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This paper deals with the vibration analysis of adjacent structures controlled by a magnetorheological (MR) damper and with the
discussion of a numerical procedure for identification and definition of a reliable finite element model. The paper describes an
extensive experimental campaign investigating the dynamic response, through shaking table tests, of a tridimensional four-story
structure and a two-story structure connected by an MR device. Several base excitations and intensity levels are considered. The
structures were tested in nonconnected and connected configuration, with theMRdamper operating in passive or semiactivemode.
Moreover, the paper illustrates a procedure for the structural identification and the definition of a reliable numerical model valid
for adjacent structures connected by MR dampers. The procedure is applied in the original nonconnected configuration, which
represents a linear system, and then in the connected configuration, which represents a nonlinear system due to theMR damper. In
the end, the updated finite element model is reliable and suitable for all the considered configurations and the mass, damping, and
stiffness matrices are derived.The experimental and numerical responses are compared and the results confirm the effectiveness of
the identification procedure and the validation of the finite element model.

1. Introduction

Different control techniques are available for structural
protection against dynamic actions [1]. Control devices are
conveniently positioned in the structures to limit the dynamic
response. In the context of civil engineering, control tech-
niques may be applied to different structural configurations,
such as buildings and bridges. Bridges’ and single buildings’
cases are usually analyzed and examined in depth, whereas
the case of adjacent buildings and more generally of adjacent
structures is less studied; however, this case seems just as
interesting and peculiar, since the closeness of the structures
can be conveniently used to link them through special control
devices. Such a solution may be applied to reduce one or
both structural responses, according to the control strategy
selected, and may also overcome the problem of pounding,
if necessary. For different reasons, civil structures are often
built close to each other, but such a situation is also frequently
observed in other engineering branches. In fact, it is not rare
to find different components located in the same industrial

plant within a small space, or various machineries adjacently
positioned inmechanical factories, or contiguous elements in
aerospace applications and so on.

Some theoretical studies exist in which structural control
is effectively applied to adjacent structures by means of
passive viscoelastic [2, 3] or hysteretic [4–7] devices, or using
semiactive or active devices [8–10]. Concerning the use of
semiactive devices, [8, 10] deals with aspects related to the
design of an appropriate control law comparing through
numerical models different control strategies, while in [9]
the effectiveness of MR damper is examined for seismic
response mitigation under coupled building control scheme,
involving passive and semiactive control strategies.Moreover,
the influence of damper location and maximum command
voltage on control performance is also examined.

Concerning the experimental studies, most of them focus
on passive devices [11–14], while only few deal with active and
semiactive control [15–18] and the experiments are usually
performed utilizing a reduced number of dynamic inputs.
References [15, 16, 18] present experiments that make use of
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semiactive control strategy, whereas [17] reports an exper-
imentation performed using active control. In particular,
Xu et al. [18] presented an experimental investigation to
explore the possibility of using magnetorheological dampers
to connect a podium structure to a multistory building.
The dynamic characteristics of the two buildings without
any connection and with a rigid connection were first
identified.Then two buildingmodels without any connection
with the rigid connection and with the MR damper were
tested under the El Centro seismic ground motion. To the
author’s knowledge, an extensive dynamic experimentation
on adjacent structures connected with magnetorheological
(MR) dampers is illustrated only in [15].

Another crucial role, when dealing with these features,
is played by the identification of these types of structures.
In fact, when the mechanical characteristics are known, it is
possible to determine if damage occurred in the structure,
especially after significant events. In literature, there are
examples of identification on controlled structures [17–23].
For the most part, studies concern the identification of
the modal parameters (frequencies, damping factors, and
mode shapes) of the structures with or without control
devices and the identification of frequency response func-
tions (FRFs), for example, [17, 18]. At most, a state-space
model is defined, while a complete finite element model
and the representation with the second-order formulation
are not often supplied. Notwithstanding, the knowledge
of a complete numerical model, when fine-tuned to the
experimental response through a calibration of mechanical
properties, is an important instrument that can even be used
to make predictions on the future structural response.

In this respect, the present paper deals with the vibration
analysis of adjacent structures controlled by a magnetorheo-
logical (MR) damper and with the discussion of a numerical
procedure for the identification and definition of a reliable
finite element model (FEM). The tridimensional physical
model consists of a four-story structure and a two-story
structure connected at the second level by the control device,
with the possibility of acting in passive or in semiactive
mode. Another paper by the authors in [15] analyzed the
theoretical aspects of the control strategy applied to adjacent
structures and evaluated the effectiveness to reduce structural
responses. The main contribution of the paper is the descrip-
tion of an extensive experimental campaign with shaking
table tests devoted to investigating the dynamic behavior of
the uncoupled and coupled structures; then, it also makes
use of experimental results to illustrate a procedure aiming
to achieve the structural identification and the definition of
a reliable numerical model for adjacent structures connected
by control devices. Since the approach presented is general,
it is usable also for different kinds of control devices. The
campaign is carried out on a shaking table using a wide
variety of base excitations such as sine sweep, white noise,
and natural earthquakes, at several intensities. The method
for the identification procedure and model definition follows
three steps: (i) the vibration analysis of the system, (ii) the
identification of first-order modal models from experimental
data through the ERA/OKID algorithm [24, 25], and (iii) the
definition of an accurate finite element model by means of an

Figure 1: Tridimensional physical model mounted on the shaking
table with MR damper at the second story.

updating procedure.Theprocedure is applied at a first stage in
the original nonconnected configuration, which represents a
linear system, and then in the connected configuration,which
represents a nonlinear system due to the presence of the MR
damper.

In the end, an updated finite element model, reliable and
suitable for all the examined configurations, is obtained and
the mass, damping, and stiffness matrices for a second-order
formulation are supplied.

The paper is organized as follows. Section 2 describes
the test set-up and experimental program; Section 3 defines
the identification procedure and model definition; Section 4
presents the results carried out on the nonconnected config-
uration, whereas Section 5 presents analogous results for the
connected configuration. Finally, Section 6 concludes with
a summary about the dynamics, identification, and finite
element modeling of adjacent structures controlled by MR
dampers.

2. Description of the Test Set-Up and
Experimental Program

2.1. Physical Model and MR Damper. The tridimensional
physical model consists of a pair of structures (a 4-story and
a 2-story one) of different heights, Figure 1. It is a laboratory
1 : 5 scaled model (length scale 𝜆𝐿 = 5). The taller structure
is 4.80m high and has a total mass of 520Kg (structure A).
The shorter structure is 2.40m high and has a total mass
of 256Kg (structure B). Both of them have plan dimensions
of 0.60 × 0.60m and an interstory height of 1.20m, with
main dimensions shown in Figures 2(a) and 2(b); the distance
between the structures is 0.40m. Frames are made of steel
Fe360, using common profiles L40 × 40 × 4mm; all the
connections are bolted. Four steel plates, with total mass of



Shock and Vibration 3

MR

z

x

400mm

600mm 600mm

24
00

m
m

12
00

m
m

4
80

0
m

m

(a)
x

y
600mm 600mm

6
00

m
m

uy

ux

u0

(b)

Fy

C0

uu

K0

XA1 XA2

(c)

Figure 2: Dimensions of the adjacent structures andMR damper numerical model: (a) elevations; (b) plan, with model’s degrees of freedom;
(c) device numerical model.

80 kg, are placed at each level. Both structures are braced in
the 𝑦𝑧 direction in order to provide a substantially planar
dynamic behavior. However, the number and placement of
these bracings, Figure 3, provides a weak modal coupling
(translation in 𝑥 direction and rotation): the physical model
is not perfectly symmetric with respect to 𝑥 direction; for this
reason the problem is not perfectly plane.

An MR damper is installed at the second level between
the structures.Thedevice uses the typical property of control-
lable magnetorheological fluids: when exposed to a magnetic
field, it can change in milliseconds its characteristics from a
linear viscous fluid to a semisolid state. The literature reports
many applications of MR dampers in several engineering
fields, including mechanics, aerospace and robotic [26], and
also biomedical [27] and civil engineering [28].Theprototype
of the MR damper is the RD-1005-3 model, produced by
the Lord Corporation. The maximum current supplied is
1 A DC, which corresponds to an input voltage of 2.5 V,

whereas the minimum corresponds to 0V. The damper has
a maximum stroke of ±25mm, and the maximum extension
force should be kept below 4448N. As the magnetic field is
applied, the damping characteristics of the fluid increase with
a response time of about 25 milliseconds. It can operate in
passive (constant voltage) and semiactive (variable voltage in
accordance with a specific control strategy) mode.

2.2. Shaking Table and Measurement Instruments. Shaking
table tests are conducted utilizing an MTS shaking table
available at the ENEA Casaccia Laboratory. The main
nominal characteristics of the shaking table are frequency
range 0–50Hz, peak acceleration 3 g, maximum displace-
ment ±125mm, maximum velocity ±0.5m/s, and maximum
overturning moment about 300 kNm.

The structures and the shaking table are instrumented
with accelerometers and displacement transducers, Figure 3:
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Figure 3: Instrumentation set-up: location and direction.

(i) Accelerometers (PCP Piezotronics 3701G3FA3G): 2
are installed in𝑥 and𝑦 direction on the table, (sensors𝐺𝑥 and 𝐺𝑦); 6 are installed on structure A, 5 in 𝑥
direction (sensors a1–a5) and 1 in 𝑦 direction (sensor
a6); 2 are installed on structure B, in 𝑥 direction
(sensors a7-a8).

(ii) Laser displacement transducers (Microeplison
Optoncdl LD1605-200): sensors d1 and d2 are
assigned to measure relative displacement of the first
two levels of structure A, while sensors d3 and d4 are
used to measure relative displacement between the
structures.

(iii) Linear Variable displacement transducers LVDT
(Micro EpsilonWDS300P60SRU): sensors d5 and d6
measure interstory displacement for the third and
fourth levels of structure A.

A load cell (piezoelectric HBM, 500Kg) measures the MR
damper control force.

Data achieved are acquired at 500Hz, using anMTS469D
system.

2.3. Test Program. The physical model is tested under several
base excitation time histories at several intensity levels.

A white noise input at low Peak Ground Acceleration
(PGA), 0.05–0.1 g, and a sine sweep sinusoidal input at
frequencies increasing between 1 and 25Hz at 0.1 g are used to
dynamically characterize the system. Natural seismic inputs
of El Centro, Hachinohe, Kobe, and Northridge earthquakes
are used to evaluate the performance of the control strategy
[15]. It should be noted that the white noise can be regarded
as such in the frequency range of interest for the structures
examined, which is approximately 0–25Hz.

Considering the geometrical scaling factors, a time scal-
ing factor, 𝜆𝑇 = 1/√𝜆𝐿 = 0.447, and a magnitude
scaling factor with PGA levels varying from 0.3 g to 1 g are
introduced.

Different configurations for the adjacent structures have
been considered:

(i) Nonconnected configuration (NC);
(ii) Connected configuration (CC): rigid (RC), passive

(PC), and semiactive (SAC).

3. Identification Procedure and
Model Definition

A general procedure for structural identification and for
the definition of a reliable numerical model for adjacent
structures connected by MR dampers is proposed making
use of the experimental results. Since the approach presented
is general, it can be used even for different kinds of control
devices.

The method follows three steps: (i) the vibration analysis
of the system, (ii) the identification of a first-order modal
model (frequencies, damping ratios, and complex eigenvec-
tors), and (iii) the definition of an accurate finite element
model (and of the second-order model) by means of an
updating procedure.

The procedure is applied at a first stage in the original
nonconnected configuration and then in the connected
configuration. In the end, an updated finite element model,
reliable and suitable for all the examined configurations, is
obtained and the mass, damping, and stiffness matrices for a
second-order formulation can be supplied.

In the experimentation, the structures were excited with
a monodirectional input along the 𝑥-axis. However it was
impossible to fully prevent shaking table acceleration from
spilling over to the 𝑦 direction. Such a component of
acceleration influenced in some way the dynamic response
and brought out some unexpected natural frequencies. For
this reason, in the identification procedure and in the model
definition, both base acceleration is, at times, considered.

The ERA/OKID algorithm [24, 25, 29] is utilized to
provide an identified first-order representation of the system.
The measured bidirectional base acceleration 𝑎𝑟 (𝑟 = 𝑥, 𝑦)
and the structural responses provide data to obtain, after a
certain number of calculations, the first-order representation
that may be rewritten also in a modal representation. Finally,
frequency response functions (FRFs) relating to the two
different inputs are obtained.
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3.1. Second-Order Model. The equations of motion for the𝑁𝑖 (𝑖 = 𝐴, 𝐵) degree-of-freedom (DOF) coupled structures
shown in Figure 1 are

Mẍ (𝑡) + Lẋ (𝑡) + Kx (𝑡)
= Bu (𝑡) −M𝜏𝑥𝑎𝑥 (𝑡) −M𝜏𝑦𝑎𝑦 (𝑡) (1a)

y (𝑡)
= C𝑜 [x (𝑡) ẋ (𝑡) ẍ (𝑡)] +D𝑜𝑢u (𝑡) +D𝑜𝑥𝑎𝑥 (𝑡)
+D𝑜𝑦𝑎𝑦 (𝑡)

(1b)

M=[M𝐴 0
0 M𝐵

] ;

L = [L𝐴 0
0 L𝐵

] ;

K = [K𝐴 0
0 K𝐵

] ,

(1c)

where x, ẋ, and ẍ are𝑁×1 (𝑁 = 𝑁𝐴+𝑁𝐵), vectors containing
structural displacements, velocities, and acceleration;M𝑖, L𝑖,
and K𝑖 (𝑖 = 𝐴, 𝐵) are 𝑁𝑖 × 𝑁𝑖 matrices and represent,
respectively, mass, damping, and stiffness matrices; u is a𝑁𝑢 × 1 vector containing control forces with 𝑁𝑢 number
of control devices, while 𝑎𝑟 (𝑟 = 𝑥, 𝑦) are the ground
acceleration. Matrix B, of𝑁×𝑁𝑢 dimensions,and vectors 𝜏𝑟,
of𝑁×1 dimensions, locate the different inputs to the DOF of
structures. Finally, y indicates the 𝑁𝑚 × 1 vector containing
the outputs and C𝑜 and D𝑜𝑙 (𝑙 = 𝑢, 𝑥, 𝑦) indicate matrices (of
proper dimensions) depending on the considered outputs.

3.2. First-Order Model. Equations (1a), (1b), and (1c) may be
rewritten in a first-order representation in the continuous
time domain as follows:

ż (𝑡) = Az (𝑡) + B𝑢u (𝑡) − B𝑥𝑎𝑥 (𝑡) − B𝑦𝑎𝑦 (𝑡) (2a)

y (𝑡) = Cz (𝑡) +D𝑢u (𝑡) +D𝑥𝑎𝑥 (𝑡) +D𝑦𝑎𝑦 (𝑡) (2b)

A = [ 0 I
−M−1K −M−1L] ,

B𝑢 = [0B] ,

B𝑥 = [ 0
M𝜏𝑥

] ,

B𝑦 = [ 0
M𝜏𝑦

] ,

(2c)

where z(𝑡) = [x(𝑡)𝑇 ẋ(𝑡)𝑇]𝑇 is the state vector; C and D𝑙 are
related to C𝑜 eD𝑜𝑙 , 𝑙 = 𝑢, 𝑥, 𝑦.

Storing the eigenvalues in the 2𝑁 × 2𝑁 matrix Λ =
diag [𝜆1 𝜆2 ⋅ ⋅ ⋅ 𝜆2𝑁], and the corresponding eigenvectors

in the 2𝑁 × 2𝑁 matrix Φ = [Φ1 Φ2 ⋅ ⋅ ⋅ Φ2𝑁]. Eqs. (2a)
and (2b) can be expressed in the modal representation, using
a new variable z(𝑡) = Φ𝜉(𝑡),Φ = [𝜑𝑇 (𝜑Λ)𝑇]𝑇; see [30]:

𝜉̇ (𝑡) = Λ𝜉 (𝑡) +Φ−1B𝑢u (𝑡) −Φ−1B𝑥𝑎𝑥 (𝑡)
−Φ−1B𝑦𝑎𝑦 (𝑡) (3a)

y (𝑡) = CΦ𝜉 (𝑡) +D𝑢u (𝑡) +D𝑥𝑎𝑥 (𝑡) +D𝑦𝑎𝑦 (𝑡) . (3b)
The structural outputs can be related to the inputs by applying
the Laplace transformation (indicated with the symbol ⋅̃ (𝑠))
and using (3a) and (3b):

ỹ (𝑠) = H𝑢 (𝑠) ũ (𝑠) −H𝑥 (𝑠) 𝑎̃𝑥 (𝑠) −H𝑦 (𝑠) 𝑎̃𝑦 (𝑠) (4a)

H𝑢 (𝑠) = CΦ [𝑠I − Λ]−1Φ−1B𝑢 (4b)

H𝑟 (𝑠) = CΦ [𝑠I − Λ]−1Φ−1B𝑟, 𝑟 = 𝑥, 𝑦, (4c)
where 𝑠 indicates the Laplace variable andH𝑙(𝑠), (𝑙 = 𝑢, 𝑥, 𝑦)
are the frequency response functions (FRFs). In (4a) terms
related to matrixD𝑙 (𝑙 = 𝑢, 𝑥, 𝑦) are not considered.

Equations (4a), (4b), and (4c) can also be expressed as in
[31, 32]:
𝐻𝑢𝑖𝑗 (𝑠)
= 𝑛∑
𝑘=1

(𝜑𝑖𝑘𝜑𝑘𝑗 + 𝜑∗𝑖𝑘𝜑∗𝑘𝑗) 𝑠 + (𝜑𝑖𝑘𝜆∗𝑘𝜑𝑘𝑗 + 𝜑∗𝑖𝑘𝜆𝑘𝜑∗𝑘𝑗)𝑠2 − (𝜆𝑘 + 𝜆∗𝑘) 𝑠 + 𝜆𝑘𝜆∗𝑘
(5a)

𝐻𝑟𝑖 (𝑠)
= 𝑛∑
𝑘=1

(𝜑𝑖𝑘𝑄𝑟𝑘 + 𝜑∗𝑖𝑘𝑄∗𝑟𝑘) 𝑠 + (𝜑𝑖𝑘𝜆∗𝑘𝑄𝑟𝑘 + 𝜑∗𝑖𝑘𝜆𝑘𝑄∗𝑟 𝑘)𝑠2 − (𝜆𝑘 + 𝜆∗𝑘) 𝑠 + 𝜆𝑘𝜆∗𝑘 ,
𝑟 = 𝑥, 𝑦,

(5b)

where 𝑘 indicates the considered mode and 𝑖 and 𝑗 indicate,
respectively, the DOF where the output is measured and
the DOF where the input is applied; finally, (∗) indicates
the complex conjugate. Examining the FRFs concerning the
seismic excitation (5b), the following equalities have been
demonstrated in [32], for a classically damped structure:

𝜑𝑖𝑘𝜆∗𝑘𝑄𝑟𝑘 + 𝜑∗𝑖𝑘𝜆𝑘𝑄∗𝑟𝑘 = 𝜃𝑟𝑖𝑘 = 𝜑𝑖𝑘𝑝𝑟𝑘 (6a)

𝜑𝑖𝑘𝑄𝑟𝑘 + 𝜑∗𝑖𝑘𝑄∗𝑟𝑘 = 0. (6b)
Eq. (6a) defines the seismic eigenvectors components 𝜃𝑟𝑖𝑘
[33, 34]; 𝑝𝑟𝑘 = 𝜑𝑇𝑘M𝜏𝑟/𝜑𝑇𝑘M𝜑𝑘 (𝑟 = 𝑥, 𝑦) indicates the modal
participation factor, while 𝜑𝑘 are the natural eigenvectors of
the second-order model. It is important to observe that the
seismic eigenvectors are defined independently of the way
the system eigenvectors are scaled: they provide information
about the system properties.

For each structure, the considered DOFs at each level are
the center of mass translation 𝑢 and V in the 𝑥 and 𝑦 direc-
tions and the rotation 𝜃 about the 𝑧 direction, Figure 2(b).
Consequently 𝑁𝐴 = 12 and 𝑁𝐵 = 6. In the nonconnected
configuration, the structures move independently, so𝑁𝑢 = 0.
In the connected configuration, the structures are linked at
the second level by the MR damper so𝑁𝑢 = 1.
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3.3. MR Damper Model. It is known that an MR damper
subjected to harmonic excitation at a given level of input
voltage manifests viscoplastic behavior [15]. A reliable model
able to reproduce suchmechanical behavior is represented by
the modified Bouc-Wen model [35], which is utilized in this
paper to simulate the MR damper control force. The model,
originally developed in [36], is schematically represented in
Figure 2(c). The force 𝑢 can be expressed as follows:

𝑢 (𝑡, 𝑉, 𝛿, 𝛿̇) = 𝐹𝑦 (𝑉)𝛿𝑦 𝜁 + 𝐶0 (𝑉) 𝛿̇ + 𝐾0 (𝛿 − 𝛿0) , (7)

where 𝑉 is the input voltage imposed on the device, 𝛿0 is the
initial deformation, and 𝜁(𝑡) is an auxiliary variable related to
the deformation 𝛿(𝑡) = 𝑥𝐵2(𝑡) − 𝑥𝐴2(𝑡) through the following
equation:

𝜁̇ (𝑡) = 𝛿̇ ⋅ (𝐴 − 𝛽 ⋅ 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨𝑛 − 𝛾 ⋅ sgn (𝛿̇) ⋅ 𝜁 ⋅ 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨𝑛−1) . (8)

Assigning𝐴 = 𝐴𝛿𝑦 = 1 and 𝛽+𝛾 = 𝛽𝛿𝑦 +𝛾𝛿𝑦 = 1, 𝐹𝑦 and 𝛿𝑦
represent the yielding force and the yielding deformation, 𝐶0
is the damping coefficient, and𝐾0 is the linear spring stiffness.

For MR devices, the parameter which can be directly
regulated in order to change the control force intensity is the
input voltage (𝑉) in the range of variation 𝑉 = [𝑉min =0, 𝑉max]. In the passive case, the voltage remains constant,
whereas in the semiactive case it may vary among several
states following an established control law. In the semiactive
case, the input voltage has been changed in accordance with
a local ON–OFF control algorithm based on the Lyapunov
stability theory. See for details [15]. In the adoptedmechanical
model, 𝐹𝑦 and 𝐶0 are the only quantities varying with the
input voltage 𝑉.
4. Study of the Nonconnected
Configuration (NC)

In the nonconnected configuration, the adjacent structures
move independently. The section is organized following the
three steps described in Section 3. In the end, numerical
and experimental outcomes will be compared to assess the
feasibility of the model.

Among all the records achieved by sensors represented
in Figure 3, acceleration measured by sensors a1–a8 is con-
sidered the most reliable and will be used in further analysis
(𝑁𝑚 = 8).
4.1. Vibration Analysis. The first test examined is the sine
sweep at PGA 0.1 g with a frequency range of 1–25Hz and
a sweep rate of 0.20Hz/sec. By considering the acceleration
recorded by sensors a1–a5 installed on structure A in the 𝑥
direction, Figure 4, four natural frequencies appear clearly
at about 2.7, 8.1, 13.3, and 17Hz. It should be noted that
resonant frequency around 8.3Hz does not appear for sensor
a3: this position represents therefore a vibratory node. The
acceleration recorded by sensor a6, installed at the fourth
floor in the 𝑦 direction, detects resonances at about 8.3 and
12.5Hz, and smaller amplitudes are observed with respect to
the acceleration measured in 𝑥 direction by sensors a1–a5.
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Figure 4: Nonconnected (NC) configuration, acceleration mea-
sured by sensors a1–a8. Sine sweep frequency test PGA 0.1 g.

Sensors a7 and a8 detected three natural frequencies at about
5.1, 14.5, and 19.8Hz for Structure B.

4.2. Identification of the First-OrderModel. The identification
procedure has been performed to obtain modal parameters
for the structures.

Figures 5(a) and 5(b) show the identified FRFs H𝑟 (𝑟 =𝑥, 𝑦) obtained using data recorded during the white noise
test with PGA 0.1 g, considering ground acceleration in 𝑥
and 𝑦 direction, respectively. The identified FRFs H𝑥 for
structure A, corresponding to sensors a1–a6 in Figure 5(a),
show four resonant frequencies at about 2.7, 8.15, 13.18, and
16.85Hz. Also for sensor a6, the identified FRF shows a
sole amplification at about 8.15Hz, in conformity with the
experimental one. In accordance with this evidence, the
acceleration in the 𝑦𝑧 plane, due to the base excitation in
the 𝑦 direction is reasonably negligible. The identified FRFs
H𝑦 in Figure 5(b) show lower amplifications when compared
with the ones related to the base excitation in 𝑥 direction,
at the same frequencies. For sensors a1–a5 the amplifications
highlight the same first three natural frequencies but with
lower amplitudes, while only a light amplification around
8.15Hz is observed for sensor a6. The identified FRFs H𝑥 for
structure B, corresponding to sensors a7 and a8 in Figure 5(a),
show three natural frequencies at about 5.25, 14.43, and
19.66Hz. The identified FRFs H𝑦 in Figure 5(b) show lower
amplifications when compared with the ones related to the
base excitation in 𝑥 direction at the same frequencies. Only
the last frequency, about 19.66Hz, is more evident.

As a matter of fact, the results obtained by observing
the identified FRFs suggest a fundamentally planar dynamic
behavior for the structures: acceleration recorded in the 𝑥
direction is strictly related to the excitation in the same
direction. The frequency observed for structure A at about
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Table 1: Nonconnected (NC) configuration. Structures A and B identified frequencies and damping factors versus PGA.

Mode 1 2 3 4 1 2 3 4
PGA Frequency (Hz) Damping factor (%)

Structure A
0.05 g 2.73 8.22 13.30 17.08 0.70 0.65 0.67 0.85
0.10 g 2.70 8.15 13.18 16.85 2.29 1.05 0.98 1.12
0.30 g 2.54 7.95 12.90 16.54 6.80 1.86 1.75 2.57

Structure B
0.05 g 5.28 14.49 19.70 0.38 0.35 0.32
0.10 g 5.25 14.43 19.66 0.75 0.53 0.41
0.30 g 5.10 14.30 19.40 2.53 0.82 0.62
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Figure 5: Nonconnected (NC) configuration, identified frequency response functions: (a) sensors a1–a8 versus ground acceleration 𝑥
direction; (b) sensors a1–a8 versus ground acceleration 𝑦 direction. White noise test PGA 0.1 g.

8Hz highlights a mode which has components in the 𝑦
direction as well. Since the excitation in 𝑦 direction was
lower than the excitation in 𝑥 direction and the amplification
measured by sensor a6 was very low compared to those
detected by sensors a1–a5, only information obtained with
excitation in 𝑥 direction is considered in the following.

Once the 𝜆𝑖 eigenvalues have been identified, system
frequencies and damping factors are evaluated [32]. Both the
tests with a lowPGA (white noise at 0.05–0.1 g) and a test with
a higher PGA (Kobe at 0.3 g) are considered. Table 1 contains
the identified frequencies and damping factors for both struc-
tures at different PGA levels. Concerning frequencies of both
structures, by comparing values identified at different PGA, a
general trend becomes evident: they decrease by increasing
PGA. This fact can be interpreted as a not perfectly linear
structural behavior (probably due to bolted connections).
For structure A, the first frequency decreases from 2.74Hz
at 0.05 g PGA to 2.54Hz at 0.3 g, with a difference of 6%.
Frequencies of higher modes have a lower variation with
respect to the base excitation level (2-3%). For structure B,

the maximum frequency shift (around 3%) occurs in the
fundamental frequency, while other frequencies show a shift
of approximately 1%.

PGA level influences damping ratio as well. Considering
all the identified modes, it is possible to state that damping
ratios increase by increasing PGA. Besides, it is possible to
notice that themodal characteristics identified for structureA
aremore influenced by the PGA level than those identified for
structure B. For the sake of exemplification, let us observe the
damping ratio of the first mode. For structure A, it increases
from 0.70% at 0.05 g to 6.80% at 0.3 g; for structure B, it
increases from 0.38% to 2.53%.

Seismic eigenvectors, estimated with (6a) and (6b), are
identified by considering the white noise test at 0.1 g and the
Kobe earthquake test at 0.3 g. Tables 2 and 3 contain seismic
eigenvectors identified for structures A and B, respectively.

By observing the identified values, it is possible to make
the following considerations:

(1) Seismic eigenvectors were evaluated through (6a).
The quantity in (6b) turned out to be close to zero
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Table 2: Structure A identified seismic eigenvectors, white noise test at 0.1 g; Kobe test PGA 0.3 g.

Mode 1 2 3 4 1 2 3 4
Location x-direction y-direction

Test white noise PGA 0.10 g
a1 −0.33 −0.34 −0.21 −0.05 −0.15 −0.10 0.006 0.016
a2 −0.80 −0.39 0.08 0.09 −0.38 −0.12 −0.002 −0.023
a3 −1.00 0.01 0.17 −0.08 −0.48 0.00 −0.004 0.020
a4 −1.18 0.38 −0.14 0.03 −0.57 0.11 0.003 −0.009
a5 −1.27 0.34 −0.14 0.04 −0.61 0.10 0.004 −0.010
a6 0.02 −0.08 −0.01 0.00 0.01 −0.02 0.000 −0.001

Test Kobe PGA 0.30 g
a1 −0.35 −0.29 −0.20 −0.02 −0.07 −0.30 −0.14 −0.01
a2 −0.86 −0.36 0.08 0.03 −0.16 −0.37 0.06 0.02
a3 −1.06 0.02 0.15 −0.04 −0.20 0.06 0.10 0.00
a4 −1.24 0.36 −0.14 0.01 −0.23 0.40 −0.09 0.04
a5 −1.34 0.30 −0.13 0.02 −0.25 0.29 −0.09 0.01
a6 0.02 −0.10 −0.01 0.01 0.00 −0.16 −0.01 0.00

Table 3: Structure B identified seismic eigenvectors, white noise test at 0.1 g; Kobe test PGA 0.3 g.

Mode 1 2 3 1 2 3
Location x-direction y-direction

Test white noise PGA 0.10 g
a7 0.70 0.30 0.02 0.001 −0.05 0.26
a8 1.22 −0.21 0.02 0.003 0.03 0.41

Test Kobe PGA 0.30 g
a7 0.66 0.23 0.01 0.03 −0.01 0.25
a8 1.18 −0.16 0.01 0.07 −0.01 0.37

and the error in neglecting this term is about 5%.This
means that the system is, with a good approximation,
a classically damped system.

(2) Comparing the seismic eigenvectors in 𝑥 direction
identified through the various tests at different PGA, a
good agreement is generally observed for the shapes.
Comparing the significant components of each eigen-
vector (with values in the order of 10−1) relative
differences are in the range of 5–24%.

(3) Seismic eigenvectors components corresponding to
sensors a1–a5 have higher values when compared to
the components relating to sensor a6.

(4) Seismic eigenvectors in 𝑦 direction for the different
tests are generally well identified in the shape; how-
ever by comparing the significant components of each
eigenvector the differences can be substantial.

(5) Compared to those in 𝑦 direction, seismic eigenvec-
tors in 𝑥 direction show a lower degree of variation
with the excitation considered: the maximum varia-
tion of vector’s components for different tests is about
20%.

(6) Seismic eigenvectors in 𝑦 direction appear more
sensitive to the PGA level than those in 𝑥 direction.

Once modal parameters have been identified (frequencies,
damping ratios, and seismic eigenvectors), the FE model can
be defined and, then, the second-order model representation
can be provided. The model should be suitable for the NC
configuration, as well as for the controlled configuration.
Considering that in the controlled configuration the tests
have been performed with relative higher PGA levels (greater
or equal to 0.3 g) than in the NC configuration, the modal
quantities identified for the Kobe test with 0.3 g will be used
in the further analysis.

4.3. FE Model and Updating Procedure: Numerical-Experi-
mental Comparison. The structures shown in Figure 1 are
modeled using a three-dimensional FE model (COMSOL
Multiphysics 3.2).

Since not all the parameters involved in the model are
considered exactly defined, some of them are considered
variable and a model updating procedure is applied to select
their optimal values. By perturbing the values assumed for the
parameters that are uncertain, a more representative model is
obtained.

Columns, beams, and bracings are modeled with three-
dimensional beam elements. Geometry and masses are con-
sidered known, Figures 2(a) and 2(b). The mass distribution,
for each considered DOF has the following values: structures
A and B translational mass in 𝑥 and 𝑦 direction is equal
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for each floor 𝑚𝑥 = 𝑚𝑦 = 132.34 kg, apart from the top
floor of each structure, which has the value of 𝑚𝑥 = 𝑚𝑦 =123.36 kg. Structures A and B rotational inertia is equal for
each floor 𝐼𝜃 = 30.78 kg⋅m2 except for the top floor of
each structure which has the value 𝐼𝜃 = 22.07 kg⋅m2. The
major uncertainty lies in modeling the bolted connections.
In fact, constraints between the structures and the shaking
table are not well defined, and it is not accurate to model the
columns as perfectly clamped. Since for none of them the base
constraint avoids rotations around 𝑥- and 𝑦-axes, rotational
springs have been inserted.The rigidity𝐾𝑟𝑖, with 𝑟 = 1–4 and𝑖 = 𝐴, 𝐵, is different for each column, but is the same in both
directions.

In addition, connections between columns and other
structural components are bolted. In order to consider this
aspect, different Young’s moduli 𝐸𝑟𝑖, with 𝑟 = 1–4 for
structureA and 𝑟 = 1, 2 for structure B, are considered at each
level. As a result, a total number of 8 and 6 variable parameters
are assumed for structures A and B, respectively.

The procedure of model updating is based on the mini-
mization of the following error function [37]:

e (𝐾𝑟𝑖, 𝐸𝑟𝑖) = (𝛼 − 𝛼̃) (9)

which measures the difference between numerical 𝛼 and
experimental identified quantities 𝛼̃. Vector 𝛼 collects

𝛼 = [𝑓1 𝑓2 ⋅ ⋅ ⋅ 𝑓𝑛 𝜃𝑇1 𝜃𝑇2 ⋅ ⋅ ⋅ 𝜃𝑇𝑛 MAC1 MAC2 ⋅ ⋅ ⋅ MAC𝑛]𝑇 , (10)

where 𝑓𝑖 are the system’s frequencies and 𝜃𝑖 the corre-
sponding seismic eigenvectors, whereas MAC𝑖 are the Modal
Assurance Criterion (MAC) indexes that define the degree of
correlation between the considered seismic eigenvector and
the corresponding identified one. Finally, 𝑛 is the number of
the identified modes which are considered meaningful.

It is important to underline that using seismic eigen-
vectors is possible in order to directly relate the identi-
fied components and the calculated ones. In fact, seismic
eigenvectors, differently from natural eigenvectors, are not
related to the system representation and do not depend on
any assumed normalization, but they are only related to the
system properties [33, 34].

The optimal values for the uncertain parameters (𝐾𝑟𝑖 and𝐸𝑟𝑖) are given minimizing the weighted penalty function:

J = e (𝐾𝑟𝑖, 𝐸𝑟𝑖)𝑇We (𝐾𝑟𝑖, 𝐸𝑟𝑖) , (11)

where W is a proper dimension diagonal matrix, containing
weights, 𝑤𝑖, for the different quantities; such weights are
defined as 𝑤𝑖 = 𝑞𝑖/‖𝛼̃𝑖‖ and are used to consider the
identified modal quantities 𝛼̃𝑖 and their reliability level 𝑞𝑖,
[38].Moreover, in order to improve the convergence, aGauss-
Newton method was utilized with a trust region algorithm.

Concerning the identified frequencies and seismic eigen-
vectors, the values related to base excitation in the 𝑥 direction
have been considered to define the error function (see Tables
1–3). Corresponding MAC indexes are calculated, neglecting
the component corresponding to sensor a6, placed in the𝑦 direction on structure A. The identified frequencies are
considered more reliable than MAC indexes, so their weight
in (11) is increased considering for 𝑞𝑖 a value 10 times higher
than the value assumed for the eigenvectors. Besides, it is
important to note that in the error function e, (9), the number
of equations is higher than the number of unknowns.

Table 4 shows the initial and updated values for the
variable parameters𝐾𝑟𝑖 and 𝐸𝑟𝑖. Frequencies calculated using
the initial and updated FE model and the experimental
identified ones are shown in Table 5. The maximum error
for the updated model is 1%. Corresponding MAC indexes

for each structure are all close to 1 for all modes, indicating
that the correlation between numerical and identified seismic
eigenvectors is high. Numerical seismic eigenvectors with
the updated model relative to the base excitation in 𝑥
direction are reported in Table 6. By comparing numerical
with experimentally identified eigenvectors (Tables 2 and 3,
Kobe earthquake test), maximum error between numerical
and experimentally identified eigenvectors is around the 20%
for structure A and 13% for structure B. Other components
have errors up to 5%.The only exception is a significant error
of about 50% found for the second mode at the location of
sensor a3; this is because this sensor is located in a vibratory
node.

The updated FE model seems feasible; it is therefore pos-
sible to obtain the stiffness matrices to be used in the second-
order model. Tables 7 and 8 show the stiffness matrices for
structures A and B, respectively. Once the mass distribution
values are known, the mass and damping matrices can be
easily derived assuming as damping factors values reported
in Table 1 for the identified modes and the value 1% for the
not identified ones.

Tables 9 and 10 show all the FE model frequencies and
the excited masses for structures A and B, respectively. By
observing the results obtained with the FE model, some
aspects that emerged from the vibration analysis can be
better explained. It can be observed that the modes are
lightly coupled due to the braces placed on the structures.
In fact, the structures are not perfectly symmetric in 𝑥
and 𝑦 directions. Concerning structure A, Table 9, only
the translational models in 𝑥 direction were experimentally
identified (modes 1, 3, 5, and 6). The first mode has 90%
of excited mass in 𝑥 direction. The third mode highlights a
significant excited mass in the 𝑥 direction; however, a low
percentage of mass is excited in the 𝑦 direction as well. In
the vibration analysis, it was observed that the acceleration
recorded by sensor a6, placed in 𝑦 direction on structure
A, during the sine sweep test, showed a resonance at about
8.1 Hz (Figure 4). Therefore, the third mode can be basically
considered a bending mode in the 𝑥 direction, but, due
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Table 4: Initial and updated values of FE model parameters.

𝐾𝑟1
(Nm/rad)

𝐾𝑟2
(Nm/rad)

𝐾𝑟3
(Nm/rad)

𝐾𝑟4
(Nm/rad)

𝐸1
(N/m2)

𝐸2
(N/m2)

𝐸3
(N/m2)

𝐸4
(N/m2)

Structure A
Initial value 1.0 ⋅ 106 1.0 ⋅ 106 1.0 ⋅ 106 1.0 ⋅ 106 2.0 ⋅ 1011 2.0 ⋅ 1011 2.0 ⋅ 1011 2.0 ⋅ 1011
Updated value 4.3 ⋅ 106 3.2 ⋅ 106 4.5 ⋅ 106 3.3 ⋅ 106 1.8 ⋅ 1011 1.9 ⋅ 1011 2.9 ⋅ 1011 2.3 ⋅ 1011

Structure B
Initial value 1.0 ⋅ 105 1.0 ⋅ 105 1.0 ⋅ 105 1.0 ⋅ 105 2.0 ⋅ 1011 2.0 ⋅ 1011 — —
Updated value 4.5 ⋅ 105 3.8 ⋅ 105 4.3 ⋅ 105 4.1 ⋅ 105 2.2 ⋅ 1011 2.6 ⋅ 1011 — —

Table 5: Initial and updated FE model frequencies.

Initial value Updated value Identified value Initial error (%) Updated error (%)
Structure A𝑓1 (Hz) 2.64 2.59 2.54 3.94 0.79𝑓2 (Hz) 7.70 7.94 7.95 3.14 0.38𝑓3 (Hz) 12.19 12.66 12.90 5.50 1.01𝑓4 (Hz) 15.21 16.80 16.54 8.04 1.09
Structure B𝑓1 (Hz) 4.84 5.07 5.10 4.51 0.60𝑓2 (Hz) 12.80 14.30 14.30 10.48 0.00

Table 6: Structure A and B FE model seismic eigenvectors.

Mode 1 2 3 4
Location 𝑥 direction
a1 −0.44 −0.33 −0.21 −0.02
a2 −0.85 −0.29 0.10 0.03
a3 −1.08 0.02 0.14 −0.04
a4 −1.25 0.35 −0.12 0.02
a5 −1.25 0.35 −0.12 0.02
a7 0.77 0.23
a8 1.17 −0.16

Table 7: Structure A stiffness matrix (⋅105) N/m.

6.17 −0.71 0.00 −3.25 0.36 0.00 0.17 0.01 0.00 0.04 −0.05 0.00−0.71 174.38 0.00 −1.10 −94.81 0.00 0.53 5.81 0.00 1.66 8.84 0.00
0.00 0.00 16.03 0.00 0.00 −8.60 0.00 0.00 0.43 0.00 0.00 0.73−3.25 −1.10 0.00 7.67 1.12 0.00 −4.77 −0.40 0.00 0.26 0.00 0.00
0.36 −94.81 0.00 1.12 173.94 0.00 −0.01 −100.25 0.00 −1.46 15.13 0.00
0.00 0.00 −8.60 0.00 0.00 16.33 0.00 0.00 −9.38 0.00 0.00 1.22
0.17 0.53 0.00 −4.77 −0.01 0.00 8.14 −0.59 0.00 −3.54 0.34 0.00
0.01 5.81 0.00 −0.40 −100.25 0.00 −0.59 172.42 0.00 0.96 −79.37 0.00
0.00 0.00 0.43 0.00 0.00 −9.38 0.00 0.00 16.33 0.00 0.00 −7.52
0.04 1.66 0.00 0.26 −1.46 0.00 −3.54 0.96 0.00 3.22 −0.31 0.00−0.05 8.84 0.00 0.00 15.13 0.00 0.34 −79.37 0.00 −0.31 52.01 0.00
0.00 0.00 0.73 0.00 0.00 1.22 0.00 0.00 −7.52 0.00 0.00 5.29
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Table 8: Structure B stiffness matrix B (⋅105) N/m.

7.73 −1.04 −0.01 −4.20 0.38 0.00−1.04 174.93 0.10 1.46 −74.49 −0.04−0.01 0.10 16.51 0.00 −0.04 −7.27−4.20 1.46 0.00 4.02 −0.43 0.00
0.38 −74.49 −0.04 −0.43 59.70 0.03
0.00 −0.04 −7.27 0.00 0.03 6.05

Table 9: Structure A FE model frequencies and excited masses.

Mode 1 2 3 4 5 6 7 8 9 10 11 12
Frequency (Hz) 2.56 6.52 7.98 8.18 12.77 16.72 22.34 32.59 39.65 50.40 61.15 79.08
% dir𝑋 90.02 0.00 7.68 0.02 2.18 0.09 0.00 0.00 0.00 0.00 0.00 0.00
% dir 𝑌 0.01 0.00 0.49 75.87 0.00 0.00 0.00 20.18 0.00 0.00 2.99 0.47
% Rot. 0.00 80.73 0.00 0.00 0.00 0.00 17.24 0.00 2.78 0.37 0.00 0.00

Table 10: Structure B FE model frequencies and excited masses.

Mode 1 2 3 4 5 6
Frequency (Hz) 5.07 14.30 20.69 21.66 42.52 64.11
% dir𝑋 95.85 4.15 0.00 0.00 0.00 0.00
% dir 𝑌 0.01 0.04 0.00 89.51 0.00 10.45
% Rot. 0.00 0.00 91.14 0.00 8.90 0.00

to the small percentage of mass excited in the 𝑦 direction,
a modest amplification was detected by sensor a6 as well.
Concerning structure B, Table 10, the first and second modes
are translational in 𝑥 direction, whereas the third is torsional.
All of them were well identified. The identified frequency
at 19.40Hz, close to the value estimated with the FE model
20.69Hz, could therefore correspond to a torsional mode.
In conclusion, it can be stated that there was a satisfactory
agreement between experimentally identified and selected
numerical modes: the identification procedure and the FE
model were validated. As a result, for both structures, even
modes with a low percentage of excited mass in the 𝑥
direction were assessed through the identification procedure.

5. Study of the Connected Configuration (CC)

In the connected configuration structures interact recipro-
cally, influenced by the control action of the MR damper
installed between them. It is important to underline that,
in this configuration, since the MR damper is a nonlinear
device, the whole system is nonlinear.

The section is organized following the three steps
described in Section 3. In the end, numerical and experimen-
tal outcomeswill be compared in order to assess the feasibility
of the model.

The measurements considered in this configuration are
acceleration recorded by sensors a1–a8, relative displacement
between structures at the second level, 𝛿(𝑡), the control force𝑢(𝑡), (𝑁𝑚 = 11), and the device voltage 𝑉.

When the adjacent structures are connected through
the MR damper, the well-functioning of the entire con-
trol system must be previously checked. MR damper can

operate between passive and semiactive mode at different
voltage levels, reacting with a nonlinear control force when
subjected to relative displacement. The signals measured to
make the control algorithm work correctly are acquired by
means of the acquisition board and then processed in a
PC. A code implemented with LabView software applies the
control law after interpreting the signals and then modulates
the input voltage through the device actuator. The results
obtained enabled confirming the validation of the passive
and semiactive control system and of the entire control
process. Considerations about the control aspects and the
effectiveness of the control strategy can be found in [15].
In synthesis, the dynamic response of the structures can
be noticeably reduced when an MR damper connects them
at the top floor. Specifically, passive control reached very
good performances in terms of response reduction, whereas,
in comparison, semiactive control in some cases provided
light additional improvements. This latter finding could be
related to the adjacent structures, the type of structural
configuration tested, that did not enhance the potentially
more effective performances of semiactive control; but it was
also due, in this specific case, to the device utilized in the
experimental campaign, which seemed overestimated for the
control system.

5.1. Vibration Analysis. The first test examined is the sine
sweep at PGA 0.1 g with the MR damper working at 0V
(minimum voltage). Acceleration and control force time
histories are shown in Figure 6(a). The first four frequencies
observed, the same for both structures, are around 2.9,
7.9, 13.2, and 15.6Hz. As a first result, it should be noted
that natural frequencies of the connected structures differ
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Figure 6: Passive connected (PC) configuration, acceleration measured by sensors a1–a8 and control force, voltage level (a) 0V and (b) 2.5 V.
Sine sweep frequency test PGA 0.1 g.

from those detected in the NC configuration. In the passive
configuration, first natural frequency of both structures is
at about 2.9Hz, whereas in the NC configuration, the first
frequencies of structure A and B were at about 2.54 and
5.10Hz, respectively. Concerning structure A, the first two
frequencies are slightly influenced by the coupling, whereas
the third and fourth ones are more influenced; besides, an
amplification at the 24Hz frequency is also observed. This
frequency is not evident in the responses of structure B.
Concerning structure B, the coupling has strongly influenced
its dynamics: the same four frequencies that were evident
for structure A are noticed, none of them corresponding
to those obtained in the NC case. An amplification at a
frequency of around 19-20Hz, which was already observed
in the NC configuration, is observed again for structure B.
This frequency was not evident in the structure A responses
(neither in the CC nor in the NC configuration). The results
estimated with the FE model (Section 4.3) showed that such
a frequency was probably associated with a torsional mode.
It seems therefore that the control system, which acts only in
the 𝑥 direction, does not influence this mode.

In general, the dynamic amplifications of both structures
are less evident if compared with the NC configuration,
Figure 4. Moreover, by observing the recorded control force
time history 𝑢(𝑡), Figure 6(a), it can be noticed that its value is
amplified for frequencies among 1 and 19Hz, and in this range
the structures influence each other. For higher frequencies,
the control force is lower and it does notmodify the dynamics
of structure B, while it is almost sufficient to activate the

natural frequency at 24Hz for structure A, which does not
appear in structure B.

The acceleration and the control force time histories
achieved for sine sweep base acceleration at PGA 0.1 g
with MR damper working at 2.5 V (maximum voltage), are
reported in Figure 6(b). Again, the coupling has modified the
dynamics of the structures with respect to the NC config-
uration. The first two frequencies of the coupled structures
changed from 2.9 to 3.2Hz and from 7.9 to 7.2Hz, compared
to the same test made with the MR damper working at
0V. The other resonance frequencies did not change and
considerations similar to those concerning the case of 0V
may be done about the dynamics of the two structures. The
control force time history 𝑢(𝑡) yields an amplification at
frequencies which are common to both structures and shows
higher values than in the case of 0V. Due to the greater value
of the control force, the first two frequencies of the coupled
structures weremodified; the others remained equal since the
increase of the control force was not influential.

Experimental results of the white noise test at 0.05 g with
control device working at 2.5 V are also considered to better
explain the dynamic behavior in the passive configuration. It
was observed that, in such a configuration, the MR damper
does not develop significant dissipation, due to the low
bidirectional base excitation level, to the high values of the
control force 𝑢(𝑡) and to the very low relative displacements𝛿(𝑡). For this reason, the connection can be regarded as
rigid and, in this context, the results can be analyzed in
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Figure 7: Rigid connected (RC) configuration, identified frequency response functions. Ground acceleration 𝑥 direction, (a) 𝐻𝑥; 𝑥-𝑦
directions, (b)𝐻𝑥, and (c)𝐻𝑦. White noise test PGA 0.05 g.

the frequency domain through identified FRFs, H𝑥 and H𝑦,
having assumed that the system is linearly elastic.

Figure 7(a) shows the identified FRFs of sensors a1–a8,
H𝑥, when only ground acceleration in 𝑥 direction is consid-
ered. Five natural frequencies appear clearly for the rigidly
connected (RC) system. For sensors a1–a5, located on struc-
tures A in 𝑥-direction, frequencies at around 3.2, 7.2, 13.5
and 16Hz are evident; for sensor a6, located on structure A
in 𝑦-direction, only a frequency at around 7.2Hz is clear;
for sensors a7-a8, on structure B in 𝑥-direction, the four

frequencies reported for structure A are still clear, but also
a resonant frequency at around 20Hz shows up in this case.

Figures 7(b) and 7(c) show the identified FRFsH𝑥 andH𝑦
of sensors a1–a8, respectively, considering both directions of
the base excitation. It is worth noting that the H𝑥 obtained
considering the ground excitation in both directions, Fig-
ure 7(b), are very close to those achieved considering only the
base excitation in the 𝑥 direction, Figure 7(a). FRFs in the 𝑦
direction for sensors a1–a6 on structure A, Figure 7(c), show
the already highlighted frequencies at 3.2 and 7.2Hz, while
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Figure 8: Passive connected (PC) configuration, experimental pseudo frequency response functions. Ground acceleration𝑥 direction, voltage
level (a) 1 V and (b) 2.5 V. El Centro test PGA 0.6 g.

also the frequency at around 20Hz appears; for structure
B, with sensors a7-a8, frequencies at 3.2, 7.2, and 20Hz are
still evident, but also a resonant frequency at around 8.6Hz
can be observed. Besides, FRF relating to sensor a6 shows
much lower amplitudes than other sensors’ locations; only at
around 7-8Hz a small amplification is observed.

In case of natural earthquake input, the experimental
response of the structures subjected to El Centro test at 0.6 g is
reported. An elaboration of the acceleration responses in the
frequency domain has been carried out also when the device
operates in passive or semiactive mode. However, since in
this case the controlled system behaves as nonlinear, pseudo
frequency response functions (PFRFs) H𝑥 are estimated,
defined as the ratio between the Fourier transform of the
acceleration and the Fourier transform of the seismic input.
Figures 8(a) and 8(b) show the experimental PFRFs relative
to sensors a2 and a4 for structure A and to sensor a8 for
structure B in passivemode at 1 and 2.5V respectively. Figures
9(a) and 9(b) show instead the same experimental PFRFs in
semiactive mode at 0-1 and 0–2.5 V, respectively. By observ-
ing such signals, it is clearly noticed that peculiarly, once

the system is controlled, despite its nonlinearity, the same
vibrational frequencies emerge regardless of the device mode
and the voltage level. Surely, the system dynamics changes
by changing the amplifications but the natural frequencies
remain the same. Thus, system natural frequencies observed
in the passive or semiactive mode can be found among
the frequencies observed in the NC and RC cases, which
represent two limit situations.

Figure 10 compares, for structure A’s sensor a4 and for
structure B’s sensor a8, experimental FRF in the NC and RC
cases with experimental PFRFs relating to PC at 0, 1, and 2V,
in case of white noise input 0.1 g. The figure outlines some
aspects which have been separately observed in other figures.
It is clearly observed the resonance frequencies shift from
the NC case to the connected cases (RC and PC). Moreover,
when the structures are linked, the same frequencies are
observed for both. It is also interesting to notice that FRF in
NC case, FRF in RC case, and PFRFs in passive cases intersect
in the same fixed points. Regarding the amplifications, the
effectiveness of the control system emerges: for structure
A the first amplification is strongly attenuated with passive
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Figure 9: Semiactive connected (SAC) configuration, experimental pseudo frequency response functions. Ground acceleration 𝑥 direction,
voltage level (a) 0-1 V and (b) 0–2.5 V. El Centro test PGA 0.6 g.
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Figure 10: Experimental frequency response functions. Ground acceleration 𝑥 direction nonconnected (NC), rigid connected (RC), and
passive connected (PC) 0, 1 and 2V configurations, (a) sensor a4 and (b) sensor a8. White noise test PGA 0.1 g.

connection at 0V, and also the others are evidently reduced;
for structure B all the amplifications are reduced in the RC
case and in all PC cases.

By comparing experimental FRF related to NC and RC
cases and experimental PFRFs related to semiactive cases,

similar results (not reported for the sake of brevity) are
obtained.

Similar aspects are confirmed also by observing responses
time histories and other earthquake inputs; the results are
therefore not reported for the sake of brevity.
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Table 11: Identified natural frequencies and damping ratios in the nonconnected (NC) and rigid connected (RC) configuration; white noise
test PGA 0.1 g.

Mode Structure A (NC) Structure B (NC) Connected structure (RC)
Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 2.70 2.29 5.25 0.75 3.18 2.35
2 8.15 1.05 14.43 0.53 7.26 2.45
3 13.18 0.98 19.66 0.41 8.63 1.91
4 16.85 1.12 13.53 1.11
5 15.78 1.19
6 19.94 0.69
7 23.70 2.52

As a matter of fact, the modification of dynamic behavior
depends on seismic action type, on the PGA value, and on the
intensity of the control force (i.e., voltage level).

5.2. Identification of the First-Order Model in RC Configura-
tion. In order to obtain modal and physical system param-
eters in the connected case, the identification procedure
described has been utilized and applied with reference to the
case in which the connection can be regarded as rigid. The
identified first-order modal models in terms of frequencies,
damping ratios, and seismic eigenvectors are obtained.

Table 11 reports the identified natural frequencies and
damping ratios relative to the white noise test with PGA 0.1 g.
By comparing the identified frequencies with those observed
through the experimental FRFs in the white noise test at
0.05 g (see Figure 7), it can be noticed that the identification
procedure well defines both the frequencies related tomotion
in 𝑥 direction (first, second, fourth, and fifth frequencies) and
those in 𝑦 (third frequency) direction, also in the case of rigid
connection. Moreover, the identification procedure brings
out two additional frequencies (sixth and seventh) which
were not observed in the vibration analysis (Section 5.1).
Identified damping factors attain a maximum value of 2.45%
at the second mode and a minimum value of 0.69% at the
sixth mode.

The identified frequencies obtained in the RC configu-
ration are then compared with the ones obtained in the NC
configuration with the same input and PGA. It is confirmed
what was observed in the vibration analysis: the rigid connec-
tion modifies the dynamic response of the system. The first
frequency of the coupled structures is higher than structure
A’s uncoupled frequency and lower than the uncoupled one
of structure B. The other frequencies, instead, are all lower
than the corresponding ones for the uncoupled structures.
It is interesting to underline that resonance frequencies
obtained with the rigid connection are very close to the ones
observed in passive and semiactive cases. Instead, damping
ratios in the RC configuration are generally greater than
the corresponding ones for the two unconnected structures,
especially with reference to structure B.

Figures 11(a) and 11(b) show the identified seismic eigen-
vectors, sensors a1–a4 for structure A and a7-a8 for structure
B, for NC and RC configuration, respectively, for the white
noise test with PGA 0.1 g. In the RC configuration, the 1st,
2nd, 4th, and 5th frequencies are reported for structure A

and the 1st and 2nd ones are given for structure B. In the
NC configuration, the first four frequencies are reported for
structure A and the first two for structure B. It is clear that
the shapes and amplitudes relating to the 1st, 2nd, 4th, and
5thmodes for structure A in the RC configuration are similar
to those of the NC configuration, whereas, for structure B,
only the first mode shape is similar for both configurations,
though it shows lower amplitudes for the RC configuration.

5.3. FE Model and Updating Procedure: Numerical-Experi-
mental Comparison. The numerical model of the adjacent
structures linked by the MR damper is here defined. The
FE model developed in Section 4.3 is adopted for the two
structures, whereas the numerical model described in (7) and
(8) is adopted for the MR damper. Cases assuming both a
rigid and a passive/semiactive connection are considered.The
initial values assumed for the MR damper model are based
on a previous experiment conducted by the authors, which
involved characterization tests of the device alone through
sinusoidal displacement input at different frequencies and
amplitudes [35]. The following fixed values are assumed: the
linear spring, 𝐾0 = 2640N/m, the yielding displacement,𝛿𝑦 = 10−5m, and the parameters that influence the shape of
the force-displacement cycle 𝐴 = 1, 𝛼 = 𝛾 = 0.5, and 𝑛 = 1
[35]. 𝐹𝑦 and 𝐶0 are the parameters depending on the input
voltage.

In order to obtain a rigid connection, 𝐹𝑦 and 𝐶0 are
assumed to be sufficiently high, whereas in order to obtain
a passive or semiactive connection, 𝐹𝑦 and 𝐶0 are varied as
follows:

𝐶0 = 1000 (0.44𝑉 + 0.51) [KNs/m] (12a)

𝐹𝑦 = 277𝑉 [kN] , (12b)

where 𝑉 is the input voltage in V.
At first, the FE model with the rigid connection is dis-

cussed. The natural frequencies and excited masses percent-
ages of the FE model in the rigid connection configuration
are reported in Table 12. By comparing the numerical and
experimentally identified frequencies, a very good corre-
spondence is noticed. The model shows that the significant
modes in 𝑥 direction are the first, the second, the sixth, and
the seventh. Such modes coincide with those experimentally
identified and reported in Table 11 as modes 1, 2, 4, and 5.The
numerical mode at the frequency 8.48Hz is a translational
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Table 12: Rigid connected (RC) configuration FE model natural frequencies and excited masses.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Frequency (Hz) 3.19 7.25 8.48 9.33 11.40 13.54 15.86 16.46 22.08 32.29 32.94 47.35 58.37 62.10 64.98 74.44 80.03
% 𝑋 85.08 12.65 0.00 0.00 0.01 1.20 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
% 𝑌 0.01 0.03 51.18 0.00 0.00 0.01 0.00 0.00 29.49 0.00 13.50 0.00 0.00 2.02 3.44 0.00 0.33
% Rot 0.00 0.00 0.00 43.58 0.00 0.00 0.00 41.06 0.00 9.35 0.00 4.28 1.53 0.00 0.00 0.22 0.00
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Figure 11: Identified seismic eigenvectors: (a) nonconnected (NC) and (b) rigid connected (RC) configuration. White noise test PGA 0.05 g.

mode in 𝑦 direction; it corresponds to the one identified as
mode 3 in Table 11. Instead, the last two identified modes
of Table 11 (mode 6 and 7) are not related to any of the
modes shown in the numerical FE model. The comparison
between the numerical and the experimentally identified
seismic eigenvectors, here not reported for the sake of brevity,
showed a good correspondence, with errors having the same
order of magnitude obtained in the NC case. Thus, the
identification procedure was valid and the numerical model
was applicable both in the NC and in the RC configuration.

In passive or semiactive mode, the numerical FE model
having the same parameters assumed in (12a) and (12b)
for the MR damper did not reproduce the experimental
results in an acceptable way. The discrepancies observed
can be ascribed to the fact that the MR damper charac-
terization described in [35] was carried out in a different
range of displacement and frequencies. In fact, in [35]
applied displacement 𝛿 and frequency Ω were lower (±1mm

< 𝛿 < ±5mm, 1Hz < Ω < 5Hz) than the values
involved in this experimental campaign.Only the first natural
frequency of the structures can be compared to the range
of frequencies investigated in [35], while all the others are
much higher; moreover, displacements recorded between the
structures can reach 20mm. Those differences have consid-
erably affected the 𝐶0 parameter, the only one considered
as depending on the values of 𝛿 and Ω. For this reason, an
optimization procedure was applied to update 𝐶0 on the FE
model, starting from the values obtained by (12a).

In the optimization procedure, time histories and
maximum-minimum responses are collected in the following
vectors:

g (𝑡)= [u𝑇 (𝑡) 𝛿𝑇 (𝑡) x𝑇 (𝑡) a𝑇 (𝑡)]𝑇 ;
G = [𝑢max 𝑢min 𝛿max 𝛿min]𝑇 ,

(13)
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Figure 12: Passive connected configuration (PC), experimental versus FEM 4th floor structure A and 2nd floor structure B acceleration 𝑥
direction, voltage level 0V. Kobe test PGA 0.5 g.

where u(𝑡), 𝛿(𝑡), x(𝑡), and a(𝑡) are the MR force and defor-
mation, the displacement and the absolute acceleration of
structures, respectively; 𝑢max, 𝑢min, 𝛿max and 𝛿min are the
maximum and minimumMR force and deformation.

The error functions between the measured and the
calculated values (overlined quantities) are defined as follows:

e (𝑝, 𝑡) = g (𝑡) − g (𝑝, 𝑡) ;
E (𝑝) = G (𝑝) − G (𝑝) (14)

in which 𝑝 = [𝐶0].
The diagonal terms of weighting matrix for the time

history and the maximum and minimum responses are
defined as follows:

𝑤𝑖 = 𝑞𝑖
max (g𝑖 (𝑡)) ;

𝑊𝑗 = 𝑄𝑗𝐺𝑗 .
(15)

For the time histories and the maximum and minimum
responses, (13), the following values are used: 𝑞𝑖 =10, 100, 100, 1; 𝑄𝑗 = 10, 10, 100, 100.

The value of 𝑝 is carried out by minimizing the weighted
penalty function:

J = 12e (𝑝, 𝑡)𝑇we (𝑝, 𝑡)𝑇 + 12E (𝑝, 𝑡)𝑇WE (𝑝, 𝑡)𝑇 . (16)

The values obtained for the updated parameter𝐶0 range from
3.5 to 7.5 times the starting value of the parameter obtained
with (12a). It is important to underline that the number of
iterations used in the optimization procedure was very low:
that is, less than 10 iteration were sufficient to lead to the
updated value.

Figures 12 and 13 show results obtained for theKobe test at
0.5 g and the device working at 0V. The acceleration in the 𝑥
direction, calculated through the FE model, well reproduces
the corresponding experimental values (Figure 12 structure
A’s 4th floor and structure B’s 2nd floor acceleration). Also the
MR device’s force-displacement cycles, shown in Figure 13,

well-fit the experimental behavior. The main aspects of the
structural response are well reproduced. Similar results are
obtained comparing numerical and experimental results for
the MR damper working at other input voltages.

Finally, the FE model is utilized to reproduce the exper-
imental data in semiactive modality. The MR device works
between two input voltages, in accordance with an ON–OFF
control law; as an example, here the case 0–1.5 V is reported.
The model reproduces the experimental acceleration for
both structures in a quite precise way, Figure 14. Moreover,
also the MR device’s force-displacement cycle appears well
reproduced, Figure 15.

5.4. From 3D to 2D Numerical Model. Even if the system
showed a substantially planar behavior, so far, a three-
dimensional model was adopted. In fact, the asymmetry
of the physical model and the light degree of coupling
highlighted for some modes were considered. Nevertheless,
by analyzing the recorded base acceleration, sensors 𝐺𝑥 and𝐺𝑦 in Figure 4, it has been observed that the acceleration in 𝑦
direction has an average maximum value equal to 20% of the
acceleration in the 𝑥 direction. Therefore, the base excitation
is almost completely contained in the 𝑥𝑧 plan.

Experimental data and the identified modal and physical
parameters suggested that structural responses in the 𝑥
direction are almost exclusively related to the base excitation
in the same direction. Consequently, a two-dimensional (2D)
model can be derived from the 3D numerical one. To do that,
it is sufficient to consider only the translational DOFs in 𝑥
direction for structures A and B, erasing from the stiffness
matrices (Tables 7 and 8) and from the mass matrices all the
values related to the other DOFs.

6. Conclusions

The paper illustrated the vibration analysis of adjacent struc-
tures controlled by a MR damper and the discussion of a
numerical procedure for identification and definition of a
reliable finite element model. The tridimensional physical
model consisted of a four-story structure and a two-story
structure connected at the second level by the control device
with the possibility of acting in passive or in semiactivemode.
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Figure 13: Passive connected (PC) configuration, experimental versus FEM force-displacement, loop voltage level 0V. Kobe test PGA 0.5 g.
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Figure 14: Semiactive connected (SAC) configuration, 0–1.5 V, experimental versus FEM 4th floor structure A and 2nd floor structure B
acceleration 𝑥 direction. Kobe test PGA 0.5 g.

On the one hand, the results of an extensive experimental
campaign carried out using shaking table tests, devoted
to investigate the dynamic behavior of the uncoupled and
coupled structures utilizing a wide variety of base excitations
at several intensities, have been presented. On the other hand,
a procedure for the structural identification and the definition
of a reliable numerical model for adjacent structures con-
nected by an MR damper making use of experimental results
has been illustrated. Specific conclusions of the study in the
nonconnected and connected configuration are summarized
as follows.

6.1. Nonconnected Configuration. The vibration analysis
detected a different dynamic behavior between the two
frames. Four natural frequencies for structure A and three
for structure B were observed. Frequencies, damping ratios,
and seismic eigenvectors of the first-order modal model were
identified at different PGA levels. The light shifts observed in
the values of the frequencies and damping ratios suggested

a modest nonlinear structural behavior. An accurate 3D FE
model of the two uncoupled structures has been obtained;
by comparing experimental and numerical data, the achieve-
ment of a good agreement in both the time and frequencies
domains was observed.

6.2. ConnectedConfiguration. The vibration analysis detected
that the connection modified the dynamic structural behav-
ior compared to the nonconnected configuration in a wide
range of frequencies. For both structures, the fundamental
frequencies were shifted and the observed vibratory modes
were almost the same. The connected configuration with the
device working at 2.5 V can be regarded in some cases as
a rigid connection. In this situation, the system has been
considered to behave linearly and the dynamic characteristics
were studied considering experimental frequency response
functions.The structures identification with rigid connection
gave frequencies, damping ratios, and seismic eigenvectors.
The dynamic characteristics of the FE model of the two
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Figure 15: Semiactive connected (SAC) configuration, 0–1.5 V, experimental versus FEM force-displacement loop. Kobe test PGA 0.5 g.

structures with a rigid connection were compared with the
identified ones observing a very good accordance. When
the device operated in passive and semiactive mode, it
emerged that the dynamics of the system only changed in
terms of dynamic amplifications, but the resonance frequen-
cies remained unchanged, situated among the frequencies
observed in the NC and RC cases.

A modified Bouc-Wen element was chosen to model the
MR damper and the parameters were updated to reproduce
the experimental outcomes. The coupled FE model was
determined putting the updated MR damper model together
with the one previously defined for the uncoupled structures.
The complete FEmodelwas capable of efficiently reproducing
the dynamics of the adjacent structures rigidly, passively, or
semiactively connected, by adequately setting the MR device
parameters.

As a conclusion, when dealing with the characterization
of structures equipped with control devices, the results of this
paper confirm the possibility of considering, in a first stage,
the uncoupled structures and then defining an updated FE
model. In a second stage, a suitable model for the control
device can be considered; in the end, a fine-tuning with the
experimental response of the mechanical parameters can be
made and it should be assembled with the model defined for
the uncoupled structures.

The knowledge of modal characteristics and the avail-
ability of an updated model are fundamental matters for a
structural monitoring program that could reveal any gradual
decay due to aging in the integrity of the structures.
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