated operators’ parallelism decided in the first stage.
469The first stage (lines 2-9 of Algorithm 1) analyzes for each
470running application ak the status of their operator oi.
471Estimator’s methods getOperatorInputRate() and
472getOperatorInstanceCpuUsage() are invoked to eval-
473uate the CPU load that each of the pi instances (where pi is
474initialized to 1) of oi would produce on the CPU core where
475it is running, given the input load for ak. Since it is assumed
476that the input rate of an operator gets equally split among
477its instances (see Section 2), the value of pi can be adjusted

Fig. 4. Example of estimator’s functioning on a 3 operator application.
The estimator, through the method getOperatorInputRate(), start-
ing from an input load x, traverses the application graph by using the
selectivities provided by the SP to compute the input rate of each opera-
tor; in the figure above the input rate of the operator B is x, while the
input rate of the operator C is aBC � x, where aBC is the selectivity of
the stream BC. Through the method getOperatorInstanceCpuUs-

age() the estimator first obtains the input rate of each operator instance
by dividing the input rate of each operator by its parallelism (figure
below), then, by using the function provided by the OCUP, it infers the
operator instance CPU usage. Finally, through the method getCpuUs-

ages() the estimator infers the CPU usage of each worker node by
taking from the SPS scheduler an allocation of operator instances on
worker nodes. In proactive mode the input load x is predicted though the
predictInputLoad()method.

LOMBARDI ET AL.: ELASTIC SYMBIOTIC SCALING OF OPERATORS AND RESOURCES IN STREAM PROCESSING SYSTEMS 5
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479 core load greater than core max thr), or decreasing it in
480 case of core under-utilization (estimated CPU core load
481 lower than core min thr), until a steady point is reached,
482 i.e., operators in state oper_avg.
483 In the second stage (lines 10-16 of Algorithm 1), multiple
484 potential configurations, each differing for the number of
485 used worker nodes are checked. The process starts by
486 checking the configuration with the least number of workers
487 nodes (i.e., 1 node) and proceeds by increasing the worker
488 nodes one at a time until a configuration is found that has
489 no bottleneck: this is the configuration that will be used in
490 the next assessment period. For each configuration, the
491 scheduler is requested to produce an allocation, which is a
492 mapping of the operator instances of running applications
493 to the worker nodes of the configuration to test. Such an
494 allocation and the input load of each application are passed
495 to the getCpuUsages()method exposed by the Estimator,
496 and the list of CPU usages of the worker nodes in the config-
497 uration being checked is obtained. If any of such worker
498 nodes is in stress state, then the current configuration does
499 not contain enough available resources for the computation;
500 one more worker node must be added and the new configu-
501 ration needs to be checked again. Conversely, the number
502 of worker nodes with the number of instances for each oper-
503 ator of the submitted applications is returned.

504 4 ELYSIUM IMPLEMENTATION IN STORM

505 In this section we describe how we implemented each com-
506 ponent of ELYSIUM and how we integrated it into Apache
507 Storm [10], a widely adopted framework for distributed
508 SPS. The way ELYSIUM is integrated with Storm is shown
509 in Fig. 5 and described in following sections.
510 In Storm jargon applications, called topologies, are repre-
511 sented as acyclic graphs of operators, called components.
512 Source components are called spouts, while all the others are
513 named bolts. Spouts usually wrap external data sources and
514 generate the input load for applications. At runtime, each
515 component is executed by a configurable number of
516 threads, called executors, which are the instances of the oper-
517 ators. Storm does not provide support for stateful operator
518 migration at runtime. For this reason, in this implementa-
519 tion we consider Rstate ¼ 0.
520 A Storm cluster comprises a single master node (Nimbus)
521 which coordinates all the other nodes each locally managed
522 by a special process called Supervisor. Each Supervisor pro-
523 vides a fixed number of Java processes (workers) to run exec-
524 utors. A topology can be configured to run over a precise

525number of workers. The Nimbus is in charge of deciding
526the allocation of executors to available workers by running
527a scheduling algorithm. Application developers can use the
528embedded even scheduler, provided by Storm, or implement
529custom allocation strategies through a generic scheduler
530interface. As a rule of thumb, each topology should use a sin-
531gle worker per supervisor in order to avoid the overhead of
532inter-process communication. Indeed, the default scheduler
533strives to choose the workers for a topology in such a way.
534The Nimbus also provides a rebalance API to dynamically
535vary (i) the number of workers a topology can use to run its
536executors (resource scaling), and (ii) the number of executors
537for each component (operator scaling).
538Monitoring Subsystem. The monitoring agents are threads
539that run inside the workers and monitor executor metrics
540by leveraging Storm’s metrics framework. With reference to
541Section 3.2, monitored metrics are (i) the rate of tuples
542received by bolts (to monitor inter-operator traffic), (ii) the
543CPU usage of the executors, (iii) the CPU usage of the work-
544ers, and (iv) the rate of tuples emitted by spouts (to monitor
545the input load). Our prototype stores every 10 seconds into
546an Apache Derby DB [16] (the metric DB hosted on the Nim-
547bus) average metric values computed over a sliding win-
548dow of 1 minute.
549Application Profiler Subsystem. Profilers are implem-
550ented as standalone Java applications. They access every
55110 seconds the metric DB to extract the required data and
552build a dataset. Once the profiling phase ends, they produce
553the output functions and store them as Java objects serial-
554ized to file.
555The SP provides the list of selectivities for each stream in
556the topology by averaging over time collected selectivities.
557This approach is motivated by the initial assumption on
558constant selectivities. Tests reported in Section 5 show that
559SP provides reliable predictions for selectivities also with
560real workloads that show little selectivity oscillations.
561As output OCUP, OP and ILP produces Artificial Neural
562Networks (ANNs)9 through Encog [17]. Specifically, the
563OCUP employs an ANN for each component of the topol-
564ogy, each one having a single input node for the input rate,
565and a single output node with the estimated CPU core
566usage. Similarly, the OP employs an input node for the sum
567of CPU usages due to executors and an output node with
568the estimated CPU usage of the worker node. The ILP
569employs a different ANN that takes as input the day of the
570week, the hour, the minute and the input loads seen in the
571last nILP minutes. More details about ANNs’ setting and
572their training are discussed in Section 5.
573AutoScaling Subsystem. The AutoScaling subsystem is
574implemented as a Java library to be imported by the Nim-
575bus. It implements the scheduler interface, and the Nimbus
576is configured to be invoked periodically with period equals
577to the chosen assessment period. In this way, assessments
578are executed at the right frequency and have access to all
579the required information about allocations.
580The Estimator is a Java object that accesses the metric DB
581and implements the methods introduced in Section 3.2. It

Fig. 5. ELYSIUM deployment in storm.

9. We consider that ANNs can be one of the best solutions for our
requirements as they provide (i) a data-driven non-linear model and
(ii) the ability to generalize and infer unseen parts of a population [15].
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583 system by unserializing them.
584 The AutoScaler is the Java object that implements the
585 scheduler interface and executes Algorithm 1. It wraps
586 the default scheduler of Storm and uses it to simulate
587 allocations when checking the effectiveness of configura-
588 tions. In case the chosen configuration is different
589 from the current one, it issues a rebalance operation
590 through the Nimbus API to apply the new configuration,
591 that is to assign (i) a different number of workers to a
592 topology, and (ii) a different number of executors to each
593 component.

594 5 EXPERIMENTAL EVALUATION

595 5.1 Environment and Deployment

596 Testbed. The environment used to deploy and test ELY-
597 SIUM was composed by 4 blade servers IBM HS22, each
598 equipped with 2 Quad-Core Intel Xeon X5560 2.28 GHz
599 CPUs and 24 GB of RAM. We distributed the Storm frame-
600 work on a cluster of 5 VMs, each equipped with 4 CPU
601 cores and 4 GB of RAM. One was dedicated to hosting the
602 Nimbus process and the Apache Derby DB, while the
603 remaining 4 hosted the worker nodes. One further VM
604 was used for the Data Driver process, in charge of generat-
605 ing the input load. This VM was equipped with 2 CPU
606 cores and 4 GB of RAM. The Data Driver process generates
607 tuples according to a given dataset, then sends them to a
608 HornetQ [18] Java Messaging Service (JMS) queue. The
609 spouts are connected to such JMS queue to get the tuples
610 to inject into the topology.
611 Reference Applications and Dataset. To evaluate ELYSIUM
612 we implemented two topologies that we refer to as T1 and
613 T2 respectively: T1 performs a Rolling-Top-K-Words compu-
614 tation [19] and T2 implements Sentiment Analysis [20]. Each
615 operator in the topologies has a parallelism in the range
616 ½1; 4�. We evaluated ELYSIUM by using both synthetic and
617 real traces to generate the input load. As synthetic traces,
618 we employed (i) a stair-shaped curve, (ii) a sine function,
619 and (iii) a square wave. As real trace we used a subset of a
620 10 GB Twitter dataset containing 3 months of tweets cap-
621 tured during the European Parliament election round of
622 2014 fromMarch to May in Italy. To make tests with the real
623 trace practical, we applied to them a 60 : 1 time-compres-
624 sion factor to allow the replay of the real trace with reason-
625 able timing.
626 Evaluation Metrics. The effectiveness of ELYSIUM has
627 been evaluated considering the following metrics:

628� the throughput degradation, measured as the percent-
629age difference over time between input load and
630throughput, where the throughput is rate of acked
631input tuples (see Section 2). The throughput degra-
632dation is computed as jinput load�throughputj

input load . Note that
633throughput degradation becomes greater than 1
634when there is a large number of input tuples buff-
635ered in the queue. In this case the throughput can
636become much larger than the input load, hence
637jinput load� throughputj > input load;
638� the percentage of nodes saved with respect to a stati-
639cally over-provisioned configuration; let N be the
640number of assessments done during the evaluation,
641C the number of worker nodes defined in the over-
642provisioned configuration, ci the configuration cho-
643sen by the ith assessment, this metric is computed as

6441�
PN

i¼1 ci
NC ;

645� the latency, i.e., the average tuple completion time.
646Whenever applicable these metrics have been computed
647over sliding time windows or as an overall value for the
648entire test.
649Parameters Setup. All our tests were conducted using the
650prototype introduced in Section 4. To properly set the thresh-
651olds presented in Section 2, we adopted a methodology
652based on Reinforcement Learning. We used Q-Learning [21]
653during the profiling phase starting with no knowledge of the
654application behavior. To find the cpu max thr, the Reward
655Function RðthresholdÞwe propose aims at maximizing node
656usage, hence looks for themaximumCPU threshold that cor-
657responds to the lowest throughput degradation; specifically
658Rðcpu max thrÞ ¼ cpu max thr� throughput degradation.
659The Q-Learning rewards are shown in Table 1 where it is
660possible to see that the max reward is given to a threshold of
6610.8, i.e., 80 percent CPUusage. Fig. 6 shows how the through-
662put degradation and nodes savedmetrics change in function
663of the max CPU threshold. Specifically, Fig. 6a backups the
664result that the 80 percent of CPU usage seems to be the best
665cpu max thr as larger values impose a larger throughput
666degradation. In a similar waywe computed the other thresh-
667olds: their values are 0.25 for core min thr and 0.65 for
668core max thr.
669The ANNs have been tuned by following some empirical
670rules presented in [15]: the ILP ANN has 13 input nodes, 1
671hidden layer with 24 neurons, 5 output nodes for direct pre-
672diction (i.e., a prediction for each future minute) and linear-
673tanH-tanH activation functions. Data are normalized with
674the min-max normalization ½0; 1� and the dataset was split
67570 percent training and 30 percent test. For OCUP/OP
676ANN we set 1 hidden layer with 3 neurons, tanH-tanH-tanH
677activation functions. We trained the ANNs with the Resil-
678ient Backpropagation [22] and a 10-cross validation to avoid
679overfitting. The profiling phase duration is application
680dependent. Basically, the more data you collect, the more
681accurate the prediction will be. In our scenario we notice
682that injecting a variable workload for 30 minutes is enough
683to achieve a good prediction accuracy (see next section).

6845.2 ELYSIUM Evaluation

685Reconfiguration Overhead. The overhead introduced by ELY-
686SIUM is negligible. The metrics monitoring CPU usage and

TABLE 1
Reward of Q-Learning for

CPU max_threshold

CPUMax Threshold Reward

0.60 0.53
0.65 0.57
0.70 0.62
0.75 0.66
0.80 0.71
0.85 0.65
0.90 0.43
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688 10 seconds). The bandwidth consumed for metric collection
689 is just fewKB, depends on the number of operator instances,
690 and it is independent from the input load. The real-time com-
691 putation of the AutoScaler is lightweight and consumes an
692 insignificant amount of CPU periodically. Furthermore, this
693 computation is carried out on the machine hosting the Nim-
694 bus, so it doesn’t compete for resources with running topolo-
695 gies. When the configuration has to be changed, the
696 throughput of an application degrades. In our experiments,
697 a reconfiguration is triggered by issuing a rebalance com-
698 mand to the Nimbus, which causes such degradation for two
699 reasons mainly: first, topologies have to be restarted
700 (Rrestart), which takes 5 to 8 seconds in our testbed. During
701 this period, the application cannot process tuples, so they are
702 buffered before the spout component (into the JMS queue in
703 our topologies). Second, once topologies become ready to
704 work, the spouts start retrieving tuples from the input
705 queues at the highest possible rate. This is likely to causes a
706 non-negligible load peak with a consequent resource over-
707 loading, regardless of the actual input load curve. So, after
708 the restart of the topology, a transient phase occurs where
709 the cluster is likely to move in a stress state because applica-
710 tions need to drain accumulated input tuples (Rqueue) to
711 finally keep up with the real input load. The length of this
712 transient phase depends on how many tuples are queued
713 while the reconfiguration takes place. This is a common
714 behavior for SPSs that, like Storm, do not allow dynamic
715 reconfigurations of running applications at runtime.
716 To measure how the assessment period impacts the
717 reconfiguration overhead, we deployed T1 over an over-
718 provisioned configuration (no worker nodes nor operators
719 in stress state) and injected 9 minutes of sinusoidal input
720 load. In this setting, we computed the throughput degrada-
721 tion for different assessment periods. As expected, Fig. 6c
722 clearly shows the throughput degradation gets larger as the
723 assessment period is shortened.

724By comparing these results with the quasi-zero through-
725put degradation obtained without reconfigurations and in
726an over-provisioned setting (see Fig. 9), it can be noted that
727reconfiguration overhead is significant. Therefore, the
728assessment period has to be tuned accordingly to input load
729variability and throughput degradation tolerance. In our
730tests, we set the assessment period to 1 minute. Therefore,
731pessimistically assuming reconfigurations occur at each
732assessment, the baseline value of the throughput degrada-
733tion for comparisons is 0.64 (with 2 minute assessment
734period, the throughput degradation would be 0.43).
735Estimator Accuracy. The accuracy of the estimations pro-
736vided by the Estimator depends in turn on the accuracy of
737the profiles learned by the SP, the OCUP, and the OP.
738Table 2 shows average and standard deviation of the
739selectivities observed for the streams of T1, during a
74030 minutes test with the stair-shaped curve as input load.
741Reported standard deviations are very small, which back-
742ups the implementation choice for the SP, described in
743Section 4, of modeling selectivities with constant values.
744The stream Counter - IntermediateRanker is the only one hav-
745ing a large standard deviation. This is due to the semantics
746of the Counter bolt; indeed, it sends tuples downstream to
747the IntermediateRanker bolt periodically, independently of its
748input rate. The impact on the estimation is negligible as at
749runtime the input rate of the bolts downstream the Counter
750bolt is very small and produces really small CPU usage. The
751accuracy of the OCUP is related to the estimations of CPU
752usage for an operator instance given its input rate. Average
753mean percentage error of estimations is under 3 percent. Fig. 7
754reports the real CPU usage over time of the instances of two
755operators, aggregated by operator, and the corresponding
756estimations provided by the OCUP. In this test, a sinusoidal
757input load was injected in the topology for 25 minutes. As

Fig. 7. Comparison between real and estimated total CPU usage (in Hz)
for all instances of T1’s Counter and StopWordFilter operators.

Fig. 6. Throughput degradation (a,c) and nodes saved (b) due to parameters setup (threshold cpu max thr and assessment period).

TABLE 2
Selectivity of T1’s Streams

Stream Average Std. Dev.

WordGener - StopWordFilter 17.86 0.54
StopWordFilter - Counter 0.68 0.02
Counter - IntermRanker 0.41 0.34
IntermRanker - FinalRanker 0.01 0.00
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759 CPU usage.
760 The OP estimates the CPU usage of a worker node as a
761 function of the sum of the CPU usage of all the operator
762 instances running in that node. In this way, it is possible to
763 take into account the overhead caused by the SPS such
764 as tuple dispatching and thread management. Fig. 8 depicts
765 the profiling of such overhead in a worker node of our
766 cluster. Such profiles provide all the information needed to
767 infer the total CPU usage of a worker node.
768 Comparing Joint and Symbiotic Scaling. To define the policy
769 enforced by the joint scaling approach, we took inspiration
770 from [23]:10 operator scale-out entails adding a new resource,
771 while operators scale-in and resource scale-in/out are independent.
772 This means that another worker node is added whenever
773 any operator is scaled-out, while operator scale-in doesn’t
774 affect resource scaling. Furthermore, in case no operator is
775 scaled, resources are scaled in or out on the base of current
776 worker nodes’ CPU usage. Since joint scaling is reactive,
777 ELYSIUM was set in reactive mode as well and a same acti-
778 vation threshold for both approaches was considered, such
779 to provide a fair comparison.
780 To highlight the advantage of scaling on a single dimen-
781 sion only, either operators or resources, we first show a case
782 where scaling only operators, and not resources, can be
783 enough to make the application sustain an input load peak.
784 Fig. 10a shows a throughput comparison over T1 between a
785 static configuration and an operator-only AutoScaler. The
786 static configuration has 2 worker nodes and all operators
787 with parallelism set to 1, so there are 6 executors over 8 cores
788 (2 worker nodes with 4 cores) running operators, and 2
789 remaining cores used by other Storm processes.
790 The static configuration cannot sustain the input load
791 change occurring at about second 180, and the throughput
792 drops after a couple of minutes. The AutoScaler starts with
793 the same configuration, then scales up when the peak
794 occurs, as it detects an operator stress. It changes the paral-
795 lelism of the stressed operator (StopWordFilter in this case)
796 from 1 to 2 and the throughput, after some oscillations due
797 to reconfiguration overhead, increases keeping up with the
798 input rate. The inverse operation (operator scale-in) occurs
799 at about second 600, where the two operator instances
800 become under-utilized and the parallelism is set back to 1.
801 The next experiment aims at underlining the limitation of

802the joint scaling regarding its possibility to scale resources
803in/out of a single unit (single-level). On the contrary, the pro-
804posed scaling approach leverages the Estimator to choose
805the proper number of worker nodes to use (multi-level). For
806this test, we used a step-shaped input load over T1, as
807shown in Figs. 10b and 10c, where throughput and used
808worker nodes comparisons are shown, respectively. These
809figures clearly show that both the scaling strategies suffer
810the input load peak at the beginning. While the symbiotic
811scaling resumes sustaining the input load after 80 to 90 sec-
812onds from the peak, the joint scaling makes the application
813throughput break down for a few tens of seconds, then
814manages to keep up after about two and half minutes from
815the input load peak. When the input load decreases at min-
816ute 6, the symbiotic approach scales in the resources after
817one minute, and the throughput gradually decreases to
818match the input load. During this settlement period, the
819throughput is larger than the input load because of the
820reconfiguration overhead. The joint scaling performs worse
821as it requires more reconfigurations to reach the correct one,
822so it pays a much larger overhead, while ELYSIUM provi-
823sions the right amount of resources with a single reconfigu-
824ration. Indeed, joint scaling takes a few tens of seconds
825longer than ELYSIUM to generate a throughput equal to the
826input load. Besides providing smaller throughput degrada-
827tion (0.59 against 0.78), the symbiotic approach allows to
828save resources as show in Fig. 10c (see also Fig. 9, where an
829overview of all the tests executed is reported). Throughput
830degradation of symbiotic scaling is slightly better than that
831obtained by reconfiguring every minute (see Fig. 6c).
832To provide a better understanding on the way operators
833and resources are scaled symbiotically, we show the results

Fig. 9. Evaluation summary. The second column indicates the reference
to the figure in this paper; the third column refers to the scaling strategy,
where ELYSIUM can be set either reactive (R) or proactive (P).

Fig. 8. Worker node CPU usage as a function of the sum of the CPU
usage of all the executors running in such worker node.

10. Note that here we aim at comparing symbiotic versus joint
approaches and not the systems themselves as they are widely different.
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834 of an experiment that used a square wave input load over
835 T1. Figs. 10d and 10e present respectively how the number
836 of worker nodes and the parallelism of T1’s StopWordFilter
837 (the most significant operator in T1) change over time, for
838 joint and symbiotic scaling (i.e., ELYSIUM). With the symbi-
839 otic approach it is possible to adapt faster than with the joint
840 one, for what regards both the resources and the operator
841 parallelism. The throughput degradation is similar but

842larger with ELYSIUM (1.7 versus 1.49) as a lower number of
843nodes is used compared to the joint approach, which
844instead over-provisions the topology and does not experi-
845ence overloading. Indeed, nodes saved are 25 percent for
846joint scaling and 35 percent for ELYSIUM. We experienced
847similar results with T2 (Fig. 10i): slightly larger throughput
848degradation (1.03 versus 0.99), but more nodes saved
849(33 percent versus 13 percent).

Fig. 10. Comparison between joint scaling and symbiotic scaling (ELYSIUM) while injecting different traces toward T1 and T2.
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850 To complete the comparison between joint scaling and
851 ELYSIUM, we show how they differ in used worker nodes
852 over time for other distinct input load curves. Fig. 10f shows
853 the comparison with a stair-shaped input load over T1.
854 Globally the throughput degradation is smaller for ELY-
855 SIUM (0.81 versus 0.97 of the joint), while saving more
856 resources (43 percent versus 32 percent with joint scaling).
857 Similar results are reported in Figs. 10g and 10j for a
858 sinusoidal input load over T1 and T2 respectively. In both
859 cases, ELYSIUM provides a lower throughput degradation
860 (1:01=0:17 versus 1:25=0:63), while they differently save
861 nodes (47=22 percent versus 25=30 percent). Finally,
862 Figs. 10h and 10k show the results with the Twitter trace
863 over T1 and T2. In both tests ELYSIUM has a lower through-
864 put degradation (0:86=0:48 versus 1:25=0:49) and more
865 nodes saved (45=52 percent versus 24=48 percent).
866 The performance of ELYSIUM compared to joint scaling
867 in terms of latency are shown in Fig. 11. Specifically, it is
868 possible to see that the trend of the latency of both
869 approaches when injecting a square curve is similar for both
870 T1 and T2 (Figs. 11a and 11d). For the twitter trace, instead,
871 ELYSIUM and joint scaling, for both T1 and T2, differ in
872 specific periods as they use a different policy to scale
873 (Figs. 11c and 11f). The main differences are appreciable
874 from tests using a sinusoidal wave as input load, as shown
875 in Figs. 11b and 11e where ELYSIUM outperforms the joint
876 approach, showing pretty smaller latency values.
877 Managing Multiple Applications. To test the ability of
878 ELYSIUM to scale in presence of multiple applications, we
879 ran two tests with both T1 and T2 deployed in the same
880 cluster. In the first test we injected a step input load of

881200req=s in T1 and a stair wave in T2. From Figs. 12a and
88212b it is possible to see how the two topologies require dif-
883ferent number of nodes as well as different number of
884operators. Specifically, the nodes of T2 change over time
885as it has to handle a larger workload, while T1 always uses
886a single node. Nevertheless, T1 frequently requires an
887increases of its operator parallelism, as the overhead due
888to reconfigurations leads to a larger usage of some opera-
889tors. Conversely, in a second test we injected a sinusoidal
890input load in both T1 and T2 with different magnitudes.
891Figs. 12d and 12e show how T1 and T2 differently scale for
892nodes and operators. From Figs. 12c and 12f, it is possible
893to see how the latency of both T1 and T2 is quite stable
894and, obviously, T2 has in both cases larger values as it han-
895dles a larger workload.
896Proactive Symbiotic Scaling. ELYSIUM can be used in
897either reactive or proactive mode. Proactive scaling can help
898reducing the delay between when the reconfiguration
899occurs and when its effects are actually needed. Here, we
900implemented a technique that over-provisions resources for
901the next temporal horizon. By setting for instance a horizon
902of h minutes, the proactive system computes a prediction of
903the input load for each minute from tþ 1 to tþ h, and uses
904the highest forecasted input load to estimate required
905resources. Figs. 13a, 13b, and 13c show the comparison
906on used worker nodes between reactive and proactive
907ELYSIUM, while injecting three different input load curves
908toward T1. Note that the strategies used by the proactive
909and reactive systems are exactly the same, the unique differ-
910ence lying in the reconfiguration point that for the proactive
911version results closer to the real demand point.

Fig. 11. Comparison on latency between ELYSIUM and joint scaling while injecting different input load curves toward the two topologies.
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Fig. 12. ELYSIUM handling two topologies with different workloads.

Fig. 13. The figures above show the comparison on used worker nodes between reactive and proactive ELYSIUM according to specific input load
curves toward T1. The figures below show the comparison on throughput degradation and nodes saved aggregates between joint and symbiotic
reactive/proactive approaches, with different input load curves.
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912 In terms of nodes saved, the differences are negligible
913 (very few nodes), but available resources are used more effi-
914 ciently. Figs. 13d and 13e shows the overall results of these
915 comparisons in terms of throughput degradation and nodes
916 saved. For the square wave input load (i.e., the most critical
917 pattern for reactive ELYSIUM), the throughput degradation
918 drops from 1.7 to 1.2 showing a notable improvement that
919 clearly justifies the usage of a proactive approach.
920 Overall Result. The overall main results are: (i) ELYSIUM
921 always outperforms the joint scaling approach in term of
922 saved resources, (ii) ELYSIUM is anyway able to sustain the
923 same workload, often with a lower throughput degradation
924 and lower latencies due to its ability to scale more units per
925 time and (iii) the proactive version of ELYSIUM can reduce
926 the impact of the reconfiguration overhead and further
927 improve performance of the symbiotic approach.

928 6 RELATED WORK

929 Elastic scaling is a well known problem in the area of cloud-
930 based platforms, where a lot of efforts have been devoted to
931 the identification of efficient scalability policies [24] as well
932 as metrics and benchmark methodologies [25]. How to scale
933 SPSs has been extensively studied and analyzed from an
934 application-level perspective by Hirzel et al. in [4]. Most of
935 the works that tackle this problem at the application level [2],
936 [26], [27] assume that a fixed amount of computing resources
937 are available, and then strive to define the best allocation of
938 operators to such resources. From this point of view, ELY-
939 SIUM works on a fully orthogonal direction, as we assume
940 that a possibly infinite amount of resources is available (like
941 in a cloud computing scenario), but aims at consuming the
942 minimum amount needed to run the SPS with the goal of
943 being cost efficient. Differently from previous solutions,
944 ELYSIUM manages operator and resource scaling in a sym-
945 biotic fashion, deciding which one to apply or whether to
946 apply both depending on the specific scenario.
947 A large fraction of solutions available in the literature scale
948 one resource at a time. A notable exception is represented by
949 [2], where the authors propose rapid scaling i.e., a solution
950 that reduces the number of iterations needed to reach the tar-
951 get configuration. ELYSIUM further improves along this
952 same direction by providing a solution that removes/provi-
953 sions multiple resources in a single scale-in/out action on
954 the basis of the resource usage estimated from either current
955 or predicted input load, depending on whether the reactive
956 or proactivemode is enabled.
957 Heinze et al. in [5] presented a solution to perform hori-
958 zontal scaling according to the workload pattern evolution
959 and by optimizing a cost function. Such prototype extends
960 the FUGU stream processing system [6], where the authors
961 compared threshold-based techniques with reinforcement
962 learning techniques as defined in [24]. Furthermore, in [28]
963 they proposed a latency aware solution. ELYSIUM, with
964 respect to the previous solutions, is able to predict large
965 load fluctuations and thus allows scale-in/out of multiple
966 instances and resources at the same time.
967 While the majority of the works are reactive and based on
968 thresholds, i.e., they act after an overload/underload detec-
969 tion, Ishii et al. in [29] proposed a proactive solution to
970 move part of the computation to the cloud when the local

971cluster becomes unable to handle the predicted workload.
972The proactive model we propose is more fine-grained
973thanks to a resource estimator that allows to accurately com-
974pute the expected resource consumption given an input
975load and a configuration.
976Recently, some efforts have also been spent to consider
977together problems related to elasticity and fault tolerance.
978In [23], the authors considered the problem of scaling state-
979ful operators deployed over a large cloud infrastructure. In
980cloud environment, in fact, failures are common and man-
981aging replicated operators in presence of crash and recover-
982ies introduces additional overheads with respect to those
983imposed by automatic scaling. The scaling strategy they
984propose, contrarily from us they (i) used a joint approach
985hence the detection of an overloaded operator leads to the
986allocation of new resources, and (ii) scale one unit per time.

9877 CONCLUSION

988In this paper we presented ELYSIUM, an elastic scaling
989framework for SPS. ELYSIUM first uses a Profiler to learn
990the behavior of a SPS application, then predictively scales
991the system symbiotically along two distinct dimensions:
992operator parallelism and resources. Through an experimen-
993tal evaluation based on a real prototype integrated in Storm,
994we showed how ELYSIUM outperforms a joint scaling strat-
995egy, while always saving more resources.
996As future directions, we aim to design a more complete
997model for resource estimation including memory and
998bandwidth so as to integrate shedding techniques to tackle
999bandwidth bottlenecks. Considering other optimization
1000techniques proposed in [4], we also plan to integrate further
1001solutions (e.g., smart operator placement to improve load
1002balancing among resources [30]) and scaling according to
1003predefined SLAs, such as maximum latency, as we similarly
1004did in [31], in a more complete framework.
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