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Abstract

Background: Bone hardness and strength depends on mineralization, which involves a complex process 
in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This 
process is strictly regulated, and a number of signal transduction systems were interested in calcium 
metabolism, such as the phosphoinositide (PI) pathway and related phospholipase C (PLC) enzymes. 
Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES 
and SS.
Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and 
SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with 
Ewing sarcoma (ES) and synovial sarcoma (SS). 
Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression 
of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of 
PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, 
MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES 
and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it 
was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS 
regarded PLC ε and PLC η isoforms. 
Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental 
model for studies about the analysis of signal transduction in osteoblasts. 
Keywords: Signal transduction, Phosphoinositide, Phospholipase C, Osteosarcoma, Osteoblast, Ewing 
sarcoma, Synovial sarcoma, Gene expression, Prognosis.
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Background
Calcium plays a key role within cells, and it is involved 
in many signal transduction pathways, acting as a second 
messenger or as an enzyme cofactor. Extracellular calcium 
is also crucial for excitable cell membranes activity, as well 
as proper bone formation. Bone hardness and strength 
depend on mineralization, which involves a complex 
process in which bone-forming cells produce crystals of 
calcium phosphate, which were shed around the fibrous 
matrix. This process is strictly regulated. In addition, 
many signal transduction systems were interested in 
calcium metabolism, such as phosphoinositide (PI) 
pathway and related phospholipase C (PLC) enzymes. In 
mammals, bones represent the major calcium storage, and 
its capture from or release in the blood is regulated by a 
number of  molecules, including hormones and vitamins. 

Functional studies demonstrated that increase of 

calcium levels activates PLC, resulting in calcium increase 
(1). PLC cleaves phosphatydil inositol (4,5) bisphosphate 
(PIP2), a phosphorylated derivative of  phosphatydil 
inositol standing in the inner half  of  the plasma membrane 
(2-7), into inositol trisphosphate (IP3) and diacylglycerol 
(DAG), 2 further signaling molecules. In mammalian 
species, the PLC family comprises modular, multi-domain 
enzymes covering a wide network, including direct 
binding to G protein subunits, small GTPases, tyrosine 
kinases and membrane lipids (8-10). PLC enzymes are 
thirteen isoenzymes subdivided into 6 subfamilies on 
the basis of  amino acid sequence, domain structure and 
recruitment: β(1–4), γ(1-2), δ(1, 3, 4), ε(1), ζ(1), and η(1-
2) (9,10). Our previous studies suggested that selected 
PLC enzymes are involved in osteosarcoma progression 
(11-25), and probably networking ezrin, a molecule 
acting during the metastatic spread (26-31). However, the 
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tumor matrix mineralization of  osteosarcoma was not 
completely highlighted (32). 

In the present experiment, we analysed the PLC 
enzymes in different bone-related cells in order to compare 
expression panels. We analysed osteoblasts, human 
cultured osteosarcoma cell lines MG-63 and SaOS-2. We 
compared the obtained results to the expression of  PLCs 
in few samples of  patients affected with Ewing sarcoma 
(ES) and synovial sarcoma (SS). 

Osteoblasts secrete the matrix components in the 
osseous tissue, playing a crucial role in bone formation 
and mineralization (33-35). 

Both MG-63 (36-38) and SaOS-2 (39-41) human 
osteosarcoma cell lines used to be considered osteoblast-
like cells, as they are currently used as osteoblastic 
experimental models. 

The ES is the second most common primary malignant 
bone tumour in children and adolescents (42-45). Up 
to 70% of  ESs arises in bone. ES is a heterogeneous 
family of  tumours. Integration of  clinical, radiological, 
immunohistochemical, and molecular data allow the 
definition of  ES, although the diagnosis may result in 
difficult tumours showing atypical histologic features. 
ES is characterized by well defined genetic abnormalities, 
among which the most frequently represented is a 
translocation involving the chromosome 22 resulting 
in different fusion genes. The definition of  histologic 
features is important in order to diagnose ES, although 
the identification of  the histologic subtype does not 
seem to be so crucial, as shared genetic abnormalities 
characterize the Ewing family of  tumors (46-50).

Synovial sarcoma high-grade soft tissue cancer is 
characterized by local invasiveness and proneness 
to metastasization. SS affects pediatric, adolescent, 
and adult population. Despite the name, probably SS 
arises from primitive mesenchymal cells. The genetic 
alteration observed up to 95% of  cases and considered 
a specific molecular marker involves chromosome X and 
chromosome 18 resulting in different fusion genes (SYT-
SSX1 or SYT-SSX2) (52-57). The histologic SS subtype 
does not assume prognostic significance (42,43).

Objectives
Our aim was to search for common patterns of  expression 
in osteoblasts, as well as in ES and SS in order to verify 
differences or similarities that might result in gaining 
helpful elements for diagnosis and/or possible molecular 
therapy targets.

Methods
RNA extraction from human cell lines experiments: 
we analyzed cultured human osteoblasts and two 
osteosarcoma cell lines. MG-63 and SaOS-2 obtained from 

the American Type Culture Collection (ATCC, Rockville, 
MD, USA). The initial seeding number was 250 000 cells 
for each experiment; cells were grown up to 1×106 for 
molecular biology experiments. Cells were cultured as 
previously described (26). Briefly, cells were grown under 
subconfluent or confluent conditions in medium, at 
37°C with 5% of  CO2. Cells were cultured in Dulbecco’s 
minimum essential medium (Sigma) supplemented with 
10% fetal bovine serum (GIBCO) with penicillin (100 
μg/mL), streptomycin (100 U/mL) and sodium pyruvate. 
Cells were grown for 24 hours, reaching a confluence 
of  around 40%-60%. After the confluent monolayer 
was obtained, cells were detached and suspended in 
TRIzol reagent (Invitrogen Corporation, Carlsbad, CA). 
Total RNA was isolated following the manufacturer’s 
instructions. The purity of  the RNA was assessed using 
a UV/visible spectrophotometer (SmartSpec 3000, Bio-
Rad Laboratories, Hercules, California, USA).

RNA extraction from ES and SS samples experiments: 
sample biopsies of  5 patients affected with ES and of 
5 patients affected with SS were analyzed. The clinical 
and radiological diagnosis of  ES was confirmed by 
immunotypization with CD99, FLI1 or ERG, and 
genetic characterization. About 60% of  the patients bore 
the EWS-FLI1 translocation and 40% the EWS-ERG 
translocation. The clinical and radiological diagnosis of 
SS was confirmed by histological features and genetic 
analyses. The sample biopsies were obtained from tumours 
bearing the SYT-SSX translocation. 6- to 10-um sections 
from formalin-fixed, paraffin-embedded specimens were 
used to extract mRNA using the RecoverAll™ Total 
Nucleic Acid Isolation kit for FFPE RNA isolation kit 
(Ambion Inc., Austin, TX) following the manufacturer’s 
instructions. Briefly, samples were deparaffined with 
proteinase K, homogenized and incubated overnight 
at 55°C. RNA was purified by the addition of  RNA 
extraction buffer. Chloroform was then added, followed 
by additional incubation and centrifugation. The aqueous 
phase was removed to fresh tubes and the RNA was 
precipitated, air-dried and resuspended in 10 μL of 
RNA storage solution. To remove genomic DNA, all 
samples underwent DNase treatment. All reagents 
were purchased from Promega (Promega, Madison, 
WI, USA). The concentration and quality of  the RNA 
obtained was monitored using a NanoDrop ND-1000 
Spectrophotometer (Thermo Fisher Scientific, Inc. USA). 

One microgram total RNA was reverse transcribed 
using a High Capacity cDNA Reverse Transcription 
(RT) kit (Applied Byosystems, Carlsbad, California, 
USA) according to manufacturer’s instructions. 
Briefly, RT buffer, dNTP mix, RT random primers, 
multiscribe reverse transcriptase, RNase inhibitor and 
DEPC-treated distilled water were added in RNase-
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free tubes on ice. The RNA sample was added. The 
thermal cycler was programmed as follows: 25°C for 
10 minutes; 37°C for 120 minutes; the reaction was 
stopped at 85°C for 5 minutes. The final volume was 
20 µL. For polymerase chain reaction (PCR) reactions, 
the primer pairs (Bio Basic Inc, Amherst, New York, 
USA) were listed in Table 1. To amplify glyceraldehyde 
3 phosphate dehydrogenase (GAPDH) (Bio Basic 
Inc, Amherst, New York, USA), used a constitutive 
positive control, the following primer pair was used: 
forward 5′ -CGAGATCCCTCCAAAATCAA-3′ reverse 
5′-GTCTTCTGGGTGGCAGTGAT-3′. The specificity 
of  the primers was verified by searching in the NCBI 
database for possible homology to cDNAs of  unrelated 
proteins. The specificity of  the primers was verified by 
searching in the NCBI database for possible homology to 
cDNAs of  unrelated proteins. Each PCR tube contained 
the following reagents: 0.2 µM of  both sense and antisense 
primers, 1-3 µL (about 1 µg) template cDNA, 0.2 mM 
dNTP mix, 2.5 U REDTaq genomic DNA polymerase 
(Sigma-Aldrich) and 1X reaction buffer. MgCl2 was added 
at a variable final concentration (empirical determination 
by setting the experiment). The final volume was 50 µL. 
The amplification was started with an initial denaturation 
step at 94°C for 2 minutes and was followed by 35 
cycles consisting of  denaturation (30 seconds) at 94°C, 
annealing (30 seconds) at the appropriate temperature 
for each primer pair and extension (1 minutes) at 72°C. 
The PCR products were analysed by 1.5% TAE ethidium 
bromide-stained agarose gel electrophoresis (Agarose 
Gel Unit, Bio-Rad Laboratories S.r.l., Segrate, IT). A PC-
assisted CCD camera UVB lamp (Vilber Lourmat, Marne-
la-Vallé France) was used for gel documentation. Gel 
electrophoresis of  the amplification products revealed 
single DNA bands with nucleotide lengths as expected 
for each primer pair. RNA samples were also amplified 
by PCR without RT. No band was observed, excluding 
DNA contamination during the procedure (data not 
shown). The reaction products were further quantified 
with the Agilent 2100 bioanalyzer using the DNA 1000 
LabChip kit (Agilent Technologies, Deutschland GmbH).

Results 
Osteoblasts: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, 
PLCD1, PLCD3, PLCD4 and PLCE were expressed. 
PLCB2 was not expressed. PLCH1 and PLCH2 were 
inconstantly expressed. 

MG-63: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, 
PLCD1, PLCD3, PLCE were expressed. PLCB2 was 
inconstantly expressed. PLCD4, PLCH1 and PLCH2 
were not expressed. 

SaOS-2: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, 
PLCD1, PLCD3, PLCE and PLCH1 were expressed. 

Table 1. PCR Results

Osteoblasts MG-63 Sa-OS2 ES SS

PLCB1 + + + - -

PLCB2 - -+ - +- * -+

PLCB3 + + + + -+

PLCB4 + + + + -+

PLCG1 + + + -+ -+

PLCG2 + + + - -

PLCD1 + + + + +

PLCD3 + + + + -

PLCD4 + - - - +

PLCE + + + - +

PLCH1 -+ - + + -

PLCH2 -+ - - + -+

PCR results. (–) absent transcript; (+) detected transcript; (-+) inconstantly 
expressed transcript; (*) not expressed in the samples of patients bearing the 
EWSR1-FLI1 translocation, expressed in the remaining samples.

PLCB2, PLCD4 and PLCH2 were not expressed. 
ES samples: PLCB1, PLCG2, PLCD4 and PLCE 

were not expressed. PLCB3, PLCB4, PLCD1, PLCD3, 
PLCH1 and PLCH2 were expressed. PLCB2 was not 
expressed in the samples of  patients bearing the EWSR1-
FLI1 translocation, and was expressed in the remaining 
samples. PLCG1 was not expressed in 20% of  the 
samples (not overlapping).

SS samples: PLCB1, PLCG2, PLCD3 and PLCH1 
were not expressed; was very slightly expressed. PLCB 
and PLCD1 were expressed. PLCB2, PLCG1 or PLCH2 
were not expressed in 25% of  the samples and expressed 
in the remaining samples (not overlapping). PLCB4 was 
expressed in 50% of  the samples. PLCD4 was expressed 
in 25% of  the samples.

Discussion
Research efforts were addressed to analyze the metabolism 
of  bones and the signal transduction pathways involved 
in bone mineralization were actively studied (58-61), 
with special regard to the systems related to calcium 
metabolism (62). 

Osteoblasts, MG-63 cells and SaOS-2 cells share similar 
PLC enzymes panel of  expression, confirming those 
observations that have led to use the 2 osteosarcoma cell 
lines as osteoblasts experimental model. However, slight 
differences were detected in the expression of  selected 
isoforms.

Confirming our previous reports (26-32), MG-63 
expressed a number of  PLC enzymes, including PLCB1, 
PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, PLCD3, 
PLCE and inconstantly PLCB2. SaOS-2 expressed 
PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, 
PLCD3, PLCE and PLCH1. Osteoblasts (26) expressed 
PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, 
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PLCD3, PLCD4 and PLCE, PLCH1 and PLCH2 were 
inconstantly expressed.

PLCD4 mRNA was differently detected. The mRNA 
transcript for PLCD4 was detected in osteoblasts, while it 
was absent in both MG-63 and SaOS-2 cells. The PLC δ4 
protein was not detected in any of  the analyzed cell lines. 

Interestingly, in our previous reports PLC δ4 was 
inconstantly expressed in fibroblasts (13), was expressed in 
the Hs888 human metastatic cells and was absent in other 
human osteosarcoma cell lines. In previous reports, the 
transcription of  PLCD4 was up-regulated after silencing 
of  ezrin, a membrane protein interacting with actin which 
is involved in the metastatic spread of  osteosarcoma (26-
31). Moreover, PLCD4 absence in MG-63 cells did not 
change after administration of  PLC inhibitors, indicating 
that it was constitutionally untranscribed (31).

PLC δ enzymes, the most primitive and evolutionary 
conserved, are known to be very sensitive to calcium and 
were described to play a key role in cell proliferation (9). In 
yeast and higher plants, PLC δ4 is involved in nutritional 
and environmental stresses (63,64). Moreover, recent 
observations suggested that PLC δ4 might be involved 
in the stress-induced response in endothelial cells (12,19-
21). In the regenerating liver, PLC δ4 mRNA is expressed 
at higher levels than in normal resting liver, as well as 
in hepatoma cells, and in Src-transformed cells (9). PLC 
δ4 was demonstrated to regulate the liver regeneration in 
cooperation with nuclear protein kinase C (PKC) alpha 
and epsilon (65).

Moreover, PLC δ4 expression was abundant in a number 
of  tumours, including astrocytomas (11,15,16). In breast 
cancer the abnormal expression of  PLC δ4 contributes 
to carcinogenesis by up-regulating ErbB expression and 
activating the ERK pathway (66). Probably, the expression 
of  PLC δ4 is a response to mitogenic signals or the isoform 
is expressed more abundantly in high-rate proliferating 
cells (67). In our present experiments, the transcript of 
PLCD4 was detected exclusively in osteoblasts, while 
it was absent in either the osteosarcoma cell lines. The 
presence of  PLCD4 transcript in osteoblasts might 
confirm its role in metabolically active cells. However, the 
absence of  PLCD4 expression in both MG-63 and SaOS-
2 cells indicate that those cell lines cannot be perfectly 
compared to osteoblasts. 

The presence of  PLCD4 transcript in osteoblasts in 
the absence of  the corresponding protein suggests that a 
complex regulation of  PLC δ4 translation occurs in cells. 
Those aspects and the possible relationship with other 
PLC enzymes will require further investigations. In fact, 
up-regulation of  PLCD4 was suggested to be related to 
the regulation of  other PLC enzymes, probably PLC β1 
(16-30). That might be due to the highest sensitivity of 
PLC δ isoforms to calcium concentration and suggest 

that an internal regulatory hierarchy might exist among 
PLC enzymes. That is an old issue, in fact for a long time 
it was hypothesized that PLC δ4 or some splice variants 
might act as negative regulators for PLC (68).

That represents an interesting point, in that also 
for the activity of  PLC η isoforms calcium levels are 
critical (9,69,70). In the present experiments, osteoblasts 
differently expressed PLCH1 and PLCH2 compared to 
MG-63 and SaOS-2 cells.

PLC η1 acts as a signal amplifier in G protein-coupled 
receptor (GPCR)-mediated calcium signaling. Knocking 
down PLC η1, but not PLC-η2, significantly reduced 
the PLC pathway. PLC η1 is efficiently activated by 
intracellular calcium stores, suggesting that mobilization 
of  calcium from the ER plays a critical role in PLC 
η1 activation (71). That might fit with our present 
observation that PLCD4 is expressed in osteoblasts. 
In fact, PLC δ4 is activated by low concentrations of 
calcium. Once activated, it can increase the intracellular 
calcium concentration via IP3 production, thus activating 
PLC η1 as a positive feed-back. However, despite the 
presence of  PLCD4 transcript in osteoblasts, PLC δ4 
protein was slightly detected within the cell performing 
immunofluorescence experiments.

Similarly within the cell, PLC η2 contributes to calcium 
dynamics (69) by transducing signals from mitochondria 
calcium. Alterations in the calcium levels modulate the 
activity of  PLC η2, suggesting that this isoform may 
contributes to regulate the calcium signaling networking 
intracellular and extracellular stimuli. The sensitivity of 
PLC η2 to calcium might favour the amplification of 
intracellular calcium transients and/or crosstalk between 
storing compartments.

The subcellular distribution of  the PLC enzymes also 
showed slight differences in the analysed cell lines. In 
particular, selected enzymes such as PLC β1 and either 
PLC η enzymes were differently stored within the cell. In 
osteoblasts, PLC β1 seems to be stored in vesicles partially 
resembling the endoplasmic reticulum distribution. In 
SaOS-2 cells, PLC η subfamily enzymes also seem to be 
stored in vesicles and the punctuate distribution of  PLC 
η2 results less evident.

The present results confirm that osteoblasts, MG-63 
cells and SaOS-2 cells share similar panel of  expression 
of  PLC enzymes, with notable exceptions indicating that 
MG-63 and SaOS-2 osteosarcoma cell lines might not 
represent an appropriate experimental model to analyse 
the signal transduction in osteoblasts.

Interesting differences were identified relative to the 
expression of  PLCs in ES and SS. In fact, most ES 
and SS did not express PLCB1, which was expressed in 
most osteoblasts, MG-63 and SaOS-2 cells. Conversely, 
PLCB2, unexpressed in the cell lines, was expressed in 
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some ES and SS. However, PLCH1 was expressed in 
SaOS-2 and inconstantly expressed in osteoblasts, while 
it was expressed in ES and unexpressed in SS. 

The main genetic abnormalities described in ES and SS 
are actually considered as crucial elements for diagnosis 
(9,72,73). ES is defined by a balanced translocation that 
involves the EWSR1 gene (OMIM *133450; mapping 
on 22q12.2) and a member of  the E-twenty-six (ETS) 
family of  transcription factors, most frequently FLI1 
(OMIM *193067; mapping in 11q24.3) or ERG (OMIM 
*165080; mapping in 21q22.2) (74,75). Beside the main 
translocations previously described, either tumour can 
bear additional secondary chromosomal abnormalities, 
such as gains of  chromosomes and/or loss of 
chromosome regions (76-78).

Previous studies performed in epigenetically modified 
stable ES’ cells showed partial loss of  endogenous 
EWSR1-FLI1 due to transfection with antisense EWSR1-
FLI1 DNA plasmid (79). Interestingly, the expression of 
PLC β2 and PLC β3 resulted reduced in the transfected 
cells that showed EWSR1-FLI1 loss. PLCB3 maps on 
chromosome 11, region 11q13. However, the break 
point of  the EWS-Fli-1 rearrangement usually involves 
the 11q24 region, probably distal to the PLCB3 locus. 
Conversely, PLCB2 gene maps in chromosome 15, in 
a region not commonly involved in the rearrangement. 
Those findings suggested that the impairment of  the 
G-protein- mediated PI turnover could be responsible for 
the concomitantly observed suppression of  transfected 
cells growth (79). That supported the hypothesis that 
signalling through Gq and PLC β isoforms might 
represent a crucial pathway in the transformation and 
growth of  tumours (13-20,80).

In the present experiments, PLCB1 gene was not 
expressed in either ES or SS. Conversely it was not 
detected in cultured cells. PLC β1 was suggested to be 
mainly involved in inflammation (21-25,30), as well as 
in differentiation (81,82). Moreover, PLC β1 might be 
altered in breast cancer (83) and its partial or total lack 
might influence cancer progression in myeloid tissue 
(84). Previous studies (24-26) demonstrated that in 
osteosarcoma, PLCB1 increase is associated with the 
decrease of  ezrin, which is thought to facilitate tumour 
progression, suggesting that PLC β1 might play an 
opposite role. 

PLCB2 transcript was detected in 70% of  SS samples 
and in 80% of  ES samples. Remarkably, PLC β2 was 
not detected in ES samples bearing the EWSR1-
ERG translocation. PLC β2 is mainly expressed in 
haematopoietic lineage cells (9). PLC β2 protein was also 
detected in normal skin fibroblasts (13), as well as in skin 
fibroblasts from patients presenting with hypertension 
(85). PLC β2 is thought to be a part of  the IGF2-IGF2R/

PLC β2 axis, which is involved in neovascularization (86). 
Previous reports also demonstrated a specific role of 
PLC β2 in osteosarcoma cells mechano-transduction and 
attachment, indicating that the presence of  PLC β2 might 
be correlated with specific stimuli (85). The meaning 
of  PLC β2 absence in ES carrying the EWSR1-ERG 
translocation needs further studies.

The most relevant difference observed in ES compared 
with SS regarded PLC ε and PLC η isoforms. PLCH1 
and PLCH2 were expressed in ES samples. PLCH1 
was absent and PLCH2 was present in 75% of  the SS 
samples. Conversely, PLCE was not expressed in ES and 
was weakly expressed in SS. The role of  PLC η subfamily 
is not fully highlighted. The alternate presence of  one/
both PLC η isoforms or PLC ε was described in other 
cell types, suggesting a sort of  dualism. The role of  PLC 
η isoforms needs further studies in order to be elucidated. 
In fact, different splicing isoforms were described, PLC 
η enzymes are considered very highly sensitive to calcium 
concentrations and probably interact with PLC isoforms 
belonging to other subfamilies in a complex manner.

Conclusion
Our results indicated that the expression of  PLC enzymes 
differs in osteoblasts, ES and SS. Specific expression 
panel of  PLCs suggests that selected isoforms might play 
a specific role in calcium metabolism in osteoblasts which 
differ from ES and SS. Rapid advances in molecular 
methodologies will allow to discover novel genetic 
events and help to refine diagnostic criteria, highlighting 
the biology of  a number of  tumours. The PI signal 
transduction pathway might deserve further research 
effort in order to investigate the role of  PLC enzymes in 
the progression of  sarcomas and also paving the way to 
novel diagnostic elements.
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