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1

Introduction

Since the discovery of the X(3872), a decade ago, more than 20 new charmonium-like
resonances have been registered. Most of them have features which do no match
what expected from standard charmonium theory. A few resonances have been found
in the beauty sector too. Some authors just claim that most of the so called XY Z
states are not even resonances but kind of effects of kinematical or dynamical origin,
due to the intricacies of strong interactions. According to them, data analyses are
naïvely describing and fitting as resonances what are indeed the footprints of such
complicated effects.

On the other hand, the X(3872), for example, is an extremely narrow state,
Γ . 1 MeV, and it is very difficult, in our understanding, to imagine how this could
be described with some sort of strong rescattering mechanism. We do not know
of other clear examples of such phenomena in the field of high-energy physics and
in this review we will give little space to this kind of interpretations, which we
can barely follow. We shall assume instead that what experiments agree to be a
resonance is indeed a resonance.

Moreover, we find very confusing the approach of mixing the methods proper of
nuclear theory to discuss what we learned with the observations of XY Z resonances
especially at Tevatron and LHC. It is true that X seems to be an extreme version of
deuterium as its mass happens to be fine-tuned on the value of the D0D0∗ threshold,
but one cannot separate this observation from the fact that X is observed at CMS
after imposing kinematical transverse momentum cuts as large as pT ' 15 GeV on
hadrons produced. Is there any evidence of a comparable prompt production of
deuterium within the same kinematical cuts, in the same experimental conditions?
The ALICE experiment could provide in the near future a compelling measurement of
this latter rate (and some preliminary estimates described in the text are informative
of what the result will be).

Some of the XY Z, those happening to be close to some threshold, are interpreted
as loosely-bound molecules, regardless of the great difficulties in explaining their
production mechanisms in high energy hadron collisions. Some of them are described
just as bound hadron molecules, once they happen to be below a close-by open
flavor meson threshold. Other ones, even if sensibly above the close-by thresholds,
have been interpreted as molecules as well: in those cases subtle mistakes in the
experimental analysis of the mass have been advocated.

As a result the field of the theoretical description of XY Z states appears as an
heterogeneous mixture of ad-hoc explanations, mainly post-dictions and contradictory
statements which is rather confusing to the experimental community and probably
self-limiting in the direction of making any real progress.
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It is our belief instead that a more simple and fundamental dynamics is at work
in the hadronization of such particles. More quark body-plans occur with respect to
usual mesons and baryons: compact tetraquarks. The diquark-antidiquark model
in its updated version, to be described in Chapter 7, is just the most simple and
economical description (in terms of new states predicted) that we could find and we
think that the recent confirmation of Z(4430)+ especially, and of some more related
charged JPG = 1++ states, is the smoking gun for the intrinsic validity of this idea.

The charged Z(4430) was the most uncomfortable state for the molecular inter-
pretation for at least two reasons: i) it is charged and molecular models have never
provided any clear and consistent prediction about charged states; ii) it is far from
open charm thresholds. However, if what observed (by Belle first and confirmed
very recently by LHCb) is not an “effect” but a real resonance, we should find the
way to explain and put it in connection to all other ones.

The Z(4430) appears extremely natural in the diquark-antidiquark model, which
in general was the only approach strongly suggesting the existence of charged states
years before their actual discovery.

We think otherwise that open charm/bottom meson thresholds should likely
play a role in the formation of XY Z particles. We resort to the Feshbach resonance
mechanism, as mediated by some classic studies in atomic physics, to get a model
on the nature of this role. The core of our preliminary analysis, as discussed in
Chapter 7, is the postulated existence of a discrete spectrum of compact tetraquark
levels in the fundamental strong interaction Hamiltonian. The occurrence of open
charm/beauty meson thresholds in the vicinity of any of these levels might result in
an enhanced probability of resonance formation.

The thesis is organized as follows:

• In Chapter 1 we sketch a general introduction on the quark model and QCD,
and describe the ordinary quarkonium systems.

• In Chapter 2 we review a recent discussion on the existence of tetraquarks in
Large-N QCD: for a long time multiquark states have been expected to be
extremely broad in the large-N limit, but recently this theoretical obstacle
has been suggesting that even tetraquarks might have order 1/

√
N decay

amplitudes for they occur as subleading poles in the connected diagrams of
the 1/N expansion.

• Chapter 3 is devoted to a comprehensive experimental overview. We underscore
that a genuine tetraquark appears in the physical spectrum, the Z(4430). We
also discuss the recent discovery of two pentaquark states.

• Chapter 4 discuss the recent lattice studies in the XY Z field, which appear to
be still in their infancy. Lattices of 2÷ 3 fm in size cannot by definition allow
loosely bound molecules and it is not yet tested how those deeply bound lattice-
hadron-molecules, that some studies claim to observe in lattice simulations,
will tend to become loosely bound states in some large volume limit. Moreover
it is not clear how one can safely distinguish on the lattice between a tetraquark
operator, a standard charmonium and a meson-meson operator, as they all
happen to mix with each other.
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• Chapter 5 reviews the various phenomenological models in the literature:
mainly nuclear-theory inspired molecular models, hybrids, hadro-quarkonia.

• Chapter 6 discusses the discriminative problem of producing loosely bound
molecules at hadron colliders, which is considered as one of the most compelling
motivations to go towards compact tetraquarks. This chapter is composed
mainly by our original Monte Carlo simulations about the rescattering of pions
and their influence for the X production cross section. We also discuss our
comparison between the X and light nuclei cross sections at hadron colliders.

• Chapter 7 is devoted to the tetraquark model. After a presentation of the
Feshbach mechanism, which might provide some new selection rules to explain
the nonobservation of many predicted states, we show the general formalism,
and discuss the updated spectrum. We then present some results obtained for
particular resonances or decay channel, within the diquark-antidiquark model.

• In Chapter 8, we discuss our proposal of searching for doubly charmed states,
inspired by the problem of simulating tetraquarks on lattices. Some hints from
the physics of heavy-ion collisions are also considered.
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Chapter 1

Ordinary quarkonia

In this chapter we aim at giving a brief overview about the quark model description
of the standard hadrons, focusing on the heavy QQ̄ system. For a historical review,
see [11].

1.1 The birth of the quark model

Heisenberg introduced the approximate SU(2) isospin symmetry, that would be
respected by strong interactions and violated by electromagnetic and weak processes.
The proton and the neutron would transform like a doublet in this new internal
space. This explained the small mass difference between the two, and justified the
presence of both nucleons inside the nuclei. The Yukawa particle, discovered in the
3 states of charge π+, π− and π0, was considered the mediator of strong interactions,
and transformed indeed in the adjoint representation of SU(2).

However, in late ‘50s the number of strongly interacting particles started in-
creasing, and a zoo of new mesons and baryons challenged the understanding of
the hadron sector. It was noticed that some of these particles were produced in
pair with cross sections typical of strong processes, but decayed much more slowly
with typical weak-interaction lifetimes. Gell-Mann, Nakano and Nishima realized
that this could be understood if an additional quantum number were introduced,
called strangeness S, conserved by strong and electromagnetic interactions but not
by weak interactions. The introduction of the Cabibbo angle [12] and the discovery
of parity violations in weak decays enriched the framework of weak physics, but left
the hadron spectrum in a non-understood state.

To infer a pattern, Sakata proposed to embed the SU(2) isospin symmetry and
the U(1) strangeness in a larger SU(3) group, with p, n and the strange baryon
Λ to transform in the fundamental representation of the group. The discovery of
many other baryons and mesons discredited this model, but Gell-Mann and Ne’eman
included all the known mesons and baryons with the same quantum numbers,
either in the adjoint representation of the group (the eightfold way), or in other
representations based on this, for example the decuplet or the 27-plet (indeed,
8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 1̄0⊕ 27). The weight diagrams are shown in (Figure 1.1).
Furthermore, using the breaking of SU(3)→ SU(2)I ⊗ U(1)S , Gell-Mann was able
to derive relations between the masses of the various multiplets. For example the
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K+(us̄)K0(ds̄)

π−(dū) π0(uū− dd̄) π+(ud̄)

η(uū+ dd̄− 2ss̄)

K̄0(sd̄)K−(sū)

I

√
3

2
Y

p(uud)n(udd)

Σ−(dds) Σ0({ud}s) Σ+(uus)

Λ([ud]s)

Ξ0(dss)Ξ−(uss)

I

√
3

2
Y

∆++(uuu)∆+(uud)∆0(udd)∆−(ddd)

Σ∗−(dds) Σ∗0(uds) Σ∗+(uus)

Ω−(sss)

Ξ0(dss)Ξ−(uss)

I

√
3

2
Y

Figure 1.1. Weight diagrams for JPC = 0−+ mesons (in the 8), JP = 1/2+ baryons (in
the 8), and JP = 3/2+ baryons (in the 10). A flavor-singlet η′ meson, which completes
the nonet, was later discovered.

Gell-Mann-Okubo formula [13], which implies

2(mN +mΞ) = 3mΛ +mΣ, (1.1a)
mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ− −mΞ∗ (1.1b)

for the octet and decuplet of baryons, respectively. This leads the prediction of a
Ω− baryon with Q = −1 and S = −3 and of mass ∼ 1670 MeV. The discovery of a
particle with these very same characteristics in 1964 delivered the Nobel Prize to
Gell-Mann.

Soon after, Gell-Mann and Zweig considered what kind of particles might trans-
form in the fundamental representation of SU(3) [13]. These unobserved particles,
called quarks, would carry baryonic number B = 1/3, and fractional charge as well.
The up (u) and down (d) quarks are an isospin doublet, and carry S = 0, while the
strange (s) quark is an isospin singlet, and carries S = −1. The weight diagrams are
shown in (Figure 1.2). The hypercharge Y is defined to be B + S and is related to
the electric charge by the Nishima relation,

Q = I3 + Y

2 , (1.2)
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ud

s

I

√
3

2
Y

ūd̄

s̄

I

√
3

2
Y

Figure 1.2. Weight diagrams for quarks (in the 3) and antiquarks (in the 3̄).

so that the u quark has Q = 2/3, and the d, s have Q = −1/3.
With this fundamental constituents, it is possible to build integer-charge baryons

and mesons according to

Mesons : 3⊗ 3̄ = 1⊕ 8 (1.3a)
Baryons : 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (1.3b)

Moreover, if the quarks are fermions, baryons are fermions as well, while mesons
are bosons, as expected.

In his original paper, Gell-Mann stressed how these quarks might have no physical
content, and could be considered as mere mathematical entities. The motivations of
this caveat were twofold: at the time, the most popular theoretical framework in
strong interactions was the so-called S-matrix theory. Geoffrey Chew, in particular,
proposed that talking about constituents of hadrons was meaningless, and that it
was possible to calculate the full spectrum of hadrons by assuming some kind of
inter-hadron potential, building the most general S-matrix fulfilling the requirements
of analyticity, unitarity, and crossing symmetry, and then obtaining the hadron poles
in a self-consistent evaluation (the so-called bootstrap program). Moreover, the idea
of hadron constituents recalled a description in terms of elementary quantum fields.
Whereas this was proved to work for electrodynamics, the application to strong
interactions was seriously challenged by Landau and the discovery of Landau poles.
Another Gell-Mann’s concern was that there was no experimental sign of fractional
charged particles.

1.2 Deep inelastic scattering and the discovery of par-
tons

From mid-‘50s to late ‘60s, the Stanford universities was the theater of many
important discoveries using an accelerated electron beam on hydrogen and helium
targets. In 1956, McAllister and Hofstadter measured the elastic form factor of the
proton. The tree-level cross-section of relativistic electrons on point-like protons is
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given by (
dσ

dΩ

)
point-like

=
α2 cos2 θ

2
4E2 sin4 θ

2

E′

E

[
1− q2

2M tan2 θ

2

]
(1.4)

where E (E′) is the energy of the ingoing (outgoing) electron in the laboratory
frame, q2 = −Q2 = −4EE′ sin2 θ

2 is the square of the transferred 4-momentum, and
M is the proton mass. If the proton is not pointlike, the hadronic current can be
parametrized in terms of form factors,

Jµhad = ū(Pf )
(
F1(q2)γµ + i

qνσ
µνκ

2M F2(q2)
)
u(Pi) (1.5)

where Pi and Pf are the initial and final proton 4-momenta, and κ = 1.79 is the
anomalous magnetic coupling in units of the nuclear magneton e

2M . The form factors
are normalized to F1(0) = F2(0) = 1. The resulting cross-section is the Rosenbluth
formula:

(
dσ

dΩ

)
Rosenbluth

=
α2 cos2 θ

2
4E2 sin4 θ

2

E′

E

[(
F 2

1 + κ2Q2

4M2 F
2
2

)
+ Q2

2M (F1 + κF2)2 tan2 θ

2

]
(1.6)

For an exponential charge distribution, ρ(~r) = exp(−r/rp), the form factors are
expected to fall as F ∝ 1/(1 + rpQ

2). This led to the expectation that the cross
section had become smaller and smaller after the resonances region. However, in
1969 the same experiment was performed in the deep-inelastic region, i.e. observing
the e− → p → e−X process, where X is whatever hadronic final state, generally
undetected. The cross section is now

dσ

dΩdE′ =
α2 cos2 θ

2
4E2 sin4 θ

2

[
W2(ν,Q2) + 2W1(ν,Q2) tan2 θ

2

]
(1.7)

with ν = E′ −E the exchanged energy, and W1 and W2 two form factors with the
dimension of the inverse of an energy. The experiment observed that the adimensional
variables F2 = νW2 and F1 = MW1 did not fall with increasing Q2, but instead
tended to a value that depended on the single adimensional variable x = Q2

2Mν . This
behavior, named “scaling”, was predicted by Bjorken in the case of scattering over
pointlike particles. Feynman christened these quasi-free constituents “partons”, and
showed that x is the fraction of momentum of the proton carried by the stroked
parton. Calling xfq(x) the related probability density, the form factors are

F2(x) =
∑
q

e2
qxfq(x) (1.8a)

F1(x) =
∑
q

e2
q

2 fq(x) (1.8b)
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where q runs over the different partons. We can identify the partons with Gell-Mann
quarks, and for the proton we get the sum rules∫

dx [fu(x)− fū(x)] = 2 (1.9a)∫
dx [fd(x)− fd̄(x)] = 1 (1.9b)∫
dx [fs(x)− fs̄(x)] = 0 (1.9c)

which replaced the statement that the proton was composed of two u quarks and a d
quark. Thus in Feynman’s model these valence quarks were supplemented by a sea
of quark-antiquark pairs. Finally, the Callan-Gross relation holds, i.e. F2 = 2xF1,
which proves the Dirac nature of the quarks. If the quarks were the only kind of
partons, the momenta of the quarks have to sum up to the total momentum of the
proton, i.e. ∫

dxx [fu(x) + fū(x) + fd(x) + fd̄(x) + fs(x) + fs̄(x)] = 1 (1.10)

but instead, is ∼ 0.54. The remaining fraction of the proton momentum has to be
carried by neutral partons (which do not contribute to the form factors), and can be
identified with the mediators of the strong interactions, the gluons.

1.3 Color and QCD
The discovery of the ∆++, i.e. a baryon with completely symmetric wave function
uuu, led to the introduction of a new quantum number to enforce the Fermi statistics,
the color. Each quark transforms according to the fundamental representation of a
new SU(3) symmetry. For the ∆++, the most simple wave function is εijkuiujuk,
with ijk the new color indices. Because of the Levi-Civita symbol, the Fermi statistics
is restored. The hadrons are expected to be color singlet, in order not to triplicate
the existing physical spectrum. Another hint of the existence of the color is given
by the Drell ratio, i.e.

R = σ
(
e+e− → hadrons

)
σ (e+e− → µ+µ−) ∼

∑
q

e2
q (1.11)

according to the quark model at tree-level. Thus, at energies of
√
s ∼ 2 GeV, the

ratio was expected to be (2
3)2 + (−1

3)2 + (−1
3)2 = 2

3 . A value of R ∼ 2 was instead
observed in the data, consistent with the expectation for three different quark colors.
The Sixties witnessed different attempts to describe the strong interactions via a
non-abelian Yang-Mills gauge theory. The observation of three ρ±,0 vector mesons,
which dominate the electromagnetic form factor of the pion (vector meson dominance,
or VMD) led Sakurai to consider the ρ as the gauge boson of the SU(2) isospin
symmetry. However, the approximate nature of isospin, and the relatively large mass
of the ρ meson did not favor this interpretation. On the other hand, the (apparently
exact) SU(3) color symmetry looked like a more promising candidate, although
the 8 massless gauge bosons, called gluons had not been observed. An important
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breakthrough happened in early ‘70s: ‘t Hooft and Veltman proved the renormal-
izability of Yang-Mills theories [14], in the case of both exact and spontaneously
broken symmetries. Soon after, Gross and Wilczek [15], and Politzer [16] evaluated
for the first time the β function of Yang-Mills theory, which describes the evolution
of the QCD coupling constant according to the Renormalization Group as a function
of the scale of the process:

β(g) = µ
dg

dµ
= β0g

3 +O(g5) (1.12)

In QED and in λφ4 β0 > 0, which means that at higher energies (or short
distances) the effective coupling is larger and larger, whereas at low scales the coupling
becomes small enough to allow for reliable perturbative calculations. Surprisingly,
Gross, Wilczek and Politzer found that

(β0)QCD = −
11
3 Nc − 2

3nf
(4π)2 (1.13)

where Nc is the number of colors and nf the number of quark flavors, so that β0 < 0
for nf

Nc
< 11

2 . The calculation of the QCD beta function is reported in Appendix A. So,
the effective coupling is smaller at high energies, and this explains why observation
consistent with quark objects were seen in the high-energy deep-inelastic scattering
experiments. On the other hand, at low energies the coupling constant increases,
and the hadron spectrum happens to be in the nonperturbative (incalculable) regime.
This phenomenon is the so-called asymptotic freedom. The requirement that no
colored particles appear in the physical spectrum is the confinement property of
QCD, and forbids the direct observation of quarks and gluons.

1.4 The discovery of J/ψ
Back in 1970, Glashow, Illiopulos and Maiani [17] introduced a fourth quark, the
charm (c), to explain the absence of tree-level flavor-changing neutral currents
(FCNC), which would be large according to the simplest combination of the Glashow-
Weinberg-Salam theory of weak interactions [18] with the Cabibbo theory of hadronic
currents [12]. The upper limit on the KL → µ+µ− branching ratio allowed for an
estimate of the charm mass mc ∼ 2 GeV.

In early ‘70s, data seemed to disfavor the quark model. Some preliminary data
showed that the R ratio started to increase, challenging the quark model prediction
of a piecewise constant function. It was proposed that the raise might be due to a
very narrow resonance, which the experimental resolution did not allow to resolve. In
1974, two different experiments in Brookhaven and SLAC announced the discovery
of a new narrow resonance at a mass of 3.1 GeV. Ting led the Brookhaven group,
and found what he called the J particle [19] using a high intensity proton beam on
a Berillium target, p+Be→ e+e−X, at

√
s ∼ 7 GeV. A narrow peak showed up in

the e+e− invariant mass spectrum at 3.1 GeV.
At the same time, Burton christened a new ψ resonance observed in e+e−

collisions at SLAC, during an energy scan in the region around 3.1 GeV [20]. They
observed a sharp narrow peak in e+e− → e+e−, e+e− → µ+µ−, and e+e− → hadrons.
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interference of the QED amplitude. In fact, experimentally, it was found to be
(1 + cos2 θ) near the resonance, clearly establishing the spin-parity of J/ψ to be 1−−.

To determine the isospin, one observes that the decay J/ψ → pp̄ occurs with a
branching ratio of ∼ 0.2%, which cannot be explained by electromagnetic effects.
Since pp̄ can only have isospin I = 0 or I = 1, then also the J/ψ can be either I = 0
or I = 1. Now if it has I = 1, the decay J/ψ → ρ0π0 should be strictly forbidden 9,
while it is observed in the 0.6% of the times. If instead J/ψ has I = 0 then 10

R = Γ(J/ψ → ρ0π0)
Γ(J/ψ → ρ+π−) + Γ(J/ψ → ρ−π+) = 1

2 , (1.83)

to be compared with the experimental measurement R = 0.495575. Thus one can
conclude that J/ψ is an isoscalar state.

Although J/ψ itself does not carry any new quantum number, its unusually
narrow width in spite of large available phase space, suggests that it is a bound state
of cc̄, where c is a quark with a flavor which is outside the three flavors u, d and s
of SU(3). The identification of this fourth quark with the charm came finally with
the discovery of the D-mesons in 1976 [25, 26] and from the measurements of their
weak decays. The quark c is assigned a new quantum number C = 1,whereas C = 0
for u, d and s quarks. The narrow width of the J/ψ compared to 100 MeV for ρ,
can be qualitatively understood by the OZI rule, just as the suppression of φ → 3π
compared to φ → KK is explained by this rule. While the decay into DD̄ depicted
in the left panel of Fig. 1.16, is OZI allowed, the one showed in the right panel is
OZI suppressed. Nevertheless the decay J/ψ → DD̄ shown in Fig. 1 is forbidden by
phase space, since mψ < 2mD.

J/ψ

D

D̄

c

c̄

ū

u
J/ψ

c

c̄

ū

u

d̄

d

ū

u

π0

π+

π−

Figure 1.16. OZI allowed (left) and OZI forbidden (right) J/ψ decays.

Beside being explained by the suppression due to the OZI rule, the narrowness
of the J/ψ is a manifestation of asymptotic freedom.

The leptonic decay modes of the J/ψ can be explained as follows: the c and c̄
come to a point and are converted into a virtual photon which in turn decays into a

9|ρ0π0� = |1, 0�|1, 0� =

�
2/3 |2, 0� −

�
1/3 |0, 0� in the |I, Iz� basis.

10|ρ+π−� = |1, 1�|1, −1� =

�
1/6 |2, 0� +

�
1/2 |1, 0� +

�
1/3 |0, 0� and |ρ−π+� = |1, −1�|1, 1� =�

1/6 |2, 0� −
�

1/2 |1, 0� +

�
1/3 |0, 0� in the |I, Iz� basis.

Figure 1.3. OZI allowed (left) and OZI forbidden (right) J/ψ decays. The latter is forbidden
by phase space.

The natural width of this newly discovered particle, which was politely called J/ψ ,
was much small than the experimental resolution of the two experiments, but the
indirect measure of the cross section allowed for an estimate Γψ ∼ 90 keV. The
angular distribution for e+e− → µ+µ− were consistent with a JPC = 1−−, whereas
the observation of J/ψ → pp̄ and J/ψ → ρ0π0 established an isosinglet assignment.
Such surprising narrow state stimulated the theorists’ fantasy. Appelquist and
Politzer [21] proposed that the J/ψ could be a cc̄ bound state in the spin triplet
configuration.

The narrow width of the J/ψ can be qualitatively understood by the OZI rule,
which explained the suppression of the ÏĘ→ 3π mode with respect to the φ→ KK
one, despite the much larger phase space. In (Figure 1.3) we show the different decay
modes. The one in the left panel is OZI-allowed, the other one is OZI-suppressed,
because it involves the annihilation of the cc̄ pair. However, if the J/ψ happens to
be below the open charm threshold, the former decay is phase-space forbidden. Two
years later, the open-charm D mesons were indeed observed at SLAC at a mass of
1.87 GeV [22]. The other crucial ingredient added by Appelquist and Politzer is the
asymptotic freedom: the cc̄ pair has to annihilate in at least three gluons 1, so the
hadronic width carries a factor α3

s(mc). Since we are already in the perturbative
regime, this is further suppressed.

In 1977 the E288 collaboration observed a new narrow resonance, the Υ meson,
with mΥ = 9.5 GeV and ΓΥ = 54 keV [23]. It was immediately described as a bb̄
bound state, b being the fifth quark (bottom or beauty).

1.5 Quarkonia

In the static limit mQ →∞, the quark-antiquark potential is a meaningful quantity,
which can be related to the vacuum expectation value of a Wilson loop on a
rectangular path with the long side in the time direction, much longer than the

1The cc̄ pair is a color singlet, and does not couple to one gluon. Two gluons have only C = +
signature, whereas the cc̄ pair in J/ψ has C = −.
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spatial side. The leading order perturbative calculation (one-gluon exchange) gives

V (r)OGE = −4αs
3r (1.14)

which is expected to hold at small distances. Higher-order corrections give only
logarithmic corrections to αs (running coupling). If so, the quarkonia would be
a simple replica of an hydrogen atom. The ordinary quarkonium spectroscopy
uses indeed the hydrogenoid notation for the levels, namely n2S+1LJ , with L =
S, P,D, F · · · . The idea of quark confinement has driven some of these models. The
most successful choice is that of a linearly growing potential V (r) = σr, where σ
is the string tension of the chromoelectric flux tube connecting the quark and the
antiquark. One of the most developed models uses the Cornell potential [24], which
is build up as a simple sum of the OGE potential and of a linearly confining term

V (r)Cornell = −α
r

+ σr (1.15)

with α Nowadays, the potential can be calculated with remarkable precision in
lattice QCD, and it is possible to estimate corrections to this simple formula (for
example the Lüscher term, or the logarithmic corrections to αs, and the O(1/m2

Q)
corrections, see [25] and references therein). If mQ is finite, the potential is no
longer strictly defined. However, as long as mQ � ΛQCD, one can consider a
Born-Oppenheimer-like approximation: the heavy quark pair motion to happen on
much slower timescales than the color field; this allows us to solve the Schrödinger
equation with the finite mQ mass, using as background potential the Cornell one,
obtained by studying the dynamic of the color fields as a function of the parametric
distance r between the quark and the antiquark. The relativistic corrections at order
1/c2 can be included, obtaining a Breit-Pauli like Hamiltonian.

The annihilation of a quark-antiquark pair into photons and gluons can be
evaluated in leading-order perturbative QCD, as a function of the value of the
wave-function in the origin. Exclusive radiative and hadronic transitions can be
estimated using QCD multipole expansion (see [26] for a review). All these ideas
can be discussed in a proper effective Quantum Field Theory framework, like the
Non-Relativistic QCD (NRQCD) [27]. For an updated review on theoretical and
experimental state of quarkonia, see [28, 29].
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Chapter 2

Four-Quark states in Large-N
QCD

2.1 A short guide to Large-N QCD
Quantum Chromodynamics (QCD) in the limit of a large number, N , of colors [30]
has been used in the past 40 years as a simplified though reliable model of the strong
interaction phenomena [31]. The perturbative expansion in Feynman diagrams
is simplified by a number of selection rules holding when N → ∞. Nevertheless,
the theory thus obtained is non-trivial and shows asymptotic freedom, being non-
perturbative in the infrared region. Assuming that confinement persists also in the
N →∞ limit, it can be shown that the following peculiar properties hold:

• Mesons and glueballs (bound states of just gluons as explained in Sec. 5.3) are
stable and non-interacting at leading order in the 1/N expansion.

• Meson decay amplitudes are of order 1/
√
N and meson-meson elastic scattering

amplitudes are of order 1/N .

• OZI rule is exact and the mixing of mesons with glue states is suppressed.

• Baryons are heavier than mesons: they decouple from the spectrum having a
mass growing as N .

All of these statements can be proven without computing explicitly Feynman di-
agrams, but simply counting their color factors. To do this and to follow the
theoretical arguments reported in this section, it is first necessary to analyze in
greater detail the content of QCD with SU(N) gauge group.

Quark and antiquark fields have N color components, while gluon fields are
N × N matrix-valued fields with (N2 − 1) ∼ N2 independent components1. As
a result, the gluon bubble diagram, Figure 2.1a, brings a color factor N2 since
that is the number of possible intermediate gluon states. In contrast, a quark
bubble diagram, Figure 2.1b, brings a color factor N being that the number of
possible intermediate quarks. The interaction vertices gq̄q and ggg scale as 1/

√
N

1This approximation is justified because, as shown by ‘t Hooft [30], the traceless condition plays
no role in the limit N →∞.
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N
2

(a)
N

(b)

1
√

N

(c)

1
√

N

(d)

1

N

(e)

Figure 2.1. Basic rules for the counting of color factors in Feynman diagrams.

– Figure 2.1c and 2.1d – and the four-gluon vertex as 1/N – Figure 2.1e. These
factors appearing in the interaction vertices are a consequence of the rescaling of the
coupling constant, λ = g/

√
N , necessary to avoid further positive powers of N in

the perturbative expansion in the rescaled Yang-Mills coupling λ. For instance, the
perturbative expansion in λ of the gluon propagator is at most of order N0 although,
at this order in 1/N , infinite diagrams with different orders in g contribute.

The simplest way to take properly into account all the combinatoric color factors
is to introduce the ‘t Hooft double line representation [30]. As already observed,
gluons are N ×N matrices, thus, as far as the color factors are concerned, they are
indistinguishable from qq̄ pairs when N is large. For this reason one can substitute
each gluon line with a couple of lines oriented in opposite directions. Examples
of this representation are shown in Figure 2.2, 2.3 and 2.4. The gluon self energy
diagram in Figure 2.2 is of order N2 × g4/N2 = g4: the factor N2 is consequence of
the two color loops and g4/N2 of the four interaction vertices.

The diagram in Figure 2.3 is of order g2/N , arising from the vertices only. In
fact, in the double line representation, this diagram has no closed fermion lines
and hence no powers N coming from loops. The comparison of this diagram with
that in Figure 2.2 shows the difference between the weak-coupling and the Large-N
expansion: a sub-leading term in the former, Figure 2.2, is not so in the latter,
Figure 2.3, and viceversa. Moreover, 1/N is a good expansion parameter regardless
of the running of g.

In Figure 2.4 it is shown an example of non-planar diagram. Non-planar means
that it is impossible to draw it without line crossings. In this case the counting of
color factors gives N ×g2/N ×g2/N2 = g4/N2. Again, beside the vertices, the single
factor of N comes from the only fermionic closed line present in the diagram. It
can be shown that this relative suppression of the non-planar diagrams compared to
the planar ones is true in general. This is one of the most important simplifications
induced by the Large-N expansion.
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The above discussion can be summarized in few important rules:

• Planar diagrams with only gluon internal lines are all of the same order in the
1/N expansion.

• Diagrams containing quark loops are subleading: the theory is quenched in
the limit N →∞.

• Non-planar diagrams are also subleading.

Figure 2.2. Planar diagram contributing to the gluon self energy at leading order in 1/N
expansion, in usual and ‘t Hooft color line notation. The counting of color factors and
couplings gives N2 × g4/N2 = g4.

Figure 2.3. Example of a diagram with a quark loop, suppressed with respect to a planar
diagram with gluon internal lines. The counting of color factors and couplings gives g2/N ,
showing that although this diagram is leading in the coupling g expansion compared to
the diagram in Figure 2.2, it is sub-leading in the 1/N counting.

Figure 2.4. Non-planar contribution to the gluon self energy. The counting of color factors
and couplings gives N × g2/N × g2/N2 = g4/N2.
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2.2 Weinberg’s observation

In his classic Erice lectures [32], Coleman justifies the non-existence of exotic mesons
noticing that the application of local gauge-invariant quark quadri-linear operators
to the vacuum state creates meson pairs and nothing else. The argument was as
follows.

By Fierz rearrangement of fermion fields, any color-neutral operator formed from
two quark and two antiquark fields

Q(x) = εabcεadeqbqc q̄ dq̄ e (2.1)

can be rewritten in the form

Q(x) =
∑
ij

CijBi(x)Bj(x), (2.2)

where Cij are numerical coefficients and

Bi(x) = q̄(x)Γiq(x) (2.3)

is some generic color-neutral quark bilinear with spin-flavor structure determined by
the matrix Γi.

Let us look at the two-point correlation function of theQ operators,
〈
T
(
Q(x)Q†(y)

)〉
,

and perform the fermionic Wick contractions first2. For simplicity, also suppose
that the expectation value of single fermion bilinears vanishes, i.e. 〈Bi(0)〉 = 0. The
two-point function

〈
T
(
Q(x)Q†(y)

)〉
is a sum of terms that can be grouped in two

different classes: double trace terms of the form〈
〈T (Bi(x)Bk(y))〉ψ 〈T (Bj(x)Bl(y))〉ψ

〉
A

(2.4a)

= 〈Tr [S(x− y)ΓiS(y − x)Γk]〉A 〈Tr [S(x− y)ΓjS(y − x)Γl]〉A (2.4b)

and single trace terms

〈T (Bi(x)Bj(x)Bk(y)Bl(y))〉ψ,A (2.5a)
= 〈Tr [S(x− y)ΓiS(y − x)ΓjS(x− y)ΓkS(y − x)Γl]〉A , (2.5b)

where the flavor of the quark propagator S(x− y) is implied to simplify the notation.
The subscripts A and ψ indicate a functional integration over the corresponding fields
(gauge fields and fermions respectively). It is worth noticing that in the Large-N
limit the contribution in (2.4) has a perturbative expansion in 1/N of the form〈

〈T (Bi(x)Bk(y))〉ψ 〈T (Bj(x)Bl(y))〉ψ
〉
A

(2.6a)

= 〈T (Bi(x)Bk(y))〉ψ,A 〈T (Bj(x)Bl(y))〉ψ,A +O(N0). (2.6b)

The first term of the right hand side in Eq. (2.6) is the product of two non-
interacting meson bubbles (Figure 2.5, left panel) and is of order N2. The next-to-
leading order term for this double trace contribution is the sum of planar diagrams
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x y

N

N

+

x y

N

Figure 2.5. Diagrammatic representation of the two-point correlation function of tetraquark
operators at the leading and next-to-leading order in the Large-N expansion. Everywhere
it is understood that the insertion of any number of planar gluon internal lines does not
change the order of the diagrams.

x y

N0Q Q†
N

N

Figure 2.6. Example of subleading contribution to the double-trace term in the tetraquark
two-point correlation function. The color factor is N2 × g4/N2 = g4.

like that in Figure 2.6 that are at most of order N2 × 1/N2 = 1. For this reason we
will refer to the leading contribution of this correlation function as “disconnected”,
implying that there are no gluon lines connecting the two meson bubbles. The
contribution in Eq. (2.5) is, instead, of order N : in Figure 2.5, right panel, it is
shown one of these possible single trace subleading terms (the shape of the diagram
depends on the flavor structure of the quark bilinears). It is important to stress
that the addition of any number of gluon lines internal to the fermion loops does
not spoil the order of the diagram in the 1/N expansion because of the cancellation
between the positive powers coming from the additional loops and the negative
powers coming from the additional quark-gluon vertices. Therefore, as long as the
1/N expansion is considered, it will always be understood that any possible number
of internal gluon lines, not changing the order of the expansion itself, will be included.
Hence, since the leading order contribution to the single trace term in Eq. (2.5) is
made of all the possible planar diagrams with internal gluon lines we will refer to
it as the “connected” contribution. The complete two-point tetraquark correlation
function can then be written as〈
T
(
Q(x)Q†(y)

)〉
=
∑
ijkl

CijCkl
[
〈T (Bi(x)Bk(y))〉ψ,A 〈T (Bj(x)Bl(y))〉ψ,A (2.7a)

+ 〈T (Bi(x)Bj(x)Bk(y)Bl(y))〉conn,ψ,A
]

+O(N0), (2.7b)

where the subscript “conn” stands for connected. The disconnected term contains
only information about the propagation of two non-interacting mesons. This can
be seen cutting in half the first diagram in Figure 2.5: assuming confinement, the

2This is always possible because the fermionic action is quadratic.
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x y

NQ Q†

(a)
x y

NQ Q†

(b)
x y

N0Q Q†

(c)

Figure 2.7. (a) Tetraquark correlation function with flavor B = C, for instance (ūc)(c̄d).
Cutting vertically this diagram reveals the contribution from both tetraquark and meson
intermediate states. (b) Tetraquark correlation function with flavor A = C, for instance
(c̄u)(c̄d) [9]. (c) Tetraquark correlation function with all different flavors, (c̄u)(s̄d). The
leading order connected diagrams, in this case, need the exchange of at least two gluons
between the two meson bubbles.

only way to put on-shell the two bubbles is to form two non-interacting mesons. In
contrast, there are different ways of cutting in half the second diagram of Figure 2.5
and it is possible to put on-shell simultaneously four quark propagators. For this
reason, if a one-tetraquark pole exists, it contributes only to the connected term of
the correlation function, which is of order N , relatively vanishing if compared to the
disconnected one, which is of order N2. Consequently, Coleman [32] concludes that
such exotic mesons do not exist when N →∞.

However, Weinberg recently pointed out [33] that Coleman’s argument seems
not to be conclusive. To make an analogy, consider the meson-meson scattering
in the Large-N limit. The scattering amplitude is dominated by the analogous of
the disconnected term in Eq. (2.7), with the difference that all quark bilinears are
now located in different points. Terms of interaction between meson bubbles are
subleading in the 1/N expansion. This essentially means that, when N →∞, the
mesons are non-interacting, but surely we do not infer that mesons do not scatter
at all in the physical world, when N = 3. In other words, one should compute a
scattering amplitude first and then take the Large-N limit, otherwise the result
would vanish right from the beginning, being the mesons non-interacting in this
limit.

To better understand this point and what follows we will give some further
details. Consider the scattering amplitude with B1, B2 ingoing and B3, B4 outgoing
mesons:

ÃB1B2→B3B4 = lim
N→∞

4∏
i=1

lim
q2
i→m

2
i

(q2
i −m2

i )
1√
ZBi

G̃4(q2
i ; s, t), (2.8)

where G̃4 is the Fourier transform of the four-point correlation function

G4(x, y, z, w) = 〈T (B1(x)B2(y)B3(z)B4(w))〉 , (2.9)

s, t are the two independent Mandelstam variables characterizing the scattering
process. Moreover, G4 can be expanded in the parameter 1/N , as the two-point
function in Eq. (2.7). The renormalization constants ZBi bring a color factor of
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N . This follows from the definition of ZBi in terms of the two-point function,
G2(x) = 〈T (Bi(x)Bi(0))〉, whose Fourier transform reads:

G̃2(p2) = iZBi
p2 −m2

i + iε
+ . . . , (2.10)

where the dots stand for additional poles or cut contributions. Since the leading
order contribution to G2(x) is the bubble in Figure 2.1b, with the insertion of any
number of internal gluon lines not changing the N -counting, it follows that

〈T (Bi(x)Bi(y))〉 ∝ ZBi ∝ N. (2.11)

Therefore, the ZBi in Eq. (2.8) bring a factor of 1/N2. As in Eq. (2.7), the leading
disconnected contribution to G4 is proportional to N2 and hence it produces a
term of order one in the amplitude. However, this term corresponds to a couple
of freely-propagating mesons. For this reason, it doesn’t contribute to the cross
section since it corresponds to the identity part of the S-matrix, S = 1 + iT , that
is subtracted in the LSZ formalism. The connected subleading term is, instead, of
order N and thus contributes as 1/N to the amplitude. This is the real leading
term in the scattering matrix. On the other hand, if we had taken the limit N →∞
first and applied the LSZ formalism after, we would have got A = 0 because, as we
mentioned, QCD in the Large-N limit is a theory of non-interacting mesons and
glueballs. In other words, taking N →∞ beforehand kills all the contribution but
the one describing the two mesons propagating without interacting.

In this spirit, Weinberg shows that, admitting the existence of a one-tetraquark
pole in some connected correlation function of the kind mentioned above, the Large-N
expansion can actually be used to learn more about the phenomenology of tetraquark
in the physical situation of finite N . Consider the decay amplitude of a tetraquark
into two ordinary mesons. As just observed, the quark bilinear entering in the LSZ
formulation has to be normalized as N−1/2B(x). The same happens for tetraquark
interpolating operators, where, for the connected term, holds

〈T
(
Q(x)Q†(y)

)
〉 ∝ ZQ ∝ N, (2.12)

ZQ being the residue at the tetraquark pole. The properly normalized operator for
the creations or annihilation of a tetraquark is N−1/2Q(x), as for an ordinary meson.

The amplitude for the decay of a tetraquark is then proportional to a suitable
Fourier transform, G̃3, of the three-point function

1
N3/2 〈T (Q(x)Bn(y)Bm(z))〉 = 1

N3/2

∑
ij

Cij 〈T (Bi(x)Bn(y))〉ψ,A 〈T (Bj(x)Bm(z))〉ψ,A

+ 1
N3/2 〈T (Q(x)Bn(y)Bm(z))〉conn,ψ,A +O

( 1
N

)
.

(2.13)

The disconnected term is leading and hence the decay width has a color factor
proportional to (N2 × 1/N3/2)2 = N . Therefore, it seems that tetraquarks would be
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very broad states, i.e. they would be unobservable in the Large-N limit. However,
when we amputate the tetraquark external leg,

A(Q→ B1B2) ∝ lim
q2→m2

Q

1√
ZQ

(
q2 −m2

Q

)
G̃3, (2.14)

this term vanishes: G̃3 at leading order is just the convolution of two meson
propagators, and thus contains meson poles only. Therefore the factor q2 − m2

Q

makes the amplitude vanish in the on-shell limit. On the other hand, if a tetraquark
pole actually exists in the connected subleading term (the second term in (2.13)),
it would have a decay rate proportional to (N × 1/N3/2)2 = 1/N and it would be
stable in the Large-N limit, just like an ordinary meson.

2.3 Flavor structure of narrow tetraquarks
In the previous section we showed that if a tetraquark exists, then it has a decay
width proportional, at most, to 1/N . In this kind of analysis the flavor quantum
numbers play a crucial role in predicting their decay widths.

Here we summarize some recent results about the classification of all possible
flavor structures of tetraquarks [34]. In order to simplify the discussion, we define a
quark bilinear with flavor quantum numbers A and B as

BAB(x) = q̄A(x)ΓqB(x). (2.15)

We will also assume that the flavor indices A,B are different so that the vacuum
expectation value 〈BAB(x)〉 identically vanishes. The tetraquark interpolating field
will be denoted as

QAB;CD(x) = BAB(x)BCD(x). (2.16)

Since A 6= B and C 6= D, we have only three non-trivial possibilities for the flavor
structure of the couple CD:

C = B, C = A, A 6= B 6= C 6= D. (2.17)

These three possibilities imply different quark contractions in the correlation
functions involving tetraquark operators since contractions between different flavors
are forbidden, and hence determine different Large-N behaviors. The resulting
predictions are summarized in Table 2.1 and can be derived looking at Figure 2.7a,
2.7b and 2.7c. For a detailed derivation one should refer to the original work [34].

The remarkable aspect of this analysis is that a careful treatment of the flavor
quantum numbers reveals the presence of even narrower tetraquarks than those
decaying as 1/N . This happens in those situations in which the tetraquark is made
out of quarks with all different flavors, for instance [cs]

[
ūd̄
]
3. Let us perform a

detailed analysis for this case, the extension to the other flavor structures follows
straightforwardly.

3The notation [q1q2][q̄1q̄2] is introduced to distinguish between a tetraquark written in the
diquark-antidiquark basis – see Chapter 7 – against the notation (q̄1q2)(q̄3q4) – see Table 2.1.
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Type Decay width
√
ZQ Tetraquark-Meson mixing Example

C = B 1/N
√
N N0 (ūc)(c̄d)

C = A 1/N
√
N absent (c̄u)(c̄d)

A 6= B 6= C 6= D 1/N2 N0 absent (c̄u)(s̄d)
Table 2.1. Flavor structure and associated decay width for tetraquarks as reported by

Knecht and Peris [34]. The notation (q̄1q2)(q̄3q4) is used when the tetraquark is written
in the meson-meson basis.

In order to determine the decay width of such a tetraquark it is sufficient to
take only the leading connected contribution to the amplitude, in the sense specified
in Sec. 2.2, with properly normalized operators. In this case, ZQ ∼ N0 because
(Figure 2.6) the color factor of

〈
T
(
Q†(x)Q(y)

)〉
is N2 × g4/N2 ∼ N0 – also recall

that the Large-N order of ZQ must be evaluated from the two-point function as in
Sec. 2.2. The color factor of the decay amplitude, Eq. (2.14), is:

AQ→BB ∼
1√
ZQ

1
ZB

G̃3 ∼
1
N0 ×

1
N
×N0 ∼ 1

N
, (2.18)

where the color factor of G̃3 is N0 since the decay diagram of a tetraquark of this
kind is analogous to Figure 2.7c – see again the original reference [34] for details.
Finally, in this case a tetraquark-meson mixing is absent: cutting vertically the
diagram in Figure 2.7c it is impossible to have a cut involving only two color lines,
thus there is no meson intermediate state contribution. The decay width of this kind
of tetraquarks goes as 1/N2, being the decay amplitude of order 1/N , Eq. (2.18).

As a final note, we comment the Large-N behavior of the diagram in Figure 2.7b.
At a first look, it seems a subleading non-planar contribution, since there are line
crossings. However, the planarity is a topological property of the diagram, being its
1/N order associated to its Euler characteristic χ, as shown by ‘t Hooft [30, 32] ,
through the power law

Nχ with χ = L− I + V, (2.19)

where L is the number of loops, I the internal lines and V the vertices of the diagrams.
It hence follows that the one showed in Figure 2.7b is clearly a connected planar
diagram (there are many examples of non-trivial planar diagrams, for instance in
Maiani et al. [35]).

2.4 Hypothetical non-perturbative contributions to tetraquark
operators

In a recent paper by Lebed [36] a potential incongruence is found in considering the
normalization of the tetraquark wave functions created by LSZ normalized operators.

The fact that ZB ∼ N is equivalent to the conclusion that LSZ reduction identifies
the operator N−1/2B(x) as the one creating or destroying properly normalized
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asymptotic states. This prefactor also produces correctly normalized meson states

1√
N
Bi |0〉 = 1√

N

N∑
a=1

q̄aΓiqa |0〉 . (2.20)

Nevertheless, also ZQ ∼ N – see Eq. (2.12), leading to a properly normalized
tetraquark operator N−1/2Q(x). However, its application to the vacuum creates
states with norm squared N

1√
N
Q |0〉 = 1√

N

∑
ij

N∑
a=1

N∑
b=1

Cij q̄
aΓiqa q̄ bΓjqb |0〉 . (2.21)

Lebed [36] pointed out that, in order to obtain the additional 1/
√
N suppression

needed for the correct normalization of the state in Eq. (2.21), the definition of
the tetraquark operator as a local product of fermion bilinears must be revisited.
We have already shown that, when the Large-N limit is involved together with
another different limit procedure, they must be treated carefully. In particular, in
the LSZ formalism one has to take the infrared limit first, otherwise all the scattering
amplitudes would identically vanish. In this spirit, one could ask if the Large-N
commutes with the definition of composite operators: an operation that involves a
limit procedure. For example, in the φ4 scalar theory one may define the composite
operator : φ2(0) : as

: φ2(0) := lim
x→0

(
φ(x)φ(0)− C

x2 1
)
, (2.22)

in order to obtain finite renormalized correlation functions with its insertions 4.
Lebed [36] suggests that the non-commutativity of the limit N → ∞ and the

local limit in the definition of the composite tetraquark operator Q(x) is crucial in
resolving the lack of the additional 1/

√
N suppression factor in the tetraquark wave

function in Eq. (2.21). Consider the product of operators

Bi(x)Bj(0) ∼ · · ·+ Cij(x)Bi(0)Bj(0) + . . . , (2.23)

when x→ 0 5 and allow the coefficients Cij(x) to have a contribution of the form

δCij ∼ e−N
mΛ2

QCDx
2
. (2.24)

For any finite separation x2 ≥ 1
Λ2
QCD

this contribution is vanishing when N →∞, in
order to preserve the usual N -counting for the correlation function of two mesons.

If one defines the tetraquark operator smearing the product B(x)B(0) over a
small spatial region of size O(1/ΛQCD)

Q(x) =
∫

Λ3
QCD

d3y
∑
ij

Cij(y − x)Bi(x)Bj(x), (2.25)

4The operator product expansion is blind to contact terms of the form �nδ(x), for some power
n: an additional reason to define composite operators through a limit procedure.

5We are ignoring the mixing with operators of dimension less than 6 because we are dealing with
properly defined composite operators, Eq. (2.22).
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the above mentioned four-point correlation function, in the limit x → 0, gets a
contribution of N−m/2 for each spatial integral of the gaussian factor δCij . If
m = 1/3 one obtains precisely the desired additional suppression 1/

√
N in order to

obtain properly normalized tetraquark wave functions.
We remark that the coefficients δCij are non-perturbative in the N -counting

and cannot be inferred from perturbation theory. The mechanism proposed is only
a possibility and there are no reasons to believe that it happens in this precise
way. Nevertheless, it suggests that in order to allow the existence of one-tetraquark
poles in the connected piece of the correlation functions considered so far, some
non-perturbative mechanism in the 1/N expansion must occur.

2.5 Flavored tetraquarks in Corrigan-Ramond Large-N
limit

So far we discussed in detail the Large-N physical behavior of meson and tetraquark
states in the so-called ‘t Hooft limit [30]. Another well studied limit is that of
Veneziano [37], with Nf →∞ flavors, Nc →∞ colors, provided that Nf/Nc is fixed.
In both these formulations, a simple definition of baryons does not exist, in contrast
with what happens for mesons and tetraquarks. In fact, in generic SU(N) gauge
theories color-neutral states composed of only quarks – i.e. baryons – are made of
N quarks in a totally antisymmetric combination

εi1i2...iN q
i1qi2 . . . qiN . (2.26)

As shown by Witten [31], they have very distinctive properties in the Large-N limit.
As already mentioned, their mass goes as N , thus they disappear from the hadronic
spectrum when N →∞.

As firstly proposed by Corrigan and Ramond [38], it could be important to have,
for every value of N , color-neutral bound states composed of only three quarks.
A simple way to do it is to introduce new fermions, originally called “larks” [38],
transforming as the N(N − 1)/2 (antisymmetric) representation of SU(N). This
choice is motivated by the observation that, when N = 3, the dimension of this
representation is 3 and coincides with the 3̄c conjugate representation

qij = εijkq
k i, j, k = 1, 2, 3. (2.27)

In this formulation, the baryons for Large-N are constructed out of

q̄ijq
iqj (2.28)

color-neutral states, which look more like physical baryonic states. Moreover, just
like quarks, larks only couple to gluons with a minimal coupling. The introduction
of a lark sector in the Large-N extrapolation of QCD, not only allows to define
three-quark states, but also modifies the N -counting. The reason is simple. If we
introduce the ‘t Hooft double line representation [30] to understand the color flow of
this theory, we notice immediately that lark lines split in two with arrows pointing
in the same direction since both color indices in Eq. (2.27) belong to the same
representation, in contrast with gluons, represented as two oriented lines pointing
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in opposite directions since their color indices always appear as a color-anticolor
combination. Apart from the different orientation of the color flows, lark loops have
a color factor N2 like gluon loops. This implies that leading order planar diagrams
contain any possible internal gluons as well as lark loop corrections to these gluon
lines. In other words, we can also introduce an arbitrary number of lark “bubbles”
in the middle of a gluon propagator. The reason is again simple: each insertion of a
lark loop in a gluon line counts as N but each lark-gluon vertex counts as 1/

√
N

and hence a lark loop in the middle of a gluon line does not change the N -counting
of the considered diagram – see Sec. 2.2. This is in contrast with quark loops, whose
insertion inside a gluon propagator suppresses the order of the diagram in the 1/N
expansion. For this reason we also see how including other antisymmetric tensors is
dangerous for the 1/N expansion since they contribute in loops as Nm, where m is
the number of antisymmetric color indices, thus spoiling the perturbative expansion
of the correlators of the theory 6. In fact, the fine cancellation between positive
powers coming from loops and negative powers coming from couplings does not work
for m 6= 2.

It was recently shown [39] that in the Corrigan-Ramond Large-N formulation,
i.e. the ‘t Hooft limit with quarks in the antisymmetric SU(N) representation,
(sometimes called QCD(AS)) it is possible to unambiguously define narrow tetraquark
states. Consider a source operator of the form

Q(x) = CAB q̄
ijΓAqjk q̄klΓBqli, (2.29)

where lowercase letters indicate color indices and ΓA,B are matrices in the Dirac
and flavor space. Spin and flavor quantum numbers of the operator are fixed by a
suitable choice of CAB . This combination is gauge invariant, i.e. is a color singlet, if
we notice that

qij →Ωk
i Ωl

jqkl, (2.30a)

q̄ij → q̄kl(Ω†)ik(Ω†)
j
l , (2.30b)

under a generic SU(N) gauge transformation Ω. Moreover, lark color indices are
saturated in such a way that the operator given by Eq. (2.29) can never be split into
two independent color singlets for N > 3 7. In other words, the two-point correlation
function with sources as in Eq. (2.29) cannot be separated in disconnected pieces.
In Figure 2.8a we show the leading order contribution to the correlation function
〈Q(x)Q†(0)〉. Using the ‘t Hooft double line representation, Figure 2.8b, we see that
it is impossible to rearrange the colors in order to obtain two disconnected color
singlet diagrams. This essentially means that operators like the one in Eq. (2.29)
unambiguously interpolate tetraquarks (or tetralarks in a generic SU(N)) states,
without mixing with ordinary mesons.

Counting the lark loops we find that the color factor of this diagram is N4. As
usual in the Large-N expansion, the N -counting does not change if we consider all

6Larks can be considered as additional quark species: they couple to gluons with the same
coupling constant of the quarks, but with the SU(N) generators in the covariant derivative belonging
to the antisymmetric representation. The same can be done for other species belonging to different
representations of SU(N).

7As already mentioned, the case N = 3 is equivalent to the diquark-antidiquark formulation.
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x y

(a)

x y

(b)

Figure 2.8. “Tetralark” operator two-point correlation function. It is clear from the
diagram that it is not possible to separate the lark lines in gauge invariant subdiagrams.

the planar diagrams with the insertion of an arbitrary number of gluon internal lines.
It is remarkable to notice again that this counting does not change even if we add
any number of planar lark loops in the middle of these gluon lines for the reasons
explained before.

At this point, we can easily show that an operator source like that in Eq. (2.29)
can create out of the vacuum single tetralarks at leading order in the Large-N
expansion. We must be careful that, if the flavor of the sources allows lark-antilark
annihilations, there are other diagrams besides that in Figure 2.8a. In that case,
however, it would not be possible to unambiguously disentangle the contribution
of tetralark intermediate states from those of mesons. Imagine cutting vertically
the diagram in Figure 2.8b. Assuming confinement, the only way to form a gauge
invariant combination of the lark lines involved in the cut is to group the four larks
in a single hadron. This statement holds even if we insert an arbitrary number of
gluon internal lines in the diagram in figure name 2.8b. In that case the generic
gauge-invariant contribution to the cut would have the form

Tr [q A . . . A q̄ A . . . A q A . . . A q̄] , (2.31)

with A the gluon field. This is still a color-singlet combination with four larks. Since
the two-point function 〈T

(
Q(x)Q†(0)

)
〉 brings a color factor N4 ∼ ZQ (as shown

by the power counting of Figure 2.8b) we also find that the LSZ properly normalized
tetralark operators are N−2Q(x). Since lark loops are not suppressed, there are
also flavor-singlet contribution of states with an arbitrary number of lark-antilark
couples. This means that the tetralark states found are not pure, but rather they
are a superposition of infinite states, with arbitrary even number of larks, i.e. the
analogous of “sea quarks” in the lark sector. However, they are unambiguously exotic
states, since mesons made of larks cannot contribute to their two-point correlation
function.

Finally, we show that tetralarks in the Corrigan-Ramond Large-N limit are
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Figure 2.9. Three point correlation function 〈Q(x)B(y)B(z)〉 for the decay of a “tetralark”
in two mesons.

actually narrow states. To see this, consider the three point correlation function

〈T (Q(x)B(y)B(z))〉, (2.32)

where the operator B interpolates a lark-antilark couple (we use the same notation
of ordinary meson operators to stress the analogy among them). One of the leading
order diagrams contributing to Eq. (2.32) is shown in Figure 2.9. The counting of the
color loops gives a factor N3, instead of N4 obtained for the two-point correlation
function of “tetralark” operators. Normalizing properly the amplitude, we obtain a
total color factor 1/N2 × (1/N)2 ×N3 = 1/N , where we have used the result that
N−1B(x) is the LSZ normalized lark-antilark meson operator (we have not shown
this, but it can be easily proven). The resulting decay width is then proportional to
1/N2, showing that the in the limit N →∞ Corrigan-Ramond tetralarks are narrow
states.

2.6 Flavored tetraquarks in ‘t Hooft Large-N limit

From a field theory point of view, it is a challenging task to identify operators
interpolating only tetraquarks with flavor content cc̄ud̄. This is because such an
operator would interpolate also mesonic states as ud̄ having the same quantum
numbers.

This is one of the major difficulties in treating these states using Lattice QCD,
although some recent works on the subject has been presented [40–44]. Nevertheless,
a class of operators that do not overlap with ordinary mesons and that unambiguously
contain four valence quarks can be found [9].

It is the same class of operators already introduced in Corrigan-Ramond QCD(AS)
formulation and considered in a recent work by Cohen and Lebed [45]. The authors
show that the leading order connected diagrams contributing to the scattering
amplitude of mesons with the appropriate exotic quantum numbers do not contain
any tetraquark s-channel cut. A careful and detailed analysis of the argument can
be found in the original paper [45]. Here we will sketch the same argument referring
to a specific case, in order to make the discussion more concrete.
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Figure 2.10. Leading order connected contribution to the meson meson scattering amplitude
with exotic quantum numbers. The dashed lines represent the cut in the s-channel.

Consider the following four-point correlation function – see Figure 2.10 – that
can be used, for instance, to compute the elastic scattering amplitude of D+

s D
0

mesons
G4(x, y, z, w) = 〈T (c̄Γ1s(z) c̄Γ2u(w) s̄Γ3c(x) ūΓ4c(y))〉 , (2.33)

with Γ1, Γ2, Γ3, Γ4 appropriate Dirac matrices. We are looking for a possible s-
channel cut contributing to the four-point amplitude in which an on-shell tetraquark
with flavor content [cc] [s̄ū] propagates. We also notice that a t-channel cut cannot
reveal the presence of a tetraquark with these exotic flavor quantum numbers.

Imagine to cut the diagram in Figure 2.7b separating the incoming mesons in
x, y from the outgoing mesons in z, w . The resulting cut is shown in Figure 2.10a.
Apparently, we are led to say that in the considered scattering amplitude there is a
contribution from a tetraquark cut. However, drawing the diagram in a different,
topologically equivalent, way (Figure 2.10b), we see that the effect of the cut is to
put on shell the corners of the diagram, thus separating all the meson sources from
each other.

Recalling that the scattering amplitude is obtained, in momentum space, from
Eq. (2.33) multiplying it for the inverse of the propagators of the mesons in the
external legs, we have

A(s, t) =
∏
i

lim
q2
i→m

2
i

(q2
i −m2

i )
1√
Zi
G̃4({q2

i }; s, t), (2.34)

with G̃4({q2
i }; s, t) the Fourier transform of G4 in Eq. (2.33). The factors q2

i −m2
i

cancel exactly the contribution of the sources to the s-channel and the on-shell
contributions come only from meson intermediate states.

Drastically different is the situation for a tetraquark with flavor (c̄u)
(
d̄c
)
, as

the recently discovered charged resonance Z(4430). The resulting connected leading
order diagram is similar to the diagram in Figure 2.7a. In that case a cut in the
s-channel reveal either a meson or a tetraquark intermediate state.

To summarize, a pure tetraquark intermediate state, i.e. with flavor quantum
numbers that can only be interpreted as exotic, cannot contribute to the leading
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order connected contribution to meson-meson elastic scattering amplitude. It is
remarkable to notice that the experimental situation is drastically different. Until
now, there is no evidence for such exotic resonances with all four different flavors and
the considerations illustrated here are not applicable to the current experimental
situation.

The key points of this section are schematically summarized in Table 2.2.

Coleman [32]/Witten [31]
Tetraquarks do not exist,
(subleading in the large-N QCD expansion)

. . . . . .

Weinberg [33]
Even if subleading, tetraquarks can exist.
The width is ∝ 1/N (like mesons)

Knecht-Peris [34] 4-flavored tetraquarks are as narrow as 1/N2

Lebed [36]
Non-perturbative effects in 1/N
might affect tetraquark wave function

Cohen-Lebed 1 [45]
Tetraquarks naturally exist in Corrigan-Ramond limit
(larks in the antisymmetric representation)

Cohen-Lebed 2 [39]
Production of tetraquarks in scattering
amplitudes is sub-subleading only.

Table 2.2. The current status of Large-N tetraquarks.
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Chapter 3

Experimental overview

As shown in the previous section, recently a good deal of work has been done to
understand the phenomenology of tetraquark states in Large-N QCD. In particular,
some doubts were raised about a possible broadness of these particles, that would
make them experimentally undetectable. However, as we will show in the following
sections, in the past eleven years many different experiments, both at lepton and
hadron colliders, reported evidences for a large number of particles having properties
which can hardly be embedded in the known charmonia frameworks. A pictorial
representation of this is visible in Figure 3.1. In particular, the charged states
reported in the second panel are manifestly exotic. Some states, like the X(3872)
or the X(3915), have more or less the correct mass and quantum numbers to be
identified with (otherwise missing) ordinary charmonia; on the other hand, in the
vector sector we have much more levels than expected. In any case, the decay pattern
of these states is not compatible with charmonia predictions, and so it needs some
exotic assignment.

Besides finding the states, the measurement of the quantum numbers is needed
to establish their exotic nature. While prompt production at hadron colliders
can produce particles with any quantum numbers, exclusive production modes, in
particular at e+e− colliders, can constrain the assignment. For example, a generic
state X could be produced:

• Directly with e+e− → X, if the center-of-mass energy coincides with the mass
of the state (typically at τ -c factories), or in association with Initial State
Radiation (ISR) which lowers the center of mass energy, e+e− → e+e−γISR →
XγISR, typically at B-factories. In the first case an invariant mass distribution
can be studied by varying the energy of the beam, which does not allow to
collect many data points with high statistics, while in the second the same
distribution is studied as a function of the γISR energy. In both cases, the
quantum numbers must be the same as the photon, i.e. JPC = 1−−.

• In the fusion of two quasi-real photons, e+e− → e+e−γγ → e+e−X, where e+

and e− are scattered at a small angle and are not detected; the signal events
have no tracks and neutral particles but the daughters of X. If the photons
are quasi-real, Landau-Yang theorem holds [47], and J 6= 1; moreover C = +
is constrained.
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Figure 3.1. Charmonium sector. In the upper panel, we show ordinary charmonia and
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observed charmonium levels, blue lines represent predicted levels according to Radford
and Repko [46], red line are exotic states. The open charm thresholds are reported on
the right.
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• In double charmonium production, for example e+e− → J/ψX, which con-
strains X to have C opposite to the one of the associated charmonium.

The production in B decays allows X to have any JPC , albeit low values of the
spin are preferred.

Hadron colliders, instead, produce charmonia states both directly and in B
decays, and the search is typically carried out inclusively.

A summary of the resonances we will talk about is reported in Table 3.1-3.3.
We start our review from the charged ones, first the recently confirmed Z(4430) in
Sec. 3.1, then we move to the charged states in the 3900-4200 MeV region (Sec. 3.2)
and the corresponding ones in the bottomonium sector (Sec. 3.3). The newly
discovered pentaquark states are discussed in Sec. 3.4, the X(3872) is extensively
described in Sec. 3.5, as well as the vector states in Sec. 3.6. Finally, the other
resonances around 3940 MeV are described in Sec. 3.7, and the remaining ones in
Sec. 3.8. Other information can be found in some reviews [48–50]; a complete treatise
about the physics of BABAR and Belle can be found in the recent review book [29].
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State M (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ)
X(3823) 3823.1± 1.9 < 24 ??− B → K(χc1γ) Belle [51] (4.0)
X(3872) 3871.68± 0.17 < 1.2 1++ B → K(π+π−J/ψ ) Belle [52, 53] (>10), BABAR [54] (8.6)

pp̄→ (π+π−J/ψ ) ... CDF [55, 56] (11.6), D∅ [57] (5.2)
pp→ (π+π−J/ψ ) ... LHCb [58, 59] (np)
B → K(π+π−π0J/ψ ) Belle [60] (4.3), BABAR [61] (4.0)
B → K(γ J/ψ ) Belle [62] (5.5), BABAR [63] (3.5)

LHCb [64] (> 10)
B → K(γ ψ(2S)) BABAR [63] (3.6), Belle [62] (0.2)

LHCb [64] (4.4)
B → K(DD̄∗) Belle [65] (6.4), BABAR [66] (4.9)

Zc(3900)+ 3888.7± 3.4 35± 7 1+− Y (4260)→ π−(DD̄∗)+ BES III [67] (np)
Y (4260)→ π−(π+J/ψ ) BES III [68] (8), Belle [69] (5.2)

CLEO data [70] (>5)
Zc(4020)+ 4023.9± 2.4 10± 6 1+− e+e− → π−(π+hc) BES III [71] (8.9)

e+e− → π−(D∗D̄∗)+ BES III [72] (10)
Y (3915) 3918.4± 1.9 20± 5 0++ B → K(ωJ/ψ ) Belle [73] (8), BABAR [61, 74] (19)

e+e− → e+e−(ωJ/ψ ) Belle [75] (7.7), BABAR [76] (7.6)
Z(3930) 3927.2± 2.6 24± 6 2++ e+e− → e+e−(DD̄) Belle [77] (5.3), BABAR [78] (5.8)
X(3940) 3942+9

−8 37+27
−17 ??+ e+e− → J/ψ (DD̄∗) Belle [79, 80] (6)

Y (4008) 3891± 42 255± 42 1−− e+e− → (π+π−J/ψ ) Belle [69, 81] (7.4)
Z(4050)+ 4051+24

−43 82+51
−55 ??+ B̄0 → K−(π+χc1) Belle [82] (5.0), BABAR [83] (1.1)

Table 3.1. Summary of quarkonium-like states. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.
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State M (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ)
Y (4140) 4145.6± 3.6 14.3± 5.9 ??+ B+ → K+(φJ/ψ ) CDF [84, 85] (5.0), Belle [86] (1.9),

LHCb [87] (1.4), CMS [88] (>5)
D∅ [89] (3.1)

X(4160) 4156+29
−25 139+113

−65 ??+ e+e− → J/ψ (D∗D̄∗) Belle [80] (5.5)
Z(4200)+ 4196+35

−30 370+99
−110 1+− B̄0 → K−(π+J/ψ ) Belle [90] (7.2)

Y (4220) 4196+35
−30 39± 32 1−− e+e− → (π+π−hc) BES III data [91, 92] (4.5)

Y (4230) 4230± 8 38± 12 1−− e+e− → (χc0ω) BES III [93] (>9)
Z(4250)+ 4248+185

−45 177+321
−72 ??+ B̄0 → K−(π+χc1) Belle [82] (5.0), BABAR [83] (2.0)

Y (4260) 4250± 9 108± 12 1−− e+e− → (ππJ/ψ ) BABAR [94, 95] (8), CLEO [96, 97] (11)
Belle [69, 81] (15), BES III [68] (np)

e+e− → (f0(980)J/ψ ) BABAR [95] (np), Belle [69] (np)
e+e− → (π−Zc(3900)+) BES III [68] (8), Belle [69] (5.2)
e+e− → (γ X(3872)) BES III [98] (5.3)

Y (4290) 4293± 9 222± 67 1−− e+e− → (π+π−hc) BES III data [91, 92] (np)
X(4350) 4350.6+4.6

−5.1 13+18
−10 0/2?+ e+e− → e+e−(φJ/ψ ) Belle [86] (3.2)

Y (4360) 4354± 11 78± 16 1−− e+e− → (π+π−ψ(2S)) Belle [99] (8), BABAR [100] (np)
Pc(4380)+ 4380± 8± 29 205± 18± 86 3/2− Λ0

b → K−(J/ψ p) LHCb [101] (9)
Z(4430)+ 4478± 17 180± 31 1+− B̄0 → K−(π+ψ(2S)) Belle [102, 103] (6.4), BABAR [104] (2.4)

LHCb [105] (13.9)
B̄0 → K−(π+J/ψ ) Belle [90] (4.0)

Pc(4450)+ 4449.8± 1.7± 2.5 39± 5± 19 5/2+ Λ0
b → K−(J/ψ p) LHCb [101] (12)

Y (4630) 4634+9
−11 92+41

−32 1−− e+e− → (Λ+
c Λ̄−c ) Belle [106] (8.2)

Y (4660) 4665± 10 53± 14 1−− e+e− → (π+π−ψ(2S)) Belle [99] (5.8), BABAR [100] (5)
Table 3.2. (Continued).
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State M (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ)
Zb(10610)+ 10607.2± 2.0 18.4± 2.4 1+− Υ(5S)→ π(πΥ(nS)) Belle [107, 108] (>10)

Υ(5S)→ π−(π+hb(nP )) Belle [107] (16)
Υ(5S)→ π−(BB̄∗)+ Belle [109] (8)

Zb(10650)+ 10652.2± 1.5 11.5± 2.2 1+− Υ(5S)→ π−(π+Υ(nS)) Belle [107] (>10)
Υ(5S)→ π−(π+hb(nP )) Belle [107] (16)
Υ(5S)→ π−(B∗B̄∗)+ Belle [109] (6.8)

Table 3.3. (Continued).
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Figure 3.2. Invariant mass distributions in ψ(2S)π− channel according to first [110] (left),
and last [103] (right) Belle analyses. The fit shows that an additional resonances is
needed to describe the data. In the right panel, the blue solid (red dashed) curve shows
the fit with (without) the additional Z(4430) resonance. In both figures, a K∗ veto has
been applied.

3.1 Z(4430)
In April 2014, LHCb confirmed the existence of a charged resonance in the ψ(2S)π−
channel [105]. 1 This announcement solved a controversy between Belle, which
discovered [110] and confirmed [102, 103] the existence of this state, and BABAR,
which did not observe any new structure and criticized some aspects of Belle’s
analysis [104]. A state decaying into a charmonium and a charged light meson
has undoubtly a four-quark content, being the production of a heavy quark pair
from vacuum OZI suppressed. As we will discuss later, the very existence of such
an exotic state far from usual open-charm thresholds is extremely interesting for
phenomenological interpretations. We now briefly review the experimental history
of this and other charged states.

The original Belle paper [110] studies the B → ψ(2S)πK decays, and reports
a peak in the ψ(2S)π invariant mass distribution, with M = (4430 ± 4 ± 2) MeV
and Γ = (45+18

−13
+30
−13) MeV (Figure 3.2). This kind of analysis is particularly difficult,

because the rich structure of Kπ resonances could reflect into the ψ(2S)π channel
and create many fake peaks. However, Belle considered that the events with
M(ψ(2S)π−) ∼ 4430 MeV correspond to events with cos θKπ ' 0.25, i.e. an angular
region where interfering L = 0, 1, 2 partial waves cannot produce a single peak
without creating other larger structures elsewhere. Belle named this state Z(4430),
and reported the product branching fractions

B
(
B0 → K+Z(4430)−

)
× B

(
Z(4430)− → ψ(2S)π−

)
= (4.1± 1.0± 1.4)× 10−5.

(3.1)
BABAR reviewed this analysis [104], by studying in detail the efficiency corrections

1Unless specified, the charged conjugated modes are understood.
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Figure 3.3. Invariant mass distributions in ψ(2S)π− channel (left) and resonant behavior
(right) according to LHCb [105]. In the left panel, the red solid (brown dashed) curve
shows the fit with (without) the additional Z(4430) resonance. In the right panel, the
complex value of the Z(4430) fitted amplitude for six bins of M(ψ(2S)π) is shown. The
red curve is the prediction from the Breit-Wigner formula with a resonance mass (width)
of 4475 (172)MeV.

and the shape of the background, relying for the latter on data as much as possible.
Hints of a structure near 4430 MeV appeared, even though not statistically significant,
thus leading to a 95% C.L. upper limit on the production branching fraction

B(B0 → K+Z(4430)−)× B(Z(4430)− → ψ(2S)π−) < 3.1× 10−5. (3.2)

After that, Belle revised the analysis [102] studying in detail the 3-body Dalitz
plot, and adding all known Kπ resonances, both with and without a coherent
amplitude for the Z(4430) in the ψ(2S)π− channel. Belle confirmed the presence
of a peak with a statistical significance of 6.4σ. The Breit-Wigner parameter from
the Dalitz analysis are M = (4443+15

−12
+19
−13) MeV and Γ = (109+86

−43
+74
−56) MeV. A more

recent 4D re-analysis by Belle [103] shows that the JP = 1+ hypothesis is favored,
modifying mass and width values to M = 4485+22+28

−22−11 MeV and Γ = 200+41+26
−46−35 MeV

(Figure 3.2). The production branching fraction is instead

B
(
B0 → K+Z(4430)−

)
×B

(
Z(4430)− → ψ(2S)π−

)
=
(
6.0+1.7
−2.0

+2.5
−1.4

)
×10−5. (3.3)

LHCb confirmed this last result with a similar 4D analysis of the same decay
channel. The Z(4430)+ is confirmed with a significance of 13.9σ at least, and the
fitted mass and width are M = (4475± 7+15

−25) MeV and Γ = (172± 13+37
−34) MeV. Also

the JP = 1+ signature is confirmed with high significance. The average à la PDG of
Belle’s and LHCb’s mass and width are:

M = (4478± 17) MeV, Γ = (180± 31) MeV. (3.4)

Since some theoretical papers [111] cast doubts on the resonant nature of the
peak, in this analysis the complex value of the Z(4430) amplitude has been plotted
as a function of M(ψ(2S)π) (Figure 3.3). The behavior is compatible with the
Breit-Wigner prediction with the fitted values of mass and width. The same analysis
also shows hints for a Z(4200) peak with quantum numbers likely JP = 0−, mass
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Figure 3.4. Distributions ofMmax(J/ψπ±), i.e. the larger one of the twoM(J/ψπ±) in each
event, according to BES III [68] (left) and Belle [69] (right) in the Y (4260)→ J/ψπ+π−

decay. The red solid curve is the result of the fit, the blue dotted curve is the background
component, the green histogram shows the normalized J/ψ sideband events.

and width M = (4239 ± 18+45
−10) MeV, Γ = (220 ± 47+108

−74 ) MeV; however, since the
Argand diagram is not conclusive about its resonant nature, LHCb has decided not
to claim the discovery of another state.

Recently, Belle published a similar analysis of the B → J/ψπK decays [90]. Hints
of a Z(4430) have been reported inM(J/ψπ) invariant mass, with branching fraction

B
(
B0 → K+Z(4430)−

)
× B

(
Z(4430)− → J/ψπ−

)
=
(
5.4+4.0
−1.0

+1.1
−0.6

)
× 10−6. (3.5)

The fact that the Z(4430) is found in different decay channels gives solidity to its
existence. In the same analysis, Belle claimed the discovery of a broad Z(4200) state
with quantum numbers likely JP = 1+, mass and width M = (4196+31

−29
+17
−13) MeV,

Γ = (370+70
−70

+70
−132) MeV, with a significance of 6.2σ, possibly related to the LHCb

hint. The reported branching fraction is

B
(
B0 → K+Z(4200)−

)
× B

(
Z(4200)− → J/ψπ−

)
=
(
2.2+0.7
−0.5

+1.1
−0.6

)
× 10−5. (3.6)

3.2 Charged states in the 3900-4300 MeV region
In March 2013, BES III [68] and Belle [69] claimed the discovery of a charged
resonance in the channel J/ψπ+ at a mass of about 3900 MeV, i.e. slightly above
the DD∗ threshold (Figure 3.4). BES III takes data at the Y (4260) pole, and
analyzes the process e+e− → Y (4260)→ J/ψπ+π−; Belle instead produces Y (4260)
in addition with initial state radiation (ISR), and analyzes the process e+e− →
Y (4260)γISR → J/ψπ+π−γISR. The measured mass and width of the resonance are

M = (3899.0± 3.6± 4.9) MeV, Γ = (46± 10± 20) MeV (BES III), (3.7a)
M = (3894.5± 6.6± 4.5) MeV, Γ = (63± 24± 26) MeV (Belle), (3.7b)

and production branching fractions

B
(
Y (4260)→ Zc(3900)+π−

)
× B

(
Zc(3900)+ → J/ψπ+)

B (Y (4260)→ J/ψπ+π−)
= (21.5± 3.3)% (BES III) = (29.0± 8.9)% (Belle). (3.8)
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Figure 3.5. Invariant mass distributions of D0D∗− (left) and D+D̄∗0 (right), according
to BES III [67]. The solid curve is the result of the fit, the blue dotted curve is the
background component.

This is the first time that a charged manifestly exotic state has been confirmed by
two independent experiments, which has given some excitement to the charmonium
community. The resonance was called Zc(3900). No measurement of quantum num-
bers has been performed, but JP = 1+ is most likely if the decay Zc(3900)→ J/ψπ+

is assumed to be in S-wave. Soon after, an analysis of CLEO-c data confirms [70]
the presence of the charged Zc(3900)+ in the ψ(4160)→ J/ψπ+π− decay and pro-
vides evidence for a neutral partner in the ψ(4160)→ J/ψπ0π0 decay, with fitted
parameters

M(Z+
c ) = (3886± 4± 2) MeV, Γ = (37± 4± 8) MeV, (3.9a)

M(Z0
c ) = (3904± 9± 5) MeV, Γ = 37 MeV (fixed). (3.9b)

A preliminary result by BES III confirm the existence of the neutral partner in
Y (4260) → Zc(3900)π0 → J/ψπ0π0 [112]. A similar signal has been observed by
BES III in e+e− → (DD̄∗)+π−, as a resonance in the (DD̄∗)+ invariant mass [67],
with mass and width M = (3883.9± 1.5± 4.2) MeV and Γ = (24.8± 3.3± 11.0) MeV
(Figure 3.5). The signature JP = 1+ is favored, and if this state is assumed to be
the same as in the J/ψπ+ channel, we have

B
(
Zc(3900)→ DD̄∗

)
B (Zc(3900)→ J/ψπ) = 6.2± 1.1± 2.7. (3.10)

The resulting PDG averaged mass and width are [113]:

M = (3888.7± 3.4) MeV, Γ = (35± 7) MeV (PDG). (3.11)

In the same period, BES III studied the e+e− → (D∗D̄∗)+π− process, and
observed another charged resonance in the D∗D̄∗ channel [72], at a mass slightly
above the D∗D∗ threshold, with quantum numbers likely JP = 1+. Soon after,
BES III reported a similar peak in the e+e− → hcπ

+π− reaction as a resonance
in hcπ+ invariant mass [71]. This state is dubbed Z ′c(4020) (Figure 3.6), and the
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Figure 3.6. Left panel: unbinned maximum likelihood fit to the π recoil mass spectrum,
in the e+e− → (D∗D̄∗)+π− analysis by BES III [72]. Right panel: fits to the M(hcπ)
distributions by BES III [71]; the inset shows the sum fits if allowing for an additional
Zc(3900) resonance.

measured masses and widths are:

M = (4026.3± 2.6± 3.7) MeV, Γ = (24.8± 5.6± 7.7) MeV (Z ′c → D∗D̄∗),
(3.12a)

M = (4022.9± 0.8± 2.7) MeV, Γ = (7.9± 2.7± 2.6) MeV (Z ′c → hcπ), (3.12b)
M = (4023.9± 2.4) MeV, Γ = (10± 6) MeV (PDG). (3.12c)

Moreover, BES III has recently reported some evidence for the neutral isospin
partner Z ′c(4020)0, with M = (4023.9 ± 2.2 ± 3.89) MeV and the width fixed to
Γ(Z ′c(4020)+) [114]. The Zc(3900) is also searched [71] in the hcπ final state. A peak
occurs at 2.1σ level, thus not statistically significant. A 90% C.L. upper bound on
the production cross section is established:

σ
(
e+e− → Zc(3900)+π− → hcπ

+π−
)
< 11 pb, (3.13)

to be compared with

σ
(
e+e− → Zc(3900)+π− → J/ψπ+π−

)
= (13.5± 2.1) pb. [68] (3.14)

Similarly, no Z ′c(4020) has been seen by BES III and Belle decaying into J/ψπ,
as it is shown in Figure 3.4.

It is worth noticing that no Zc(3900) has been seen by Belle in the B → KJ/ψπ
channel [90], and the 90% C.L. upper bound on the branching fraction is:

B
(
B0 → K+Z(3900)−

)
× B

(
Z(3900)− → J/ψπ−

)
< 9× 10−7. (3.15)

Moreover, the COMPASS collaboration reported a search for γN → Z+
c (3900)N ,

where the photon is obtained with scattering of positive muons at 160 and 200GeV
on a target of LiD or NH3 [115]. No signal is observed, and a 90% C.L. upper bound
is put:

B
(
Zc(3900)→ J/ψπ+)× σ (γN → Z+

c (3900)N
)

σ (γN → J/ψN) < 3.7× 10−3 (3.16)
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Figure 3.7. Invariant mass distributions of χc1π±, with fit results showing the charged
resonances in the Belle (left) [82] and BABAR (right) [83] analyses. The region of the
K∗(890) and K∗(1410) peaks are removed. In left panel, the solid red histogram shows
the results of the fit that includes coherent Z1 and Z2 amplitudes; the dashed blue curve
is the result of the fit using Kπ amplitudes only. In right panel, the solid curve fits data
using Kπ amplitudes only.

at √sγN ' 13.8 GeV.
In a Dalitz-plot analysis of B → χc1π+K decays, Belle could get an acceptable

fit only by adding two resonances in the χc1π+ channel, which were named Z1(4050)
and Z2(4250) [82]. The fitted masses and widths are

M = (4051± 14+20
−41) MeV Γ = (82+21+47

−17−22) MeV (Z+
1 ), (3.17a)

M = (4248+44+180
−29−35 ) MeV Γ = (177+54+316

−39−61 ) MeV (Z+
2 ), (3.17b)

and reported the production branching fractions

B(B → Z−1 K
+)× B(Z−1 → χc1π

−) = (3.0+1.2+3.7
−0.8−1.6)× 10−5, (3.18a)

B(B → Z−2 K
+)× B(Z−2 → χc1π

−) = (4.0+2.3+19.7
−0.9−0.5 )× 10−5. (3.18b)

The same decay was investigated by BABAR, which carefully studied the effects
of interference between resonances in the Kπ system [83]. Considering interfering
resonances in the Kπ channel only, BABAR obtained good fits to data without adding
any χcπ resonance. Upper limits at 95% C.L. on the product branching fractions of
Z1 and Z2 can be evaluated if incoherent resonant amplitudes for these two states
are added to the fit:

B(B → Z−1 K
+)× B(Z−1 → χc1π

−) < 1.8× 10−5, (3.19a)
B(B → Z−2 K

+)× B(Z−2 → χc1π
−) < 4.0× 10−5. (3.19b)

Part of the discrepancy between the two experiments may be due to the fact that in
the BABAR analysis the Z1 and Z2 terms are added incoherently and do not interfere
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Figure 3.8. Dalitz plot for Υ(2S) events in the signal region. Events to the left of the
vertical line are excluded. From Belle [107].

with the Kπ amplitudes, while in the Belle analysis, significant constructive and
destructive interference between the Z1,2 amplitudes and the Kπ resonances is more
relevant (see the dips and peaks of the solid red curve in Figure 3.7).

Finally, we report a 3.5σ peak in the ψ(2S)π+ invariant mass, in the e+e− →
ψ(2S)π+π− full statistics analysis by Belle [116], with best fit parameters M =
(4054± 3± 1) MeV and Γ = (45± 11± 6) MeV.

3.3 Charged bottomonium states: Zb(10610)/Z ′b(10650)
The Zc(3900) and the Z ′c(4020) could have their counterparts in the bottomonium
sector. Belle reported the observation of anomalously high rates for the Υ(5S)→
π+π−Υ(nS) (n = 1, 2, 3) [117] and Υ(5S)→ π+π−hb(nP ) (n = 1, 2) [118] transitions.
The measured partial decay widths Γ

(
Υ(5S)→ Υ(nS)π+π−

)
' 0.5 MeV are about

two orders of magnitude larger than typical widths for dipion transitions among the
four lower (nS) states. Furthermore, the observation of π+π−hb(nP ) final states
with rates comparable to π+π−Υ(nS) violates heavy-quark spin conservation. Belle
searched for exotic resonant substructures in these decays [107]. In order to have
a relatively background-free sample, the Υ(nS) states are observed in their µ+µ−

decay only, whereas the hb(nP ) are reconstructed inclusively.
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Figure 3.9. Comparison of fit results (open histogram) with experimental data (points with error bars) for events in the Υ(nS) (first 3 plots) and
hb(nP ) (last 2 plots) regions. From Belle [107].

Final state Υ(1S)π+π− Υ(2S)π+π− Υ(3S)π+π− hb(1P )π+π− hb(2P )π+π−

M [Zb(10610)], MeV 10611± 4± 3 10609± 2± 3 10608± 2± 3 10605± 2+3
−1 10599+6+5

−3−4
Γ[Zb(10610)], MeV 22.3± 7.7+3.0

−4.0 24.2± 3.1+2.0
−3.0 17.6± 3.0± 3.0 11.4 +4.5+2.1

−3.9−1.2 13 +10+9
−8−7

M [Zb(10650)], MeV 10657± 6± 3 10651± 2± 3 10652± 1± 2 10654± 3 +1
−2 10651+2+3

−3−2
Γ[Zb(10650)], MeV 16.3± 9.8+6.0

−2.0 13.3± 3.3+4.0
−3.0 8.4± 2.0± 2.0 20.9 +5.4+2.1

−4.7−5.7 19± 7 +11
−7

Rel. normalization 0.57± 0.21+0.19
−0.04 0.86± 0.11+0.04

−0.10 0.96± 0.14+0.08
−0.05 1.39± 0.37+0.05

−0.15 1.6+0.6+0.4
−0.4−0.6

Rel. phase, degrees 58± 43+4
−9 −13± 13+17

−8 −9± 19+11
−26 187+44+3

−57−12 181+65+74
−105−109

Table 3.4. Comparison of results on Zb(10610) and Z ′b(10650) parameters obtained from Υ(5S) → Υ(nS)π+π− and Υ(5S) → hb(nP )π+π−

analyses [107].
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Channel Fraction, %
Zb(10610) Z ′b(10650)

Υ(1S)π+ 0.32± 0.09 0.24± 0.07
Υ(2S)π+ 4.38± 1.21 2.40± 0.63
Υ(3S)π+ 2.15± 0.56 1.64± 0.40
hb(1P )π+ 2.81± 1.10 7.43± 2.70
hb(2P )π+ 4.34± 2.07 14.8± 6.22
B+B̄∗0 + B̄0B∗+ 86.0± 3.6 −
B∗+B̄∗0 − 73.4± 7.0

Table 3.5. List of branching fractions for the Z+
b (10610) and Z+

b (10650) decays. From
Belle [109].

The Dalitz plots in the signal region (see for example Figure 3.8) is fitted
with a sum of interfering resonances: the f0(980), the f2(1270) in ππ channel,
two new charged resonances in the Υ(nS) [hb(nP )]π± channel, and a nonresonant
background. The result of each fit is reported in Table 3.4; all the studied channels
show the highly significant presence of both charged resonances, dubbed Zb(10610)
and Z ′b(10650), with compatible masses and widths. The one-dimensional invariant
mass projections for events in each Υ(nS) and hb(nP ) signal region are shown in
Figure 3.9. The average of all channels gives for Zb(10610) a mass and width of
M = (10607.2 ± 2.0) MeV, Γ = (18.4 ± 2.4) MeV, and for Z ′b(10650) a mass and
width of M = (10652.2± 1.5) MeV, Γ = (11.5± 2.2) MeV.

The Zb(10610) production rate is similar to that of the Z ′b(10650) for each of the
five decay channels. Their relative phase is consistent with zero for the final states
with the Υ(nS) and consistent with 180 degrees for the final states with hb(nP ).
Production of the Zb’s saturates the Υ(5S)→ hb(nP )π+π− transitions and accounts
for the high inclusive hb(nP ) production rate reported by Belle [118]. Analyses
of charged pion angular distributions [107, 119] favor the JP = 1+ spin-parity
assignment for both the states.

Belle searched these states also in pairs of open bottom mesons [109]. The
Dalitz plots of Υ(5S) → (BB∗)−π+ and Υ(5S) → (B∗B∗)−π+ report a 8σ signal
of Z−b (10610)→ (BB∗)− and a 6.5σ signal of Z ′−b (10650)→ (B∗B∗)−, respectively,
whereas Z ′−b (10650)→ (BB∗)− is compatible with zero2. The best estimate for the
branching ratios are reported in Table 3.5.

Recently, Belle has been able to find the neutral isospin partner Zb(10610)0 [108]
in Υ(5S) → Υ(2, 3S)π0π0 decays, at a significance of 6.5σ if mass and width are
fixed to the averaged values of the Zb(10610)+. If the mass is let free, the fitted
value is M = (10609± 4± 4) MeV, consistent with the charged partner mass. On
the other hand, no significant signal of Z ′b(10650)0 is seen.

2Z−b (10610)→ (B∗B∗)− is phase-space forbidden.
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Figure 3.10. Invariant mass squared of Kp versus J/ψ p for candidates within ±15 MeV of
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b mass [101].

3.4 Pentaquark states

In July 2015, LHCb reported the observation of two peaks, denoted Pc(4380)+ and
Pc(4450)+, in the invariant mass of J/ψ p in the Λ0

b → J/ψ pK− decay [101]. In the
Dalitz plot in Figure 3.10 a band in the J/ψ p is indeed visible, and looks far from
the Λ∗ region (m2

Kp < 4 GeV2). The full amplitude fit cannot satisfactorily describe
data without including these two Breit-Wigner shaped resonances (Figure 3.11). The
lighter state has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while
the heavier one has a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19 MeV.
The parities of the two states are opposite, and the preferred JP are

(
3
2
−
, 5

2
+),

although
(

3
2

+
, 5

2
−) and

(
5
2

+
, 3

2
−) are not excluded. The higher mass state has a fit

fraction of (4.1± 0.5± 1.1)%, and the lower mass state of (8.4± 0.7± 4.2)%, of the
total sample. To study the resonant behavior of the two states, the amplitudes are
represented as the combination of independent complex numbers at six equidistant
points in the range ±Γ0 = 39 MeV around the as determined in the default fit. Real
and imaginary parts of the amplitude are interpolated in mass between the fitted
points. The resulting Argand diagram, shown in Figure 3.12, is consistent with a
rapid counter-clockwise change of the Pc(4450)+ phase when its magnitude reaches
the maximum, whereas no conclusion can be drawn for the wider Pc(4380)+.

3.5 The X(3872) saga

The queen of exotic states is the X(3872). It was discovered by Belle while studying
the B → KJ/ψπ+π− decays [52], as an unexpected resonance in the J/ψπ+π−

invariant mass distribution (see Figure 3.14, left panel). It was then confirmed both
in B decays [120] and in inclusive prompt pp̄ [57, 121] and pp production [58, 122] –
see Chapter 6 for a long-standing controversy about the theoretical interpretation of
that. First of all, an exotic nature was suggested by its narrow width, Γ < 2.3 MeV
at 90% C.L. [52], despite being above threshold for the decay into a charmed meson
pair. Furthermore, both π+π− invariant mass distribution [52, 123] and angular
analyses [55] show that the π+π− amplitude is dominated by the ρ meson, i.e.
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Figure 3.13. Measured mass of the X(3872). We show the measurements which contribute
to the average in PDG [113].

a I = 1 resonance. If the X(3872) were an ordinary charmonium with I = 0,
such a decay would badly violate isospin symmetry. The size of isospin breaking
was quantified by the measurement of the X(3872)→ J/ψω branching fraction by
Belle [60] and BABAR [61]:

Γ (X(3872)→ J/ψω)
Γ (X(3872)→ J/ψπ+π−) = 0.8± 0.3. (3.20)

The C = + assignment was confirmed by the observation of the X(3872)→ J/ψγ
decay [60, 124], and by the non-observation of X(3872) → χc1γ [52]. As for the
spin, a preliminary angular analysis of the X(3872) → J/ψπ+π− by Belle [125]
favored 1++ assignment. Soon after, a more detailed analysis by CDF [55] was
able to rule out all but the 1++ and 2−+ assignments. The latter could not be
excluded because of the additional complex parameter given by the ratio between
the two independent amplitudes for X(2++) → J/ψπ+π−, which could not be
constrained in inclusive X(3872) production; on the other hand, the former was
preferred by theoretical models. Instead, the analysis of the J/ψω invariant mass
distribution by BABAR [61] favored the 2−+ hypothesis, and stimulated a discussion
on its theoretical feasibility [1, 49, 126–128]. However, a J = 2 assignment would
allow X(3872) to be produced in γγ fusion, but CLEO has found no significant signal
in γγ → X(3872) → J/ψπ+π− [129]. A statistically improved analysis of angular
distributions in X(3872)→ J/ψπ+π− has been made by Belle [53], again favoring
1++. The limited statistics forced Belle to consider three different one-dimensional
projections of the full angular distribution, which were not able to rule out 2−+.

Finally, LHCb has recently published an analysis of a large B+ → K+X(3872)
sample [59]. This study is based on an event-by-event likelihood ratio test of 1++

and 2−+ hypotheses on the full 5D angular distribution, and favors the 1++ over 2−+

at 8σ level. The additional complex parameter in the 2−+ distributions is treated as
a nuisance parameter; its best value extracted from the fit is found to be consistent
with the value obtained if the events are MC generated with a 1++ assumption;
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Figure 3.14. Invariant mass spectra of J/ψπ+π− in B+ → J/ψπ+π−K+ decay by Belle [53]
(left panel) and of the D̄∗0D0 system in B → D̄∗0D0K decays by BABAR [66] (right
panel).

this is consistent with the Belle’s result too [53]. More comments on that are in
Sec. 3.5.1.

In Figure 3.13 we report a list of the most recent mass measurements. The
current world average, considering only X(3872) decays into final states including
the J/ψ , is M = (3871.69 ± 0.17) MeV [113]. The most precise measurements are
those of CDF [56], Belle [53], the new measurement from LHCb [58], and BABAR [54],
all in the channel J/ψπ+π−; the hadronic machines measure inclusive production in
pp(p̄), while the B-factories measurements are dominated by B+ → K+J/ψπ+π−.

Belle observed the decay X(3872) → D∗0D̄0 in the π0D0D̄0 final state at the
higher mass M = (3875.2 ± 0.7+0.3

−1.6 ± 0.8) MeV [130]. This was confirmed by
BABAR [66] (see Figure 3.14, right panel) and again by Belle [65], leading to an
average mass of M = (3873.8 ± 0.5) MeV. As this is significantly larger than the
value observed in the discovery mode J/ψπ+π−, there has been some discussion
about the possibility that X(3875)→ D∗0D̄0 and X(3872)→ J/ψπ+π− are distinct
particles. However, some papers [131–133] argued that, since the D∗0 will in general
be off-shell, a detailed study of the π0D0D̄0 and γD0D̄0 lineshapes is needed to
distinguish between a below- and above-threshold X(3872) (see Sec. 5.1.1). Moreover,
in order to improve the resolution, the experimental analyses constrain the D∗
mass, and this yields to a reconstructed X(3872) mass which is above threshold by
construction. Because of these biases, this channel has been dropped from mass
averages in PDG [113].

As far as the width is concerned, the X(3872) was known to be narrow since
the very first analysis, with a limit Γ < 2.3 MeV at 90% C.L. [52]. The best current
upper limit for the width is given by Belle [53], which finds Γ < 1.2 MeV at 90%
C.L. based on a 3D fit to mES, ∆E, and M(π+π−J/ψ ), which allows the limit to be
constrained below the experimental resolution on invariant mass: the distributions
in mES and ∆E provide constraints on the area of the M(π+π−J/ψ ) peak, which
make the peak height sensitive to the natural width.

In addition to J/ψπ+π−(π0) and D∗0D̄0 final states, the X(3872) has been
sought in many other different channels, which we list in Table 3.6.
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Figure 3.15. Invariant mass spectra of J/ψγ (left) and ψ(2S)γ (right) in B+ → ψ(′)γK+,
according to BABAR [63] (upper), Belle [62] (middle) and LHCb [64] (lower).
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We just discuss the case of X(3872)→ ψ(2S)γ, which is of interest for theoretical
interpretations. BABAR [63] and LHCb [64] find a signal with a relative branching
fraction of:

B (X(3872)→ ψ(2S)γ)
B (X(3872)→ J/ψγ) = 3.4± 1.4 (BABAR), (3.21a)

= 2.46± 0.64± 0.29 (LHCb), (3.21b)
< 2.1 (Belle). (3.21c)

In particular, for the decay X(3872)→ ψ(2S)γ, Belle [62] sees no significant signal
and puts a 90% C.L. upper limit (see Figure 3.15).

Other production mechanisms like B0 → K+π−X(3872) have also been studied.
Such decays are seen, but with a smooth distribution in K+π− invariant mass;
an upper limit is set on B

(
B0 → K∗(892)0X(3872)

)
[134]. This is in contrast

to ordinary charmonium states, where B → K∗cc̄ and Kcc̄ branching fractions
are comparable, and K∗ dominates over nonresonant Kπ. We also mention the
decay Y (4260)→ γX(3872) seen by BES III [98], with a production cross section
of σ

(
e+e− → Y (4260)→ γX(3872)

)
× B

(
X(3872)→ J/ψπ+π−

)
= (0.33 ± 0.12 ±

0.02) pb.
In Table 3.6 we show estimates for the absolute branching fractions of the X(3872)

we evaluated in [50]. These can be obtained from measured product branching
fractions of X(3872) by exploiting the upper limit on B → X(3872)K measured
by BABAR from the spectrum of the kaons recoiling against fully reconstructed B
mesons [135], B(B± → K±X(3872)) < 3.2 × 10−4 at 90% C.L.. Combining the
likelihood from the measurements of the product branching fractions in the observed
channels, the B → X(3872)K upper limit and the X(3872) width distribution [69],
with a bayesian procedure we extracted the likelihood for the absolute X(3872)
branching fractions and the widths in each of the decay modes. Then, we used
the probability distributions obtained with this procedure to set limits on the not
observed channels. The full shape of the experimental likelihoods was used whenever
available, while gaussian errors and poissonian counting distributions have been
assumed elsewhere. The 68% confidence intervals (defined in such a way that the
absolute value of the PDF is the same at the upper and lower bound, unless one of
them is at the boundary of the physical range) are summarized in Table 3.6 for each
of the decay modes. Some of the likelihoods are shown in Figure 3.16.

The searches for partner states of the X(3872) have been motivated by the
predictions of the tetraquark model (see Chapter 7). For example, it has been
hypothesized that the X state produced in B+ decays was different from the X
state produced in B0 decays. If so, the two X should have different masses. Both
BABAR [54, 136] and Belle [53, 134] have performed analyses distinguishing the two
samples. The most recent results set the mass difference of the two X at

δM ≡M(X |B+ → K+X)−M(X |B0 → K0X)
= (+2.7± 1.6± 0.4) MeV (BABAR), (3.22a)
= (−0.7± 1.0± 0.2) MeV (Belle), (3.22b)
= (+0.2± 0.8) MeV (mean). (3.22c)
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Moreover, an inclusive analysis by CDF [56], of the J/ψπ+π− spectrum, gives no
evidence for any other neutral state, setting an upper limit on the mass difference of
3.6 MeV at the 95% C.L..

The same analyses provide measurements of the ratio of product branching
fractions
B(B0 → K0X)× B(X → π+π−J/ψ )
B(B+ → K+X)× B(X → π+π−J/ψ ) = 0.41± 0.24± 0.05 (BABAR), (3.23a)

= 0.50± 0.14± 0.04 (Belle). (3.23b)

Searches for charged partners have also been performed by both BABAR [137] and
Belle [53]. No evidence for such a state is seen, with limits on the product branching
fractions of

B(B̄0 → K−X+)× B(X+ → ρ+J/ψ ) < 5.4× 10−6 (BABAR), (3.24a)
< 4.2× 10−6 (Belle), (3.24b)

B(B+ → K0X+)× B(X+ → ρ+J/ψ ) < 22× 10−6 (BABAR), (3.24c)
< 6.1× 10−6 (Belle), (3.24d)

to be compared with

B(B+ → K+X)× B(X → ρ0J/ψ )
= (8.4± 1.5± 0.7)× 10−6 (BABAR), (3.25a)
= (8.6± 0.8± 0.5)× 10−6 (Belle) (3.25b)
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for the discovery mode, measured by BABAR [54] and Belle [53].
We conclude this section on the X(3872) with the inclusive production at hadron

colliders: the prompt production has been studied at CDF [138] and CMS [122],
giving

σprompt (pp̄→ X(3872) + all)
σ (pp̄→ X(3872) + all) = (83.9± 4.9± 2.0)% at

√
s = 1.96 GeV, (3.26a)

σprompt (pp→ X(3872) + all)
σ (pp→ X(3872) + all) = (73.7± 2.3± 1.6)% at

√
s = 7 GeV. (3.26b)

CMS published also the value for the prompt production cross section,
σprompt (pp→ X(3872) + all)× B

(
X(3872)→ J/ψπ+π−

)
= (1.06± 0.11± 0.15) nb at√

s = 7 GeV (see Figure 3.17).
The same measurement is not present in the CDF note, but it has been estimated

by Bignamini et al. [139]: σprompt (pp→ X(3872) + all)×B
(
X(3872)→ J/ψπ+π−

)
=

(3.1± 0.7) nb at
√
s = 1.96 GeV.
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B decay mode X decay mode product branching fraction (×105) Bfit Rfit

K+X X → ππJ/ψ 0.86± 0.08 (BABAR [54], Belle [53]) 0.081+0.019
−0.031 1

0.84± 0.15± 0.07 BABAR [54]
0.86± 0.08± 0.05 Belle [53]

K0X X → ππJ/ψ 0.41± 0.11 (BABAR [54]; Belle [53])
0.35± 0.19± 0.04 BABAR [54]
0.43± 0.12± 0.04 Belle [53]

(K+π−)NRX X → ππJ/ψ 0.81± 0.20+0.11
−0.14 Belle [134]

K∗0X X → ππJ/ψ < 0.34, 90% C.L. Belle [134]
KX X → ωJ/ψ R = 0.8± 0.3 BABAR [61] 0.061+0.024

−0.036 0.77+0.28
−0.32

K+X 0.6± 0.2± 0.1 BABAR [61]
K0X 0.6± 0.3± 0.1 BABAR [61]
KX X → πππ0J/ψ R = 1.0± 0.4± 0.3 Belle [60]
K+X X → D∗0D̄0 8.5± 2.6 (BABAR [66]; Belle [65]) 0.614+0.166

−0.074 8.2+2.3
−2.8

16.7± 3.6± 4.7 BABAR [66]
7.7± 1.6± 1.0 Belle [65]

K0X X → D∗0D̄0 12± 4 (BABAR [66]; Belle [65])
22± 10± 4 BABAR [66]
9.7± 4.6± 1.3 Belle [65]

Table 3.6. Measured X(3872) product branching fractions, separated by production and decay channel. Our averages are in boldface. The last two
columns report the results in terms of absolute X(3872) branching fraction (Bfit) and in terms of the branching fraction normalized to J/ψππ
(Rfit) as obtained from the global likelihood fit described in the text. For non-zero measurements we report the mean value, and the 68% C.L.
range in form of asymmetric errors. The limits are provided at 90% C.L. The X(3872)→ πππ0J/ψ is dominated by ωJ/ψ , but no limits on the
non-resonant πππ0J/ψ component have been set. The ratio R′ given by LHCb [140] is the ratio B (X(3872)→ ψ(2S)γ) /B (X(3872)→ J/ψγ).
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B decay mode X decay mode product branching fraction (×105) Bfit Rfit

K+X X → γJ/ψ 0.202± 0.038 (BABAR [63]; Belle [62]) 0.019+0.005
−0.009 0.24+0.05

−0.06
K+X 0.28± 0.08± 0.01 BABAR [63]

0.178+0.048
−0.044 ± 0.012 Belle [62]

K0X 0.26± 0.18± 0.02 BABAR [63]
0.124+0.076

−0.061 ± 0.011 Belle [62]
K+X X → γψ(2S) 0.44± 0.12 BABAR [63] 0.04+0.015

−0.020 0.51+0.13
−0.17

K+X 0.95± 0.27± 0.06 BABAR [63]
0.083+0.198

−0.183 ± 0.044 Belle [62]
R′ = 2.46± 0.64± 0.29 LHCb [64]

K0X 1.14± 0.55± 0.10 BABAR [63]
0.112+0.357

−0.290 ± 0.057 Belle [62]
K+X X → γχc1 < 9.6× 10−3 Belle [51] < 1.0× 10−3 < 0.014
K+X X → γχc2 < 0.016 Belle [51] < 1.7× 10−3 < 0.024
KX X → γγ < 4.5× 10−3 Belle [141] < 4.7× 10−4 < 6.6× 10−3

KX X → ηJ/ψ < 1.05 BABAR [142] < 0.11 < 1.55
K+X X → pp̄ < 9.6× 10−4 LHCb [140] < 1.6× 10−4 < 2.2× 10−3

Table 3.7. (Continued).
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Figure 3.18. Left panel: fit to the m3π distribution in the X(3872) → J/ψ ω [1]. The
dashed curve refers to the 1++ hypothesis whereas the solid one is for the 2−+. Right
panel: distribution of the ∆χ2 = χ2(1++)− χ2(2−+) resulting from the combined fits
to Monte Carlo data samples [1]. The solid (dashed) histogram corresponds to events
generated assuming the X to be a 2−+ (1++) state. We mark with a line the position of
the experimental ∆χ2.

3.5.1 More on the X(3872) spin [1]

In 2012, before that the high-statistics analysis by LHCb [59] was published, we
reanalyzed the available Belle [143] and BABAR [61] on the spin of the X(3872),
starting from a general parametrization of the decay amplitudes for the axial and
tensor quantum numbers of the X. The level of agreement of the two spin hypotheses
with data is interpreted with a rigorous statistical approach based on Monte Carlo
simulations in order to be able to combine all the distributions regardless of their
different levels of sensitivity to the spin of the X. Our analysis returned a probability
of 5.5% and 0.1% for the agreement with data of the axial and tensor hypotheses,
respectively, once we combine the whole information (angular and mass distributions)
from both channels (Figure 3.18). The separate analysis of the Belle J/ψ ρ data
(angular and mass distributions) indicates that the 2−+ assignment is excluded at the
99.9% C.L. Also the new LHCb analysis ruling out the 2−+ hypothesis is performed
in the J/ψ ρ channel. A separate analysis of the BABAR J/ψ ω mass distribution
excludes instead the 1++ hypothesis at the 99.9%. This might be a indication that
the two decay modes are due to different degenerate states. An indipendent analysis
of the J/ψ ω mass and angular distribution, by LHCb or Belle, will enlight on this.

3.6 Vector resonances

Many states with unambiguous JPC = 1−− have been discovered via direct pro-
duction in e+e− collisions. The B-factories can investigate a large mass range, by
searching events with an additional energetic photon γISR emitted by the initial state,
which lowers the center-of-mass energy down to the mass of the particle. The τ − c
factories can instead scan the mass range by varying their center-of-mass energy. A
graphic summary of all this states is in Figure 3.19.

In 2005 BABAR observed an unexpected vector charmonium state decaying into
J/ψπ+π− named Y (4260) [94], with a mass of M = (4259 ± 8+2

−6) MeV and a
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observed (black) and predicted (blue) charmonium levels. Red line are exotic states.

width of Γ = (88 ± 23+6
−4) MeV. Soon after it was confirmed by CLEO [96, 97],

which reported evidence also for Y (4260)→ J/ψπ0π0. BABAR performed a similar
analysis in the e+e− → ψ(2S)π+π− channel [144], finding no evidence of Y (4260);
instead, a heavier state was observed at a mass M = (4324± 24) MeV and a width
Γ = (172 ± 33) MeV, dubbed Y (4360). The absence of Y (4360) → J/ψπ+π− is
significant: B(Y (4360) → J/ψπ+π−)/B(Y (4360) → ψ(2S)π+π−) < 3.4 × 10−3 at
the 90% C.L. [145], and is hard to understand in an ordinary charmonium framework.
This pattern has been confirmed in an update of BABAR’s analysis [100].

Belle confirmed both these vector states [81, 99], and observed another resonance,
called Y (4660), in the ψ(2S)π+π− channel, which BABAR was not able to see
because of limited statistics, with mass M = (4664 ± 11 ± 5) MeV and width
Γ = (48 ± 15 ± 3) MeV. It also found a broad structure in J/ψπ+π− named
Y (4008), at mass M = (4008 ± 40+114

−28 ) MeV and width Γ = (226 ± 44 ± 87) MeV.
This last state has not been seen by BABAR [95], but it has been confirmed in
the full statistics analysis by Belle [69], with M = (3890.8 ± 40.5 ± 11.5) MeV
and Γ = (254.5± 39.5± 13.6) MeV. The PDG [113] averaged mass and width for
the Y (4260) are based on the most recent analyses by Belle [69], BABAR [95] and
CLEO [97] and are M = (4251± 9) MeV and Γ = (120± 12) MeV. The full statistics
analysis in ψ(2S)π+π− by Belle [116] gives for the Y (4360) a mass and width of
M = (4347± 6± 3) MeV and Γ = (103± 9± 5) MeV, and for the Y (4660) a mass
and width of M = (4652± 10± 8) MeV and Γ = (68± 11± 1) MeV. In Figure 3.20
we report some distributions of J/ψπ+π− and ψ(2S)π+π− by Belle.

Motivated by the tetraquark predictions, Belle searched for vector resonances
decaying into ΛcΛc [106]. A structure (the Y (4630)) has actually been found
near the baryon threshold, with Breit-Wigner parameters M = (4634+8

−7
+5
−8) MeV

and Γ = (9240
−24

+10
−21) MeV. A combined fit of the ψ(2S)π+π− and ΛcΛc spectra

concluded that the two structures Y (4630) and Y (4660) can be the same state, with
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Figure 3.20. Belle analyses of e+e− → J/ψπ+π− (left) [69] and → ψ(2S)π+π−

(right) [116].

a strong preference for the baryonic decay mode: B(Y (4660)→ ΛcΛc)/B(Y (4660)→
ψ(2S)π+π−) = 25± 7 [145].

The vector states mentioned before are considered to be exotic. In fact, there
are no unassigned 1−− charmonia below 4500 MeV, and the branching ratios into
open charm mesons are too small for above-threshold charmonia: BABAR sees no
evidence for a signal [146, 147], and set 90% C.L. upper limits:

B(Y (4260)→ DD̄)/B(Y (4260)→ J/ψπ+π−) < 1.0, (3.27a)
B(Y (4260)→ D∗D̄)/B(Y (4260)→ J/ψπ+π−) < 34, (3.27b)
B(Y (4260)→ D∗D̄∗)/B(Y (4260)→ J/ψπ+π−) < 40, (3.27c)
B(Y (4260)→ D+

s D
−
s )/B(Y (4260)→ J/ψπ+π−) < 0.7, (3.27d)

B(Y (4260)→ D−s D
∗−
s )/B(Y (4260)→ J/ψπ+π−) < 44, (3.27e)

B(Y (4260)→ D∗+s D∗−s )/B(Y (4260)→ J/ψπ+π−) < 30, (3.27f)

whereas the limits set by Belle [148] are:

B(Y (4260)→ D0D∗−π+)/B(Y (4260)→ J/ψπ+π−) < 9, (3.28a)
B(Y (4360)→ D0D∗−π+)/B(Y (4360)→ ψ(2S)π+π−) < 8, (3.28b)
B(Y (4660)→ D0D∗−π+)/B(Y (4660)→ ψ(2S)π+π−) < 10, (3.28c)

to be compared with B(ψ(3770) → DD̄)/B(ψ(3770) → J/ψπ+π−) & 480 for an
ordinary above-threshold vector charmonium. As for radiative decays, Y (4260)→
γX(3872) has been observed by BES III. Some clean events of e+e− → γX(3872)
have been measured. Moreover, the production cross section σ

(
e+e− → γX(3872)

)
×

B
(
X(3872)→ J/ψπ+π−

)
scales as a function of the center-of-mass energy consis-

tently with a Breit-Wigner with Y (4260) mass and width as parameters, consequently
the observed events come from the intermediate resonant state and not from the
continuum. The Y (4260) has been searched without success in many other final
states, which we report in Table 3.8.

Another important question to understand the nature of these vector states is
whether or not the pion pair comes from any resonance. The updated BABAR analysis
in J/ψπ+π− [95] finds some evidence of a J/ψf0(980) component. Since the decay
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Final state Upper limit (90% C.L.) Experiment
Γee × B (Y (4260)→ f) ( eV)
J/ψK+K− 1.2 Belle [149]
J/ψη 14.2 Belle [150]
φπ+π− 0.4 BABAR [151]
K0
SK

+π− 0.5 BABAR [152]
K+K−π0 0.6 BABAR [152]
B (Y (4260)→ f) /B

(
Y (4260)→ J/ψπ+π−

)
hcπ

+π− 1.0 CLEO [153]
pp̄ 0.13 BABAR [154]
σ
(
e+e− → f

)
( pb)

χc1ω 18 (
√
s = 4.31 GeV) BES III [93]

χc2ω 11 (
√
s = 4.36 GeV) BES III [93]

Table 3.8. Upper limits for Y (4260) into different final states. The decays into open charm
mesons are discussed in the text.

Y (4260)→ ψ(2S)f0(980) is phase-space forbidden, this could partially explain why
the Y (4260) does not decay into ψ(2S)π+π− (although the relevant non-resonant
component could allow this decay). Some indications of an f0(980) component in
the Y (4660) appear in Belle’s ψ(2S)π+π− analysis [99], while no definite structure
is recognizable for the other resonances.

BES III also measured the e+e− → hcπ
+π− cross sections at center-of-mass

energies varying from 3.9 to 4.42 GeV [71] (see Figure 3.21). The values of the
cross sections are similar to the e+e− → J/ψπ+π−, but the line shape is completely
different and does not show any signal for the Y (4260). The hcπ+π− has been fitted
by Yuan [91, 92], which found a significant signal for a new Y (4220) state. The fit
improves if a second Y (4290) resonance is added, however the lack of experimental
data above 4.4 GeV makes hard to distinguish this second peak from a non-resonant
background. The values of the mass and width according to the one peak hypothesis
areM = (4216±7) MeV and Γ = (39±17) MeV. If there are two peaks, the best fitted
values are M1 = (4216± 18) MeV, Γ1 = (39± 32) MeV and M2 = (4293± 9) MeV,
Γ2 = (222± 67) MeV.

A somewhat similar signal has been seen by BES III in e+e− → χc0ω [93] at a
mass ofM = (4230±8) MeV and a width of Γ = (38±12) MeV, again not compatible
with Y (4260) parameters.

3.7 The 3940 family

Some resonances with C = + have been observed around 3940 MeV. Even if they
could be likely interpreted as ordinary charmonium states, some peculiarities in their
decay patterns favor a more exotic assignment.

The X(3940) was observed by Belle in double-charmonium production events
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Figure 3.21. BES III data of e+e− → hcπ
+π− (red dots) [71] compared to Belle data of

e+e− → J/ψπ+π− (blue circles) [69]. From Yuan [91, 92].

as a peak in the MJ/ψ recoiling mass [79, 80], with M = (3942+7
−6 ± 6) MeV and

Γ = (37+26
−15 ± 8) MeV. A partial reconstruction technique in this production channel

showed that X(3940) → D∗D̄ is a prominent decay mode (see Figure 3.22, right
panel), whereas X(3940)→ DD̄, J/ψω show no signal. The production mechanism
e+e− → γ∗ → J/ψX(3940) constrains the state to have C = +. All known states
observed via this production mechanism have J = 0, so a tentative JPC assignment
for this state is 0−+, where the parity is suggested by the absence of DD̄ decays.

Belle observed another state at a similar mass in B → J/ψωK decays as a
resonance in the J/ψω invariant mass, with M = (3943 ± 11 ± 13) MeV and Γ =
(87 ± 22 ± 26) MeV [73]. The fact that such a state is not seen in B → D∗D̄K
strongly suggests that it is not the X(3940), whence it was dubbed Y (3940). The
decay into two vectors constrains a C = + assignment, whereas J = 0, 1, 2 and
P = ± are equally allowed. BABAR confirmed the state in B → J/ψωK [61, 74],
even if at a lower mass and with narrower width, M = (3919.4+3.8

−3.4 ± 2.0) MeV
and Γ = (31+10

−8 ± 5) MeV, compatible at 2σ level with Belle measurement (see
Figure 3.22, left panel). This discrepancy could be due to different assumptions
about the shape of the background. Another state called Y (3915) was observed
in γγ fusion by both Belle [75] and BABAR [76], with mass and width compatible
with the BABAR Y (3940) result. The PDG, which assumes the resonances seen in
γγ fusion and in B decays to be the same state (called Y (3915)), gives an averaged
mass and width of M = (3918.4± 1.9) MeV and Γ = (20± 5) MeV [113]. The study
of angular correlations by BABAR favors a JPC = 0++ assignment [76], which would
make this state a candidate for χc0(2P ). However, the χc0(2P ) is expected to have
Γ(χc0(2P ) → DD̄) ∼ 30 MeV, i.e. wider than the total width measured of the
Y (3915). Even if no upper bound on B(Y (3915)→ DD̄) has been reported, no signs
of a signal for such a decay appear in the measured DD̄ invariant mass distributions
for B → DD̄K decays published by BABAR [66] and Belle [155]. Moreover, if
the Z(3930) (see below) is identified as the χc2(2P ) state, the hyperfine splitting
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Figure 3.22. Left panel: observation of Y (3915) (at the time called Y (3940)) in the
invariant mass distribution of J/ψω in B → J/ψωK decay, by BABAR [61]. Right Panel:
observation of X(3940) and X(4160) in the invariant mass distribution of D∗D̄ (upper)
and D∗D̄∗ (lower) in e+e− → J/ψD∗D̄(∗) events, by Belle [80].

χc2(2P )−χc0(2P ) would be only 6% with respect to the χc2(1P )−χc0(1P ) splitting.
This is much smaller than the similar ratio in the bottomonium system (r ∼ 0.7),
and than the potential model predictions [156] (0.6 < r < 0.9). These facts challenge
the ordinary charmonium interpretation [157, 158].

Another state, at the time called Z(3930), was seen by Belle in γγ → DD̄ [77], and
confirmed by BABAR [78], at an averaged mass and width of M = (3927.2± 2.6) MeV
and Γ = (24 ± 6) MeV. The angular analysis by BABAR favors a 2++ assignment.
This state is compatible with the χc2(2P ) assignment.

3.8 Other states

The analysis by Belle of double charmonium events which discovered the X(3940)
observed also a state called X(4160) in the D∗D̄∗ invariant mass [80] (see Figure 3.22,
right panel). The fitted mass and width are M = (4156+25

−20 ± 15) MeV and Γ =
(139+111

−61 ± 21) MeV. The production mechanism constrains C = + and favors J = 0,
thus making this state a good candidate for a a ηc(nS) state.

The CDF experiment announced a resonance close to threshold in J/ψφ invariant
mass, in the channel B → J/ψφK [84, 85]. Since the creation of a ss̄ pair is OZI
suppressed, the very existence of such states likely requires exotic interpretations.
This state is called Y (4140), and has mass and width M = (4143.0± 2.9± 1.2) MeV
and Γ = (11.7+8.3

−5.0 ± 3.7) MeV. The natural quantum number would be JPC = 0++,
but the exotic assignment JPC = 1−+ is not excluded. Belle searched this state in
γγ fusion, driven by a molecular prediction [159], but found no Y (4140) signal and
put a 90% C.L. upper bound for Γγγ × B(φJ/ψ ) < 41 (6) eV for JP = 0+ (2+) [86].
Instead, a peak with a 3.2σ significance was seen at M = (4350.6+4.6

−5.1 ± 0.7) MeV
and Γ = (13+18

−9 ± 4) MeV (see Figure 3.23), and dubbed X(4350).
Several experiments have searched for the Y (4140): D∅ [89] and CMS [88] have

recently confirmed the observation, and reported mass and width M = (4159.0±
4.3± 6.6) MeV, Γ = (19.9± 12.6+3.0

−8.0) MeV, and M = (4148.0± 2.4± 6.3 MeV, Γ =
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Figure 3.23. Invariant mass distributions of J/ψφ, from Belle [86]. No evidence for Y (4140)
is seen, whereas the peak of X(4350) is fitted.

(28+15
−11 ± 19) MeV, with significances of ∼ 3σ and > 5σ, respectively. On the other

hand, neither LHCb [87] nor BABAR [160] are able to see any significant signal, and
put 90% C.L. upper limits on the relative branching fractions of

B
(
B+ → Y (4140)K+)× B (Y (4140)→ J/ψφ)

B (B+ → J/ψφK+) < 0.07 (LHCb), (3.29a)

< 0.135 (BABAR), (3.29b)

to be compared with a ∼ 0.1 measured by CMS. We mention also a preliminary null
result of BES III in the J/ψφ invariant mass in e+e− → γY (4140) process [161].

The averaged values of mass and width à la PDG [113] from the experiments that
have claimed the observation are M = (4145.6± 3.6) MeV and Γ = (14.3± 5.9) MeV.

Last state we review is the X(3823) seen by Belle in B → (χc1γ)K radiative
decays, with mass and width of M = (3823.1± 1.8± 0.7) MeV and Γ < 24 MeV at
90% C.L., with a significance of 4σ [51]. Nothing prevents the identification of this
state as the 2−− ordinary charmonium.
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Chapter 4

Lattice QCD status of exotics

Lattice QCD has recently reached some preliminary results about exotics, albeit the
non-trivial numerical and theoretical difficulties. In fact, from a field theoretical
point of view, there is no way to distinguish between a meson and a tetraquark with
the same quantum numbers, as we discussed for Large-N QCD (see Chapter 2).
For instance, the charged resonance Zc(3900)+, with quark content cc̄ud̄, has the
same quantum numbers as the a+

1 (980) (the lightest I = 1 axial vector), so that
any operator able to resolve the Zc interpolates also the excitations of a1. In
principle, the existence of the Zc can be revealed by extracting all the excited a1
levels up to the mass of the Z, but this is not numerically feasible. A numerically
reliable approximation, widely used in heavy quarkonium spectroscopy, is to neglect
charm annihilation diagrams [162], which are expected to be small because of OZI
suppression. Under this approximation, it is possible to deal with these states using
a field theory approach. In current lattice simulations one considers the vacuum
expectation value of two-point functions for a set of interpolating operators with
given quantum numbers. For each of them, the spectral representation gives

Cij(t) =
〈
O†i (x, t)Oj(0)

〉
=
∑
n

√
Zn∗i Znj e

−Ent. (4.1)

From a single correlation function it is possible to extract only the lowest lying state
using the effective mass method: when the time t is large, the function

meff = − ln Cij(t)
Cij(t− 1) (4.2)

has a plateau at the energy of the ground state. The excited energy levels are
extracted using the generalized eigenvalue problem [163]. If we have Nop different
operators with the same quantum numbers, we can compute the correlation function
matrix Cij , (i, j = 1, . . . , Nop). The solution of the eigenvalue problem

C(t)ψ = λ(t, t0)C(t0)ψ, (4.3)

gives Nop levels of the energy spectrum: in fact, the resulting eigenvalues λn decay
exponentially with the nth energy level, up to exponentially suppressed deviations:

λn(t, t0) ∼ e−En(t−t0). (4.4)
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Figure 4.1. Energy levels computed in lattice simulations in the JPC = 1++, I = 0
channel (left panel), to compare with the experimental mass of the χc1(1P ) and X(3872)
(right panel). On the x axis the operator basis used in simulations is sketched. From
Prelovsek et al. [41]

The larger is the basis of operators, the larger is the number of computable excited
levels. For numerical reasons, the operators have to be also as different as possible.
If we were interested in below-threshold states, this is enough. If we instead are
interested in above-threshold resonances, we have to look at all 2-particle levels with
the same quantum numbers as the resonance. While at infinite volume these levels
form a continuum1, on the lattice these levels have a rather peculiar behavior as
a function of the size of the volume. In particular, their energy is related to the
infinite volume scattering phase [166, 167]. Roughly speaking in fact, by varying the
size of the lattice, we vary the relative momentum of the 2-particle states (∝ 2π

L ),
hence we simulate a “scattering” experiment at different momenta.

Currently, the only positive result in charmonium lattice spectroscopy is the
confirmation of an energy level compatible with the X(3872) in the JPC = 1++

channel with isospin I = 0 [41] – see Figure 4.1. It is argued that the energy level
found on the lattice is a real shallow bound state because of the large positive
shift in energy of the state D(0)D∗(0) [168]. The signal of a level below the DD̄∗
threshold seems to indicate the presence of the X(3872) in QCD spectrum. It is
worth noticing that this result is very sensitive to lattice artifacts, in particular
the charm mass (and consequently the threshold) is affected by large discretization
effects: for example this level could go away from threshold when approaching the
physical point. Moreover, there is no way to distinguish such state from the ordinary
χc1(2P ): even if the level were confirmed, Lattice QCD cannot say whether it has

1In fact, no information about resonances can be deduced from Euclidean correlators in the
thermodynamic limit [165].
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Figure 4.2. Experimental spectrum of the charged exotic resonances (left panel), and
energy levels of charged states computed in lattice simulations, in the JPC = 1+−, I = 1
channel (right panel). From Prelovsek et al. [164]

the exotic features of the X(3872).
For the JPC = 1+− sector with I = 1 the situation is still unclear: the analysis

of the energy levels does not reveal any additional state, expected in presence of
a resonance [164, 169] (Figure 4.2). However, this level could be obscured by the
presence of many different two-particle mesonic channels.

Furthermore, the above-mentioned approximation of neglecting charm annihila-
tion contributions, unavoidable in practice, could make tetraquark states hard to be
found. This statement is motivated by a Large-N analysis. Consider the 2-point
correlation function

〈
Z†c (x)Zc(0)

〉
. The leading and subleading contributions to this

correlation function are shown in Figure 4.3. In Sec. 2.6, we showed that both the
disconnected and the crossed diagrams (first and third in Figure 4.3) receive contri-
butions from two meson states only. However, a tetraquark pole could appear in

x y

N

N

+

x y

N +

x y

N

Figure 4.3. Diagrams contributing to the 2-point correlation function
〈
ccūd̄(x) c̄c̄ud(y)

〉
. In

the large-N limit, only the second diagram could contain any tetraquark pole. However,
this diagram cannot be included in lattice simulations, because the light meson content
would obscure the information about heavier states. For details, see Sec. 2.6.
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(subleading) diagrams which present any quark annihilations (second in Figure 4.3).
Such kind of diagrams are neglected in I = 1 simulations (it is not numerically
feasible to take into account charm annihilation), whereas in the I = 0 channel the
light quarks are able to annihilate. This suggests that the possible tetraquark pole
could be out of reach of current I = 1 simulations.
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Chapter 5

Phenomenology

5.1 Molecule
Soon after the first observation of the X(3872) in 2003, its closeness to the D0D̄∗0

threshold suggested to many authors that it might be the very first example of
a loosely bound meson molecule. The possible existence of such states has been
proposed many years ago by Tornqvist [170, 171] looking for hypothetical KK̄∗, ρρ,
ρω, etc. bound states. It has been argued that the one-pion-exchange potential is
likely to bind some states composed of ground state mesons, the idea being driven
by the analogy with the time-honored case of deuterium where one knows that this
potential is the dominant one. The same idea can also be extended to the heavy
sector [172–175]. In particular, it has been found [174] that one-pion-exchange alone
is strong enough to form at least deuteron-like BB̄∗ and B∗B̄∗ states with binding
energy of about 50 MeV. Composites made of DD̄∗ and D∗D̄∗ and bound by pion
exchange alone – i.e. neglecting the contribution from other kinds of potential – are
expected near threshold, while molecular states composed of light mesons would
require a stronger additional short range attraction and hence are likely not to be
formed if only pions are taken into account.

Using an effective Lagrangian for pions one can find the following potentials
in momentum space for the interaction between pseudo-scalar (P ) and vector (V )
mesons [174]:

U (V V )
π (q) =− U (V V̄ )

π (q) = g2

f2
π

(τ1 · τ2) (Σ1 · q) (Σ2 · q) 1
q2 +m2

π

; (5.1a)

U (PV→V P )
π (q) = g2

f2
π

(τ1 · τ2) (ε1 · q) (ε∗2 · q) 1
q2 +m2

π − (mV −mP )2 , (5.1b)

where fπ ' 132 MeV is the pion decay constant and g ' 0.5÷0.7 is some axial effective
strong coupling. Σ are the spin-1 matrices, τ are the Pauli isospin matrices and ε
is the polarization vector for the vector meson. It should be stressed that the PP
potential is forbidden by parity conservation. It is worth noticing that, in coordinate
space, the potential is singular, and needs an ultraviolet cutoff Λ = 0.8÷ 1.2 GeV.
The existence of loosely bound molecules can crucially depend on the choice of the
cutoff [170, 176, 177]. The complete evaluation shows that the coupling happens
to be proportional to C [I(I + 1)− 3], where C and I are the charge conjugation
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and the isospin of the heavy pair. This means that we expect attraction in the
isosinglet channel when C = +, and a three times weaker attraction in the isotriplet
channel with C = −. The latter was for longtime considered too weak to actually
produce a bound state, thus explaining the lack of charged molecular states. This
was withdrawn as soon as charged exotic states were actually discovered.

In Table 5.1 we report the expected bound states according to this one-pion-
exchange framework [178]. As one can see the X(3872) would perfectly fit into this
picture. This motivated a great amount of work done on the topic. In the following
sections we will present some phenomenological models and their consequences,
assuming these exotic states to be mesonic molecules.

Bound state JPC Mass [MeV] Bound state JPC Mass [MeV]
DD̄∗ 0−+ ' 3870 BB̄∗ 0−+ ' 10545
DD̄∗ 1++ ' 3870 BB̄∗ 1++ ' 10562
D∗D̄∗ 0++ ' 4015 B∗B̄∗ 0++ ' 10582
D∗D̄∗ 0−+ ' 4015 B∗B̄∗ 0−+ ' 10590
D∗D̄∗ 1+− ' 4015 B∗B̄∗ 1+− ' 10608
D∗D̄∗ 2++ ' 4015 B∗B̄∗ 2++ ' 10602

Table 5.1. Bound states expected by the one-pion-exchange model [178]. The masses
are predicted to be near threshold for the case of D mesons and about 50 MeV below
threshold in the case of B mesons. We show the states with isospin I = 0 only.

A somehow complementary approach was established by Barnes and Swan-
son [179, 180]: meson-meson interactions can be obtained as the sum of effective
potentials between the constituent quarks of the mesons. The hamiltonian is given
by

H = 1
2
∑
i 6=j

(U1g + Uconf + Uhyp)ij (5.2a)

= 1
2
∑
i 6=j

λi
2
λj
2

(
αs
rij
− 3b

4 rij −
8παs

3mimj
Si · Sj

σ3

π3/2 e
−σ2r2

ij

)
(5.2b)

where U1g is the one-gluon exchange potential at Born level, Uconf is the (non-
perturbative) linear potential which takes into account confinement, and Uhyp
parametrizes the hyperfine splitting of the charmonium levels. Even if constituent
quark models are commonly used in quarkonium physics, it is unclear whether they
can describe strong interactions on the scale of loosely bound molecules (∼ 10 fm); it
is more likely that quark can interact with each other on the typical scale of strong
interactions, i.e. ∼ 1 fm, but if so, the distinction between hadronic molecules and
tetraquarks would become just a matter of language, the only difference between
the two being the way in which color is saturated. It is worth noticing that this
interaction is not strong enough to bind the X(3872), and a contribution from
one-pion-exchange has to be added [181].

Finally, in the heavy sector one can use heavy quark spin symmetry to obtain
predictions for molecular spectrum and decay patterns, regardless of the details of
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the binding potential [182–184].

5.1.1 Low-energy universality and line shapes of the X(3872)
As we mentioned before different potential models predict the presence of bound
molecular states. Among these possible molecules the X(3872), interpreted as
an S-wave D0D̄∗0 state, would have a whole set of striking features due to the
closeness to its constituents threshold. Its binding energy (simply given by the
difference between its measured mass and the mass of its constituents) would be [185]
EX = (−0.142 ± 0.220) MeV. The natural energy scale for a pionic interaction is
given by m2

π/mD ' 10 MeV and hence is much larger than EX .
Bound states with such a feature share some common properties – the so-called

low-energy universality1 – coming from non-relativistic Quantum Mechanics and,
in particular, many of their characteristic can be described via a single parameter:
the scattering length, a. When the scattering length gets bigger and bigger (or
analogously when the binding energy, E, gets smaller and smaller) we have that

E −→ 1
2µa2 . (5.3)

For the case of the X(3872) we have µ = 966.6 MeV and this leads to an unusually
large scattering length, a ' 12 fm � 1/mπ ' 1.5 fm, the last one being the
typical range of the interaction between the two D mesons2. Such a striking feature
necessarily requires some kind of fine tuning. Moreover, the wave function for the
constituents assumes the universal form

ψDD∗(r) −→
1√
2πa

e−r/a

r
. (5.4)

Note that this also implies that a loosely bound molecule is an extremely extended
object, having a typical radius r0 ' a.

It has been pointed out [187] that the most generic quantum mechanical state
for the X(3872) can be written as

|X〉 =
√
ZDD∗

∫
d3p

(2π)3 ψ̃(p) 1√
2

(∣∣∣D0(p)D̄∗0(−p)
〉

+
∣∣∣D̄0(p)D∗0(−p)

〉)
(5.5a)

+
∑
H

√
ZH |H〉 , (5.5b)

where ψ̃(p) is the wave function of the D mesons in momentum space and |X〉 are
other possible states (discrete or continuous) having the same quantum numbers
JPC = 1++, e.g.

∣∣D+(p)D∗−(−p)
〉
or |χc1(2P )〉. The constants Zi are the proba-

bilities for a certain configuration. Using an effective field theory approach, it can
1 It should be mentioned that low-energy universality has been exploited for the first time by

Voloshin [186] to compute the momentum distribution for the X → D0D̄0π0 and X → D0D̄0γ
decays.

2 It has been shown [2] that the scattering length obtained with this formalism can hardly be
reconciled with the one obtained by the experimental data on the X(3872) width, which appears to
be smaller by (at least) a factor of 3÷ 4.
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be shown [187] that such suppression factors go as ZH ∼ 1/νHa, where νH is the
energy gap between the state H and the D0D̄∗0 threshold.

Two mechanisms to explain the large scattering length of the X(3872) has been
proposed [187]:

1. If all the other states H have an energy gap νH > m2
π/mD then, for a fairly

large a, ZH ' 0 and ZDD∗ ' 1, i.e. the X(3872) would be purely a molecule.
In this case the fine tuning necessary to explain the value of a would be
something related to the interaction between the two components only, e.g.
the depth or the width of the potential or the mass of the D mesons. In
particular, one can consider mu as a tuning parameter since it influences both
the one-pion potential and the mass of the two mesons.

2. If one of the states H has mass very close to the D0D̄∗0 threshold, the νH
factor would compensate the suppression due to the scattering length and lead
to an almost equal mixture of this state and of the molecule, ZDD∗ ' 1− ZH .
This mechanism is the analogous of the well-known Feshbach resonances which
are used in atomic physics to control the scattering length [188]. It has been
hypothesized that this state might be the (still undiscovered) charmonium
χc1(2P ). However, potential models predict the mass of this particle to be
∼ 90 MeV above the threshold and hence we would need a fortuitous shift of
this by at least ∼ 80 MeV, in order to achieve νχ < m2

π/mD.

Since the second mechanism requires a large amount of luck (the discovery of the
χc1(2P ) with a mass value quite smaller than the expected one) we would only
consider the first one, hence assuming that all the states appearing in Eq. (5.5) can
be neglected except for the molecular one.

This model is also able to explain the narrowness of the X(3872). In fact, one
finds that the following partial widths are given by [187]

Γ
(
X → D0D̄0π0

)
= ZDD∗CπΓ

(
D∗0 → D0π0

)
; (5.6a)

Γ
(
X → D0D̄0γ

)
= ZDD∗CγΓ

(
D∗0 → D0γ

)
, (5.6b)

where Cπ and Cγ are coefficients taking into account the interference from the charge
conjugate components. In particular, they both depend on the value of the binding
energy of X(3872) but they are of order one. While these final states receive a
non-zero contribution from the decay of the D∗0 component, other channels like
ψ(2S)γ, ηc(2S)γ, J/ψρ and J/ψω must occur either thanks to a short distance
interaction between the two components, which is suppressed by the large separation
of the two D mesons, or thanks to one of the charmonium states |H〉 appearing
in Eq. (5.5), which are suppressed by 1/a. Therefore, this could explain the small
width of the X(3872), which would then be of order ΓX ∼ ΓD∗ ' 65 keV.

In later works [131, 189–191] the previous analysis has been extended considering
the possibility for the X(3872) to be an above threshold resonant state – i.e.
allowing for negative scattering lengths. It has been proposed [131, 190, 191] that
the discrimination between these two cases can be done using the line shapes for
different decay channel, meaning the shape of the invariant mass distributions of
the final products.
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It is known from non-relativistic Quantum Mechanics that the shape of a reso-
nance near threshold is proportional to |f(E)|2, f(E) being the analytic continuation
of the scattering amplitude as a function of the total energy of the particles in their
center-of-mass system. The previously mentioned low-energy universality for S-wave
states implies

f(E) = 1
−γ +

√
−2µ(E + iε)

, (5.7)

with γ = 1/a and E the energy with respect to the threshold. If γ > 0 the resonance
shape, |f(E)|2, has a peak below the D0D̄∗0 threshold, corresponding to a real
bound state, while if γ < 0 it has a pole right above it, corresponding to a virtual
resonance. A more accurate analysis of the problem showed [190] that, in order to
include the effects of the non-zero width of the D∗0 and possible inelastic scatterings
for the charmed mesons, the previous expression must be modified to

f(E) = 1
−(γre + iγim) +

√
−2µ(E + iΓD∗/2)

, (5.8)

where we introduced the width of the D∗0 and an imaginary part for γ.
Using this approach one can study the invariant mass distribution for different

decay channels and compare the experimental results with the theoretical ones under
the hypothesis of a real bound state or a virtual resonance. This analysis has been
performed [190, 191] for the J/ψπ+π− and D0D̄0π0 final states as reported by the
Belle collaboration [52] and the resulting fit has favored a peak of the line shapes
below the threshold, thus pointing to a possible real bound state.

It should be mentioned that a similar approach was also used to study the line
shapes of the exotic Z(4430) under the hypothesis of a D1D̄∗ bound state [192].
However, the most recent measures of the mass of such particle, as well as the
confirmation of the JPC = 1+− signature [105], have casted some serious doubts
on the validity of this analysis since the mass gap for the Z(4430) is now shifted
to a much higher value, νZ ' 47 MeV, which prevents from using the low-energy
universality and put in jeopardy its interpretation in terms of a molecular state.

5.1.2 Non-Relativistic Effective Field Theory

During the past years a fairly large amount of work [8, 193–198] has been done to
develop and apply a Non-Relativistic Effective Field Theory (NREFT) for the study
of exotic mesons in the molecular framework. The goal is to build a set of tools
to describe the interaction between exotic, heavy and light mesons. The resulting
theory combines the time-honored Heavy Meson Chiral Theory [199] adding terms
describing the interaction of the exotic states with their constituents.

In the following we summarize the main aspects of such a formalism:

• The first key ingredient is that all the considered exotic mesons are intended
as near-threshold molecular states and therefore the problem can be treated in
a non-relativistic fashion. Since the velocities involved are small (see below)
one can replace the HQET fields in the Lagrangian with their non-relativistic
counterparts. Such limit is obtained by letting v → (1,0) in the usual HQET
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Figure 5.1. Example of heavy meson loops used the NREFT formalism. In the picture the
decay Zc(3900)→ J/ψπ can only happen via an intermediate DD∗ pair because of the
molecular nature of the Zc itself.

bi-spinors [200]. In particular, the non-relativistic Lagrangians involving the
exotic mesons X, Y , Z and Z ′ are

LX = x√
2
Xi†

(
P̄ V i + PV̄ i

)
+ h.c. (5.9a)

LY = y√
2
Y i†

(
P̄ V i − PV̄ i

)
+ h.c. (5.9b)

LZf = zf√
2
Zi†

(
P̄ V i − PV̄ i

)
+ h.c. (5.9c)

LZ′
f

= iz′f ε
ijk (Z ′)i† V̄ jV k + h.c. (5.9d)

The fields Xi, Y i and Z(′)i
f annihilate the exotic mesons states while P (P̄ ) and

V i (V̄ i) annihilate a (anti-)pseudoscalar and a (anti-)vector state according to
P |P (k)〉 = √mP |0〉 and V i|V (k, ε)〉 = εi

√
mV |0〉. Also i, j and k are spatial

indices and x, y and z(′)
f are some unknown effective couplings. Lastly, f = c, b

is a flavor index.

• The previous Lagrangians are dictated by symmetry considerations only – i.e.
by the quantum numbers of the particles involved – and hence they describe
the interaction of exotic mesons regardless of their internal structure. The
essential information on the hypothetical molecular nature of these states
comes from the requirement that the X, Y and Z states only couple to their
constituents. This automatically implies that every hadronic transition must
occur via heavy meson loops like the ones shown in Figure 5.1.
Since the problem is non-relativistic the propagators appearing in such loops
must be the non-relativistic ones, namely:

i

p2 −m2 + iε
−→ 1

2m
i

p0 − p2

2m −m+ iε
(5.10)

• The typical velocities involved in the decay/creation of a certain particle with
massM are given, in this context, by v '

√
|M − 2m|/m, where m is the mass

of the open flavor mesons appearing in the loop. Since our states are close to
the threshold such velocities turn out to be small, thus allowing a the use of a
non-relativistic approach and of a power counting procedure to estimate the
relevance of a certain Feynman diagram [195]. In particular, every meson loop
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counts as v5/(4π)2 while the heavy meson propagators scale as 1/v2. Moreover,
depending on the possible presence of derivatives in the interaction vertices,
the diagram might also scale as a power of one of the external momenta, q, or
as an additional power of v.
Since the interaction Lagrangians are non-perturbative some diagrams might
be too challenging to be calculated and therefore, using this power counting
technique, one can estimate the relevance of that particular process and hence
determine an uncertainty related to its omission.

The open flavor heavy mesons can therefore interact with light pseudoscalar
and vector mesons, with the usual Heavy Quark Chiral Lagrangians [199] (see
alsoAppendix B). This formalism has been quite powerful in computing the decay
width of many hadronic [8, 194, 195, 197] and radiative [195, 198] processes involving
exotic mesons, assuming their internal structure to be a bound state of open flavor
mesons. In particular, some attempts have been made to estimate the effective
couplings appearing in Eqs. (5.9). The x and y constants have been extrapolated
from the experimental value of the binding energies [198]:

|x| =
(
0.97+0.40

−0.97 ± 0.14
)

GeV−1/2; |y| =
(
3.28+0.25

−0.28 ± 1.39
)

GeV−1/2, (5.11)

while zf and z′f have been computed from experimental widths both in the charm
and bottom sectors [8, 195]:

|zc| = (1.28± 0.13) GeV−1/2;
∣∣z′c∣∣ = (0.67± 0.21) GeV−1/2; (5.12a)

|zb| = (0.79± 0.05) GeV−1/2;
∣∣z′b∣∣ = (0.62± 0.07) GeV−1/2. (5.12b)

It is interesting to note that |zc/z′c| = 1.91± 0.60 and |zb/z′b| = 1.27± 0.16 which
indicates a large degree of spin symmetry violation. This is expected for very-near-
threshold states, since small mass variations can lead to large changes in binding
energies and hence in the couplings.

Lastly, it should be mentioned that another, slightly different, NREFT has been
developed in some papers [187, 193]. The main difference between such approach
and the one explained above lies in how the molecular hypothesis is implemented.
In particular, instead of requiring the presence of intermediate meson loops, the
X(3872) interpolating operator has been chosen to be explicitly Xi ∼ DD̄∗i + D̄D∗i.
We could refer to this model as a Non-Relativistic Effective Field Theory Type II
(NREFT-II).

5.1.3 Candidates

The X(3872) is the long-standing 1√
2

(
D̄0D∗0 +D0D̄∗0

)
molecule [178, 187]. The

Zc(3900) and Z ′c(4020) are considered the 1√
2

(
D̄D∗ −DD̄∗

)
and D∗D̄∗ molecular

candidates, respectively [197]. The binding energy of the X(3872) is compatible
with zero, whereas the other two states are above-threshold, which calls for new
data or a more complicated description of the phenomenon. The signature of these
three states is compatible with the one-pion exchange prediction, i.e. that the
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isosinglet has C = + and the isotriplet C = −. The Y (4260) has been proposed
to be a D̄D1 molecule [197], or a χc1ω state [201]. The Y (4630) might be a
ψ(2S) f0(980) molecule [202]. The two Zb states are compatible with a B̄(∗)B∗

interpretation [182, 194].

5.2 Hadro-quarkonium
Another interpretation has been proposed [203, 204] for the JPC = 1−− resonances
(namely Y (4260), Y (4360) and Y (4660)) and for the manifestly exotic Z(4430).
These states have always been observed in final states with a specific excitation of
the charmonium spectrum, either J/ψ or ψ(2S). In particular, for the Y (4260) all
the observed decays contain a J/ψ , while for the other exotic particles their decay
products only contain a ψ(2S). This feature motivated a model that describes these
systems as composed of a heavy charmonium “core” surrounded by a “cloud” of
light hadronic matter. Such a configuration is known as hadro-charmonium and it is
an extension of a model for the binding of a J/ψ or ψ(2S) around a nucleus [205].
Note that, the distinction between a molecular states and a compact tetraquark
is determined by the clustering of the constituents. For the case of the hadro-
quarkonium, instead, the distinction between the heavy and light degrees of freedom
is due to their size (instead of their superposition region), the light excitation being
more extended that the quarkonium core.

The interaction between the central heavy quarks and the surrounding excitation
is a QCD analogous of the van der Waals force and is supposed to be strong enough
to allow a bound state but also weak enough to mostly maintain the nature of the
charmonium, thus explaining the absence of other excitations in the final states.
Since the cc̄ state is color neutral, such an interaction can be treated using a multipole
expansion, in close analogy with the well-known electromagnetic case. The heavy
quark pair, that from now on we will call generically as ψ, has a chromo-electric
dipole moment proportional to the chromo-electric gluon field generated by the
surrounding light excitation and this dipole will interact with the field itself, thus
producing an effective Hamiltonian

Heff = −1
2α

(ψ)Eai E
a
i , (5.13)

where Eai is the chromo-electric field generated by the surrounding light matter
and α(ψ) is the chromo-electric polarizability. Here and in the following we indicate
with α(ψ) a generic element of the polarizability; in general we will have different
components, α(ψ1ψ2), both diagonal and off-diagonal. Such a polarizability is still
unknown from first principles. We can only estimate its off-diagonal values for the
charmonium and bottomonium case from the ψ(2S)→ J/ψππ and Υ(2S)→ Υππ
transitions [206], where one finds α(J/ψψ′) ' 2 GeV−3 and α(ΥΥ′) ' 0.6 GeV−3. The
diagonal terms are usually expected to be larger that the off-diagonal ones.

Using the well-known expression for the conformal QCD anomaly in terms of
the chromo-electric and chromo-magnetic fields, Eai and Ba

i

θµµ = − 9
32π2F

a
µνF

aµν = 9
16π2 (Eai Eai −Ba

i B
a
i ) , (5.14)
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one can compute a lower bound [203] for the expectation value of the previous
Hamiltonian (5.13) over a generic hadron X:

〈X| 12E
a
i E

a
i |X〉 ≥

8π2

9 MX . (5.15)

In particular, we used the fact that 〈X| θµµ(q = 0) |X〉 = MX and that the expectation
value of Ba

i B
a
i must be non-negative. This can also be used to determine a condition

for the presence of a bound state due to the van der Waals interaction. One finds
that it must be

α(ψ)MXM̄

R
≥ C, (5.16)

with MX the mass of the light hadronic excitation, M̄ = MXMψ/(MX +Mψ) the
reduced mass of the charmonium-light hadron system and C a (model dependent)
constant of order 1. From Eq. (5.16) one immediately notices that bound states
are favored for higher values of MX , i.e. for higher light hadronic excitations, but
also for higher values of α(ψ), which is in general considered to be larger for higher
quarkonium levels. This last point would explain why three out of four of the
previously mentioned exotic resonances decay into ψ(2S).

Using a square well ansatz for the interaction potential and a reference value
α(ψ) = 2 GeV−3 one finds [203] that bound states might appear for MX & 2
GeV or for lower MX but higher excitations of the central core. For the case of
the bottomonium, since α(ΥΥ′) is much smaller, one needs much higher hadronic
resonances in order to allow a bound state, making an experimental analysis quite
challenging. However, it is still expected for lower values ofMX but higher excitations
of the bb̄ pair (in particular with a Υ(3S) core).

It is worth noting that, so far we assumed that the nature of the heavy quarkonium
does not change because of the gluonic field. However, it turns out that the interaction
in Eq. (5.13) might cause a transition ψ(2S)→ J/ψ via the off-diagonal polarizability
α(J/ψψ′) with a width of a few MeV. Therefore, the present model also predicts the
Y (4360), Y (4660) and the Z(4430) to decay into J/ψ but with a much lower (even
though still detectable) branching ratios.

Lastly, using a holographic QCD approach [204] one can show that the decays
of hadroquarkonium states into open flavor mesons are suppressed by a factor
e−
√
MQ/ΛQCD in the large MQ limit. This could explain why such final states are not

observed experimentally. Recently, such a model has been applied to the Y (4260)
and Y (4360) system by Voloshin and Li [207].

5.2.1 Candidates

This model was introduced to explain why the Y states do not decay into open charm
pairs. The Y (4260) and the Y (4360) are identified as two mixed hadrocharmonia
states [207]. The same was proposed for the Zc(3900) [208] before that the (DD∗)+

decay mode was observed.
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5.3 Hybrids and Born-Oppenheimer tetraquarks
Quark model describes mesons as a quark and an antiquark which saturates color with
each other. However, the QCD Lagrangian contains also the gluons, as dynamical
degrees of freedom mediating strong interactions. From the point of view of the
quark model, one might treat gluons as static degrees of freedom as well, belonging
to the adjoint representation of the color group: since the tensor product of any
number of adjoint fields always contains a singlet (8c ⊗ 8c ⊗ · · · = 1c ⊕ · · · ), we can
form hadrons made up of just gluons, the so-called glueballs. Moreover, we can add
qq̄ pairs in the color octet which saturates the gluon color, generating what it is
usually called a hybrid meson. The addition of a gluon allows such mesons to have
quantum numbers forbidden by ordinary quark model, e.g. 0+−, 1−+ and so on. In
the following we present a set of models developed during the years to describe these
peculiar states.

The existence of hybrid mesons in the light sector was suggested in 1976 by Jaffe
and Johnson [209] in the context of the MIT bag model. Some calculation [210, 211]
predict the lightest hybrid multiplet to have a mass ∼ 1.5 GeV (it is worth noticing
the observation of a exotic π1(1400) with the exotic JPC = 1−+ exactly at M =
1354 MeV). The exotic JPC quantum numbers are due to the boundary conditions
in the bag.

For the heavy quarks a spherical bag would be quite unrealistic, and thus an
adiabatic bag model was introduced by Hasenfratz et al. [212]. In this model the bag
was allowed to deform in the presence of a fixed QQ̄ source. The resulting potential
is used in a Schrödinger equation to compute the mass of the states, as in usual
quarkonium spectroscopy. The lightest hybrid was found at ∼3.9 GeV for cc̄ and at
∼10.5 GeV for bb̄. Some recent results on adiabatic potentials in QCD string models
can be found in the literature [213].

In the framework of constituent quark models, we can analogously consider
constituent gluons. These models were pioneered by Horn and Mandula [214] and
later developed [215–219]. The gluon has a fixed orbital angular momentum relatively
to the qq̄ pair, usually called lg, and the qq̄ is in a defined orbital configuration
lqq̄ and spin configuration sqq̄. The quantum numbers of such bound states are
P = (−1)lg+lqq̄ and C = (−1)lqq̄+sqq̄+1. The lightest hybrid state within this model
has lg = 0 and thus non-exotic quantum numbers such as 1−− are obtained using
P -wave qq̄ states with sqq̄ = 1, while exotic 1−+ states have sqq̄ = 0.

The most effective pictorial representation of hybrid mesons can be achieved via
the flux-tube model. Lattice QCD simulations show that two static quarks at large
distances are confined by approximately cylindrical regions of color fields. More
specifically, if a gauge is fixed, the magnitude of chromoelectric field has cylindrical
symmetry. The flux tube models this feature by approximating the confining region
between quarks with an oscillating string. If one assumes Nambu-Goto action, i.e.
the action to be proportional to the area spanned by the string in coordinate space,
one gets an exact potential for large values of the separation, r, between the sources:

VΛ (r) =

√
σ2r2 − πσ (12n− 1)

6 , (5.17)

where σ is the usual string tension, and n parametrizes the quantized excitation
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of the string. For n = 0 we get a linear rising potential, which corresponds to
ordinary quarkonium spectrum. Higher excitations of the string would correspond
to excitations of the color field, and so can be associated to hybrids.

The previous potential is obtained as a function of the distance r between the
sources. In the first studies with this model an adiabatic separation of the quark and
gluon degrees of freedom was carried on. Such approximation is allowed because of
the large difference between the time scales of the fast dynamical response of the flux
tube degrees of freedom and of the slow motion of the heavy quarks. This allows to
fix the QQ̄ separation at some value r (now considered as a parameter) and compute
the eigenenergy of the system in some fixed configuration of the flux tube: EΛ(r), Λ
being the quantum numbers of the flux tube. This eigenenergy is then treated as
an effective potential EΛ(r) = VΛ(r) acting on the heavy quark pair. The ground
state Λ = 0 gives the ordinary meson spectrum. Hybrids are obtained for Λ > 0
and can be studied using the excited potential VΛ(r). This is nothing but the QCD
analogous of the time-honored Born-Oppenheimer (BO) approximation for hydrogen
molecules. This approximation has been successfully used since the first estimates of
the charmonium spectrum on the lattice in the infinite mass limit (static potentials).
The lightest hybrid state is the one in which the string has a single orbital excitation
about the QQ̄ axis. In initial models the adiabatic potentials were determined in the
approximation of small fluctuations relatively to the QQ̄ axis. This approximation
was later removed by Barnes, Close and Swanson [220].

Some insight on the spectrum of hybrids might be obtained from Lattice QCD
simulations, which are supposed to give the most reliable predictions for absolute
masses. In the heavy quark sector, when the QQ̄ pair is kept fixed while the gluonic
degrees of freedom are allowed to be excited, the lightest charmonium hybrid was
predicted [221] to have a mass of 4.2 GeV for cc̄ and 10.81 GeV for bb̄. In general, in
the charmonium family hybrids are predicted in the mass region around 4.3 GeV,
while the bottom sector they are predicted in the region 10.7-11.0 GeV.

Unfortunately many problems have to be faced when dealing with hybrids on
the lattice since, from a field theory point of view, hybrids with ordinary quantum
numbers suffer the same problem than tetraquarks: they are indistinguishable
from mesons. One possible solution to this difficulty is to look at the overlap (the
prefactors

√
Z∗i Zj in Eq. (4.1)) of those hybrid states with suitable operators. This

has been recently done [162] in lattice simulations (see Figure 5.2) where a hybrid
candidate with JPC = 1−− is found close to the mass of the Y (4260) resonance.
Although this evidence, it is not possible to conclude that the observed state is a
hybrid meson instead of, for instance, a tetraquark. The observation of four hybrid
candidates nearly degenerate with JPC = (0, 1, 2)−+ and JPC = 1−− (see the red
boxes in Figure 5.2) is in agreement with the pattern predicted for the lightest states
in the bag model [211] and in the P -wave quasi-particle approach [222]. They appear
at a mass scale 1.2− 1.3 GeV above the lightest conventional charmonia.

The picture of hybrids borrowed from Lattice QCD has been employed to try to
explain some of the observed XY Z resonances [223, 224]. In particular, it has been
proposed that the Y (4260) might indeed be an example of a hybrid composed of a cc̄
pair with JPC = 0−+ and a gluonic excitation with JPC = 1+−. This interpretation
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Figure 5.2. Charmonium spectrum for masses around 4.5 GeV. Red and blue boxes are
identified as gluonic hybrids (ground and first excited states respectively). Green boxes
are other charmonium states and black lines are experimentally observed levels. The
DD̄ and DsD̄s thresholds are also shown. From Liu et al. [162]

would explain some of the striking properties of this resonance. In particular, the
smallness of the cc̄ wave function at the origin, r = 0, would explain why the Y (4260)
is observed with a small production rate in e+e− annihilation and why its decays
into light hadrons are suppressed. Moreover, it is also known [225] that the decays of
gluonic hybrids into a pair of S-wave mesons are suppressed and hence the dominant
decay (if allowed) should be into an S-wave and a P -wave charmed mesons. However,
for the Y (4260) the decay into D1D̄ is phase space forbidden and the decay into
D∗D̄ is suppressed by a D-wave coupling. The only drawback of this interpretation
was that the decays into charmonium plus light hadrons were also expected to be
suppressed and this is in striking contrast with the observed large branching fraction
for the J/ψππ channel.

This problem found a solution with the discovery of the Zc(3900). It has, in
fact, been hypothesized that this particle might be a different example of hybrid, a
so-called tetraquark hybrid. The main idea is that the excited gluon can be replaced
with a qq̄ pair of light quarks belonging to the adjoint, 8c, representation of the color
group. In this context, the Zc would be made out of a cc̄ pair with JPC = 0−+ and
a qq̄ pair with JPC = 1+−, this last assignment being motivated by the analogy with
the gluonic hybrid, where the lowest energy excitation has these quantum numbers.
If this idea were true, the Y (4260) → Zc(3900)π decay would be explained as a
transition of the gluon within the hybrid into a qq̄ by pion emission, thus explaining
the observed branching fraction.

A similar interpretation has also been given for the Zb and Z ′b states, even though
in this case their closeness to the B̄∗B(∗) would also provide them with a strong
molecular component.

As previously anticipated, the spectrum for gluonic and tetraquark hybrids can
be computed under the BO approximation. To do that, one considers the QQ̄ pair
to simply be a fixed source of color field, with a separation r and solve for the
eigenenergy of the gluonic (tetraquark) excitation. Once this is done this energy is
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taken as the effective potential suffered by the QQ̄ pair. Such a potential is given by
Eq. (5.17) for large value of r and by a Coulomb-like expression for small r:

VΛ(r) = αs(1/r)
6r + EΛ, (5.18)

where αs(1/r) is the strong coupling constant evaluated at a scale µ = 1/r and
EΛ is the so-called gluelump, i.e. an additive term that depends on the quantum
numbers (Λ) of the considered gluonic field (see for example Marsh and Lewis [226]).
The parameters related to the previous potential can be fitted from lattice QCD
results by Morningstar et al. [227]. Once this is done one can solve the Schrödinger
equation for the QQ̄ pair with this potential:− 1

mQ

(
d

dr

)2
+

〈
L2
QQ̄

〉
Λ,r

mQr2 + VΛ(r)

 rR(r) = ErR(r), (5.19)

where
〈
L2
QQ̄

〉
Λ,r

is the orbital angular momentum of the QQ̄ pair computed for
certain quantum numbers Λ and for a separation r. R(r) is the usual radial wave
function. We will not go into the details of the this calculation since it is rather
involved and does not add anything interesting to our discussion. In Figure 5.3 we
report the spectrum for the excited gluonic hybrid obtained from this calculation in
the charm and bottom sectors. For the charmonium case the lowest energy level is
estimated to be 4246 MeV, while for the bottomonium case it is 10559 MeV.

In the tetraquark hybrid case we have no insight on the actual shape of the
potential VΛ(r) generated by the two quark-antiquark in the adjoint representation.
It has been proposed [223, 224] to assume a similar behavior as in the gluonic case.
From this assumption and from a certain number of input values one can try again
to derive a spectrum for this second kind of hybrids, and some generic selection rules.
However, it is worth noticing that the hybrid potential computed on the lattice
relies on quenched simulations (i.e. without dynamical fermions), or on simulations
with unphysical light quarks masses (typically mπ ∼ 500 MeV). The excited level
corresponding to the hybrid state becomes more and more noisy, and the potential
becomes more and more difficult to extract when approaching the physical point. In
particular, at the physical pion mass the potential could be rather different from the
present computations.

While the masses of hybrid mesons are computable in all the models listed above,
and in particular in Lattice QCD, the decay dynamics is more difficult to study.

The only model which offers a description of the decay dynamics is again the
flux-tube model. In fact, in this picture, the decay occurs when the flux-tube
breaks at any point along its length, producing in the process a qq̄ pair in a relative
JPC = 0++ state. Again this is just the well-know Lund model for ordinary mesons.
The distance from the QQ̄ axis at which the light pair is created is controlled by the
transverse distribution of the flux-tube. This distribution varies when going from
the non-excited flux-tube to the first excited flux-tube configuration. Exploiting the
empirical success of this model in describing the ordinary mesons decay dynamics,
Close and Page [228] derived the decay pattern for hybrids. They found that in
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Figure 5.3. Lowest energy levels for the gluonic hybrids in the charm (left panel) and
bottom (right panel) sector. The notation for the quantum numbers of the gluonic
degrees of freedom is borrowed from atomic physics. Πu has eigenvalue +1 for the
operator |r · Jg|, where Jg is the total angular momentum of the gluon excitation, and
(CP )g = −1 for the gluon with respect to the center of the QQ̄ system. Σ−u , instead, has
eigenvalue zero for |r · Jg|, (CP )g = −1 and is also odd under reflection of the gluon
field with respect to the plain containing the QQ̄ pair. The usual nL notation for radial
and angular quantum numbers has been used. From Braaten et al. [224]

a two-meson decay the unit of orbital angular momentum of the incoming hybrid
around the QQ̄ axis is exactly absorbed by the component of the angular momentum
of one of the two outgoing mesons along this axis. They treated explicitly the light
flavor case [228], but a generalization to hybrid charmonia is straightforward. The
final state should be in this case D(∗,∗∗)D̄∗,∗∗, where D∗∗ indicates D-meson which
are formed from P -wave cq̄ (q = u, d) pairs. However, since the masses predicted
in the flux-tube model are about ∼ 4.3 GeV, i.e. below the DD∗∗ threshold, it is
possible that this decay is kinematically forbidden giving a rather narrow resonance
decaying in charmonium and light hadrons. These modes offer a clear experimental
signature and furthermore should have large branching fractions if the total width is
sufficiently small.

5.3.1 Candidates

The Born-Oppenheimer tetraquarks are still in an embryonic state, because of the
lack of reliable calculation of the potential in the presence of light quarks. As we said,
one of the most accepted interpretation for the Y (4260) is a cc̄g hybrid [162, 222]

5.4 Alternative explanations

It should be mentioned that there are other interpretations about the nature of
the XY Z states. In particular, it is worth spending a few words about cusp effect.
Some of these exotic states, in fact, lie slightly above their open flavor threshold.
This suggested to some authors [111, 180, 229, 230] that the experimental signals
seen by the various collaborations might not be due to actual particles but to a
dynamical effect. Cusps, in fact, can occur in amplitudes at threshold and these can
manifest themselves as bumps in the cross sections right above the threshold. The
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proximity of many of these states to their open flavor threshold suggested to these
authors that the cusp option might be taken seriously. Such possibility has been
studied for the X(3872) [111, 229], for the Z(4430) [111, 231] and most recently for
the Z(′)

c and Z(′)
b [230]. This interpretation has been recently challenged by Hanhart

et al. [232]. A more detailed analysis has been done in [233], where it is shown that
a particularly strong final-state rescattering in the ππ system might produce peaks
in the J/ψπ and Υπ invariant mass.

Finally, some authors try to describe the exotic neutral candidates like X(3872)
as ordinary charmonia whose properties are deformed by the thresholds, see for
example the Unquenched Quark Model by Ferretti et al. [234].
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Chapter 6

The prompt production of
X(3872)

In this section we discuss the controversy about the molecular interpretation of the
X(3872). The main drawback of this picture, in fact, lies in the unexpectedly high
production cross section measured at Tevatron and LHC that, for many years, has
been seen as the definitive proof of the inconsistency of the molecular interpretation.

The description of the X(3872) in terms of a very loosely bound meson molecule
is often compared to the well-known case of the deuteron, both being bound by strong
interactions and having very small binding energies [113, 185], EX = (−0.142±0.220)
MeV and Ed = (−2.2245± 0.0002) MeV.

The deuteron can be described by means of the phenomenological coalescence
model [235, 236], according to which a neutron and a proton will bind together if
they are produced with a relative momentum smaller than a coalescence momentum,
k0 ' 80 MeV. Because of the close analogy between the deuteron and the X(3872) we
might wonder if a similar approach could be valid for the latter as well. In particular,
in both cases, one might expect to have a very small yield of such loosely bound
molecules in high energy hadron collisions, since their component will naturally tend
to be produced with a very high relative momentum, thus preventing the system
from binding.

It is exactly this qualitative expectation that casted many doubts on the interpre-
tation of the X(3872) in terms of loosely bound meson molecule. Such particle was,
in fact, observed both by CDF [55, 138] and CMS [122] with a very large prompt
– i.e. directly produced at the collision vertex – production cross section, σ ' 30
nb. This experimental fact seems at odds with the previous conclusion about the
deuteron and, more in general, about hadronic molecules with very small binding
energy.

In particular, it is possible to estimate an upper bound for the production cross
section of the X as follows [139]:

σ(pp̄→ X(3872)) ≤ σmax(pp̄→ X(3872)) ∼
∫
R

∣∣∣〈DD̄∗(k)|pp̄〉
∣∣∣2 , (6.1)

where k is the relative momentum between the two D mesons and R is the domain
where the two-body wave function for the molecular X(3872) is significantly different
from zero.



82 6. The prompt production of X(3872)

Pythia H2®2 :: y part >2 :: L=100 nb -1L

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

k rel HGeVL

Σ
Hn
b
L

Figure 6.1. Integrated cross section for the production of a D0D̄∗0 pair as a function of
their relative momentum computed with HERWIG (left panel) and PYTHIA (right
panel). These plots are obtained generating 55× 109 events and applying final cuts on
the D mesons such that the produced molecule has pT > 5 GeV and |y| < 0.6. From
Bignamini et al. [139]

Such an upper bound can be estimated by simply counting the number of D0D̄∗0 1

produced with a relative momentum lower than a certain k0 value. This has been
done [139], again, using HERWIG [237] and PYTHIA [238] (see Figure 6.1), taking
R to be a ball or radius [0, 35] MeV, on the basis of a naïve gaussian shape for the
two-body wave function of the X. The result of the MC simulation was a production
cross section of 0.071 nb for HERWIG and 0.11 nb for PYTHIA, which are both
smaller than the experimental value by more than two orders of magnitude.

However, the previous approach was later criticized and it was shown [239] that
the theoretical and experimental cross sections might be matched resorting to Final
State Interactions (FSI) [240]. The possible presence of FSI, in fact, casts doubts on
the applicability of the simple coalescence picture to the case of the X(3872), since
the two components of the molecule could be bound by final state rescattering even
when their relative momentum is large. In particular, the Migdal-Watson theory
would change the previous results in two different ways:

1. The cross section for the production of the X should be modified to

σ(pp̄→ X(3872)) ' [σ(pp̄→ X(3872))]k0<kmax
0
× 6π

√
−2µEX
Λ , (6.2)

where [σ(pp̄→ X(3872))]k0<kmax
0

is the upper bound evaluated in (6.1) and
Λ ∼ mπ is the typical range of the interaction between the components;

2. Instead of being the inverse of the spread of the spatial wave function, the
maximum value for the relative momentum should be given by the inverse of
the range of the interaction, kmax

0 ' cΛ, with c = O(1).

By setting k0 = 2.7Λ ' 360 MeV one can increase the theoretical cross section up to
32 nb, which is in agreement with the experimental value.

However, this approach has some flaws [241]: it can be shown that the use of
Eq. (6.2) should enhance the occurrence of a new hypothetical molecule, the DsD̄

∗
s ,

which otherwise would be suppressed, as one could infer by looking at data on Ds

1Here and in what follows we will omit the charge conjugate system, D̄0D∗0, for simplicity.
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Figure 6.2. Integrated cross section for the production of hadrons with relative momentum
k < x with respect to either the D0 or the D̄∗0 composing the molecular X(3872). From
Bignamini et al. [241]

production at Tevatron [242]. In fact, the theoretical production cross section for
this Xs would be σ ' 1 ÷ 3 nb and should be detected by the CDF experiment.
No hint for such a particle has been found. Furthermore, the applicability of the
Migdal-Watson theorem requires that, (i) the two final particles should be in an
S-wave state and (ii) they should be free to interact with each other up to relative
distances comparable to the interaction range. First of all, the inclusion of relative
momenta up to kmax

0 ' 360 MeV means to include relative orbital angular momenta
up to ` ∼ kmax

0 /mπ ' 2 ÷ 3, thus violating the hypothesis (i). Moreover, using
again the MC softwares HERWIG and PYTHIA, one can show [241] that in high
energy collisions, such as those occurring at Tevatron and LHC, there are on average
2 ÷ 3 more hadrons having a relative momentum with respect to one of the two
components smaller that 100 MeV, thus violating the hypothesis (ii) – see Figure 6.2.

Even though the presence of other hadrons (mainly pions) surrounding the system
does not allow the use of FSI, it might still play an important role in explaining the
unnaturally high prompt production of the X(3872).

6.1 Pion rescattering and X(3872) production [2, 3]

In [2] we proposed that the possible elastic scattering of these “comoving” pions with
one of the components of the molecule might decrease their relative momentum, hence
increasing the number of would-be molecules. This possibility can be understood
intuitively referring to the distribution of D meson pairs as a function of k0 as
reported in Figure 6.1. The idea is that the interaction might push the pair both to
higher and to lower values of k0. However, since the majority of would-be molecules
are produced with high relative momenta, even if a small fraction of them would
be pushed to smaller momenta, that could cause a feed-down of pairs towards the
lower bins of the distribution, where the X(3872) candidates live. For a pictorial
representation of the considered rescattering mechanism see Figure 6.3.

It is worth noting that, if we assume the initial total energy E of the pair to be
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Figure 6.3. Pictorial representation of the rescattering mechanism. After the main high-
energy interaction has taken place, the final state particles can be thought of as belonging
to an expanding sphere. The hadronization time of a certain particle goes as thadr ∝ 1/m.
Therefore the D mesons hadronize at an earlier time tD whereas pions hadronize at a
later time tπ (dotted and dashed spheres respectively). In figure (a) the D0D̄∗0 pair
starts with a large relative momentum k0. However, the D0 might interact with one of
the comoving pions (red arrow). The π −D rescattering (figure (b)) can deviate the D0

and reduce the relative momentum k0 thus producing a possible X(3872) candidate.

positive, the decrease in k0 due to the elastic scattering may bring it to negative
values, hence assuring the binding of the molecule. Therefore, in this model the
X(3872) would be a genuine, negative energy D0D̄∗0 bound state, whose lifetime
would be entirely regulated by the lifetime of its shorter lived component, the D̄∗0.
Hence, this mechanism also predicts a narrow width, ΓX ∼ ΓD∗ ' 65 keV, in
accordance with the experiments.

Once again, we tested this idea [2, 3] with the already mentioned MC algorithms.
In particular, the recipe used to implement the interaction with the pions is as
follows: first of all the 10 most coplanar pions to the D0D̄∗0 plane are selected, then
the pion which will interact with (say the D0) is randomly chosen and lastly the most
parallel pion to the non-interacting meson (say the D̄∗0) is selected. One expects
this configuration to be the most effective in physical events. Moreover, in order
to prevent that D mesons belonging to different jets (separated in coordinate
space) would get closer by the scattering with a hard pion, one also requires
∆RDD∗ ≡

√
(∆yDD∗)2 + (∆φDD∗)2 < 0.7. The πD interaction in the center of

mass is given by

〈π(p)D(q)|D∗(P, η)〉 =gπDD∗η · p, (6.3a)

〈π(p)D∗(q, λ)|D∗(P, η) =gπD∗D∗

MD∗
εαβγδλ

αηβpγqδ, (6.3b)

with gπDD∗ ' 11 and gπD∗D∗ ' 17 [199].
First of all, it has been checked [3] that this new mechanism does not spoil the high

energy behavior of the relevant D meson distribution, as shown in Figure 6.4. It was
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Figure 6.4. Differential cross sections of D0 and D0D∗− pairs at CDF obtained not
including (blue, solid) and including (red, dashed) the interaction with one pion per
D0/D0D∗− event [3]. Both distribution have been rescaled by the same normalization
factor, K, obtained by minimizing the combined χ2. It is clear that the inclusion of
one elastic scattering does not weaken the agreement of the MC simulations to the
experimental data.

actually showed that the inclusion of one elastic scattering improves the agreement
of the simulation with the experimental data from CDF– see Table 6.1. This is a
strong hint of the fact that this mechanism actually takes place in real physical
events and should hence be considered when studying final hadronic distributions.

The effect was studied by generating 1010 pp̄ → cc̄ events [2], and later by
generating 6 × 109 pp̄ → 2 partons (full QCD) events [3]. The parton cut are as
loose as possible, ppart⊥ > 2 GeV and |ypart| < 6. The hadron cut have been fixed
to the experimental ones in [138], p⊥ > 5 GeV and |y| < 0.6. As one can see from
Figure 6.5 and Figure 6.6 the proposed mechanism is actually effective in feeding
down the lower k0 < 50 MeV bin, the one containing the would-be molecules. The
mechanism is extremely effective for the pp̄→ cc̄ events [2], where the two charmed
mesons carry much of the original parton energy

√
ŝ. In the complete the full QCD

simulation in [3], whose molecular candidates likely originate from a cc̄ pair recoiling
against a gluon, the effect is milder.

It is also possible to estimate how many of these interactions may take place. In
particular, considering a model where all the produced hadrons are flying away from
each other on the surface of a sphere – see again Figure 8.4 – and taking into account
the range of the interaction, one finds [2] that the simulations suggest an average
of 3 scatterings per event. These consecutive interactions can be reproduced by
implementing a Markov chain [2]: for each molecule candidate, we wish to evaluate
k

(n)
0 after n interactions. We do it according to the probability distribution functions

(PDF) as extracted from P (k0,∆k0). We build a set of PDFs Pi (∆k0) for each bin
i in dσ/dk0. We assume that the PDFs will be the same for all the interactions,

K-factor χ2/DOF
0π (blue) 1.35 45/11
1π (red) 3.46 24/11

Table 6.1. Fit values referring to the distributions in Figure 6.4.
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Figure 6.5. Number of D0D̄∗0 pairs (events) counted with Herwig (left panel) and Pythia
(right panel) when generating 1010 pp̄→ cc̄ events at

√
s = 1.96 TeV with the cuts on

partons and hadrons described in the text [2]. The histograms named 1π and 3π are
related to the elastic scattering of open charm mesons with one or three pions selected
as described above. In the insects we report a broader k0 range.
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Figure 6.6. Integrated cross section of D0D̄∗0 + h.c. pairs at CDF obtained with HER-
WIG, without (blue, solid), with one (red, dashed) and with three (green, dot-dashed)
interactions with pions [3]. In the inset the same plot on a wider range of k0 values.

like in a Markov chain. For each event we have a k(n)
0 , falling in some particular

bin i. We randomly extract a ∆k0 according to the distribution Pi (∆k0) and sum
|k(n)

0 +∆k0| = k
(n+1)
0 thus producing a new histogram. We also take into account the

‘lost’ and ‘gained’ would-be-molecules. In each iteration, we generate the number
of ‘lost’ and ‘gained’ ones, l(n), g(n), according to Poissonian distributions with
mean values l(1), g(1). We implement the following algorithm: i) before the n-th
interaction, we drop out a number l(n) of pairs, ii) we produce the new histogram
as a result of the interaction with one more pion, iii) after that, we decide to ‘gain’
a g(n) number of pairs. In Table 6.2 we report the values of the integrated cross
section for the production of the X(3872) in the full QCD simulation varying both
the number of interacting pions and the maximum k0 allowed for the pair.

As one can see, if one trusts the coalescence model for the X(3872) and hence
consider kmax

0 ' 50 MeV, not even the elastic scattering with three consecutive pions
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is able to raise the production cross section up to the experimental one (σ ' 30
nb). Moreover, if one considers the (questionable) use of FSI [236, 239] as explained
previously, then it should be kmax

0 ' 360 MeV. With this integration region, the
simulations produce a cross section after the interaction with one pion – and after a
rescaling needed to take into account the different normalization factors between
the two works [3, 236]– that is equal to σ(1π) ' 52 nb, larger than the experimental
one.

6.2 Comparison with deuteron and light nuclei [4]
As we said, the X(3872) is often compared to the deuteron, under the hypothesis
that both are loosely bound molecules. It would therefore be of great interest to
measure the pp (anti)deuteron production cross section in the same p⊥ region where
the X has been observed. Unfortunately, (anti)deuteron production in pp collisions
at p⊥ values as high as ≈ 15 GeV (where the X is clearly seen at CMS [122]) has
not been measured yet. However, in [3] we studied low-p⊥ preliminary data on
anti-deuteron production by ALICE in pp collisions at

√
s = 7 GeV [243]. We

tested the validity of the coalescence model for the case of the anti-deuteron using
HERWIG. In particular this tool has been used to evaluate the number of p̄n̄ pairs
produced with small relative momentum (k0 < 80 MeV) in pp collisions at

√
s = 7

TeV in the interval 0.9 GeV< pT < 1.4 GeV. At such small p⊥ a proper tuning of
MC to data is not possible, being the absolute cross section not reliable. We ignore
therefore the absolute normalization of our deuteron production cross section, and
rescale it to match the shape of data. The results of this analysis are reported in
Figure 6.7. By anti-deuteron events we mean the number of p̄n̄ pairs produced with
a momentum smaller than 80 MeV. As one can see in Figure 6.7a, the MC simulation
describes reasonably the experimental data, thus providing a proof of the validity of
the coalescence model.

In Figure 6.7b we extrapolated the transverse momentum range up to pT = 30
GeV. In order to increase the statistics enough, we allowed the relative momentum
between the p̄n̄ pair to be up to (300− 450) MeV since the simulation showed that
the shape of the pT distribution was totally uncorrelated with kmax

0
2. This rough

estimate shows how the production cross section for anti-deuteron might turn out to
be really small at high pT , in agreement to the intuitive picture mentioned before,
and happens to be two orders of magnitude smaller than the X(3872) one. However,

2The (kmax
0 )3 dependence coming from phase space is reabsorbed in the normalization factor

used to tune the distributions on the experimental data.

kmax
0 50 MeV 300 MeV 450 MeV

σ(0π) 0.06 nb 6 nb 16 nb
σ(1π) 0.06 nb 8 nb 22 nb
σ(3π) 0.9 nb 15 nb 37 nb

Table 6.2. Effect of multiple scatterings in X(3872) production cross section. kmax
0 indicates

the integration region k0 ∈ [0, kmax
0 ].
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Figure 6.7. Anti-deuteron events produced in pp collisions according to 109 HERWIG
events with |η| < 0.9 (blue solid line) and |y| < 1.2 (green solid line) as a function
of the transverse momentum of the molecule [3]. The MC simulation is compared to
the ALICE deuteron production preliminary data [243] (red circles) and with the CMS
X(3872) data [122] (green squares).

if we assume that the spin-interactions are second order effects, the yields for the
anti-deuteron and for the X(3872) should be similar. Were this confirmed, it would
provide the definitive proof of the inconsistency of the molecular interpretation with
the experimental data. The uncertainties given by the non-reliability of the MC
at low p⊥ and by such a large extrapolation to high pT prevent us to draw firm
conclusions by now.

However, very recently the ALICE collaboration reported results on the produc-
tion of deuteron, helium-3 (3He) and hypertriton (3ΛH) light nuclei in relatively high
p⊥ bins in Pb-Pb collisions, at √sNN = 2.76 TeV [244, 245].

As a first approximation one can assume that there are no medium effects
enhancing or suppressing the production of light nuclei in Pb-Pb collisions. This is
equivalent to state that each nucleus-nucleus collision is just an independent product
of Ncoll proton-proton collisions, with Ncoll computed in a Glauber Monte Carlo
calculation as a function of the centrality class. We use the results from [247], which
are compatible at 1σ level with the ALICE ones [248], and never more different than
3%. To compare with

√
s = 7 TeV data, we rescale our estimated cross sections by a

factor σinelpp (7 TeV)/σinelpp (2.76 TeV) = 1.1.

Consider for example the production of hypertriton observed by ALICE in Pb-Pb
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Figure 6.8. Comparison between the prompt production cross section in pp collisions of
X(3872) (red), deuteron (green), 3He (orange), and hypertriton (blue) [4]. The X data
from CMS [122] are rescaled by the branching ratio B(X → J/ψ ππ). Deuteron data in
pp collisions are taken from ALICE [245]. The 3He and hypertriton data measured by
ALICE in Pb-Pb collisions [244, 245] have been rescaled to pp using a Glauber model, as
explained in the text. The dashed green line is the exponential fit to the deuteron data
points in the p⊥ ∈ [1.7, 3.0] GeV region, whereas the dotted orange one is the fit to the
3He data points. The solid and dot-dashed blue lines represent the fits to hypertriton
data with RAA = 1 (no medium effects) and an hypothetical constant value of RAA = 5.
The hypertriton data points are horizontally shifted at the bin centers of gravity – being
defined as the point at which the value of the fitted function equals the mean value of
the function in the bin. (Left Panel) The hypertriton data are fitted with an exponential
curve, and the light blue band is the 68% C.L. for the extrapolated RAA = 1 curve. 3He
data in the p⊥ ∈ [4.45, 6.95] GeV region are also fitted with an exponential curve. (Right
Panel) The hypertriton and 3He data are fitted with blast-wave functions [246], whose
parameters are locked to the 3He ones obtained in [245].

collisions 3. Neglecting medium effects, the pp cross section can be estimated with(
dσ
(3
ΛH
)

dp⊥

)
pp

=

= ∆y
B(3Heπ) ×

1
Lpp

(
d2N(3Heπ)
dp⊥dy

)
pp

=

= ∆y
B(3Heπ) ×

σinelpp

Nevt

(
d2N(3Heπ)
dp⊥dy

)
pp

=

= ∆y
B(3Heπ) ×

σinelpp

Ncoll

(
1

Nevt

d2N(3Heπ)
dp⊥dy

)
Pb-Pb

.

(6.4)

ALICE analyzes 3Heπ pairs, thus we need to divide by the branching ratio for
the 3

ΛH → 3Heπ decay – B(3Heπ) ≈ 25% [249] – in order to deduce the number
3In the following, the average of hypertriton and anti-hypertriton data is understood.
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of parent hypertritons. We stress that the experimental data in [244] are indeed
normalized to Nevt = N0-10%

Pb-Pb, i.e. the total number of inelastic Pb-Pb collisions
analyzed (about 20× 106 events in the 0-10% centrality bin). We use σinelpp = 73 mb,
as measured in

√
s = 7 TeV collisions [250, 251], and ∆y = 2.4 to compare with the

CMS analysis [122]. In this centrality class, we use N0-10%
coll = 1518 [247].

Similarly, we can estimate the 3He distribution in pp collisions from the ALICE
Pb-Pb data in the 0-20% centrality class [245], using N0-20%

coll = 1226 [247]. We
remark that the selection of these events rejects any 3He not produced in the
primary vertex, i.e. the hypertriton decay products. Since the 3He data points
with p⊥ < 4.4 GeV show a deviation from the exponential behavior, likely due
to the expansion of the medium, we perform an exponential fit to the points in
the region p⊥ ∈ [4.45, 6.95] GeV only. Alternatively, we fit hypertriton and 3He
data with the blast-wave model 4, which describes particle production properties by
assuming thermal emission from an expanding source [246]. This model is expected
to reproduce correctly the low and medium p⊥ regions in Pb-Pb collisions. Since we
are rescaling Pb-Pb data to pp by a constant factor, the same shape holds in our
estimated pp data, and gives a guess on the asymptotic exponential behavior. The
results are shown in Figure 6.8.

Our rescaling to pp collisions does not take into account either medium effects,
nor the fact that the coalescence/recombination mechanism can be enhanced in
Pb-Pb collisions [252]. In fact, such phenomena are known to favor the production
of many-body hadrons with respect to what is expected in vacuum. Medium effects
are discussed later.

For the deuteron we use ALICE pp data [245] to estimate

(
dσ (d)
dp⊥

)
pp

= ∆y × σinelpp

(
1

N inel
pp

d2N(d)
dp⊥dy

)
pp

(6.5)

N inel
pp being the number of pp inelastic collisions collected. We perform the fit to the

points in the region p⊥ ∈ [1.7, 3.0] GeV, which shows a good exponential behavior.
The CMS analysis of X production provides the differential cross section times

the branching fraction B
(
X(3872)→ J/ψ π+π−

)
. The latter has not been measured

yet, and the lower limit reported in the PDG is B > 2.6% [113]. An estimate for the
upper limit has been reported, B < 6.6% at 90% C.L. [254]; we use instead the more
conservative value B = 8.1+1.9

−3.1% [50]. The comparison in Figure 6.8 shows that,
according to the most conservative exponential fit in the left panel, the extrapolated
hypertriton production cross section in pp collisions would fall short by about 2÷ 3
orders of magnitude with respect to the X production, and much more according to
the blast-wave fit in the right panel. The drop of the deuteron cross section, which
is directly measured in pp collisions, appears definitely faster.

4The blast-wave function is

dN

dp⊥
∝ p⊥

∫ R

0
rdrm⊥I0

(
p⊥ sinh ρ
Tkin

)
K1

(
m⊥ cosh ρ
Tkin

)
,

where m⊥ is the transverse mass, R is the radius of the fireball, I0 and K1 are the Bessel functions,
ρ = tanh−1 ( (n+2)〈β〉

2 (r/R)n
)
, and 〈β〉 the averaged speed of the particles in the medium.
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Figure 6.9. Comparison between the nuclear modification factor RCP for deuteron (red)
and for generic charged tracks (blue) [253] in central (resp. 0-10% and 0-5%) versus
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The dashed line corresponds to no medium effects, RCP = 1. It is worth noticing that
RCP (d) gets enhanced at p⊥ & 2.5 GeV.

As we mentioned already, the main problem for the production of loosely bound
molecular states in proton-proton collisions is the difficulty in producing the con-
stituents close enough in phase space. However, it is well known that the interaction
of elementary partons with the collective hot dense medium causes relevant energy
loss of the partons themselves. This effect is usually quantified by the nuclear
modification factor [253, 255–258]

RAA =

(
1

Nevt
d2N
dp⊥dy

)
Pb-Pb

Ncoll
(

1
Nevt

d2N
dp⊥dy

)
pp

, (6.6)

which compares the particle yield in Pb-Pb collisions with that in pp. It then follows
that the method used to obtain Eq. (6.4) corresponds to assume RAA = 1.

While for ordinary hadrons medium effects generally lead to a suppression of the
particle yield – i.e. RAA < 1 – conversely they can favor the production of hadronic
molecules. The role of the medium would be, in fact, that of decreasing the relative
momenta of the components with respect to the zero temperature case due to the
well-known jet quenching effect [259–261]. This would favor their coalescence into
the final bound state by reducing their relative momenta directly at parton level.

The coalescence model is based on the sudden approximation 5 and is implemented
by calculating the overlap of the density matrix of the constituents with the Wigner
function of the final composite particle. In particular, it has the important property
of taking into account the inner structure of the considered hadron. If one only

5i.e. the assumption that the binding of the constituents happens on small time scales and
therefore their wave function remains unchanged during the transition to the bound state.
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requires the vicinity in momentum space, the p⊥ distribution of a composite state
with N constituents coming out of a hot QCD medium is roughly given by

dNb
dp⊥

(p⊥) ∼
N∏
i=1

dNi

dp⊥
(p⊥/N), (6.7)

where Nb is the number of final bound states and Ni is the number of produced
constituents. This would also explain why in Figure 6.8 the cross section for the
3He and hypertriton are several orders of magnitude smaller than the deuteron one:
one additional p or Λ, close enough in phase space, must be produced.

It has already been shown that coalescence effects in Pb-Pb collisions can
have relevant consequences on the production of multi-quark states. In particular,
molecular states with small binding energy are expected to be enhanced, i.e. RAA >
1 [262].

Unfortunately there is no measurement of RAA for the deuteron as a function of
p⊥. However, there is another nuclear modification factor which is often used,

RCP =

(
1

Nevt
d2N
dp⊥dy

)0-10%
Pb-Pb

/
N0-10%

coll(
1

Nevt
d2N
dp⊥dy

)60-80%
Pb-Pb

/
N60-80%

coll

. (6.8)

This quantity is a comparison between the most central and the most peripheral
Pb-Pb collisions and therefore provides another valid indicator of the strength of
medium effects (which should be absent in the less dense, most peripheral events).
The fact that RAA and RCP measurements for hadron species are strongly correlated
to each other is shown experimentally by a thorough data analysis reported by
ATLAS [253], up to very high p⊥ ∼ 100 GeV.

Using the ALICE data presented in [245] we can compute RCP for the deuteron
as a function of p⊥ and compare it with that for generic charged tracks, as reported
in [253] – see Figure 6.9. We use N60-80%

coll = 27.5 [247]. As one immediately notices,
the difference from ordinary hadrons is striking. The presence of the QCD medium
is extremely effective at enhancing the production of the deuteron for the reasons
explained before. In fact, RCP for this hadronic molecule becomes larger than
unity for p⊥ & 2.5 GeV, in particular we have RCP = 1.7 at the last point with
p⊥ = 3.1 GeV. Using the blast-wave fitting function for the peripheral data taken
from [244], we also extrapolate up to the end point of the central data, confirming
the growth of RCP with p⊥.

We expect a similar behavior in RAA, and in particular a value larger than 1 for
p⊥ large enough.

To get an independent rough estimate for RAA, we assume the deuteron produc-
tion cross section in pp collisions to scale with

√
s like the inelastic cross section,

and compare the ALICE data in central Pb-Pb collisions at √sNN = 2.76 TeV, with
the ones in pp collisions at

√
s = 7 TeV [245]. Indeed, we find that RAA exceeds 1 at

p⊥ = 2.1 GeV, and reaches 5 at p⊥ = 4.3 GeV. This gives strength to our expectation
for RAA > 1. To display the size of this effect, we plot also the hypertriton curves
for RAA = 5 in Figure 6.8.

One naturally expects for a similar enhancement to be even more relevant for
3-body nuclei like 3He and the hypertriton. Its role would be to further decrease
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the extrapolated cross section in prompt pp collisions. As we already said, indeed, a
value of RAA > 1 applied to Pb-Pb data implies a pp cross section even smaller than
predicted by the Glauber model. Even though qualitative conclusions can already
be drawn, a quantitative analysis substantiated by data at higher p⊥ is necessary
for a definitive comparison with the X case.

Even assuming that only a hot pion gas is excited in Pb-Pb collisions, there
would likely be a large number of final state interactions with pions catalyzing the
formation of a loosely bound hypertriton along the lines discussed in [3, 8, 50]. In
any case, such an environment is present in the Hadron Resonance Gas corona
formed when the outer shell of the QCD medium cools down [263].

In summary, the extrapolation of the deuteron and 3He data in pp collisions sug-
gests that loosely bound molecules are hardly produced at high p⊥. The extrapolated
curve of hypertriton data from Pb-Pb collisions might lead to milder conclusions
although we expect it should be significantly suppressed when medium effects are
properly subtracted. Such effects are indeed already sizable for the deuteron as
shown in Figure 6.9, and probably even more relevant for 3-body nuclei.

To summarize, the experimental value of the prompt production cross section of
the X(3872) casts serious doubts on its possible interpretation in terms of a D0D̄∗0

molecule. According to the expectations following from the phenomenological
coalescence model – that correctly describes the deuteron – the production of such a
weakly bound state should be strongly suppressed in high energy collisions. This is
suggested both by MC simulations, and by simple extrapolations of available data.
Even though many ideas and models have been proposed during the years none of
them has successfully reconciled the theoretical expectations with the experimental
results.

It should also be emphasized that the inclusion of possible interactions between
comoving pions and final state mesons [2, 3] turned out to improve the accordance
between the simulated MC distributions and the experimental ones and hence should
be taken into account in future works. Finally, for an unbiased and definitive
comparison of light nuclei with X production at p⊥ as high as 15 GeV, deuteron (or
hypertriton) should be searched in pp collisions rather than in Pb-Pb to avoid the
complications of subtracting medium effects. These analyses can be performed by
ALICE and LHCb during Run II.
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Chapter 7

Tetraquarks

The previously described problem seemed a compelling evidence of the necessity for
a new kind of interpretation for these exotic mesons. It has been proposed [264]
that these states might actually have a compact (point-like) four-quark structure –
the so-called tetraquark. In this section we introduce this model starting from its
consequences regarding the production of XY Z mesons in high energy collisions, so
that a more direct comparison could be done with the previous section.

The constituent quark model has been by far the most successful tool for the
classification and interpretation of hadrons. Despite its obvious limitations, the
systematic search of SU(3) multiplets provides the most reliable guideline in hadron
spectroscopy. Exotic states with nonminimal quark content were forecasted by
Gell-Mann in the very first paper on the quark model [13]. One of the simplest and
more economic ways (in terms of new states predicted) of forming multiquark states
is considering constituent diquarks. The proposal of diquarks as effective degrees
of freedom inside baryons came out in the late ‘60s: it is based on the observation
that a [q1q2]3̄c pair in the antisymmetric color configuration binds according to the
tree-level calculation (one gluon exchange). Some phenomena, like the x→ 1 of the
ratio of proton and neutron PDFs, or the ratio of fragmentation functions to Σ and
Λ, can be qualitatively understood assuming the existence of these colored objects.
Also, some evidence of a scalar diquark was found in lattice QCD [? ]. Diquarks
can be the constituent bricks of a new rich multiquark spectroscopy.

In general tetraquark bound states have been proposed a long time ago [265–
267] to understand the nature of the light scalar mesons a0(980) and f0(980). In
2003, Jaffe and Wilczek [268] proposed a diquark-diquark-antiquark explanation
for the positive-strangeness Θ+ baryon (before that the observation of the state
was contested by an higher statistics analysis). An interpretation of light scalar
mesons in terms of diquark-antidiquark states was instead proposed for the first
time by Maiani et al. [35, 269] following the revitalization of interest on the σ meson
(reappeared in heavy-light meson decays [270]) and contextually with an interesting
reanalysis of ππ scattering [271].

Some aspect of the tetraquark models have been inspired by dibaryons [272, 273],
in particular the feasibility of isospin violation [274]. Different extensions of the
constituent quark models for the tetraquark spectroscopy have been explored by
Valcarce et al. [275–279].
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As we will show in the next sections, assuming a constituent quark model with
color-spin interaction it is possible to study the spectroscopy of these states, in which
the JPC = 1+± and JPC = 1−− states discovered so far can be nicely accommodated.
The main problem with this picture is that it also predicts other states which did
not (yet?) show up in experimental researches. A possible solution to this problem
is also presented.

7.1 Tetraquark production [3, 5]
From the studies on loosely bound molecule production at hadron colliders we are
led to consider that multiquark hadrons should rather be initiated by the formation
of compact quark clusters. The seed of a heavy-light tetraquark state state could be
described by

|ψ〉 = α|[Qq]3̄c [Q̄q̄]3c〉+ β|(QQ̄)1c(qq̄)1c〉+ γ|(Qq̄)1c(Q̄q)1c〉, (7.1)

where by Q and q we represent the heavy and light quarks respectively. In our
scheme, the two-meson states will tend to fly apart, as strong Van der Waals-like
forces between their meson components are not sufficient to produce bound states like
J/ψ ρ or DD̄∗ – depending on the spin and orbital quantum numbers of the original
four-quark system. In this sense such states are in a “open channel” continuum.

Most authors are convinced instead that some hadron molecule shallow potentials
could allow for at least a single discrete level with almost zero energy ∼ −ε. Small
binding energies in quantum field theory are possible and, if g is the strong coupling,
say in the DD∗ interaction, one can connect ε to g by [280]

ε = g4

512π2
µ5

M4
DM

4
D∗
, (7.2)

where µ is the reduced mass of the DD∗ system (in this formula we are treating
D and D∗ as if they were spinless particles. Accounting for the spin is simple and
does not change our qualitative conclusions). This formula is obtained by resonance
scattering theory at low energies supposing that there is a pole term associated with
the virtual production of X particle in the f(DD∗ → DD∗) scattering amplitude

1
(pD + pD∗)2 −M2

X

(7.3)

and supposing that E , the barycentric energy after subtraction of rest energy, is, like
ε, a small quantity. We replace (pD + pD∗)2 → (MD +MD∗ + E)2.

Thus, if E were indeed small enough, formula (7.2) would hold and, including
spin and using the coupling g as deduced in [281], one would get

|ε|exp = 0.1 MeV vs. |ε| = 0.4 MeV (7.4)

from (7.2).
However in the prompt production of X at large hadron colliders, E is very

far from being small. The fact that the observed prompt production cross section
at LHC is so much larger than expectations, as commented at length in previous
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sections, suggests then that the X is not a loosely bound state of DD∗, and the rough
agreement (7.4) simply occurs outside of the kinematic conditions of X production.

These kind of problems do not exist in the diquark-antidiquark picture for
this particle would be kept together by color interactions, the unknown being the
effectiveness of the color force at producing diquarks. The diquark-antidiquark
belongs to a “closed” channel. The relative size of α, β, γ coefficients in (7.1) is
unknown.

We might formulate different hypotheses: i) α, β, γ are all of the same order. In
this case we should be observing the entire spectrum of diquark-antidiquark states
which can be predicted using the color-spin Hamiltonian (see below). In a previous
work [264], the Hamiltonian of the diquark-antidiquark model was supposed to
contain both spin-spin interaction between quarks within each diquark and quarks
in the two different diquarks. The resulting spectrum predicts a rich structure of
states with some evident mismatches with the experimental findings.

A ‘type-II’ version of the diquark-antidiquark model, with spin couplings sup-
pressed between different diquarks, allows a remarkable description of the JPG = 1++

sector of charged tetraquarks as the Z(4430), Zc(4020), Zc(3900) and a good picture
of the entire JPC = 1−− sector (see next few sections). Some typical problems of the
diquark-antidiquark model persist in the type-II model. For example the X(3872)
should have charged partners and an hyperfine splitting between two neutral levels,
to account for isospin violations [264].

To solve this kind of difficulties we might formulate a different hypothesis for
the hierarchy among α, β, γ coefficients. We might indeed assume that, ii)

|β|2, |γ|2 � |α|2 (7.5)

Such an assumption means that, in general, diquark-antidiquark states are less
likely to be formed in hadronization but a resonance could emerge as a result of the
coupling between open and closed channels. This hypothesis introduces a selection
rule in the diquark-antidiquark spectrum: especially those levels which are close
enough to open channel thresholds (resonance conditions) are observed as physical
resonances.

More specifically, the diquark-antidiquark closed channel provides an effective
attraction in the open channel which might lead to produce a resonance. This
phenomenon is effective if the energy level En, corresponding to the closed channel
state |[Qq]3̄c [Q̄q̄]3c , n〉C, happens to be very close to one, or both, as in the X-
particle case, of the open channel thresholds (located, in the case of the X, at
EO = mJ/ψ +mρ or EO = mD0 +mD̄∗0).

Strong interactions provide the discrete spectrum for diquark-antidiquark states,
however those levels correspond most likely to physical states once the closed channel
is hybridized with the open one, i.e. the difference in energy, or detuning parameter
ν, is small enough. When this energy matching condition between the total energy
in the open channel and the energy level in the closed channel takes place, the
two hadrons in one open channel can undergo an elastic scattering, altered by the
presence of the near closed channel level. The two hadrons in an open channel can
scatter to the intermediate state in the closed channel, which subsequently decays
into two particles in one of the open channels.



98 7. Tetraquarks

The contribution to the scattering length due to this phenomenon is of the
form [3, 5]

a ∼ |C|
∑
n

〈[Qq]3̄c [Q̄q̄]3c , n|HCO|(Qq̄)1c(Q̄q)1c〉
EO − En

(7.6)

where HCO couples the open and closed channels; the discrete levels of the closed
channel are labeled by n. This sum is dominated by the term which minimizes the
denominator EO −En ≡ −ν, i.e. the one with the smallest detuning. The width of
the resulting resonance is naturally proportional to the detuning Γ ∼

√
ν for phase

space arguments.
Since the X(3872) is the narrowest among all XY Z mesons, it must have ν ' 0,

which means the highest possible hybridization between channels given the (unknown)
inter-channel interaction Hamiltonian HCO.

The D+D∗− open channel level is found to be at a mass above the X diquark-
antidiquark level, by about 8 MeV. Coupling between channels gives rise to a repulsive
interaction if the energy of the scattering particles is larger than that of the bound
state (and an attractive one if it is smaller). For this reason we might conclude that
the neutral particle has no dd̄ content in its wavefunction explaining the well-known
isospin breaking pattern in X decays.

The diquark-antidiquark X+ levels (the charged partner of the X(3872)), might
also fall below D+D̄∗0 and D̄0D∗+ thresholds by about 3 ÷ 5 MeV, which could
be enough for inhibiting the resonance phenomenon described. This might be the
reason why the X+ particles, although present in the diquark-antidiquark spectrum,
are more difficult to be produced.

The J/ψ ρ0 open channel level is also perfectly matching the closed channel one
for the X(3872). However because of the large ρ width, the modification in the
scattering length (7.6) is much less effective if compared to the open charm threshold:
the sum in (7.6) has to be smeared with an integral convoluting the ρ Breit-Wigner.
Therefore we would expect that the X+ particles are less likely to be formed or they
could simply be too broad to be observed. Some examples are shown in Table 7.1.

The mechanism here described is known in nuclear and atomic physics as the
Feshbach resonance formation [188].

Recently two charged resonances have been confirmed to a high level of precision.

State Open channel ν (MeV) Γth (MeV) Γexp (MeV)
X(3872) D0D̄∗0 −0.16± 0.31 0 < 1.2
Zc(3900) D+D̄∗0 12.1± 3.4 30 35± 7
Z ′c(4020) D∗+D̄∗0 6.7± 2.4 22 10± 6
Z(4430) ηc(2S)ρ 64± 17 & 150 180± 30
Zb(10610) B+B̄∗0 2.7± 2.0 14 18.4± 2.4
Z ′b(10650) B∗+B̄∗0 1.8± 1.5 12 11.5± 2.2

Table 7.1. Exotic states in term of Feshbach resonances. The width is related to the
detuning by Γ = A

√
ν. An exception is given by the Z(4430), whose width is forced to

be larger than its constituent width, i.e. Γρ ∼ 150 MeV.
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The Z(4430) and the Zc(3900). These are genuine tetraquark states. We need to
recall that the prediction of charged states of this kind was exclusively formulated
in the context of compact tetraquark states [264].

In particular, when the first hint of a Z(4430) charged tetraquark was provided
by the Belle collaboration in the ψ(2S)π+ channel, back in 2007, it was observed
that another state at 3880 MeV (i.e. lighter by the ψ(2S)− ψ(1S) mass difference)
was expected in the tetraquark model [282] with the same quantum numbers (the
former being the radial excitation of the latter). The lower state was expected to
decay into J/ψ π+ or ηc ρ+. A charged Zc(3900) with JPG = 1++ decaying into
J/ψ π+ was discovered by BES III and Belle in 2013 [68]. It was also shown that
BES III and Belle data might be compatible with the presence of another peak about
100 MeV below that of the Zc(3900) [7]. That was also predicted by the tetraquark
model.

The tetraquark model in its first diquark-antidiquark version [7, 264] predicts
one more JPG = 1++ level, at a mass of 3755 MeV (these mass values are locked to
the input mass value of the X(3872)). We might predict that no resonance will be
found at this level because there are no open channels nearby to make the Feshbach
mechanism possible. The Z(4430) is instead made possible by the presence of the
ηc(2S)ρ open channel. The expected width, driven by the ρ, is expected to be as
large as 150 MeV, to be compared with the ∼ 170 MeV observed.

The tetraquark model in its ‘type-II’ version has no 3755 MeV, but a level
perfectly compatible with the observed Z ′c(4020) by the BES III Collaboration [71],
which is also compatible with a Feshbach generated state. A Z(4430)0 isosinglet
resonance could be due to the vicinity of the ηc(2S) ω open channel, with a narrower
width of about 70 MeV.

These considerations about the interplay between a closed (diquark-antidiquark)
and open channel (molecular thresholds) are to be considered in a preliminary stage
and possibly object of future developments. In the following we will focus instead
on the description of the diquark-antidiquark closed channel listing its states by
quantum numbers and showing how to estimate expected masses (the position of
levels).

We believe that recent experimental findings are clearly spelling in favor of
tetraquark particles and the diquark-antidiquark model apparently has many features
matching very well the present phenomenology. The Feshbach mechanism here
sketched might be a viable way for implementing those selection rules still missing
in the tetraquark Hamiltonian approach to be described below.

7.2 Diquarks
One-gluon interaction in the t-channel between two quarks in the SU(3)c repre-
sentation R = 3 (antiquarks R = 3̄) involves a (tensor) product of color charges
TR1 ⊗ TR2 which can be expressed as the direct sum of diagonal blocks with the
dimensions of the irreducible representations Si in TR1 ⊗ TR2 = S1 ⊕ S2. According
to the general rule

TR1 ⊗ TR2 =
⊕
i

1
2(CSi − CR1 − CR2)1Si (7.7)
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we only need the Casimir values C3 = C3̄ = 4/3 and C1 = 0 to appreciate that
one-gluon exchange generates a quark-quark attraction in the 3̄ channel (−2/3)
which is just half of that in the quark-antiquark singlet channel (−4/3). Even if
one-gluon-exchange interaction is a primitive model of low energy strong interactions,
correlating it with indications from lattice computations [283] on diquarks gives
reasonable support to the possibility of diquark-antidiquark hadrons.

Diquarks carry the same color charge of antiquarks. The opposite for antiquark-
antiquark pairs. We represent a spin zero diquark with the bispinor notation

[cq]i = εijk(cj)Tσ2qk, (7.8)

where i, j and k are color indices. In the quadrispinor notation we would have written
εijkc̄

j
cγ5qk, where c indicates the charge conjugated spinor. In the next sections color

index will be left implicit. Relaying on spin-flavor symmetry of heavy-light mesons,
a spin-1 heavy-light diquark could equally be formed

[cq]i = εijk(cj)Tσ2σλqk. (7.9)

Integrating over the spatial wave function, and absorbing the constant terms
into the constituent masses, the relevant Hamiltonian is [284, 285]

H = −2
∑
i 6=j,a

κij Si · Sj
λai
2 ·

λaj
2 . (7.10)

Here we will discuss the color interaction only, leaving the spin to the next sections.
We introduce the (normalized) color singlet/octet states using the following notation
which turns out to be rather practical for calculations:

|c̄c1, q̄q1〉 := 1
3 1c̄c ⊗ 1q̄q; (7.11a)

|c̄c8, q̄q8〉 := 1
4
√

2
λac̄c ⊗ λaq̄q, (7.11b)

where by λac̄c, for example, we mean c̄i (λa)ij cj using latin letters for color indices.
With the notation |cq3̄, c̄q̄3〉 we mean an overall color singlet state of a diquark-

antidiquark pair:
[cq]i[c̄q̄]i = cj c̄

jqkq̄
k − cj q̄jqk c̄k. (7.12)

Using the relation
(λa)ij(λa)kl = 2(δilδkj − 1/3 δijδkl ) (7.13)

one obtains

|cq3̄, c̄q̄3〉 = 2
3 1c̄c ⊗ 1q̄q −

1
2 λac̄c ⊗ λaq̄q = 2|c̄c1, q̄q1〉 − 2

√
2|c̄c8, q̄q8〉, (7.14)

i.e. the octet-octet component has twice the probability of the singlet-singlet one.
The previous state can itself be normalized in the following way (multiply by 1/

√
12)

|cq3̄, c̄q̄3〉 = 1√
3

(1
3 1c̄c ⊗ 1q̄q − T ac̄c ⊗ T aq̄q

)
(7.15)
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and use the T = λ/2 matrices.
Let us represent states of the fundamental representation with the symbol |i〉

whereas those of the anti-fundamental are |j〉. Then we have

〈j |T a|i〉 = (T a)ji ; (7.16a)
〈j |T a|i〉 = −(T a)ij , (7.16b)

i.e. one is the opposite of the transpose (complex-conjugate) of the other.
From the latter equation we get

T a|i〉 = −|j〉(T a)ij . (7.17)

Consider a generic state |v〉
|v〉 = |i〉vi, (7.18)

then
|T av〉 = T a|v〉 = T a|i〉vi = −|j〉(T a)ijvi. (7.19)

We thus conclude that (multiply the latter by 〈k| and then rename k → i)

T avi = −(T a)jivj , (7.20)

whereas
T avi = (T a)ijvj . (7.21)

If, for example, we consider the action of the Hamiltonian term Hc̄c ∝ T ac̄ T
a
c ,

according to (7.20,7.21) we have to replace

1c̄c −→ −(T a)ji c̄j(T
a)ikck = −c̄j(T aT a)jkc

k. (7.22)

Similarly if we start with some c̄iOijcj , where O is some combination of T ’s, we have
to replace

c̄iOijcj −→ −c̄j(T aOT a)
j
kc
k. (7.23)

With this rules we can compute the action of Hcq on a diquark state defined in (7.15)

Hcq|cq3̄, c̄q̄3〉 ∝
1√
3

(1
3 T b ⊗ T b − T aT b ⊗ T aT b

)
, (7.24)

and thus
〈cq3̄, c̄q̄3|Hcq|cq3̄, c̄q̄3〉 ∝ −

1
3

(
−2 2

3 −
2
3

)
= 2

3 , (7.25)

where we have used
Tr(T aT bT c) = 1

4(dabc + ifabc) (7.26)

and

fabcfabd = 3δab; (7.27a)

dabcdabd = 5
3δ

ab. (7.27b)

As for the color, taking matrix elements on diquark-antidiquark color-neutral states
amounts to redefine the chromomagnetic couplings by some numerical factor: 2/3
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when the Hcq and Hc̄q̄ terms are considered. Actually we assume that the dominant
couplings in the Hamiltonian are κcq and κc̄q̄, i.e., intra-diquark interactions. We
take them to be equal κ = κcq = κc̄q̄

1.

7.3 Diquark-antidiquark States with L = 0

The following discussion is mostly based on a recent paper [286] where, as anticipated,
a ‘type-II’ tetraquark model is introduced. The ‘type-I’ is briefly discussed in Sec. 7.7
for historical reasons.

7.3.1 The X tetraquark

Consider a tetraquark made up of two c quarks and two light quarks, with the same
flavor: a neutral component. Using explicit spin indices s, b, r, d we write them in
the order:

cs qb q̄r c̄d. (7.29)

Assume that the cq pair has spin 1 whereas the antidiquark q̄c̄ has spin 0. Then the
spin indices are saturated by the operators

σ2
saσ

i
ab (7.30)

for the cq pair and
σ2
rd (7.31)

for q̄c̄, where repeated indices are summed. We might write the operators as

σ2
saσ

i
aqδqb σ2

rtδtd (7.32)

and recall that
δqbδtd = 1

2δqdδtb + 1
2σ

`
qdσ

`
tb. (7.33)

Let us consider the first term in (7.33) and plug it into (7.32)

1
2σ

2
saσ

i
ad σ2

rb, (7.34)

therefore forcing the cc̄ pair to be spin 1 and qq̄ to be spin 0. Strong interactions
are not supposed to change the heavy spin, thus we may assume that the color
octet components of the cc̄ will maintain spin 1 configuration whereas light quarks
can rearrange their spins, when in the octet configuration (twice as probable as
the singlet one; see Eq. (7.14)), in such a way to fulfill decay quantum number
conservation laws.

1 If extra-diquark couplings were considered we could determine them, e.g. κcc̄, from the masses
of standard L = 0 mesons observing that

〈cq3̄, c̄q̄3|Hc̄c|cq3̄, c̄q̄3〉 = 1
4 〈c̄c1, q̄q1|Hc̄c|c̄c1, q̄q1〉 (7.28)

.
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Consider now the second term in (7.33) and plug it into (7.32) to obtain

1
2σ

2
saσ

i
aqσ

`
qd σ2

rtσ
`
tb. (7.35)

Here we use that
(σiσ`)ad = δi`δad + iεi`mσmad. (7.36)

Consider the first term in (7.36) and plug it back into (7.35) to obtain

1
2σ

2
sd σ2

rtσ
i
tb. (7.37)

This term forces the cc̄ pair to be spin 0 and the qq̄ pair to be spin 1. Inserting the
second term on the right-hand-side of (7.36) into (7.35) we have instead

− i

2ε
im`σ2

saσ
m
ad σ2

rtσ
`
tb, (7.38)

forcing both pairs to be spin 1 and the tetraquark to be spin 1.
Here we may introduce the definitions:

|1q, 0q̄〉 = 1
2σ

2σi ⊗ σ2; (7.39a)

|0q, 1q̄〉 = 1
2σ

2 ⊗ σ2σi; (7.39b)

|1q, 1q̄〉J=1 = i

2
√

2
εijkσ2σj ⊗ σ2σk. (7.39c)

With the symbol q we either mean a diquark in the order cq or c̄q̄ or a quark-
antiquark pair in the order cc̄ or qq̄. The ordering is relevant. The normalizations
in (7.39a,7.39b,7.39c) are obtained using that 〈Qa|Qb〉 = δab..., where Q = c, q.
Therefore, taking for example (7.39c), we have (summing over repeated indices)

(δjλδkρ − δjρδkλ)
[
(σ2σj)rs(σ2σλ)rs(σ2σk)tu(σ2σρ)tu

]
=

= Tr((σj)Tσj)Tr((σk)Tσk)− Tr((σj)Tσk)Tr((σk)Tσj) =
= (2− 2 + 2)(2− 2 + 2)− (2 · 2 + 2 · 2 + 2 · 2) = −8, (7.40)

therefore we choose the normalization i/(2
√

2).
According to the quark ordering in (7.29), the spin 0 component will be

q̄ σ2 c̄ (7.41)

whereas in the definition of a heavy light diquark state, see (7.39a), might also be
c̄σ2q̄ (heavy quark on the left). On the other hand:

q̄ σ2 c̄ = −c̄ (σ2)T q̄ = c̄ σ2 q̄. (7.42)

This is not the case if we consider q̄ σ2σi c̄:

q̄ σ2σi c̄ = −c̄ (σ2σi)T q̄ = c̄ (σi)Tσ2 q̄ = −c̄ σ2σi q̄. (7.43)
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Therefore, putting together (7.34,7.37,7.38), and keeping in mind that the follow-
ing states are defined up to an overall minus sign (depending on the initial definition
of diquark), we obtain

2|1cq, 0c̄q̄〉 = |1cc̄, 0qq̄〉 − |0cc̄, 1qq̄〉+
√

2|1cc̄, 1qq̄〉J=1. (7.44)

On the other hand, if we restart from (7.29) but with cq taken with spin 0 and q̄c̄
with spin 1 we get

− 2|0cq, 1c̄q̄〉 = |1cc̄, 0qq̄〉 − |0cc̄, 1qq̄〉 −
√

2|1cc̄, 1qq̄〉J=1. (7.45)

Subtracting (7.45) from (7.44) we therefore obtain the result

|1cq, 0c̄q̄〉+ |0cq, 1c̄q̄〉√
2

= |1cc̄, 1qq̄〉J=1 ≡ X. (7.46)

Since diquarks are defined to be positive parity states, overall we have JP = 1+ and
C = +1. This diquark-antidiquark arrangement is a natural candidate to describe
the X(3872), which is a 1++ resonance decaying into J/ψ + ρ/ω, compatibly with
the |1cc̄, 1qq̄〉J=1 assignment – especially for what concerns the heavy spin.

If we had started in (7.29) with the ordering

cs qb c̄r q̄d (7.47)

then in place of (7.44) and (7.45) (exchange labels c̄↔ q̄) we would have obtained:

2|1cq, 0c̄q̄〉 = |1cq̄, 0qc̄〉 − |0cq̄, 1qc̄〉+
√

2|1cq̄, 1qc̄〉J=1; (7.48a)
2|0cq, 1c̄q̄〉 = |1cq̄, 0qc̄〉 − |0cq̄, 1qc̄〉 −

√
2|1cq̄, 1qc̄〉J=1. (7.48b)

or
|1cq, 0c̄q̄〉+ |0cq, 1c̄q̄〉√

2
= |1cq̄, 0qc̄〉 − |0cq̄, 1qc̄〉√

2
, (7.49)

which is compatible with the DD∗ decay mode of the X(3872). Anyway, light quark
spins in Qq̄ or Q̄q configurations might rearrange also to allow DD or D∗D∗ decays
although the latter is phase space forbidden and the former is simply forbidden by
quantum numbers.

7.3.2 The Z tetraquark

The orthogonal combination to the lhs of (7.46) might be formed, namely:

Z = |1cq, 0c̄q̄〉 − |0cq, 1c̄q̄〉√
2

. (7.50)

This has JP = 1+ and C = −1 for the neutral component (if an isospin triplet is to
be considered, the G−parity has to be G = +1). Using (7.44) and (7.45) we obtain

Z = |1cq, 0c̄q̄〉 − |0cq, 1c̄q̄〉√
2

= |1cc̄, 0qq̄〉 − |0cc̄, 1qq̄〉√
2

. (7.51)
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The state in the quark-antiquark basis has C = −1 since C = (−1)L+sqq̄+scc̄ . In the
quark-antiquark basis there is another state with C = −1, orthogonal to Z

Z ′ = |1cc̄, 0qq̄〉+ |0cc̄, 1qq̄〉√
2

. (7.52)

From what just found (reversing the reasoning leading to Eq. (7.46)) this state, in
the diquark-antidiquark basis, corresponds to

Z ′ = |1cq, 1c̄q̄〉J=1, (7.53)

which is indeed a 1+− state. Exchanging the coordinates, spins and charges of two
fermions/bosons having each spin s, the total wavefunction has to be completely
antisymmetric/symmetric under this exchange:

(−1)L(−1)2s+SC = ∓1, (7.54)

which in the case of (7.53) is

(−1)0(−1)2+1C = +1, (7.55)

giving C = −1. The case of X = |1cc̄, 1qq̄〉J=1 is different as the charge conjugation
operator concerns the distinct cc̄ and qq̄ pairs.

Linear combinations of Z and Z ′ which diagonalize the spin-spin Hamiltonian
can be identified with Z(3900) and Z(4020).

If on the other hand we had started with (7.47), using (7.48a,7.48b), we would
have found

Z = |1cq, 0c̄q̄〉 − |0cq, 1c̄q̄〉√
2

= |1cq̄, 1qc̄〉J=1, (7.56)

suggesting a D∗D∗ decay for the color singlet component, which is phase-space
suppressed for the Z(3900). Again, light quarks might rearrange their spins and
decay into DD∗, so that nothing prevents us to assign Z = Z(3900).

Similarly we obtain that (exchange q ↔ q̄ in (7.48a,7.48b) or simply in (7.56))

Z ′ = |1cq, 1c̄q̄〉J=1 = |1cq̄, 0qc̄〉+ |0cq̄, 1qc̄〉√
2

, (7.57)

apart from an overall minus sign (from (7.43)); we will anyway assign Z ′ = Z(4020)
which might preferably decay into D∗D∗ rearranging light quark spins.

7.3.3 Scalar and Tensor states

The diquark-antidiquark model also allows for JP = 0+, 2+ states with C = +1. We
have two JP = 0+ states and a tensor one:

X0 = |0cq, 0c̄q̄〉; (7.58a)
X ′0 = |1cq, 1c̄q̄〉J=0; (7.58b)
X2 = |1cq, 1c̄q̄〉J=2, (7.58c)
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which are all charge-conjugation even. We use the definitions

|0q, 0q〉 = 1
2σ

2 ⊗ σ2; (7.59a)

|1q, 1q〉J=0 = 1
2
√

3
σ2σi ⊗ σ2σi; (7.59b)

|1q, 1q〉J=2 = 1
2

(
σ2σ(i ⊗ σ2σj) − 1

3δ
ijσ2σ` ⊗ σ2σ`

)
, (7.59c)

where ij indices are symmetrized; in the latter equation (a factor of 1/2 has to be
included in the symmetrization) and the trace is subtracted.

The normalization 1/
√
N in (7.59b) is chosen in such a way that the square of

1√
N

(σ2σi)rs(σ2σi)rs = 1√
N

Tr
[
(σ2σi)T (σ2σi)

]
(7.60)

is equal to 1:

1
N

(
Tr
[
(σ2σi)T (σ2σi)

])2
≡ 1
N

∑
i

(
Tr
[
(σi)Tσi

])2
= 1, (7.61)

thus N = 12. In the J = 2 case we have for the first term in parentheses (7.59c):

2
4Tr

[
(σi)Tσi

]
Tr
[
(σj)Tσj

]
+ 2

4Tr
[
(σi)Tσj

]
Tr
[
(σj)Tσi

]
= 8, (7.62)

whereas the second term squared gives 1/9 × 3 × 12 = 4. The crossed term is
−2× 1/3× 12 = −8 so that N = 8 + 4− 8 = 4.

Now we recall that
1
2σad · σcb + 1

2δadδcb = δabδcd (7.63)

and observe that (7.59a) may be written as

1
2(cs σ2

saδab qb)⊗ (q̄r σ2
rcδcdc̄d), (7.64)

which contains δabδcd. Substituting the completeness relation (7.63) in place of δabδcd
in the latter expression we get

X0 = 1
2 |0cc̄, 0qq̄〉 −

√
3

2 |1cc̄, 1qq̄〉J=0, (7.65)

where the minus sign arises to preserve the qq̄ ordering (instead of q̄q – see discussion
before Eq. (7.41)) whereas the factor of

√
3 is introduced in agreement with (7.59b).

Consider now (7.59b) which might be written as (because of (7.43))

− 1
2
√

3
(cs σ2

saσ
i
ab qb)⊗ (q̄rσ2

rcσ
i
cd c̄d) (7.66)

and make use of the relation
3
2δadδcb −

1
2σad · σcb = σab · σcd, (7.67)



7.4 Spectrum of L = 0 states 107

which immediately leads to

X ′0 =
√

3
2 |0cc̄, 0qq̄〉+ 1

2 |1cc̄, 1qq̄〉J=0, (7.68)

up to an inessential overall −1 sign. Considering the conservation of the heavy
quark spin, we see that both scalar states found might decay into a spin 0 or spin 1
charmonium.

Finally consider (7.59c): (
cσ2σiq

)
⊗
(
c̄σ2σj q̄

)
(7.69)

With the usual Fierz transformation, we have

1
2
(
cσ2σic̄

)
⊗
(
q̄σ2σjq

)
+ 1

2
(
cσ2σiσlc̄

)
⊗
(
q̄σ2σjσlq

)
, (7.70)

and symmetrizing and using the Pauli matrices properties, we get

−
(
cσ2σ(ic̄

)
⊗
(
qσ2σj)q̄

)
+ 1

2δ
ij
(
cσ2c̄⊗ qσ2q̄

)
+ 1

2δ
ij
(
cσ2σmc̄

)
⊗
(
qσ2σmq̄

)
. (7.71)

The term proportional to δij in Eq. (7.59c) after a Fierz transformation cancels the
singlet terms in Eq. (7.71). We conclude that

|1cq, 1c̄q̄〉J=2 = |1cc̄, 1qq̄〉J=2. (7.72)

We summarize these results in Table 7.2.

JPC cq c̄q̄ cc̄ qq̄ Assig. Decays
0++ |0, 0〉 (|0, 0〉+ √3|1, 1〉0)/2 X0(∼ 3770) ηc, J/ψ + light
0++ |1, 1〉0 (√3|0, 0〉 − |1, 1〉0)/2 X ′0(∼ 4000) ηc, J/ψ + light
1++ (|1, 0〉+ |0, 1〉)/√2 |1, 1〉1 X(3872) J/ψ + ρ/ω, DD∗

1+− (|1, 0〉 − |0, 1〉)/√2 (|1, 0〉 − |0, 1〉)/√2 Zc(3900) J/ψ π, hc π, ηc ρ

1+− |1, 1〉1 (|1, 0〉+ |0, 1〉)/√2 Z ′c(4020) J/ψ π, hc π, ηc ρ

2++ |1, 1〉2 |1, 1〉2 X2(∼ 4000) J/ψ + light
Table 7.2. We list the states obtained together with possible assignments and decay modes.

We refer here to the neutral components. A G = +1 parity may be assigned to the Z,Z ′
particles. Searches by BABAR and Belle still exclude a I = 1 assignment for the X(3872),
however a mixed I = 1 and I = 0 seems possible as well as very broad charged partners
of X(3872).

7.4 Spectrum of L = 0 states
We assume that the spin-spin interactions within the diquark shells are dominant
with respect to quark-antiquark interactions. Then the Hamiltonian would be

H ≈ 2κ(Sq · Sc + Sq̄ · Sc̄). (7.73)
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Consider for example

4Sq · Sc|1cq, 0c̄q̄〉 = σ(q) · σ(c)|1cq, 0c̄q̄〉 := 1
2(σj)Tσ2σiσj ⊗ σ2, (7.74)

where summation over j is understood. The matrix (σj)T works on c whereas σj on
q. Considering that

1
2(σj)Tσ2σiσj ⊗ σ2 = −1

2(σ2σjσiσj)⊗ σ2 ≡ 1
2σ

2σi ⊗ σ2 = |1cq, 0c̄q̄〉, (7.75)

where we have used iεijkσjσk = iεijkiεjk`σ` = −2σi. Considering also the antidiquark
contribution one readily finds

4Sq̄ · Sc̄|1cq, 0c̄q̄〉 = −3|1cq, 0c̄q̄〉, (7.76)

thus
4(Sq · Sc + Sq̄ · Sc̄)|1cq, 0c̄q̄〉 = −2|1cq, 0c̄q̄〉 (7.77)

and
H|1cq, 0c̄q̄〉 = −κ|1cq, 0c̄q̄〉. (7.78)

Similarly:

H|0cq, 1c̄q̄〉 =− κ|0cq, 1c̄q̄〉; (7.79a)
H|1cq, 1c̄q̄〉J=1 =κ|1cq, 1c̄q̄〉J=1. (7.79b)

We can also determine

H|0cq, 0c̄q̄〉 = −3κ|0cq, 0c̄q̄〉; (7.80a)
H|1cq, 1c̄q̄〉J=0 = κ|1cq, 1c̄q̄〉J=0. (7.80b)

The Hamiltonian (7.73) is diagonal in the diquark-antidiquark basis formed by
the 1+− states of Table 7.2:

(H)1+− =
(
−κ 0
0 κ

)
, (7.81)

|1〉 = 1/
√

2(|1, 0〉 − |0, 1〉), |2〉 = |1, 1〉J=1. This requires |1〉 to be lighter than |2〉.
Similarly:

(H)1++ = −κ; (7.82a)
(H)2++ = κ, (7.82b)

so that we conclude that X(3872) and Z(3900) are degenerate in first approximation
their masses being twice the diquark mass plus the same spin-spin interaction
correction

M(X,Z) = 2m[cq] − κ. (7.83)

The Z ′ (and the hypothetical tensor state) is instead heavier by a gap of 2κ:

M(Z ′) = 2m[cq] + κ. (7.84)
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As for the scalar case, from (7.80a,7.80b) we have

(H)0++ = −3κ; (7.85a)
(H)0++′ = κ, (7.85b)

showing what was anticipated in Table 7.2, i.e. that M(X ′0) ∼M(X2).
Considering an average mass value between X(3872) and Z(3900) we can solve

finding m[cq] ' 1976 MeV and κ ' 67 MeV, indicating that M(0++) ' 3750 MeV
and M(X2) ∼M(X ′0) ' 4000 MeV – for a pictorial representation see Figure 7.1.

In this scheme we propose that the newly discovered Z(4430) is the first radial
excitation of the Z(3900) as M(Z(4430))−M(Z(3900)) 'M(ψ(2S))−M(J/ψ ).

1
+-

ZH3900L

1
+-

ZH4025L

XH3872L

1
++

2
++

0
++

0
++

Figure 7.1. The mass pattern dictated by the color-spin Hamiltonian and the construction
of states is shown and level degeneracies are highlighted.

7.5 Diquark-antidiquark States with L = 1
Tetraquarks with JPC = 1−− can be obtained with odd values of the angular
momentum; here we set L = 1 and select charge-conjugation odd states.

In the diquark-antidiquark basis of cq c̄q̄ we have:

Y1 = |0, 0〉; C = (−1)L=1 (7.86a)

Y2 = |1, 0〉+ |0, 1〉√
2

; C = (−1)L=1 (7.86b)

Y3 = |1, 1〉S=0; C = (−1)L(−1)2s+S = (−1)1(−1)2·1+0 (7.86c)
Y4 = |1, 1〉S=2; C = (−1)1(−1)2·1+2 (7.86d)

Aside from orbital angular momentum considerations we can still make use of
Table 7.2 to read the cc̄ (conserved) spin; see Table 7.3. Observe that the spin
structure of Y2 and X in (7.46) is exactly the same. The mass difference between Y2
and X might entirely be attributed to the orbital excitation of Y2. The fact that Y2
and X have the same spin structure also suggests that radiative transitions with
∆L = 1 and ∆Scc̄ = 0 might occur:

Y2 → γX, (7.87)
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State P (Scc̄ = 1) : P (Scc̄ = 0) Assignment Radiative Decay
Y1 3:1 Y (4008) γ +X0

Y2 1:0 Y (4260) γ +X

Y3 1:3 Y (4290)/Y (4220) γ +X ′0
Y4 1:0 Y (4630) γ +X2

Table 7.3. The relative probability of having spin 1 versus spin 0 in the cc̄ pair as read by
Table 7.2. Observe that Y3 is predicted to decay preferably in hc(1P ) where Scc̄ = 0.
The states Y (4290) and Y (4220) correspond either to the broad structure in the hc
channel as described by Yuan [91, 92] or the narrow one. In this respects the mass
ordering can be reversed Y3 becoming lighter than Y2 if the Y (4220) assignment is taken.

as confirmed by the conspicuous radiative decay mode [98]

Y (4260)→ X(3872) + γ. (7.88)

Other transitions are reported in Table 7.3.
The experimentally well established Y (4360) and Y (4660) are interpreted as

radial excitations of Y1 = Y (4008) (see Table 7.3) and Y2 = Y (4260). We may note
correspondences as M(χbJ (2P ))−M(χbJ(1P )) 'M(Y (4360))−M(Y ((4008))) and
M(χcJ(2P ))−M(χcJ(1P )) 'M(Y (4660))−M(Y ((4260))). For the identification
of the Y3 state as the structures seen in e+e− → hcππ, χc0ω, see Sec. 7.6.1.

As for the Y (4630), decaying predominantly into ΛcΛ̄c, we recall that there is
also the possibility of its assignment to a tetraquark degenerate with Y (4660) [145].

7.6 Spectrum of L = 1 states
We use the same Hamiltonian form (7.73) with the addition of a spin-orbit and a
purely orbital term – here the chromomagnetic coupling κ′ is taken to be different
from κ used in (7.73). We have then:

H ≈ 2κ′(Sq · Sc + Sq̄ · Sc̄)− 2AS ·L+ 1
2BL

2, (7.89)

in such a way that energy increases for increasing L2 and S2, provided κ′, A,B are
positive; indeed 2L ·S = 2−L(L+ 1)− S(S + 1) and the masses of Y states will be
given by

M = M ′0+κ′(s(s+1)+s̄(s̄+1)−3)+A(L(L+1)+S(S+1)−2)+BL(L+ 1)
2 , (7.90)

where S, S̄ are the total spins of diquark and antidiquark. The latter equation can
be simplified to

M = M0 + (A+B/2)L(L+ 1) +AS(S + 1) + κ′(s(s+ 1) + s̄(s̄+ 1)) (7.91)

with
M0 = M ′0 − 2A− 3κ′. (7.92)
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From Eq. (7.91), the mass of the state Y1 in (7.86a) is given by

M1 = M0 + 2(A+B/2) (7.93)

for s = s̄ = 0, therefore implying S = 0, and L = 1. The Y2 state in (7.86b) has
s = 1 or s̄ = 1, thus S = 1 – considering that M0 contains −3κ′ we can determine
the mass gap between Y2 and Y1:

M2 −M1 = 2κ′ + 2A, (7.94)

requiring M2 > M1. The Y3 state has both spins s = s̄ = 1 but S = 0 so that

M3 −M2 = 2κ′ − 2A, (7.95)

which can take either sign depending on κ′−A difference; κ′ and A have in principle
similar size. Finally Y4 has both spins s = s̄ = 1 and S = 2 so that

M4 −M3 = 6A (7.96)

requiring M4 > M3. So the mass ordering is M1,M2,M3,M4 or M1,M3,M2,M4
from lighter to heavier. Using the assignments in Table 7.3 (choosing Y3 = Y (4290)),
from (7.94,7.95) we obtain:

4008 + 2κ′ + 2A = 4260; (7.97a)
4260 + 2κ′ − 2A = 4290, (7.97b)

in units of MeV, giving
κ′ = 71; A = 56. (7.98)

If we had chosen Y3 = Y (4220) we would have obtained

κ′ = 53; A = 73. (7.99)

The values found for κ′ have to be compared with the value of κ = 67 MeV obtained
studying the spectrum of L = 0 states. Both choices are reasonably consistent
with it also in consideration of the simplicity of the model described. With respect
to the results found in the original paper [264], we can conclude that diquarks in
tetraquarks are expected to behave in a different way from diquarks in baryons: in
the latter case the coupling κ is found to be rather smaller κ ' 22 MeV.

As a crosscheck, observe that from (7.96) we get a reasonable agreement with
the assigned mass of Y4:

M(Y4 = Y (4630)) = 4290(4220) + 6× 56(73) = 4626(4658). (7.100)

In formula (7.91), the orbital contribution is 2A+B. Considering that X in (7.46)
and Y2 have the same spin structure, we can conclude that the difference in mass
Y (4260) −X(3872) = 2A + B, giving a value of B in good agreement with what
discussed in [287].
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7.6.1 The Y (4220) state [6]

In [6], we analyzed the BES III data of e+e− → hcππ [71] and → χc0ω [93] and
discussed if the structures seen in these two channels are compatible with each other
and with the Y3 assignment of the tetraquark model (see Sec. 7.6).

In the hcπ+π− invariant mass distribution, we add to the BES dataset the
experimental point σhcπ+π− (4.17 GeV) = (15.6 ± 4.2) pb2 by CLEO-c [153], with
statistical and systematic errors added in quadrature. For the BES data, we take
into account only statistical errors, since the systematic ones are common to all
points and are not expected to modify the shape of the distribution.

We fit the hcπ+π− and χc0ω data with the sum of a Breit-Wigner corrected for
the energy dependence given by PCAC, and a pure phase-space background. To
test our hypothesis, the mass and the width of the resonance are constrained to be
the same in both channels. Thus, the fitting functions are:

σhcπ+π−(m) =
∣∣∣∣∣A√PS3(m) +Beiφ1

√
PS′3(m)
PS′3(m0) BW(m,m0,Γ)

∣∣∣∣∣
2

, (7.101)

σχc0ω(m) =
∣∣∣∣∣C + Deiφ2√

PS2(m0)
BW(m,m0,Γ)

∣∣∣∣∣
2

PS2(m), (7.102)

where m0 and Γ are the mass and width of the resonance, m is the invariant
mass of the system, BW(m,m0,Γ) =

(
m2 −m2

0 + im0Γ
)−1, B =

√
12πBhcπ+π−ΓeeΓ,

D =
√

12πBχc0ωΓeeΓ, PSn is the n-body phase space, and PS′3 is the PCAC-corrected
phase space [182, 288], namely:

PS′3 ∝
∫
dΦ3

(
E+p− + E−p+

)2
, (7.103)

where E± (p±) is the energy (momentum) of π± in the CM frame.
With this model, we get a mass of 4213± 12 MeV and a width of 52± 24 MeV.

The χ2/DOF = 17.38/15, corresponding to a Prob(χ2) = 30% (see Figure 7.2). The
fit gives two distinct solutions for the Breit-Wigner amplitudes, corresponding to a
constructive and destructive interference in the hcπ+π− channel, respectively.3 The
significance with respect to a pure background hypothesis is > 10σ.

By comparing the Breit-Wigner amplitudes in the two channels, we get the ratio:

B (Y (4220)→ χc0ω)
B (Y (4220)→ hcπ+π−) = 8.3± 4.8± 1.9 (Sol. A) (7.104a)

= 0.48± 0.20± 0.11 (Sol. B) (7.104b)

where the second error is the quadrature sum of the systematic uncertainties of
15% for σχc0ω [93] and 18% for σhcπ+π− [71]. In this way, we consider the two BES
datasets to have statistically independent systematics, which leads to a conservative
estimate of the error.

2σf (m) indicates the cross section σ(e+e− → f) at
√
s = m.

3This ambiguity does not affect the χc0ω channel, being the background compatible with zero.
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Figure 7.2. Combined fits of χc0ω and hcπ
+π− data [6]. The purple disk in the right

panel is the CLEO-c data point at
√
s = 4.17 GeV. The red (smaller) and the green

(larger) dashed curves are the Breit-Wigner curves for solution A and B, respectively.
The dotted gray curve is background.

To further check the predictions within the tetraquark model, we compute
the ratio in Eq. (7.104). The same analysis of the hcπ+π− final state showed
a resonance, dubbed Z ′c(4020), in the e+e− → Z ′c(4020)±π∓ → hcπ

+π− pro-
cess [71]. From the cross sections in Ref. [71], we can see that the fractions
RZ = σ

(
e+e− → Z ′±c π

∓ → hcπ
+π−

)
/σ
(
e+e− → hcπ

+π−
)
at
√
s = 4.23, 4.26 and

4.36 GeV do not vary with
√
s. The first point is very close to the Y (4220) peak,

and the other ones are slightly above. This would suggest that the same fraction
occurs in the resonant events RY Z = σ

(
Y → Z ′±c π

∓ → hcπ
+π−

)
/σ
(
Y → hcπ

+π−
)
.

We therefore can preliminary assume RY Z = RZ(
√
s = 4.23 GeV) = (17 ± 7)%.

However, we remark that we have no information on RZ in the left sideband, and a
proper multidimensional analysis is due to better establish RY Z . In the following,
we will show our results as a function of RY Z . On the other hand, we will not
include an intermediate Zc(3900)+π− channel, since the signal Zc(3900)+ → hcπ

+

is not significant. We also estimate the contribution of a ππ resonance, in particular
Y → hcσ → hcπ

+π−, whose presence will be verified by a detailed Dalitz analysis
when new data will by available by BES III.

We parametrize the matrix elements by enforcing Lorentz invariance and discrete
symmetries,

〈χc0(p)ω(η, q)|Y (λ, P )〉 = gχ η · λ, (7.105a)〈
Z ′c(η, q)π(p)|Y (λ, P )

〉
= gZ η · λ

P · p
fπMY

, (7.105b)

〈hc(η, q)σ(p)|Y (λ, P )〉 = gh εµνρση
µλν

P ρqσ

P · q
, (7.105c)

〈π(q)π(p)|σ(P )〉 = P 2

2fπ
, (7.105d)

where gZ , gh and gχ are effective strong couplings with dimension of a mass. Applying
the reduction formula to the (off-shell) interpolating field of the pion, one obtains

〈β π |α〉 → − 1
fπ
〈β|∂ ·A(0)|α〉 → −p

µ
π

fπ
〈β|Aµ(0)|α〉 (7.106)
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in the chiral limit. In our case, the latter matrix element is a vector, being α a
vector and β an axial-vector. Thus it is either a polarization or a momentum of α,
β. An S-wave transition is obtained in the latter case, Eq. (7.105b). Similarly, the
emission of two pions implies a factor P 2 in the amplitude σ → ππ, Eq. (7.105d).

Hence, the decay widths in narrow width approximation [281] are:

Γ (Y (4220)→ χc0ω) = 1
3
p∗(MY ,mχ,mω)

8πM2
Y

g2
χ

(
3 + p∗2(MY ,mχ,mω)

m2
ω

)
, (7.107a)

Γ
(
Y (4220)→ Z ′±c π

∓ → hcπ
+π−

)
= 2× 1

3
g2
Z

8πM2
Y

∫ (MY −mπ)2

(mπ+mh)2
ds p∗(MY ,

√
s,mπ)

×
(

3 + p∗2(MY ,
√
s,mπ)

s

)
E2
π(
√
s)

f2
π

1
π

mZΓZ
(s−m2

Z)2 +m2
ZΓ2

Z

× p∗3(
√
s,mh,mπ)

p∗3(mZ ,mh,mπ)
m3
Z

s3/2 B
(
Z ′c → hc π

)
, (7.107b)

Γ
(
Y (4220)→ hcσ → hcπ

+π−
)

= 1
3

g2
h

8πM2
Y

∫ (MY −mh)2

4m2
π

ds p∗(MY ,
√
s,mh)

× 2p∗2(MY ,
√
s,mh)

m2
h + p∗2(MY ,

√
s,mh)

× 1
π

mσΓσ
(s−m2

σ)2 +m2
σΓ2

σ

× p∗(
√
s,mπ,mπ)

p∗(mσ,mπ,mπ)
s

m2
σ

B
(
σ → π+π−

)
, (7.107c)

where p∗(m1,m2,m3) is the decay 3-momentum in them1 rest frame. In Eq. (7.107b),
the factor of 2 takes into account the incoherent sum over the two charged resonances,
being the interference numerically negligible.

For the sake of simplicity, since we are not able to resolve the details of the
lineshape within our large uncertainties, we considered the σ resonance to be
described by a Breit-Wigner distribution with mass and widthMσ = (475± 75) MeV,
Γσ = (550± 150) MeV. To obtain the branching ratio B (Z ′c → hc π), we assume the
total width of Z ′c to be saturated by the observed decay modes into hcπ [71] and
D∗D̄∗ [72]. We use the BES measurements of production cross sections

σ(e+e− → Z ′±c π
∓ → hcπ

+π−) = (7.4± 1.7± 2.1± 1.2) pb, (7.108)
σ(e+e− → (D∗D̄∗)±π∓) = (137± 9± 15) pb, (7.109)

and of the cross sections ratio

R = σ(e+e− → Z ′±c π
∓ → (D∗D̄∗)±π∓)

σ(e+e− → (D∗D̄∗)±π∓)
= 0.65± 0.09± 0.06, (7.110)

to estimate the branching ratio

B(Z ′c → hcπ) = (8.0± 3.6)%. (7.111)
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Figure 7.3. Measurements and predictions for Γ (Y → χc0ω) /Γ (Y → hcπ
+π−) as a func-

tion of RY Z = σ (Y → Z ′±c π∓ → hcπ
+π−) /σ (Y → hcπ

+π−). The solid line is the
prediction as a function of RY Z , the colored band the correspondent error. The red
and green points are the experimental ratios in Eq. (7.104), plotted at the measured
RY Z = (17± 7)%.

The branching fraction B(σ → π+π−) can be assumed to be ' 2
3 via isospin symmetry.

The effective strong couplings gχ, gh, gZ in Eq. (7.107) are unknown and should be
fitted from data.

To obtain a prediction within the diquark-antidiquark model, we assume that
a tetraquark couples universally to any charmonia, i.e. that the strong effective
couplings are equal to a universal constant times a factor depending on heavy quark
spin content [8, 286, 289].

In the |scc̄, sqq̄〉 basis, we have:

|Y (4220)〉 =
√

3
2 |0, 0〉 −

1
2 |1, 1〉 ,

|Z ′c〉 = 1√
2

(|1, 0〉+ |0, 1〉) (7.112)

and we recall

|hc〉 = |scc̄ = 0〉 , |χcJ〉 = |scc̄ = 1〉 . (7.113)

Hence, we get gh : gχ = 〈Y |hc〉 : 〈Y |χcJ〉 =
√

3 : 1. The estimate of the ratio gZ : gχ
deserves a separate comment. The decay Y (4220)→ Z ′cπ is an hadronic transition
between tetraquark states. With the additional assumption that the dynamics of
tetraquark transitions is the same as that of tetraquark-charmonium decays, one
could get gZ : gχ = 〈Y |Z ′c〉 : 〈Y |χcJ〉 =

√
3−1

2
√

2 : 1
2 ' 0.52. This result is potentially

affected by large corrections. Comparisons with new tetraquark candidates decays
will allow us to probe the validity of this assumption, and evaluate the errors properly.
That said, an order-of-magnitude estimate is given by the ratio:

Γ (Y (4220)→ χc0ω)
Γ(Y (4220)→ Z ′±c π∓ → hcπ+π−)

= 13.4± 3.6, (7.114a)
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Figure 7.4. (a) The spectrum of ‘type I’ tetraquark model [264]. (b) Fit to BES III data
in the Y (4260) → J/ψ π+π− channel. The additional lighter resonance is compatible
with data

hence

Γ (Y (4220)→ χc0ω)
Γ(Y (4220)→ hcπ+π−) = (13.4± 3.6)×RY Z = 2.3± 1.2. (7.114b)

In Figure 7.3 we show this result as a function of RY Z . For the quoted value of RY Z ,
the ratio is compatible with the solution (7.104a) of the fit, even better if RY Z will
be discovered to be larger. Similarly, we predict

Γ
(
Y (4220)→ Z ′±c π

∓ → hcπ
+π−

)
Γ (Y (4220)→ hcσ → hcπ+π−) = 4.8± 3.5, (7.114c)

which can be verified by a detailed Dalitz analysis when more data will be available.
The errors in Eq. (7.114) are due to the experimental uncertainty on masses, widths
and branching fractions of the intermediate resonances. We stress that we are not
considering the error on the couplings. The results are summarized in Figure 7.3,
and show that the structures seen by BES III in hcπ+π− and χc0ω can be explained
within the diquark-antidiquark model.

7.7 A brief note on the Zc in the type-I tetraquark
model [7]

The original ‘type I’ model made no assumption on the interaction within and
outside the diquarks [264]. The hamiltonian was generically

H ≈
∑
i 6=j

κij(Si · Sj), (7.115)

depending on four different chromomagnetic couplings κcq, κqq̄, κcq̄, κcc̄. These have
been extracted from the known spectrum of charmed baryons, light mesons, charmed
mesons, and charmonia, respectively. This leads to nondiagonal terms in the
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hamiltonian, whence the two Z states mix and are not anymore equal mixtures of
scc̄ = 0, 1; similarly the two scalar X0. The quantum number of the predicted states
is obviously the same, but the hierarchy is changed (Figure 7.4a). In these respects,
soon after the discovery of the Zc(3900), we looked for the existence of a lighter
Z ′ state [7], which seemed to be compatible with data (Figure 7.4b). In order to
quantify the significance of the second structure included in the fits, we have adopted
the statistical approach described in detail in Ref. [1]: from the fit to the data
performed assuming only one exotic structure, we have simulated a large number
of mock experiments, correctly accounting for statistical fluctuations. On each of
them we have performed three fits, one assuming only one exotic resonance, the
other one assuming a second resonance with a mass smaller than the dominant one
(the “tetraquark” assumption), and the last one assuming a second resonance with a
mass larger than the dominant one (the “molecular” assumption). For each mock
experiment we have recorded the χ2 of each fit, called χ2

0, χ2
tetra and χ2

mol, respectively.
From the distribution of ∆χ2

tetra = χ2
tetra − χ2

0, we can estimate the probability of a
second structure to appear before the main one in absence of a real signal as the
fraction of mock experiments where ∆χ2

tetra < ∆χ2
tetra;data = 41− 50 = −9. In this

way we have estimated that there is only a 12% probability of the second structure as
fitted in Figure 7.4b to be a statistical fluctuation. On the other hand, no structure
appears close to the D∗D∗ threshold, discouraging a molecular interpretation for
the state. This was superseded by the discovery of a heavier Z ′c(4020) close to the
D∗D∗ threshold. However, it is still unclear why no hint of Z ′c(4020) appears in the
J/ψ π invariant mass.

7.8 The bb̄ sector
The two charged Zb states look like the bottomonium counterparts of the two Zc
resonances. Their tetraquark interpretation was proposed by Ali et al. [289, 290].
The two 1+− states have in general diquark content

|Zb〉 = α|1qq̄, 0bb̄〉 − β|0qq̄, 1bb̄〉√
2

, (7.116a)

|Z ′b〉 = β|1qq̄, 0bb̄〉+ α|0qq̄, 1bb̄〉√
2

, (7.116b)

with |α|2 + |β|2 = 1. Assuming heavy quark spin symmetry, the effective couplings
gZ(′) (fZ(′)) of Z(′)

b → hb(nP )π (Z(′)
b → Υ(nS)π) can be evaluated:

gZ = g(Υ(5S)→ Zbπ)g(Zb → hbπ) ∝ −αβ〈hb|1qq̄, 0bb̄〉〈0qq̄, 1bb̄|Υ〉 (7.117a)
gZ′ = g(Υ(5S)→ Z ′bπ)g(Z ′b → hbπ) ∝ αβ〈hb|1qq̄, 0bb̄〉〈0qq̄, 1bb̄|Υ〉 (7.117b)
fZ = f(Υ(5S)→ Zbπ)f(Zb → Υ(nS)π) ∝ |β|2〈Υ(nS)|0qq̄, 1bb̄〉〈0qq̄, 1bb̄|Υ〉

(7.117c)
fZ′ = f(Υ(5S)→ Z ′bπ)f(Z ′b → Υ(nS)π) ∝ |α|2〈Υ(nS)|0qq̄, 1bb̄〉〈0qq̄, 1bb̄|Υ〉,

(7.117d)

which implies gZ = −gZ′ and fZ = |βα |
2fZ′ . The Dalitz plot analyses reported in

Table 3.4 [107] show a 180° between the Zb → hb(nP )π and the Z ′b → hb(nP )π
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amplitudes. Moreover, the ratio of the absolute values of the Z ′b → Υ(nS)π and
Z ′b → Υ(nS)π amplitudes favors |α| = |β|. Thus one can fix α = β = 1, so that
the Z(′)

b have the same diquark structure as the Z(′)
c . The mass splitting and the

correspondent chromomagnetic couplings are expected to scale as the inverse of the
quark mass, i.e.

M(Z ′b)−M(Zb)
M(Z ′c)−M(Zc)

= 2κb
2κc

= 0.38 (7.118)

which agrees with
Mc

Mb
= 1.27

4.18 = 0.30 (7.119)

The Zb tetraquark interpretation calls for a Xb state with JPC = 1++ and a
mass M(Xb) ∼ M(Zb) ∼ 10.6 GeV. This state has been searched both in the
isospin conserving (Xb → Υ(1S)ω by Belle [291]) and isospin violating channels
(Xb → Υ(1S) ρ(ππ) by ATLAS [292]), without success. In Refs. [293, 294], the
existence of a L = 1 vector tetraquark Yb(10890) has been discussed. Hints of a narrow
state close to the Υ(5S) appear in the σ(e+e− → BB̄) analysis by BABAR [295],
and in the σ(e+e− → Υ(nS)ππ) analysis by Belle [296], but not in the recent
σ(e+e− → BB̄) analysis by Belle [297], leaving the existence of such a state an
unanswered question.

7.9 Multi-diquark states
As we already stated, the diquark model was originally proposed by Jaffe and
Wilczek to explain pentaquark baryons [268]. The observation by LHCb of two
baryonic resonances decaying into J/ψ p [101] immediately calls for a diquark-diquark-
antiquark description, i.e. the c̄ antiquark, one heavy-light diquark, [cq], and one
light-light diquark, [q1q2] [298]. We recall the preferred parameters for the two states
(for errors and details see Sec. 3.4):

Pc(4380) : M = 4380 MeV Γ = 205 MeV JP = 3/2− (7.120)
Pc(4450) : M = 4449.8 MeV Γ = 39 MeV JP = 5/2+ (7.121)

The consequent spectroscopy is expected to be very rich, not dissimilar from the
baryon spectrum, with the 56 positive parity baryons followed by the 70, L = 1
multiplet of negative parity baryons. Although a precise description of pentaquark
spectroscopy has to wait for more resonances to be found, the two observed states
fit the expected scheme and corroborate the diquark role in the exotic landscape.

It is worth noticing that, while ground-state baryons carry positive parity, ground-
state pentaquarks have negative parity because of the constituent antiquark. The
lighter observed state has indeed negative parity, but the∼ 70 MeV difference between
the two masses does not go well with the energy associated to orbital excitation.
One orbital excitation in mesons and baryons carries an energy difference which is
typically of order 300 MeV, (e.g. Λ(1405)− Λ(1116) ∼ 290 MeV). Mass formulae for
the orbital excitation in XY Z mesons are discussed in Sec. 7.6 and the associated
energy difference is estimated to be ∆M(L = 0→ 1) ∼ 280 MeV. However, the mass
difference between light-light diquarks with spin s = 1, 0 [299], estimated from charm
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b

[ud]s=0

c →

K−

c̄

u →

(A)

b

[ud]s=0

c →

→ u

[ud]s=0,1

K−

c̄

(B)

Figure 7.5. (A): The [ud], good diquark in the Λ0
b is transmitted to the good pentaquark

(Pc(4380)-like). (B) The u quark from the vacuum participates in the formation of the
light-light diquark: spin zero and one are both permitted. Mechanism (B) may also
produce a flavor-symmetric [uu]s=1 diquark (Pc(4450)-like).

and beauty baryon spectra, is of order 200 MeV, e.g. Σc(2455)−Λc(2286) ' 170 MeV,
Σb(5811)− Λb(5620) ' 190 MeV.

If we assume the compositions

Pc(4380) = {c̄ [cq]s=1[q1q2]s=1, L = 0} (7.122a)
Pc(4450) = {c̄ [cq]s=1[q1q2]s=0, L = 1} (7.122b)

the orbital gap is reduced to about 100 MeV, consistent with the observation.
Following Jaffe [285], we call “good” (“bad”) diquark the scalar (vector) light-light
diquark, and extend these names to the pentaquarks containing good and bad
diquarks. The bad diquarks, while conspicuously absent in light meson spectroscopy,
are well established in baryons as indicated by the Σ− Λ mass difference [299] and
confirmed by Σc,b − Λc,b mass differences [264].

Given the composition of the Λ0
b = {b [ud]s=0, L = 0}, one might ask if the light-

light vector diquark in Eq. (7.122a) can actually be produced. In fact two possible
mechanisms lead to the pentaquark production: In the first one (Figure 7.5, left
panel) the b-quark spin is shared between the kaon and the c̄ and [cu] components.
Barring angular momentum transfer due to gluon exchanges between the light
diquark and light quarks from the vacuum, the final [ud] diquarks has to have spin
zero. In the second mechanism, however (Figure 7.5, right panel), the [ud] diquark
is formed from the original d quark and the u quark from the vacuum. Angular
momentum is shared among all final components and the [ud] diquark may well have
spin one. Concerning heavy quark spin conservation, one can also show that both
pentaquarks states have heavy quark spin components with either scc̄ = 0, 1, hence
the decay into J/ψ is allowed. The extension to SU(3)f is also discussed in Ref. [298].
The generalization to dibaryons (6-quark states) is discussed in Ref. [300]. For other
works on the pentaquark interpretation of the Pc states, see Refs. [301–303].
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7.10 Amplitudes in the compact tetraquark model

Although one can use the phenomenological constituent quark model to predict the
mass spectrum of the tetraquark states, our lack of knowledge on the actual internal
structure of such particles is still almost total. The exact solution of this problem
would require to solve a four-body problem, having at least a hint on the nature
of the strong potential binding the four constituents. This implies that, until now,
we have no methods to compute scattering amplitudes for these states from first
principles.

The typical approach is to gain as much information as possible from available
experimental data. In particular, one usually takes into account the kinematics
of a decay parameterizing the matrix elements in terms of an unknown effective
strong coupling times the most general Lorentz-invariant combination of polarization
and momenta with the right behavior under parity and charge conjugation. The
effective strong coupling is typically fitted from experimental data when available or,
otherwise, it can be estimated by dimensional analysis and under the assumption
for it to be of “natural size”. In the latter case one can clearly just give an order of
magnitude estimate of the amplitude considered.

To be more definite let us make a classic example: the decay X(3872)→ D0D̄∗0.
This is a 1+ → 0−1− strong decay and its matrix element can be parametrized in
the following way:

〈D0(q)D̄∗0(k, λ)|X(P, ε)〉 = gXDD∗ε · λ, (7.123)

where gXDD∗ is the effective coupling and ε and λ are the polarization vectors of
the X(3872) and of the D̄∗0 respectively. This decay already conserves total angular
momentum and parity when happening in S-wave. The next parity-conserving
contribution to the matrix element would be the D-wave one, which however must
be proportional to a momentum squared and hence is suppressed by the small
Q-value for the reaction. Therefore, we want a Lorentz-invariant combination of the
available quantities with no momentum dependence. Such combination is clearly
just the product of the polarization. The effective coupling can be fitted from the
known experimental width for the process considered, obtaining [7] gXDD∗ ' 2.5
GeV.

Very recently, an interesting paper by Brodsky et al. [304] proposed a model
for the internal dynamics of a tetraquark to compute the effective coupling of the
exotic states to quarkonia (QQ̄). The idea is that after the diquark-antidiquark
pair is created, it tends to convert all its kinetic energy into potential energy of the
color flux tube until it comes to rest at a relative distance r̄. Such distance must
satisfy V (r̄) = M − 2mQq, where M is the mass of the exotic particle, mQq is the
constituent diquark mass and V (r) is the spinless Cornell potential. This essentially
means that the mass difference between the exotic meson and its diquark-antidiquark
constituents is given by the potential energy at r = r̄. Once r̄ is computed, one
can evaluate the quarkonium component of the diquark-antidiquark wave function,
i.e. the overlap 〈ψh|δδ̄〉, ψ being a generic quarkonium, h a light hadron and δδ̄ the
diquark-antidiquark pair. The larger is this component at r̄ the more probable the
decay of the exotic state into that particular quarkonium – see Figure 7.6. In other
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Q Q̄

q q̄

quarkonium

light hadron
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Figure 7.6. Pictorial representation of the overlapping region between the diquark-
antidiquark pair and the quarkonium wave function. The larger this overlapping,
the more probable the decay.

words, the effective squared coupling can be taken to be proportional to
∣∣∣ψQQ̄(r̄)

∣∣∣2.
The extension to pentaquark decays is discussed in [301]. This might explain why
the Z(4430) prefer to decay into ψ(2S)π rather than J/ψ π, indeed∣∣∣∣∣ψψ(2S)(rZ)

ψJ/ψ (rZ)

∣∣∣∣∣
2

∼ 75.6, Γ (Z(4430)→ ψ(2S)π)
Γ (Z(4430)→ J/ψ π) ∼ 28 (7.124)

roughly compatible with the observation [90].
The same authors discuss the modification of the spectrum due to the nearby

thresholds in [305].

7.10.1 Constituent Counting Rules

According to the QCD constituent counting rules [306, 307], the cross sections and
form factors at large

√
s and fixed scattering angle θcm are expected to scale as a power

of s determined by the total number n of fundamental constituents (incoming plus
outgoing) appearing in the hard scattering. In particular, the invariant amplitude
M for such a process scales as [308]

M∝ 1
s
n
2−2 . (7.125)

In [308], the authors propose to look for the production of charged tetraquarks in
e+e− collisions at large

√
s. The power law the cross section scales with is sensitive

to the nature of the states. The electromagnetic form factor of a charged noncompact
(molecular) tetraquark state Z, with 4 fundamental constituents, is indeed

FZ(s)→ 1
s

1
2 (1+1+4+4)−2

= 1
s3 . (7.126)

However, if the Z contains diquarks that are so tightly bound that they act as fun-
damental units in high-energy scattering processes, then one expects FZ(s)→ 1/s1.

While the scaling rules strictly hold only for large s (presumably several GeV
above production threshold), their reach may be extended to lower energies by taking
the ratios of cross sections of processes that differ primarily through the number
of fundamental constituent components, thus eliminating systematic corrections
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common to both processes. As an example, the ratio

σ(e+e− → Z+(c̄cd̄u) + π−(ūd))
σ(e+e− → µ+µ−) = |FZc,π(s)|2 ∝ 1

sn−4 , (7.127)

scales as 1/s4 if Z acts as a two-quark, two-antiquark bound state, while if the
diquarks are particularly tightly bound and act as fundamental constituents in the
hard scattering, the scaling drops to 1/s2. Similarly, consider the ratio

σ(e+e− → Z+(c̄cd̄u) + π−(ūd))
σ(e+e− → Λc(cud)Λ̄c(c̄ ūd̄))

∝ 1
s0 , (7.128)

such that the same number of constituents, as well as the same heavy-quark (c̄c)
constituents, appear in both processes. In this case, not only the high-s scaling but
also corrections due to the heavy-quark mass cancel in the ratio. One expects the
absolute numerical value of the ratio to be substantially smaller if Z behaves as a
meson-meson molecule than a diquark-antidiquark state since the color forces in the
former are of the residual van der Waals type and hence much weaker.

7.10.2 Brief review on QCD sum rules

Another technique used to compute the mass, widths and coupling constants for
these exotic states is to employ the well-known QCD Sum Rules (QCDSR) [309].
As we will see shortly, their use is not limited to tetraquarks only but they can be
used also assuming different internal structures or even a mixture of them.

The method of QCDSR was introduced for the first time by Shifman, Vainshtein
and Zakharov [310] and used to study the properties of mesons. The main concept4
is based on the evaluation of a two-point correlation function given by

Π(q) ≡ i
∫
d4xeiq·x〈0|T

(
j(x)j†(0)

)
|0〉, (7.129)

where j(x) is a current with the quantum numbers of the hadron we want to study.
The important assumption is that this correlator can be evaluated both at the quark
level (the so-called OPE side) and at the hadron level (the so-called phenomenological
side). On the OPE side, as the name suggests, one expands the function as a series
of local operators:

Π(q2) =
∑
n

Cn(Q2)Ôn, (7.130)

with Q2 = −q2 and where the set {Ôn} includes all the local, gauge-invariant
operators that can be written in terms of the gluon and quark fields. As usual, the
information about the short-range (perturbative) part of the correlator is contained
in the Cn(Q2). The matrix elements for the operators Ôn are non-perturbative and
must be evaluated through Lattice QCD or using some phenomenological model.

4Here we just review very quickly the main concepts about QCDSR. For a deeper understanding
one should refer to a review on the topic [309].
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On the phenomenological side, instead, one writes the two-point function in terms
of a spectral density ρ(s):

Π(q2) = −
∫
ds

ρ(s)
(q2 − s+ iε) + · · · , (7.131)

with the dots representing subtraction terms. One usually assumes that, over a set of
hadrons with certain quantum numbers, the spectral density has a pole correspondent
to the mass of the ground-state hadron, while higher mass states are contained in a
smooth, continuous part:

ρ(s) = λ2δ(s−m2) + ρcont(s), (7.132)

λ being the coupling of the current to the lowest mass hadron, H, 〈0|j|H〉 = λ. The
main assumption is that in a certain range of Q2 (to be determined) the OPE and
phenomenological sides can be matched to extrapolate the values of the mass and
width of the hadrons of interest.

The choice of the current j(x) is only dictated by the (IG)JPC quantum numbers
of the hadron and by the assumptions on its internal structure. For example, the
currents for a pure JPC = 1++ tetraquark and molecule can be written as

j(4q)µ = εabcεdec
i√
2

((
qTa Cγ5cb

) (
q̄dγµCc̄

T
e

)
+
(
qTa Cγµcb

) (
q̄dγ5Cc̄

T
e

))
; (7.133a)

j(mol.)
µ = 1

2 ((q̄γ5c) (c̄γµq)− (q̄γµc) (c̄γ5q)) , (7.133b)

where C is the charge conjugation matrix and lower case latin letters are color indices.
As we mentioned before, one can also build a current for a pure cc̄ state or even take
a current for a mixture of these states through a certain mixing angle [311].

Lastly, one can estimated decay widths, i.e. coupling constants, through the
study of an analogous three-point function. To be definite, let us consider the decay
of the X(3872) into J/ψ plus a vector mesons V (say, ρ or ω). One can compute the
coupling constant, gXψV , for this process using the following correlator:

Πµνα(p, q) ≡
∫
d4xd4yeip·xeiq·yΠµνα(x, y), (7.134)

with

Πµνα(x, y) ≡ 〈0|T
(
jψµ (x)jVν (y)jX†α (0)

)
|0〉, (7.135)

and jψµ , jVν and jXα are the interpolating currents for the J/ψ , the vector meson and
the X(3872) respectively.

7.11 Probing the nature of the Zc via the ηc ρ decay [8]

In [8] we show how the Z(′)
c → ηcρ decay channel can be used as a tool to differentiate

between two of the possible internal structures of these charged resonances. We
evaluate indeed some ratios of branching ratios according to the tetraquark model (in
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Figure 7.7. Possible one-loop diagrams for the Zc (upper figures) and the Z ′c (lower figures)
decaying into ηc ρ. The charge conjugate diagrams are omitted.

both type-I and type-II versions), and according to the molecular-inspired NREFT
(see Sec. 5.1.2). As far as the decays of tetraquarks are concerned, we have discussed
in this chapter how one can resort to the heavy quark spin symmetry [286, 289]
to write the amplitudes for the decay into charmonia as a Clebsch-Gordan spin
factor times a transition matrix element [8]. This is valid up to corrections of order
ΛQCD/mc ' 25%, where mc ' 1.5 GeV is the constituent charm quark mass.

For the processes of interest, the most general Lorentz-invariant matrix elements
that behave properly under parity and charge conjugation are

〈J/ψ (η, p) π (q) |Z (λ, P )〉 = gZψπ λ · η, 〈ηc (p) ρ (ε, q) |Z (λ, P )〉 = gZηcρ λ · ε,
(7.136a)

〈hc (p, η) π (q) |Z (λ, P )〉 = gZhcπ
M2
Z

εµνρσλµηνPρqσ, (7.136b)

where λ, η and ε are polarization vectors, p, q and P are four-momenta and the gs
are effective couplings with dimension of a mass.

Kinematics only Dynamics included
type I type II type I type II

BR (Zc → ηc ρ)
BR (Zc → J/ψ π)

(
3.3+7.9
−1.4

)
× 102 0.41+0.96

−0.17

(
2.3+3.3
−1.4

)
× 102 0.27+0.40

−0.17

BR (Z ′c → ηc ρ)
BR (Z ′c → hcπ)

(
1.2+2.8
−0.5

)
× 102 6.6+56.8

−5.8

Table 7.4. Predicted ratios of branching fractions for the Z(′)
c states according to the

main tetraquark models [8]. The first and second columns are computed under the
assumptions (a) and (b) respectively, as explained in the text. Both type I and type II
models give the same predictions for the BR (Z ′c → ηc ρ) /BR (Z ′c → hcπ), since both hc
and ηc have spin scc̄ = 0. The errors are estimated via a toy MC simulation.
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Figure 7.8. Likelihood curves for BR(Zc → ηc ρ)/BR(Zc → J/ψ π) (left) and BR(Z ′c →
ηc ρ)/BR(Z ′c → hc π) (right). The red curve is the molecular prediction, whereas the
black one gives the predictions for the dynamical type I tetraquark model. The green
(yellow) bands represent the 68% (95%) confidence region.

Since we have no information on the couplings, some kind of ansatz is required
here as well. To test the degree of model dependence of our calculation we make two
different assumptions: (a) we neglect the spatial dependence of the wave functions
and hence assume that the couplings are universal, the differences between the
different matrix elements being only of kinematical nature; (b) we use the dynamical
model by Brodsky et al. [304] described in Sec. 7.10.

In Table 7.4 we report the predictions obtained within the tetraquark model.
On the other hand, in the molecular picture the Z(′)

c is interpreted as a D(∗)D̄∗

loosely bound state. The complete Lagrangian of interest for our study is fully
reported in [8], together with the choice of couplings for the interaction between
the different fields. The term describing the interaction between the Z(′)

c and the
charmed mesons is given by

L
Z

(′)
c

= z(′)

2
〈
Z(′)
µ,abH̄2bγ

µH̄1a
〉

+ h.c., (7.137)

where Z(′)
µ,ab and H̄ia are the HQET fields for the doubly heavy Zc’s states and for

the D mesons respectively. The z(′) are, instead, unknown effective couplings. In
principle, such an effective theory is a valid description of the decays of the Z(′)

c

regardless of its internal structure since the form of the interaction is only dictated
by symmetry considerations. The molecular nature of a state is imposed by forcing
it to couple to its own constituents only. Therefore, the decays into final states
different from the latter ones (charmonia in our case) can only happen via heavy
meson loops. The most relevant one-loop diagrams for the Z(′)

c → ηcρ process are
reported in Figure 7.7.

Moreover, since the molecular states are near threshold, the velocities of the
mesons inside the loops are given by vX '

√
|MZ − 2MD|/MD and are typically

small. This allows to perform a power counting procedure in order to estimate the
relevance of a certain diagram [193–196, 198]. Using this technique, one finds that
the omission of diagrams with more than one loop introduces a 15% relative error
on each single amplitude.
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Given the previous set up, the predictions obtained within the meson molecule
framework are:

BR(Zc → ηc ρ)
BR(Zc → J/ψ π) =

(
4.6+2.5
−1.7

)
× 10−2 ; BR(Z ′c → ηc ρ)

BR(Z ′c → hc π) =
(
1.0+0.6
−0.4

)
× 10−2 .

(7.138)

As an additional result one can also assume that the total width of the Z(′)
c is

saturated by the D(∗)D̄∗, ηc ρ, hc π, J/ψ π and ψ(2S)π final states and therefore fit
the couplings to the constituents from the experimental data. This gives

| z | =
(
1.26+0.14

−0.14

)
GeV−1/2 and

∣∣ z′ ∣∣ =
(
0.58+0.22

−0.19

)
GeV−1/2. (7.139)

Once these couplings are given one can also make the following predictions for the
comparison between the two charged resonances decaying into the same final states:

BR(Zc → hc π)
BR(Z ′c → hc π) = 0.34+0.21

−0.13 ; BR(Zc → J/ψ π)
BR(Z ′c → J/ψ π) = 0.35+0.49

−0.21 . (7.140)

We can now properly compare the predictions obtained within the two models
presented — see Fig. 7.8. As one can see, according to the dynamical type I
tetraquark model the Zc → ηc ρ decay should be enhanced with respect to the
already observed Zc → J/ψ π. The opposite is expected in the meson molecule
picture and the two predictions are separated by more than 2σ (95% C.L.). A similar
thing holds for the Z ′c → ηc ρ decay with respect to the Z ′c → hc π one. In the
last case, however, the predictions for the type I and type II models are the same
and hence the result is more model independent. The values obtained under the
assumption of no dynamics for the tetraquark turn out to be even more separated
from the molecular ones. For the Zc in the type II paradigm, instead, the two models
give predictions which are compatible within 2σ.

Lastly, the results reported in Eq. (7.140) show that in the molecular picture one
expects BR(Zc → hc π)/BR(Z ′c → hc π) < 0.88 and BR(Zc → J/ψ π)/BR(Z ′c →
J/ψ π) < 1.86 at 95% C.L.. This means that the two charged resonances should be
seen in both the hc π and J/ψ π final states with comparable rates. While this seems
to agree with the data in the first case, where a small hint of Zc is seen, it might be
at odds with the experiments for the J/ψ π channel, where no Z ′c has been observed
so far.

In conclusion, we showed how the analysis of the Z(′)
c → ηc ρ decay can be used

as a probe of the internal structure of these charged states and hence provide a
tool to discriminate between two of the most accepted models for the exotic XY Z
mesons. Experimental data on this channel could therefore shed some light on the
now long-standing question about the nature of the Zc and Z ′c resonances.
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Chapter 8

Production of exotic states at
hadron colliders

Now that we have introduced a large spectrum of possible interpretations for the
exotic XY Z states we can describe a couple of circumstances that might give some
hint on the real nature of such particles. In particular, we will focus on their
production mechanisms, showing how they can give some criteria to distinguish
between a compact tetraquark and a loosely bound molecule.

In Sec. 8.1 we focus on the potential appearance of exotic states carrying a double
flavor charge (e.g. cc or bb). We show how the production branching fractions and
decay widths of these particles are of the right order of magnitude to allow them to
be detected by the current experimental facilities. In particular, the spectrum of
such states contains doubly charged particle. If they were to be observed that would
be almost a full-proof of the existence of compact tetraquarks since, because of the
strong Coulomb repulsion, hadronic molecules would be forbidden.

In Sec. 8.2, instead, we describe a few models used to predict the production
rate of exotic particles, in particular the X(3872), in relativistic heavy ion collisions
as those performed at RHIC and LHC. As it will be clear soon, the production cross
sections for a molecular states and for a compact tetraquark are expected to be
largely different, thus providing a good way to discriminate between the two.

8.1 Possible production of doubly charmed states [9,
10]

The key for the discrimination between the molecular and the compact tetraquark
model might be the search for particles with even more exotic properties. It has
been pointed out [9, 312–314] that such exotic particles might appear in doubly
charmed/bottomed configurations. Because of their peculiar flavor quantum numbers
such particles would be clearly distinguished from ordinary mesons and would have a
very neat experimental signature. Moreover, as we will show briefly, their spectrum
allows the presence of doubly charged states that can only be interpreted in terms
of a compact four-quark particle, since the Coulomb repulsion between the two
(like-charged) mesons would prevent any possible molecular binding.
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In the following section we will focus on doubly charmed states [9]. Their
existence is predicted within the constituent diquark-antidiquark model [285]:

T ≡ [cc][q̄1q̄2], with q1, q2 = u, d, s. (8.1)

The one-gluon-exchange model suggests that the two quarks (antiquarks) combine in
the attractive 3̄c (3c) color representation. The total wave function for the diquark
(antidiquark) must be completely anti-symmetric because of Fermi statistics. For
the [cc] diquark we only have one possibility since the flavor wave function can only
be symmetric:

[cc] =
∣∣∣3̄c(A), JP = 1+(S)

〉
, (8.2)

where with (S) and (A) we indicate the symmetry and anti-symmetry of a configu-
ration. For the light antidiquark, instead, we can have

[q̄1q̄2]G =
∣∣∣3c(A),3f (A), JP = 0+(A)

〉
; (8.3a)

[q̄1q̄2]B =
∣∣∣3c(A),6f (S), JP = 1+(S)

〉
, (8.3b)

where with the subscript f we indicate the flavor SU(3) group. According to the
phenomenological color-spin Hamiltonian, the “good” (G) scalar state is expected
to be lighter than the “bad” (B) vectorial state, and hence should be more likely
produced.

Combining the 1+ diquark with both good and bad antidiquarks one obtains the
configurations reported in Table 8.1. As previously pointed out among those states
we can find the very peculiar doubly charged ones. Moreover, while the good states
can only be produced with JP = 1+, the bad ones can be found with J = 0, 1, 2,
although one expects the scalar configuration to be the lighter and, hence, more
probable one.

The allowed decay channels for doubly charmed tetraquarks depend crucially on
whether or not their masses lie above the open charm threshold. Many analyses [313–
317] have been studying the case in which T particles are below threshold, one of

T states
“Good”, 1+ “Bad”, 0+, 1+, 2+

T +
(
[cc][ūd̄]A

)
T 0 ([cc][ūū])

T +
s ([cc][ūs̄]A) T ++

(
[cc][d̄d̄]

)
T ++
s

(
[cc][d̄s̄]A

)
T ++
ss ([cc][s̄s̄])
T +

(
[cc][ūd̄]S

)
T +
s ([cc][ūs̄]S)
T ++
s

(
[cc][d̄s̄]S

)
Table 8.1. Expected T states. A and S stand for the anti-symmetric and symmetric flavor

configurations. Quantum numbers in red are the most likely produced.
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Figure 8.1. Width of good 1+ (left panel) and bad 0+ (right panel) T ++
s as a function of

the mass for both gT = MT (red thick) and gT = 2.5 GeV (blue thin), from Esposito et
al. [9]. With P and V we indicate the D(s) and D∗(s) final states respectively.

the reasons being that, under this assumption, they would be stable against the
(flavor conserving) strong and electromagnetic interactions, hence favoring lattice
studies – see also the Large-N discussion in Sec. 2.3. However, in this case, the weak
decay channels would present a too complicated pattern, making an experimental
analysis very challenging. Since we are interested in the possible detection of these
multi-quark states in hadronic colliders we will assume that they lie above the
open-charm threshold [9, 10]. Also, for a matter of simplicity, we will focus our study
on the T ++

s , the extension to the other states being straightforward. In Table 8.2 we
report the S-wave decay channels into the lightest 0+ and 1+ open charm mesons
(P -wave decays are forbidden by parity conservation).

As explained in Sec. 7.10, the decay amplitudes can be parametrized in terms of a
color Fierz coefficient, a kinematical term and an unknown strong effective coupling,
gT . The lack of theoretical understanding on the internal structure of tetraquarks
makes impossible to exactly compute the value of this coupling. However, one can
obtain an order of magnitude estimate by setting gT 'MT by dimensional analysis
and under the assumption for the coupling to be of “natural” size. Another possible
choice could be to set gT to be the same as in the X(3872)→ D0D∗0 case – which
can be estimated from experimental data [7] – that is gT ' gXDD∗ = 2.5 GeV. In
Figure 8.1 we report the computed decays widths as a function of the T ++

s mass
for both good and bad states and for both choices of the coupling. It is worth
noting that the value of gT does not change the order of magnitude of such widths.

T ++
s decays

0+ bad 1+ good 1+ bad 2+ bad
D+
s D

+ D∗+s D+ D∗+s D+ D∗+s D∗+

D∗+s D∗+ DsD
∗+ DsD

∗+

D∗+s D∗+

Table 8.2. Possible T ++
s decay channels. The configurations in red are the most likely

ones. The 1+ bad configuration cannot decay into a vector-vector state because of heavy
quark spin conservation.
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Figure 8.2. Estimated production cross section of two c quarks in momentum space ∆
for different experimental facilities at LHC, Tevatron and RHIC. From Del Fabbro et
al. [313].

Moreover, they are narrow enough to be experimentally measured in the present
hadronic experimental facilities.

We can now turn on the study of the production of these particles. They could
be created both promptly from the main partonic interaction or from the decay
of some other particle. The prompt production has been studied as a three-step
process [313]:

1. Creation of a cc pair from the main interaction. The two analyzed possibilities
are the single parton interaction, dominated by gluon-gluon fusion gg → cc̄cc̄,
and double parton interaction, dominated by (gg) + (gg)→ (cc̄) + (cc̄), where
the two distinct interactions occur in the same hadronic event. These processes
are dominant in the small transverse momenta region and the presented results
are computed in that range. In particular, the cross section for the production
of a cc pair has been calculated [313] for quarks with relative momentum
|p1i − p2i| < ∆, with i = x, y, z. The result as a function of ∆ is shown in
Figure 8.2. The chosen kinematical cuts for the different experiments are:
(
√
s = 14 TeV, 1.8 < η < 4.9) for LHCb, (

√
s = 14 TeV, |η| < 0.9) for ALICE,

(
√
s = 1.8 TeV, |y| < 1) for Tevatron and (

√
s = 200 GeV, |η| < 1.6) for RHIC.

2. Binding of the two charm quarks into a diquark. To compute that, one can
consider the overlap between the two quarks wave function with the diquark
one. In particular, the wave function for the two quarks can be taken to
be gaussian and expressing it as a function of the relative, r, and of the
center-of-mass, R, coordinates one gets, aside from a normalization factor:

ψcc(r,R) ∝ e−R2/2(B/
√

2)2+iP ·Re−(r−ra)2/2(B
√

2)2+ip·r, (8.4)

with the “oscillator parameter” being B = 0.69 fm [313]. Moreover, ra = 1 or
0 fm depending if we are dealing with a proton-nucleus or a proton-proton
collision.
Approximating the diquark wave function with a gaussian with an oscillator
parameter β = 0.41 fm, one gets an amplitude for the conversion of the cc pair
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Figure 8.3. Feynman diagrams for the production of T particles from B+
c . λ = sin θC is

the sine of the Cabibbo angle associated to each vertex. From Esposito et al. [9]

into a diquark equal to

M(p) ∝
∫
d3r e−(r−ra)2/2(B

√
2)2−ip·re−r

2/2β2
, (8.5)

while the cross section is given by

σ(cc→ [cc]) ' 1
4
dσcc
d3p

(
2
√
π√

2B2 + β2

)3

e−r
2
a/2B2

, (8.6)

where dσcc/d3p is the (approximately constant) cross section in Figure 8.2.

3. Dressing of the heavy diquark with two light antiquarks. Neglecting the possible
dissociation of the diquark into a DD pair – and hence providing an upper
estimate for the production of T particles – one can assume the probability
for “dressing” the diquark with a light antidiquark to be 0.1. Such probability
has been estimated in analogy with the single heavy quark fragmentation.
In particular, it has been assumed to be the same as in the b → Λb case at
Tevatron [318].

Putting these three steps together, the expected yield for the T particles are
20900, 9700, 600 and 1 events/hour for LHC at luminosity 1033 cm−2s−1, Tevatron
at luminosity 8× 1031 cm−2s−1 and RHIC at d-Au luminosity 0.2× 1028 cm−2s−1,
respectively.

However, as we previously mentioned, T particles might also be produced from
the decay of other particles. In particular, it seems reasonable to expect this
production to be more likely if from particles that already contain a charm quark.
In what follows we will consider the possible production from Bc decays [9]. In
Figure 8.3 we report the Feynman diagram for these decays.

We will focus on the B+
c → T ++

s D(∗)− decay, avoiding the use of specific models.
Heavy meson decays into two baryons are particularly suitable to extract the effective
strong coupling which we expect to determine also the process we are interested in –
both indeed contain six quarks confined in a two-hadron final state. In particular,
one can consider [319–321]

BR(B0 → Λ̄−c p) = (2.0± 0.4)× 10−5; (8.7a)
BR(B+ → Σ̄0

cp) = (3.7± 1.5)× 10−5. (8.7b)
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Figure 8.4. Branching ratios for the production of B+
c → T ++

s D− (dashed curve) and
B+
c → T ++

s D∗− (solid curve) for the good 1+ state (left panel) and for the bad 0+ state
(right panel) as a function of the mass of T ++

s , in the above-threshold region. From
Esposito et al. [9].

These interactions can be described by mean of the following heavy meson chiral
Lagrangian [199]:

Leff = gB
2M2

B

∂µBp̄γ
µ
(

1− gA
gV
γ5

)
Λ, (8.8)

where gB is a strong effective coupling and we take gA/gV ' 1.27 as for the β-decay.
Λ represents both the Λ̄−c and the Σ̄0

c , the dynamics of the two processes being the
same. Fitting from the experimental data in Eqs. (8.7) one finds

gB0 = (4± 1)× 10−3 MeV; (8.9a)
gB+ = (5± 3)× 10−3 MeV, (8.9b)

which are compatible within the errors, thus suggesting that the internal dynamics
might indeed be similar.

Extending this assumption to the B+
c → T ++

s D(∗)− decay we can take the
effective coupling for this case, gB+

c
, to be the average of the previous two. The

decay amplitudes can again be parametrized in terms of color structure, kinematics
and the effective coupling. In Figure 8.4 we report the obtained results for both good
and bad states and for a production associated with both a D− and a D∗−. One
can notice that, if the T is near threshold, than the branching ratio for an S-wave
production is just one order of magnitude smaller of the observed B+

c → J/ψD
(∗)+
s

decays [322].
We performed a preliminary search of the good T + state via lattice QCD [10].

We use 128 CLS gauge configurations on a 323 × 64 lattice, with Nf = 2 sea flavors,
non-perturbatively O(a) improved. The bare gauge coupling is β = 5, reproducing
a lattice spacing a = 0.075 fm. The pion mass is 490 MeV. The charm mass
we used is lighter than the physical charm mass, mD ∼ 1.5 GeV. Each operator
analyzed is doubled using 50 gaussian smearing steps on fermion fields, Ŝ = 1+α∆

1+6α ,
with ∆ is the spatial laplacian and α = 0.6. Preliminarily, we determined the
mass of the charmed pseudoscalar D and vector D∗ mesons, studying the respective
meson-meson correlator. We then solve the Generalized Eigenvalue Problem for the
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corresponding operator. This is due to the presence of correlators constructed with
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correlators
∫
d3x

〈
Oi(0, x)O†j(0, 0)

〉
, where the operators are given by

O1 = εijkεlmk c̄ic(x)γAcj(x) (ūl(x)γ5dmc (x)− d̄(x)lγ5umc (x)) (good T +) (8.10)
O2 = ū(x)γAc(x) d̄(x)γ5c(x)− d̄(x)γAc(x) ū(x)γ5c(x) (D0D∗+ −D∗0D+)

(8.11)

O3 = ūγAc
[
~p = ~0

]
d̄γ5c− d̄γAc

[
~p = ~0

]
ūγ5c (D0D∗+ −D∗0D+) (8.12)

O4 = εABC ū(x)γBc(x) d̄(x)γCc(x) (D∗0D∗+) (8.13)

O5 = εABC ūγBc
[
~p = ~0

]
d̄γCc (D∗0D∗+) (8.14)

The observed levels are reported in Figure 8.5. We do not observe any unknown
energy level. This does not exclude the possibility that a resonance could appear in
one of the channel considered in this analysis. In order to clarify the situation, more
statistics and a larger basis of operators is needed.

Summarizing, the theoretical study and the experimental search for possible
exotic mesons with double flavor quantum numbers might be an interesting idea to
further understand the nature of these particles. In particular, such particles might
appear with double electric charge, in which case the only possible interpretation
would be that of a compact tetraquark.

We also showed that their widths and production branching fractions are large
enough to be accessible at the present hadron facilities such as LHCb, ALICE,
Tevatron and RHIC.
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8.2 Compact tetraquarks and meson molecules in heavy
ion collisions

Another possible tool to gain some insight about the nature of candidate tetraquarks
is to study their behavior in the extreme conditions of relativistic heavy ion collisions
at RHIC and LHC.

When two nuclei (Au+Au and Pb+Pb for RHIC and LHC respectively) collide
at relativistic speed, the resulting system reaches extremely high temperatures. In
particular, if those temperatures are higher than a critical value [323], TC = (154±9)
MeV, quark and gluons are liberated from hadrons and a new state of matter is
created, the so-called Quark-Gluon-Plasma (QGP). It is a QCD plasma of deconfined
quarks and gluons which seems to behave as a nearly perfect fluid [324, 325]. After
a certain amount of time this “fire-ball” expands and cools down to temperatures
below TC and hence the partons confine again. In this phase the system looks like an
expanding gas of interacting hadrons, the so-called Hadron Resonance Gas (HRG).
When the temperature drops below the so-called freeze-out temperature, TF ' 120
MeV [262], these hadrons simply fly apart without interacting anymore. In the
following we will indicate with the subscripts C, H and F quantities at the critical,
hadronization and freeze-out temperatures respectively (see for example Table 8.3).

It has been proposed [143, 262, 326, 327] that the study of the produced number
of exotic mesons, and in particular the time-honored X(3872), in heavy ion collisions
might help to distinguish between the compact tetraquark picture and the molecular
one. In particular, the two main techniques to estimate the yield of a particle in hot
QGP are:

• The statistical model [328]: it assumes that the matter produced in heavy ion
collisions is in thermodynamical equilibrium and it is know to describe the
relative yields of ordinary hadrons very well. In this model the number of
hadrons of a given type, h, produced is given by

N stat
h = VH

gh
2π2

∫ ∞
0

p2dp

γ−1
h eEh/TH ± 1

, (8.15)

with gh being the degeneracy of h and VH (TH) the volume (temperature)
of the source when the statistical production of the hadron occurs. γh =
γnc+nc̄c e(µBB+µSS)/TH is the fugacity, with nc and nc̄ the number of charm and
anti-charm in the hadron, B and S the baryon and strangeness numbers of
the hadron and µB and µS the corresponding chemical potentials.
This model does not contain any information about the actual internal structure
of h and, in the following, it will be used as a normalization factor.

• The coalescence model [252]: it is based on the sudden approximation by
calculating the overlap of the density matrix for the constituents of the hadron
h with the Wigner function for the produced particle. It is built to take into
account the inner structure of h, such as angular momentum, multiplicity of
quarks, etc. This picture has successfully explained many different experi-
mental data (e.g. enhancement of baryon production in the intermediate pT
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region [329], quark number scaling of the elliptic flow [330]). In this context,
the number of hadrons produced is given by

N coal
h ' gh

n∏
j=1

Nj

gj

n−1∏
i=1

(4πσ2
i )

3/2

V (1 + 2µiTσ2
i )

[
4µiTσ2

i

3(1 + 2µiTσ2
i )

]li
, (8.16)

if one uses the non-relativistic approximation, neglect the transverse flow and
considers only the unit rapidity. Moreover, one assumes an harmonic oscillator
ansatz for the hadron internal structure. Here gj and Nj are the degeneracy
and number of the j-th constituent and σi = 1/√µiω, with ω the oscillator
frequency and µi the reduced mass given by µ−1

i = m−1
i+1 +

(∑i
j=1mj

)−1
.

Lastly li = 0, 1 for a S-wave and a P -wave constituents respectively.

Note that from Eq. (8.16) follows that hadrons with more constituents are, in
general, more suppressed and that S-wave coalescence if favored with respect
to the P-wave one.

A large part of the information about the nature of the considered hadron is
hence somehow embedded in the frequency ω of the harmonic oscillator. In the case
of a compact multiquark state one can fit ω by requiring the coalescence model to
reproduce the reference normal hadron yields in the statistical model. For the case
of interest, the X(3872) with light and charm quarks, one finds ωc = 385 MeV by
requiring the matching with the yield of Λc(2286) [262]. The final result is a yield
N4q
X = 4.0× 10−5.
For the case of a meson molecule, instead, one can fix ω by using ω = 3/(2µ1〈r2〉)

for a two-body S-wave state, together with the equation that relates the binding
energy of a loosely bound molecule with its scattering length, a, E ' 1/(2µ1a2) and
〈r2〉 ' a2/2. For the case of the X one gets ω = 3.6 MeV [262]. It is worth noting
that ω ∝ E and hence, according to Eq. (8.16), the smaller the binding energy of
the molecule, the smaller ω and thus the larger is the N coal

h . In this case it turns
out to be Nmol

X = 7.8× 10−4.
In Figure 8.6 the predicted yield for different hadrons in the coalescence model are

shown [262]. As one immediately notices, the predictions for the compact tetraquark
and for the molecule are completely different. In particular, a molecular structure for
the X(3872) implies a yield which is higher than ordinary hadrons, while a compact
structure implies a lower yield. This difference is essentially due to the small binding
energy of the molecular state and to the high number of constituents of the compact
states. There is also another extremely striking feature, i.e. the predicted behaviors
for the molecule and the compact tetraquark in relativistic heavy ion collisions are
opposite to those predicted for pp collisions, as discussed in Chapter 6. Also note
that both yields are close enough to the ordinary ones to be experimentally measured
at RHIC and LHC.

The previous description of exotic mesons in heavy ion collision can be further
improved [327]. So far we only studied the production during the QGP phase.
However, the number of exotic mesons can also vary during the HRG phase, when
disintegration/creation processes due to the interaction with other particles can
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Figure 8.6. Hadron yields in the coalescence model normalized with respect to the statistical
one at RHIC, from ExHIC Collaboration [262]. Note the sharp difference between the
predictions for a compact four-quark structure and for a molecular structure of the
X(3872). The gray band represents the range of yields for ordinary hadrons.

occur. In particular, the most effective processes are – see Figure 8.7:

Xπ → D̄∗D∗; Xπ → D̄D; Xρ→ D̄∗D; (8.17a)
Xρ→ D∗D̄; Xρ→ DD̄; Xρ→ D∗D̄∗, (8.17b)

and the inverse ones for the creation of a X(3872). The vertices for such reaction
can be obtained from an effective Lagrangian approach, with a combination of Heavy
Quark Effective Theory (HQET) and chiral theory [281, 327]. In Figure 8.8 we
report the cross sections for the processes in Eq. (8.17).

The computed cross sections can be used to estimate the change of the number
of X(3872) in the HRG as a function of the proper time, τ , by mean of kinetic

X
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D

π
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X

D̄

π
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Figure 8.7. Possible disintegration processes of the X(3872) in the hadron resonance gas
phase.
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theory [327]:

dNX

dτ
= RQGP (τ) +

∑
`,c,c′

(〈σcc′→`Xvcc′〉nc(τ)Nc′(τ)− 〈σ`X→cc′v`X〉n`(τ)NX(τ)) ,

(8.18)

where the subscripts `, c and c′ stand for a light meson and the two charmed mesons
respectively. na(τ) and Na(τ) are the density and abundance of the particle a at
proper time τ calculated using the statistical model Eq. (8.15) with τ -dependent
volume and temperature [327]:

V (τ) = π
[
RC + vC (τ − τC) + aC/2 (τ − τC)2

]2
τC ,

T (τ) = TC − (TH − TF )
(
τ − τH
τF − τH

)4/5
. (8.19)

These equations are obtained following the boost invariant Bjorken picture with an
accelerated transverse expansion [331]. In particular, RC is the radius of the system
at TC , and vC and aC are its expansion velocity and acceleration. In Table 8.3 we
report the values used for the present analysis.

Temp. (MeV) Time (fm/c)
RC = 8.0 fm TC = 175 τC = 5.0
vC = 0.4c TH = 175 τH = 7.5

aC = 0.02c2/fm TF = 125 τF = 17.3
Table 8.3. Values for the volume and temperature profiles in the schematic model of

Eq. (8.19).

The averages in Eq. (8.18) can be evaluated by mean of the kinetic theory:

〈σab→cdvab〉 =
∫
d3pad3pbfa(pa)fb(pb)σab→cdvab∫

d3pad3pbfa(pa)fb(pb)
, (8.20)
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Figure 8.9. Number of X(3872) as a function of proper time under the assumption of a
compact tetraquark and of a molecular nature, from Cho and Lee [327]. For comparison,
the prediction obtained with a pure statistical approach (which is blind to the internal
structure) is drawn as well.

with fa(pa) being the single particle density in momentum space. Lastly, the term
RQGP (τ) is included to take into account the effect of the production of the X(3872)
through hadronization from the quark-gluon-plasma and is given by

RQGP (τ) =
{
N0
X/(τH − τC), τC < τ < τH

0, otherwise
; (8.21)

N0
X is the number ofX(3872) produced by the quark-gluon-plasma as explained in

Eqs. (8.15) and (8.16). Once all the ingredients are set one can compute the number
of X as a function of proper time, i.e. of the evolution of the hot expanding system.
In Figure 8.9 we report the results for central Au-Au collisions at √sNN = 200 GeV.

The number of X(3872) in the assumption of a D0D̄∗0 molecular nature can be
computed by solving the evolution equation (8.18) backward in time, starting from
the yield found before using the coalescence model, Nmol

X = 7.8× 10−4. The result
is again shown in Figure 8.9.

As one can see, the inclusion of this further possible mechanism of creation/destruction
of the X(3872), i.e. the interaction of this meson in the hadron resonance gas, leads
to a yield for an eventual molecular state which is a factor of ∼ 18 larger than that
for a compact four-quark structure.

It should be noted that the previous discussion completely neglects transverse
flow effects. However, this phenomena turned out to be the key ingredient to explain
some puzzling experimental results like, for example, the observation made at RHIC
that medium-induced suppression for values of the transverse momentum pT ' 2 GeV
is not as effective on protons as it is for pions [332, 333]. Particularly surprising was
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the fact that the ratio p/π+ of protons over charged pions for transverse momenta
above 2 GeV reaches or even exceeds unity. The explanation to this phenomenon
was the following. The expectation from the use of coalescence model is that it is
less likely to bind states made by a larger number of components simply because the
convolution of their wave functions is smaller. In other words, it is hard to find the
components at small value of the relative momentum and at small relative positions.
However, if one takes into account flow effects it turns out that, exactly because of
collectivity, if the previously mentioned components are found close in momentum
space, they are also likely to be close in coordinate space, thus increasing the yield
of states with higher number of constituents. As we said, this effect turned out to
be relevant at explaining the observed p/π+ ratio for pT ' 2 GeV.

In our case, this phenomenon might be quite important at increasing the number
of tetraquarks produced with respect to the number of molecules [334, 335]. Therefore,
in our view, the conclusions drawn in Figure 8.6 are merely partial.

In conclusion, we showed how the study of the yield of X(3872) – and possibly
of other exotic mesons – in heavy ion collisions might have an impact on the
determination of its nature. In particular, it turns out that, according to the
coalescence model [252], the number of X produced should be much larger if it is
a loosely bound molecule than if it is compact tetraquark, in striking contrast to
what expected for pp collisions. Moreover, the predicted yields [262, 327] are large
enough to be measurable by the current experimental facilities, RHIC and LHC.
Future studies should try to include collective flow effects as well.
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Conclusions

The field of XY Z phenomenology has impressively been growing on the experimental
side. On the other hand it seems that the theoretical models to explain the rich
amount of information nowadays available on these states are lagging behind. The
comprehension of this sector is tightly related to our understanding of the internal
structure of hadrons.

In this thesis we have tried to highlight the reasons for the most fundamental
quark picture, suggesting these states to be new kinds of hadrons with respect
to standard mesons and baryons, namely new bodyplans of quarks arranged into
tetraquarks. The possibility of having long-lived tetraquarks is not excluded by the
large number of colors limit of QCD and, in addition, some of the observed charged
resonances appear as striking evidence that compact tetraquarks have already been
observed. The simplified diquark-antidiquark model reviewed in this paper is not
the definitive explanation of the XY Z resonances, but we believe it must be at the
core of the picture. Within this model, we described the properties of some of the
observed states, like the spin of the X(3872) [1], and the identification of the Zc(3900)
as the 1+− partner of the X(3872) [7]. We analyzed BES III e+e− → hcπ

+π− and
→ χc0ω and showed that the structures observed are compatible to be the Y3 P -
wave tetraquark predicted by the updated model [6]. Moreover, we have calculated
the Z(′)

c → ηc ρ decays both within a tetraquark assignment, and according to a
molecular hypothesis using a Nonrelativistic Effective Theory [8]. We showed that
the predictions for the branching ratios are different by orders of magnitude, thus
providing a clear signal to discriminate the correct model when data on this channel
will be available.

One still has to explain what prevents some of the states predicted by that model
to be formed/observed in experiment. We started by looking for the origin of such
selection rules in the accidental matchings of diquark-antidiquark levels with open
charm (beauty) meson thresholds [3, 5]. We do not think that there is anything
profound in these matchings, given the huge number of thresholds which can be
formed with the known pairs of charmed or beauty mesons. However tetraquark
discrete levels might correspond to narrow hadron resonances whenever anyone of
these matchings happens to be realized. This is probably the passage to be done to
fill the gap between the tetraquark interpretation and the actual phenomenology of
these resonances.

Most of the work has been devoted to the understanding of the large X(3872)
prompt production cross section at hadron colliders. Were this state a loosely bound
molecule, a simple square well model show that the constituent must have a relative
momentum k0 ∼ 50 MeV. In Ref. [139], MC simulations were used to estimate an
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upper limit for the cross section, and found values two orders of magnitude smaller
than the experimental one. A controversy on the choice of this k0 cutoff momentum
followed. Some authors proposed this k0 has to be 10 times larger on the basis of
Migdal-Watson theory of Final State Interactions [239], thus making the estimated
upper limit for the cross section even larger than the experimental value, but a
subsequent paper casted doubts on the applicability of the Migdal-Watson approach
in an environment polluted by hundreds of comoving pions, like hadron collisions.
In two papers we argued that the rescattering of such pions on molecular candidates
might indeed slow down the molecular constituent in their center-of-mass frame,
and effectively increase the number of low-momentum meson pairs, and the X(3872)
cross section as well. The results obtained in a preliminary sample of simulated
pp̄ → cc̄ events went in the right direction [2], but the full QCD simulation show
that the effect is not enough to justify the experimental value [3]. We also proposed
to compare the differential prompt production cross section dσ/dp⊥ of the X with
the ones of bona fide molecules, i.e. light nuclei: if these objects share the same
nature, they are expected to have similar behavior as a function of p⊥, regardless of
the details of any mechanism which would be at work to produce large amounts of
molecules at high p⊥. In Ref. [3] we used MC simulations to extrapolate ALICE
deuteron preliminary data at p⊥ . 3 GeV up to the 15 GeV region, where the X
has been observed. ALICE then published data on deuteron, 3He and hypertriton
differential cross sections in pp and Pb-Pb collisions at p⊥ . 10 GeV. We used
Glauber theory to translate the cross sections from Pb-Pb to pp collisions, and
then extrapolated with simple functional forms to the p⊥ ∼ 15-20 GeV region [4].
In both papers we showed that the X(3872) cross section is at least two orders
of magnitude larger than the typical values for light nuclei, thus challenging its
molecular interpretation. High p⊥ measurements of deuteron and hypertriton will
give a final answer on this topic.

Finally, we used the tetraquark formalism to describe doubly charmed states [9],
which might be produced in Bc decays and would be hardly explained by any
molecular framework. The T ++

s state, if above the D∗Ds threshold, would be a
doubly charged state with a remarkably clean experimental signature. We also
started a preliminary search of these states on the lattice [10], which did not find
any new level yet.

Finally, it may be that we are looking at different aspects of the same problem
using different descriptions, as considered by someone. It may also be true that the
definitive answer could be in the non-perturbative intricacies of strong interactions
which might eventually be captured only using lattice QCD methods. Yet, in the
meanwhile, we think that we made some interesting and solid progress, and especially
we believe that there is indeed a problem in XY Z resonance physics: whatever side
you are looking at it, it is not a “mirage” made of effects. It looks like there is a
pattern behind.
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Appendix A

One-loop β of QCD by the
background field method

The basic philosophy is as in [336]. Some considerations on the effective action in
QCD are in [337].

The partition function of pure YM is:

Z =
∫
δA exp

(
− 1

2g2SYM

)
(A.1)

where:
SYM =

∫
d4xTr (Fmn)2 = 1

2

∫
d4x (F amn)2 (A.2)

The gauge connection is a matrix valued in the fundamental representation of
the Lie algebra of SU(N):

Am = AamT
a (A.3)

with the Hermitian generators in the fundamental representation normalized as:

Tr
(
T aT b

)
= 1

2 δ
ab (A.4)

The curvature of the YM connection is:

Fmn = ∂mAn − ∂nAm + i [Am, An] (A.5)
F amn = ∂mA

a
n − ∂nAam − fabcAbmAcn (A.6)

To perform the one-loop computation of the effective action a linear source term
JnAn is introduced in the Lagrangian, and the gauge connection is split into a
classical background field and a fluctuating quantum field Am = Ãm + δAm. The
Fourier transform of the quantum field is supposed to be supported on momenta
much larger than the momenta of the classical background field. By the splitting of
the connection into Am = Ãm + δAm the curvature decomposes as follows:

Fmn(Ã+ δA) = Fmn(Ã) +Dm(Ã)δAn −Dn(Ã)δAm + i [δAm, δAn] (A.7)

where the covariant derivative Dm(Ã) = ∂m + i[Ãm, ·] acts in the adjoint representa-
tion. We understand the integration on space-time in the following, and we freely
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integrate by parts. Since we are performing a one-loop perturbative computation,
we keep only up to the quadratic terms in δAm in the action.

We use the equation of motion 1
g2Dm(Ã)F (Ã)mn = Jn to eliminate the linear

term in the fluctuation. The linear term in the background field is eliminated by
the Legendre transform. In the following the dependence of the curvature and of
the covariant derivatives on the background field is understood. We get:

F 2
mn(Ã+ δA) ∼ F 2

mn + (DmδAn −DnδAm)2 + 2iFmn [δAm, δAn]
= F 2

mn + 2(DmδAn)2 − 2DmδAnDnδAm + 2iFmn [δAm, δAn]
(A.8)

Using:

(DmDn) δAr = (DnDm) δAr + i [Fmn, δAr] (A.9a)
Tr (δAn [Fmn, δAm]) = Tr (Fmn [δAm, δAn]) = −Tr (δAm [Fmn, δAn]) (A.9b)

the quadratic form in Eq. (A.8) becomes:

TrF 2
mn(Ã+ δA) ∼ Tr

(
(DmδAn −DnδAm)2 + 2iFmn [δAm, δAn]

)
= Tr (−2δAm ∆ δAm + 2δAnDmDnδAm + 2iFmn [δAm, δAn])
= Tr

(
− 2δAm ∆ δAm + 2δAnDnDmδAm + 2iδAn[Fmn, δAm]
+ 2iFmn [δAm, δAn]

)
= Tr

(
−2δAm ∆ δAm − 2(DmδAm)2 − 4iδAm[Fmn, δAn]

)
(A.10)

where ∆ = D2 and

(∆)ac = (Dm)ad(Dm)dc = ∂2δac−∂mAbmfabc−2Abmfabc∂m+AbmfabdAemfdec (A.11)

The gauge-fixing is performed by the Faddeev-Popov procedure. It is convenient
to choose the Feynman gauge with respect to the background gauge field Ãm:

DmδAm − c = 0 (A.12)

c is an auxiliary Gaussian field chosen in such a way to cancel the longitudinal term
in Eq. (A.10) by adding 1

g2
∫
d4xTr(DmδAm)2 to the action. As a consequence the

quadratic part of gauge-fixed action is:

1
2g2

∫
d4xTr (−2δAm ∆ δAm − 4iδAm[Fmn, δAn]) (A.13)

that in components becomes:

1
2g2

∫
d4x δAam

(
−(∆)acδmn + 2fabcF bmn

)
δAcn (A.14)

where adFmn = [Fmn, ·], i.e. (adFmn)ac = ifabcF bmn. After integrating on the
quadratic fluctuation δA and inserting the FP determinant Det(−∆) the one-loop
effective action Γ1-loop(A) reads:

e−Γ1-loop(A) = e
− 1

2g2
SYM(A)Det−1/2 (−∆δmn − 2i adFmn) Det(−∆) (A.15)
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The following identity holds:

Det−1/2 (−∆ δmn − 2i adFmn) = Det−1/2 (−∆ δmn) Det−1/2
(
1− 2i (−∆)−1 adFmn

)
(A.16)

The first factor gives:

Det−1/2 (−∆ δmn) = Det−2 (−∆) (A.17)

Therefore, the one-loop effective action reads:

e−Γ1-loop(A) = e
− 1

2g2
SYM(A) Det−1/2

(
1− 2i (−∆)−1 adFmn

)
Det−1 (−∆) (A.18)

The first determinant is the spin contribution while the second determinant is the
orbital contribution. We can factorize away a trivial infinite constant from the
orbital contribution:

Det−1 (−∆) = Det−1
(
−∂2 − i∂mAm − 2iAm∂m +AmAm

)
= Det−1

(
−∂2

)
Det−1

(
1 +

(
−∂2

)−1
(−i∂mAm − 2iAm∂m +AmAm)

)
(A.19)

Using:
Det (1 +M) = eTr log(1+M) = eTrM−Tr(M)2/2+··· (A.20)

at the lowest non-trivial order we get:

Det−1 (−∆) = Det−1
(
−∂2

)
exp

[
−Tr

[(
−∂2

)−1
(−i∂mAm − 2iAm∂m +AmAm)

] ]

exp
[

1
2 Tr

[ (
−∂2

)−1
(−i∂mAm − 2iAm∂m +AmAm)

(
−∂2

)−1
(−i∂mAm − 2iAm∂m +AmAm)

]]
(A.21)

where the trace is over the space-time, the Lie algebra and the vector indices. The
term Det−1 (−∂2) is an irrelevant constant while the trace in the Lie algebra of
the term linear in Am vanishes. The term Tr

[(
−∂2)−1

AmAm
]
is a quadratically

divergent tadpole that cancels in any gauge-invariant regularization scheme, since it
would give rise to a mass counterterm for the gauge connection. Therefore, it can
be ignored. There remains the interesting divergence:

Det−1 (−∆) ∼ exp
[1

2 Tr
[(
−∂2

)−1
(i∂mAm + 2iAm∂m)

(
−∂2

)−1
(i∂mAm + 2iAm∂m)

]]
(A.22)

that evaluated in momentum space leads to:

exp
[

1
2

∫
d4k

(2π)4

∫
d4p

(2π)4 Tr (Am (−k)An (k)) (2pm − km) (2pn − kn)
p2 (p− k)2

]
(A.23)
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with the trace Tr on the Lie algebra indices. We are interested in extracting the
logarithmic divergences by expanding the denominator in powers of k/p up to the
appropriate order:∫

d4p

(2π)4
(2pm − km) (2pn − kn)

p2 (p− k)2 =
∫

d4p

(2π)4
(2pm − km) (2pn − kn)
p4 (1 + (k2 − 2kp) /p2)

∼
∫

d4p

(2π)4
(4pmpn + kmkn − 2kmpn − 2knpm)

p4

(
1 + 2pk

p2 −
k2

p2 + 4 (pk)2

p4

)

∼
∫

d4p

(2π)4
−4k2 pmpn

p2 + 16krks pmpnprpsp4 + kmkn − 4knkr pmprp2 − 4kmkr pnprp2

p4

=
∫

d4p

(2π)4
−1

3
(
k2δmn − kmkn

)
p4 = −1

3
(
k2δmn − kmkn

) 1
(4π)2 log

(Λ
µ

)2

(A.24)

where we have integrated symmetrically:

pmpn →
1
4p

2δmn, pmpnprpδ →
1
24p

4 (δmnδrs + δmrδns + δmsδns) (A.25)

Hence the orbital contribution to the beta function is:

Det−1 (−∆) ∼ exp
[
− 1

3(4π)2 log
(Λ
µ

)2 ∫ d4k

(2π)4
1
2Tr

[
Am

(
k2δmn − kmkn

)
An
]]

= exp
[
− 1

3(4π)2 log
(Λ
µ

)2 ∫ d4k

(2π)4
1
2
[
Abm

(
k2δmn − kmkn

)
Adn

] (
−fabcf cda

)]

= exp
[
− N

3(4π)2 log
(Λ
µ

)2 1
4

∫
d4x (F amn)2

]
(A.26)

where in the last step we used:

fabcfabd = Nδcd (A.27)

and:
1
4

∫
d4xF amnF

a
mn ∼

1
2

∫
d4k

(2π)4A
a
m (−k)Aan (k)

(
k2δmn − kmkn

)
(A.28)

at leading order. Now we compute the spin contribution to the effective action.
Since TrFmn = 0, up to the quadratic order in Fmn we get:

Det−1/2
(
1− 2i (−∆)−1 adFmn

)
∼ exp

[
−Tr

(
(−∆)−1 adFmn (−∆)−1 adFnm

)]
(A.29)

At the lowest order (−∆) ∼
(
−∂2), therefore:

Tr
((
−∂2

)−1
adFmn

(
−∂2

)−1
adFnm

)
=
∫
d4x

∫
d4yTr [G (x− y) adFmn (y)G (y − x) adFnm (x)]

= −N
∫
d4x

∫
d4y G (x− y)2 F amn (y)F amn (x)

(A.30)
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where in coordinate space:

G (x− y) = 1
4π2 (x− y)2 (A.31)

and:
Tr (adFmn adFnm) = F bmn if

abc F dnm if
cda = −NF amnF amn (A.32)

Assuming that the background field carries momentum much smaller than the
fluctuating field we can expand Fmn (y) = Fmn (x) + . . . by Taylor series and keep
the first term since we are interested only in the divergent terms. Thus defining
z = x− y

Tr
((
−∂2

)−1
adFmn

(
−∂2

)−1
adFnm

)
∼ − N

(2π)4

∫
d4z

z4

∫
d4x (F amn)2

= − N

(4π)2 log
(Λ
µ

)2 ∫
d4x (F amn)2 = − 4N

(4π)2 log
(Λ
µ

) 1
2

∫
d4x (F amn)2

(A.33)

Therefore, at this order the divergent part reads:

Det−1/2
(
1− 2i (−∆)−1 adFmn

)
∼ exp

[
4N

(4π)2 log
(Λ
µ

) 1
2

∫
d4x (F amn)2

]
(A.34)

Finally, the local part of the one-loop effective action reads:

Γ1-loop = 1
2g2SYM +

(
N

3 (4π)2 −
4N

(4π)2

)
log

(Λ
µ

) 1
2

∫
d4x (F amn)2

=
(

1
2g2 (Λ) −

11N
3 (4π)2 log

(Λ
µ

))
SYM

(A.35)

Therefore, the bare coupling constant g (Λ) renormalizes as:

1
2g2 (Λ) = 1

2g2 (µ) + 11N
3

1
(4π)2 log Λ

µ
(A.36)

or:
g2 (Λ) = g2 (µ)

1 + 11N
3(4π)2 g2 (µ) log(Λ

µ )2 (A.37)

that is the solution at one loop of the equation that defines the β function:

β (g) = ∂g

∂ log Λ = −β0g
3 + · · · (A.38a)

β0 = 11N
3 (4π)2 (A.38b)

Eq. (A.36) can be also written as:

Λ e−
1

2β0g2(Λ) = µ e
− 1

2β0g2(µ) (A.39)
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Thus the combination:
ΛYM = Λ e−

1
2β0g2(Λ) (A.40)

is independent on the cutoff Λ and it is a renormalization group invariant at one
loop.

We add now nf massless Dirac fermions in the fundamental representation. The
action reads:

SQCD = 1
2g2SYM +

∑
nf

i

∫
d4xψ̄Dm(A)γmψ (A.41)

Integrating over the fermion variables, we get the fermion determinant:

Detψ = [det (Dm(A)γm)]nf (A.42)

At one loop we can simply evaluate the covariant derivative on the background gauge
connection. Hence the fermion determinant factors out of the functional integral
and it can be evaluated separately. We can put:

Detψ ∼ Detnf (Dmγ
m) = Detnf/2 (DmDnγ

mγn)

= Detnf/2
(1

2DmDn ({γm, γn}+ [γm, γn])
)

= Detnf/2
(

∆1+ i
1
2Fmnγ

mγn
)

= Detnf/2 (−∆1) Detnf/2
(

1− i12(−∆)−1Fmnγ
mγn

)
(A.43)

In order to evaluate the first determinant, we compare with Eq. (A.26) keeping trace
of the spinor indices. The local divergent part reads:

Detnf/2 (−∆1) = Det2nf (−∆) ∼ exp
[

2nfTF
3(4π)2 log

(Λ
µ

)2 1
4

∫
d4x (F amn)2

]
(A.44)

where TF is the Dynkin index for the fundamental representation. For the spin
contribution by comparison with Eq. (A.34), taking the trace over the spinor indices,
we get the local divergent part:

Detnf/2
(

1− 1
2 i (−∆)−1 Fmnγ

mγn
)

∼ exp
[
nf
16 Tr

(
(−∆)−1 Fmn (−∆)−1 Frsγ

mγnγrγs
)]

= exp
[
nf
4 Tr

(
(−∆)−1 Fmn (−∆)−1 Frs (δmnδrs + δmsδnr − δmrδns)

)]
= exp

[
nf
2 Tr

(
(−∆)−1 Fmn (−∆)−1 Fnm

)]
∼ exp

[
−2nfTF

(4π)2 log
(Λ
µ

)2 1
4

∫
d4x (F amn)2

]
(A.45)
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Finally, the local part of the one-loop effective action reads:

ΓQCD = ΓYM +
(
− 2nfTF

3 (4π)2 + 2nfTF
(4π)2

)
log

(Λ
µ

)2 1
4

∫
d4x (F amn)2

=
(

1
2g2 (Λ) − ( 11N

3 (4π)2 −
4nfTF
3 (4π)2 ) log

(Λ
µ

)) 1
2

∫
d4x (F amn)2

(A.46)

Setting TF = 1
2 for the fundamental representation, the QCD beta function at one

loop reads:

β (g) = ∂g

∂ log Λ = −β0g
3 + · · · (A.47a)

β0 = 1
(4π)2

(11
3 N −

2
3nf

)
(A.47b)
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Appendix B

Heavy meson chiral Lagrangians

We report here a brief review on heavy meson chiral Lagrangians in the case of the
interaction with light vector mesons [199], with the so-called hidden gauge approach.
The interaction Lagrangian is given by

LρDD∗ =iβ
〈
H1bv

µ (Vµ − ρµ)ba H̄1a
〉

+ iλ
〈
H1bσ

µνFµν(ρ)baH̄1a
〉

+ h.c., (B.1)

where Fµν(ρ) = ∂µρν − ∂νρµ + [ρµ, ρν ] and σµν = i[γµ, γν ]/2. The vector field Vµ
contains information on pion pairs, which are not of interest for the present case.
The imposition of Vector Meson Dominance implies β = 0.9± 0.1. QCD sum rules
give λ = (0.56 ± 0.07) GeV−1 [338]. H1a and H2a are the Heavy Quark Effective
Theory bi-spinors for mesons and anti-mesons respectively:

H1a =
(1 + /v

2

)
[V µ
a γµ + Paγ5] , H2a =

[
V̄ µ
a γµ − P̄aγ5

] (1− /v
2

)
, H̄1,2a = γ0H

†
1,2aγ0

Ψ =
(1 + /v

2

) [
ψµγ

µ − ηcγ5
] (1− /v

2

)
, χµ =

(1 + /v

2

) [
· · ·+ hc,µγ

5
] (1− /v

2

)
Z(′)
µ =

(1 + /v

2

)
Z(′)
µ γ

5
(1− /v

2

)
,

where vµ is the heavy meson velocity and a is a flavor index. The fields V µ (V̄ µ) and
P (P̄ ) annihilate a (anti-)vector and a (anti-)pseudoscalar respectively according to
V µ |V (q, ε)〉=εµ

√
MV |0〉, P |P (q)〉=

√
MP |0〉. In the definition of χµ, we omit the

Process Relativistic rule Non-relativistic rule
D(P )→ρ(k,η)D(q) −i

√
2MDβgV (v·η∗) −i

√
2MDβgV (~k·~η∗/mρ)

D(P )→ρ(k,η)D∗(q,ε) −
√

2MDMD∗gV λε
µνρσvµε∗νkρη

∗
σ

√
2MDMD∗gV λε

ijkkiη∗jε∗k

∗(P,λ)→ρ(k,η)D∗(q,ε)

i
√

2MD∗gV β(ε∗·λ)(v·η∗)+ −i
√

2MD∗gV β(~ε∗·~λ)(~k·~η∗/mρ)+

+i
√

2MD∗gV λ[(ε∗·η∗)(λ·k)− +i
√

2MD∗gV λ[(~ε∗·~k)(~λ·~η∗)−

−(ε∗·k)(λ·η∗)] −(~ε∗·~η∗)(~λ·~k)]
Table B.1. Feynman rules involving the ρ meson. The charge conjugated of all rules gain

an additional minus sign.
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C = +1 P -wave charmonia. For light vector mesons, we follow the anti-hermitian
convention of [199], i.e. ρµ = igV ρ̂µ/

√
2, where:

ρ̂µ =
(
ρ0
µ/
√

2 + ωµ/
√

2 ρ+
µ

ρ−µ −ρ0
µ/
√

2 + ωµ/
√

2

)
, (B.2)

and gV ' 5.8 [199, 338]. Starting from the Lagrangians (B.1) one can obtain
the Feynman rules for different processes, which we report in Table B.1. The
non-relativistic limit can be obtained by letting v → (1,~0).
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Appendix C

NREFT amplitudes and loop
integrals

According to the Feynman rules found in Table B.1 and in [196], the non-relativistic
one loop amplitude associated with the processes in Figure 7.7 is:

AZcηcρ = 2
√

2MZMη zgV g2

[
β
~qρ · ~η
mρ

λi
(
Ii(MD,MD∗ ,MD; qρ) + Ii(MD∗ ,MD,MD∗ ; qρ)

)

+ λ
(
(~λ · ~η)qiρ − (~λ · ~qρ)ηi

) (
Ii(MD,MD∗ ,MD∗ ; qρ) + Ii(MD∗ ,MD,MD∗ ; qρ)

) ]
,

(C.1)

where ~λ and ~η are the spatial polarizations of the Zc and of the ρ respectively and
qρ is momentum of the outgoing ρ. The overall factor of 2 comes from the charge
conjugate diagrams. Ii(m1,m2,m3; q) is the non-relativistic loop integral with three
propagators:

Ii(m1,m2,m3; q) = i

8

∫
d4l

(2π)4 (q − 2l)i
(
l0 −

~l2

2m1
−m1 + iε

)−1

×
(
MZ(′) − l0 −

~l2

2m2
−m2 + iε

)−1l0 − q0 − (~l − ~q)
2

2m3
−m3 + iε

−1

. (C.2)

It can be computed with the same techniques explained in [196] and it gives:

Ii(m1,m2,m3; q) = qi [I0(m1,m2,m3; q)− 2I1(m1,m2,m3; q)] , (C.3)

with:

I0(m1,m2,m3; q) = µ12µ23
16π
√
a

[
tan−1

(
c23 − c12

2
√
ac12 − iε

)
+ tan−1

(
2a+ c12 − c23

2
√
a(c23 − a)− iε

)]
,

(C.4a)

I1(m1,m2,m3; q) = 1
2a

{
µ12µ23

2 [B(c23 − a)−B(c12)] + (c23 − c12)I0(m1,m2,m3; q)
}
.

(C.4b)
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In particular, µij is the reduced mass between mi and mj , a =
(
µ23
m3

)2
q2, c12 =

2µ12(m1 +m2 −MZ(′)) and c23 = 2µ23
(
m2 +m3 + q0 + ~q2

2m3
−MZ(′)

)
. Lastly:

B(c) = −
√
c− iε
4π . (C.5)

For the case of the Z ′c we have, instead:

AZ′cηcρ = 2
√

2MZMηz
′g2gV

[
λ
(
(~λ · ~η)qiρ − (~λ · ~qρ)ηi

)
×
(
Ii(MD∗ ,MD∗ ,MD; qρ) + Ii(MD∗ ,MD∗ ,MD∗ ; qρ)

)
+ 2β ~qρ · ~η

mρ
λiIi(MD∗ ,MD∗ ,MD∗ ; qρ)

]
. (C.6)
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