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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

In recent years there has been a rapid development in technologies for smart monitoring applied to many different 
areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple 
sensors distributed within a network to extract useful information for decision-making. The management and the 
analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, 
related to the different communication standards, the heterogeneous structure and the huge volume of data.  

In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an 
Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The 
method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and 
the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. 

The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic 
proprieties representing useful indicator for the maintenance and diagnosis.  
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1. Introduction 

A sensor network (SN) comprises a group of tiny devices and wireless infrastructure that monitor and record 
conditions in any number of environments. With the recent diffusion of Micro-Electro-Mechanical Systems 
technology, the SNs has received a significant attention in the real world scenario and several example of their 
applications are available in multiple fields,  such as power grids, smart buildings, industrial process, transport and 
logistics, military applications, environmental monitoring, human-centric applications, etc. [1,2]. 

Looking at internal combustion engines, different on-board-diagnostic (OBD) control unit, defined engine control 
module ECM or alternatively powertrain control module (PCM) are typically installed. Customary OBD system are 
designed and calibrated to detect single component fault at the required malfunction criteria rather than every 
combination of multiple component degradations. The basic concept of OBD systems is to result in malfunction 
indicator light (MIL) illumination after a fault has been detected on two or three consecutive driving cycles [3]. But 
it is still difficult to detect a fault when the standard operation conditions of any components have only partially 
reduced its efficiency, especially under critical working conditions (i.e. at high speed and low loads) [4]. In some 
recent works, multivariate statistical analysis approach to process the monitored variables (i.e. instantaneous engine 
speed) has been evaluated for detecting the multiple misfire event in multi-cylinder diesel engine [5]. To be able to 
identify the cause of the fault, multivariate analysis and the principal component analysis (PCA) was used to 
investigate the relationship between process parameters, energy variables and emissions [6]. Data Analytics for SNs 
to perform intelligent analysis on sensor-collected data is considered as a complex area where several issues are still 
unresolved. In fact, these data seem to have the characteristics of the "4 V" (Volume, Velocity, Variety and Value) 
typical of the big data, due to their  massive amount, the speed required for their collection, processing and use, the 
heterogeneity (variety of communication standards and data formats), their high redundancy and noise [7]. 

As reported in Zhou et al. [8], traditional data analysis in statistics, data mining, machine learning, data 
management and data visualization may result inappropriate in dealing with the sensor network big data.  

In this paper we propose to apply an analytical procedure to analyze sensor network data gathered from an 
internal combustion engine (ICE), based on the Complex Network analysis techniques. Similar methods have been 
successfully applied in biology and biomedicine [9], but in current literature there are no application cases for ICE 
monitoring systems. For example, in neuroscience, complex networks are used to describe the structure of 
relationships between the various regions of the brain and create diagnostic models based on recorded measures 
from functional magnetic resonance imaging (fMRI), electroencephalography (EEG) or magnetoencephalography 
(MEG) [10]. 

The main purpose of this paper is to test the effectiveness of these analytical methods to identify different 
operating conditions of an ICE. For these reason, we performed three different laboratory tests in order to reproduce 
a standard situation (thus reproducing urban condition) and two possible failures: i) disabling the exhaust gas 
recirculation (EGR) valve and ii) reducing by 50% the section of the intake air duct. 

An accurate description of the proposed method for sensor network data analysis is given in Chapter 2, while in 
Chapter 3 the case study is defined. Chapter 4 shows the results obtained by applying the method on the case study 
and finally,  in Chapter 5, the conclusions are presented. 

2. Data analysis model 

The proposed data analysis approach is based on the graph modeling of the sensor network and the subsequent 
study of the characteristic topological metrics, with the aim of extracting useful information on the analyzed system. 
Specifically, the method can be summarized in the following steps: 

a) Extractions of the time series 
b) Data cleaning and recovering 
c) Data modeling with an unweighted graph 
d) Definition of the functional graph 
e) Analysis of the topological metrics of the graph 

At the initial stages (a,b), the heterogeneous data acquired by the sensors are temporally re-aligned and any 
outlier or background noises are removed. In step (c) a fully-connected graph is created in which each monitored 
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variable represents a node and all the nodes are connected to each other with non-directed edges. The output of this 
preliminary phase is an unweighted graph model of the sensor network.  

The next step (d) consists in attributing a weight to all the links, by defining a connectivity matrix represented 
with a functional graph. This process is based on the evaluation of the correlation between the pairs of time series 
X1 (t) ... XN (t) recorded from the N different sensor nodes, for each pair of nodes i and j. The magnitude of the 
statistical correlations represents the weighted links wij of the resulting functional graph (see Fig. 1). 

Among the number of the methods to compute those functional links [11], we applied a nonlinear multivariate 
correlation method that returns a non-directional functional graph, the Mutual Information (MI). The MI is a 
probabilistic function able to quantitatively analyze the information shared between any two random variables X and 
Y, and reads as: 

 (1) 

where, p(x), p(y), and p(x,y) are respectively the marginal and the joint probability density functions of X and Y. 
Unlike other correlation methods, MI has the great advantage to measure any type of relationship between 

variables and it is not affected from variability in spatial transformations (the logarithm argument in Eq. 1 is 
dimensionless) [12]. Measure of similarity is widely used for example in signal analysis and image processing 
applications [13, 14]. However the MI is based on statistical functions that have to be estimated with a finite number 
of samples. This estimation can be performed by different approaches among which the histogram based approach 
has been extensively used for the advantages in terms of low computational complexity [15]. In the present study, 
MI was calculated within a fixed range of 100 data entry window, sliding over the entire duration of the tests. As 
such for the monitored variables we got n-100 functional graphs. 

Finally, in the last step (e), the topological metrics for each functional graph obtained in the previous point are 
evaluated. Topological metrics can be classified into three main subclasses: distance, connection, and spectral. The 
distance class includes the metrics, which provides information about the graph size (e.g. the number of nodes a 
message has to cross to reach its destination). The connection class includes all the metrics providing information 
related to the structure of the network (e.g. the number of a node’s neighbors), together with metrics that help 
grouping nodes into clusters or hierarchies. Finally, the spectral class includes the eigenvalues and eigenvectors of a 
graph [16]. Looking at the specific sensor network, the number of nodes of the functional graphs remains constant, 
while the correlations between the monitored variables (edge weight) and the edge number (in the case of MI = 0, 
the edge is automatically removed) vary over time. For this reason, we have considered two topological metrics able 
to vary according to the number of edges and/or to their specific weight, namely the Diameter and the Average 
Weighted Degree Centrality (AWDC). 

The Diameter is defined as the length maxi,j d(i,j) of the "longest shortest path" between any two graph vertices 
(i,j), where d(i,j) is a graph distance [17]. The diameter is, then, the maximal distance between all pairs of nodes, 
when paths which backtrack, detour, or loop are excluded from consideration. 

The Weighted Degree Centrality WDC of a node is the sum of weighted values of the edges connecting node i 
and its neighbors j. It reads as: 

 

 (2) 
 

 
Where Ni is the set of neighbors of node i and Wi,j refers to the weighted value of edge between node i and its 

neighbor j [18, 19]. As previously defined, the WDC is a specific attribute of the single node, so for a unique 
characterization of the graph we have considered the Average Weighted Degree Centrality. 
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Figure 1. Example of a functional graph structure of a 6-node sensor 
network at time t. 

 

 

Table 1. Characteristics of the engine used for tests. 

Engine  1.9 JTD 
Cycle  Diesel, 4 strokes 
Total displacement  1910 cm3 

Number of cylinders  4 
Max. Torque  205 Nm @ 1500 rpm 
Max. Power  77 kW @ 4000 rpm 
Injection type  Common‐rail, Bosch Unijet 

 
 

3. Case Study 

3.1 Experimental setup 

A four strokes, common-rail, turbocharged Diesel engine with a JTD injection system was used for the tests. The 
main characteristics of the engine are reported in Table 1. 

The engine was installed in the Department of Mechanical and Aerospace Engineering Laboratory, at the 
Sapienza University of Rome, Italy. In order to install the engine on the test bench some parts were removed or 
modified. In particular, the air intake was connected to the room ventilation system so that the intake air is at 
constant temperature (about 25 °C) and pressure (101500 Pa). Moreover, flywheel and gearbox have been removed. 

The test bench is equipped with a Schenk hydraulic brake. A Cardan joint connects the engine drive shaft and the 
hydraulic brake. Despite the modifications reported, the engine is equipped with the original auxiliary and injection 
systems and its own ECU. Therefore, the engine can be considered in automotive configuration. Further details on 
the experimental setup can be found in [20, 21]. 

 
3.2 Measuring chain 

Figure 2 shows a sketch of the measuring chain used in the present study. A specific in-house software (coded in 
Python) was developed for data acquisition. It couples the data coming from ECU with those measured by the Bosh 
BEA 350 emissions monitoring unit (EMU). The code is upgraded respect of the one already realized for the 
acquisition of all the engine parameters handled by the ECU [23]. Since the EMU allows only few recording of the 
measured data and it cannot be directly connected to a PC, we adopted a video capture and recognize approach. 
Each time the software acquires data from the ECU, through a standard webcam it also takes a picture of the EMU 
monitor runtime showing emissions data. At the end of each test, a post-processing tool using OCR (Optic Character 
Recognition) technique analyzes the photos and converts the information they contain into numbers. In this way, we 
couple the engine and emissions data. The software was implemented on Raspberry Pi system. 

The most relevant engine parameters are thus acquired by connecting a PC to the ECU and (indirectly) to the 
EMU, while torque and power are measured through the hydraulic brake of the test bench. Table 2 summarizes all 
the monitored variables. 

 
3.3 Experiments details 

In some previous publications (see for instance [22, 23]), the engine behavior was studied performing a series of 
tests. Torque, power, specific fuel consumption and some other relevant quantities have been measured at different 
pedal position in order to explore the complete map of the engine. 
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Here we focus our attention on the engine behavior under some simple failure situations. In particular, we wanted 
to reproduce somehow an urban situation. In this conditions, the gas pedal position (gpp) rarely goes over 35-40%, 
thus we decided to test the engine at an average gpp, namely 20%. Then, the engine speed was set to 3000 rpm 
which is the value at which the engine exerts about its maximum power for the given gpp. Assuming these operative 
points, we performed three different experiments in order to reproduce a standard situation and two possible failures. 
In the standard situation, the engine works without any modification; a first failure was reproduced disabling the 
exhaust gas recirculation (EGR) valve. The last test is performed reducing by 50% the section of the intake air duct, 
thus reproducing a clogged air filter. The engine was brought to the chosen operating points and left at this condition 
for 30 min. During the experiments, the data acquisition frequency was about 0.125 Hz. Table 3 summarizes the 
operative conditions of the performed tests. 

 

 

Table 2.  List of the monitored variables with the specific meter used for the measurements. 

1 = Engine speed [rpm]  8 = Inj. FuelQuantity‐Main [mm3/str]  15 = Boost Pressure [mbar]  22 = CO2 [% vol.] 
2 = Engine Temp.[°C]  9 = Inj. Time (Pre) [ms]  16 = EGR Valve Opening  [%]  23 = O2 [% vol.] 
3 = Gas Pedal Position [%]  10 = Inj. Time (Main) [ms]  17 = Fuel Pressure [bar]  24 = NO [ppm] 
4 = Fuel Temperature [°C]  11 = Inj. Advance (Pre) [deg]  18  =Oil Temperature [°C]  25 = Brake Power [kW] 
5 = Fuel Consumption [l/h]  12 = Inj. Advance (Main) [deg]  19 = CO [% vol.]   
6 = Total FuelQuantity [mm3/str]  13 = Intake Air Quantity [mg/str]  20 = Lambda [‐]   
7 = Inj. FuelQuantity‐Pre [mm3/str]  14 = Air Temp. Boost Manifold [°C]  21 = HC  [ppm]   
Meters used: Variables 1‐18 OBD Sensors; Variables 19‐24 Emission Analyzer; Variable 25 Hydraulic Brake. 

4. Results 

Figure 3 shows torque (Nm), power (kW) and specific fuel consumption (g/kWh) curves at full load. Maximum 
torque equals about 260 Nm at 2250 rpm; maximum power equals 73 kW at about 3000 rpm; minimum fuel 
consumption is achieved at about 2250 rpm and equals 170 g/kWh.   

Figure 4 shows the functional graphs obtained by applying the SN model to the data recorded during the tests at 
the investigated three operating conditions. The graphs at the top of Fig. 4 are obtained by applying the Force Atlas 
Algorithm [24], which visually emphasizes the complementarity between nodes (the most influential nodes are 
grouped at the center of the graph, while the least influential ones are placed at greater gradual distances).  

The lower part of Fig. 4 shows the graphs obtained for the same three different operating conditions by applying 
the Circular Layout [24], which has the advantage of clearly ranking all the existing links between the pairs of nodes 
and emphasizing the most important ones. 

The different colors of the nodes are related to the specific monitoring systems adopted (OBD sensors, emission 
analyzer or hydraulic brake). The size and color intensity of the nodes are based on the Weighted Degree Centrality 

Figure 2. Layout of the experimental setup and measurement chain. 

rpm 
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modified. In particular, the air intake was connected to the room ventilation system so that the intake air is at 
constant temperature (about 25 °C) and pressure (101500 Pa). Moreover, flywheel and gearbox have been removed. 

The test bench is equipped with a Schenk hydraulic brake. A Cardan joint connects the engine drive shaft and the 
hydraulic brake. Despite the modifications reported, the engine is equipped with the original auxiliary and injection 
systems and its own ECU. Therefore, the engine can be considered in automotive configuration. Further details on 
the experimental setup can be found in [20, 21]. 

 
3.2 Measuring chain 

Figure 2 shows a sketch of the measuring chain used in the present study. A specific in-house software (coded in 
Python) was developed for data acquisition. It couples the data coming from ECU with those measured by the Bosh 
BEA 350 emissions monitoring unit (EMU). The code is upgraded respect of the one already realized for the 
acquisition of all the engine parameters handled by the ECU [23]. Since the EMU allows only few recording of the 
measured data and it cannot be directly connected to a PC, we adopted a video capture and recognize approach. 
Each time the software acquires data from the ECU, through a standard webcam it also takes a picture of the EMU 
monitor runtime showing emissions data. At the end of each test, a post-processing tool using OCR (Optic Character 
Recognition) technique analyzes the photos and converts the information they contain into numbers. In this way, we 
couple the engine and emissions data. The software was implemented on Raspberry Pi system. 

The most relevant engine parameters are thus acquired by connecting a PC to the ECU and (indirectly) to the 
EMU, while torque and power are measured through the hydraulic brake of the test bench. Table 2 summarizes all 
the monitored variables. 

 
3.3 Experiments details 

In some previous publications (see for instance [22, 23]), the engine behavior was studied performing a series of 
tests. Torque, power, specific fuel consumption and some other relevant quantities have been measured at different 
pedal position in order to explore the complete map of the engine. 
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Here we focus our attention on the engine behavior under some simple failure situations. In particular, we wanted 
to reproduce somehow an urban situation. In this conditions, the gas pedal position (gpp) rarely goes over 35-40%, 
thus we decided to test the engine at an average gpp, namely 20%. Then, the engine speed was set to 3000 rpm 
which is the value at which the engine exerts about its maximum power for the given gpp. Assuming these operative 
points, we performed three different experiments in order to reproduce a standard situation and two possible failures. 
In the standard situation, the engine works without any modification; a first failure was reproduced disabling the 
exhaust gas recirculation (EGR) valve. The last test is performed reducing by 50% the section of the intake air duct, 
thus reproducing a clogged air filter. The engine was brought to the chosen operating points and left at this condition 
for 30 min. During the experiments, the data acquisition frequency was about 0.125 Hz. Table 3 summarizes the 
operative conditions of the performed tests. 

 

 

Table 2.  List of the monitored variables with the specific meter used for the measurements. 

1 = Engine speed [rpm]  8 = Inj. FuelQuantity‐Main [mm3/str]  15 = Boost Pressure [mbar]  22 = CO2 [% vol.] 
2 = Engine Temp.[°C]  9 = Inj. Time (Pre) [ms]  16 = EGR Valve Opening  [%]  23 = O2 [% vol.] 
3 = Gas Pedal Position [%]  10 = Inj. Time (Main) [ms]  17 = Fuel Pressure [bar]  24 = NO [ppm] 
4 = Fuel Temperature [°C]  11 = Inj. Advance (Pre) [deg]  18  =Oil Temperature [°C]  25 = Brake Power [kW] 
5 = Fuel Consumption [l/h]  12 = Inj. Advance (Main) [deg]  19 = CO [% vol.]   
6 = Total FuelQuantity [mm3/str]  13 = Intake Air Quantity [mg/str]  20 = Lambda [‐]   
7 = Inj. FuelQuantity‐Pre [mm3/str]  14 = Air Temp. Boost Manifold [°C]  21 = HC  [ppm]   
Meters used: Variables 1‐18 OBD Sensors; Variables 19‐24 Emission Analyzer; Variable 25 Hydraulic Brake. 

4. Results 

Figure 3 shows torque (Nm), power (kW) and specific fuel consumption (g/kWh) curves at full load. Maximum 
torque equals about 260 Nm at 2250 rpm; maximum power equals 73 kW at about 3000 rpm; minimum fuel 
consumption is achieved at about 2250 rpm and equals 170 g/kWh.   

Figure 4 shows the functional graphs obtained by applying the SN model to the data recorded during the tests at 
the investigated three operating conditions. The graphs at the top of Fig. 4 are obtained by applying the Force Atlas 
Algorithm [24], which visually emphasizes the complementarity between nodes (the most influential nodes are 
grouped at the center of the graph, while the least influential ones are placed at greater gradual distances).  

The lower part of Fig. 4 shows the graphs obtained for the same three different operating conditions by applying 
the Circular Layout [24], which has the advantage of clearly ranking all the existing links between the pairs of nodes 
and emphasizing the most important ones. 

The different colors of the nodes are related to the specific monitoring systems adopted (OBD sensors, emission 
analyzer or hydraulic brake). The size and color intensity of the nodes are based on the Weighted Degree Centrality 

Figure 2. Layout of the experimental setup and measurement chain. 

rpm 
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value, while the thickness and the color intensity of the edges are based on the value of the weight calculated with 
the mutual information.   

 

 

Table 3. Testing conditions. 
Name  Fuel  Gpp 

(%) 
Engine  
Speed 
(rpm) 

EGR  Air intake 
section 

Standard  gasoil  20  3000  ON  100 % 
50% clogged  
air filter 

gasoil  20  3000  ON  50 % 

EGR valve OFF  gasoil  20  3000  OFF  100 % 
 

Figure 3. Torque, power and specific fuel consumption curves of the 
tested engine at full load. 

 
As visible in the Force Atlas, Figure 4.a, the main influencers in standard operating conditions are the brake 

power (node 1), the fuel temperature (node 4) and the EGR valve opening (node 16). When moving to the Circular 
Layout, then, it is possible to infer also a strong correlation between the engine speed (node 1), the brake power 
(node 25) and the set-point of the EGR valve. 

When the EGR valve is switched off (Figure 4.b), in addition to the expected decrease of the influence of the 
specific variable (node 16), the failure of the valve (which also regulates the emissions) is triggered by the lambda 
probe (node 20) which emphasizes its importance on the graph. The difference in operation of the lambda probe 
with respect to the standard case implies a different regulation of the input air and the amount of fuel in the main 
injection, both from the ignition advance (node 12) and the injection fuel quantity (node 8). 

When clogging the air filter (Figure 4.c), the system recognizes the insufficient amount of air according to the 
rotation regime, so the weight of node 1 and node 25 decreases respect to the standard conditions. 

In order to provide some hints, Figure 6 shows the time plot of the two topological metrics, respectively the 
Diameter (Figure 5.a) and the Average Weighted Degree (Figure 5.b), calculated for all the graphs considered for 
each operating condition. 

Notably, both Diameter and Average Weighted Degree temporal plot remains clearly distinct within specific 
ranges corresponding to the three tested operating conditions in the monitoring interval. The observation of the 
averaged values, summarized in Table 3, it is possible to note that each operating condition is uniquely identified by 
specific topological values. 

5. Conclusions 

In this paper an analytical model was proposed for heterogeneous data gathered from sensor networks installed in 
ICE. The approach derives from the analysis of signals typically adopted in neuroscience and is based on the graph 
modeling of the network where the edge weights are defined by the evaluation of the MI between all the pairs of 
nodes. Finally, the topological metrics of the graph are extrapolated, with the aim of identifying the synthetic 
indicators characteristic of a given condition of the monitored system. Specifically, the method was tested for the 
identification of two abnormal operating conditions in the ICE: 50% clogged air filter and EGR valve OFF.  

For the laboratory tests, various monitoring systems (OBD sensors, emission analyzer and hydraulic brake) have 
been installed, each with a specific data acquisition and transmission protocol, for a total duration of 30 minutes and 
a frequency of acquisition of 0.125 Hz. The results show that the method is able to provide identification patterns of 
each of the analyzed conditions represented by a specific graph characterized  by well-defined correlations between 
the pairs of monitored variables (see Fig. 4). Furthermore, through the determination of the topological metrics of 
the graphs (Diameter and Average Weighted Degree) it is possible to define synthetic indicators that uniquely 
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identify the condition investigated (see Fig. 5 and Table 4). The analysis of these indicators can be used as basis to 
develop both a sensor failure check strategy and a malfunction prediction. The diameter of the graph and the average 
weighted degree, together with other information provided by functional graphs of several operating conditions, can 
provide a combination of indicators that are unique or typical of few specific operating conditions. On these bases, 
one can develop a tool to predict possible malfunction of the system. 

 

  
Figure 5. a. Diameter of the graph; b. Average Weighted Degree. Trend over time for the 3 different operating conditions.  

For future developments, it would be interesting to test the method by simulating other types of typical failure of 
ICE, or increase the data acquisition frequency in order to characterize the engine behavior in unsteady state and 
transitional conditions. 
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Figure 4. Representation of the functional graph by Force Atlas Layout and Circular layout for 3 different operating conditions: (a) Standard; (b)
EGR valve opening; (c) 50% clogger air filter. The size and color intensity of the nodes are based on the weighted degree, while the thickness and
the color intensity of the edges are based on the weight measured by the MI. 
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value, while the thickness and the color intensity of the edges are based on the value of the weight calculated with 
the mutual information.   
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Figure 3. Torque, power and specific fuel consumption curves of the 
tested engine at full load. 

 
As visible in the Force Atlas, Figure 4.a, the main influencers in standard operating conditions are the brake 

power (node 1), the fuel temperature (node 4) and the EGR valve opening (node 16). When moving to the Circular 
Layout, then, it is possible to infer also a strong correlation between the engine speed (node 1), the brake power 
(node 25) and the set-point of the EGR valve. 

When the EGR valve is switched off (Figure 4.b), in addition to the expected decrease of the influence of the 
specific variable (node 16), the failure of the valve (which also regulates the emissions) is triggered by the lambda 
probe (node 20) which emphasizes its importance on the graph. The difference in operation of the lambda probe 
with respect to the standard case implies a different regulation of the input air and the amount of fuel in the main 
injection, both from the ignition advance (node 12) and the injection fuel quantity (node 8). 

When clogging the air filter (Figure 4.c), the system recognizes the insufficient amount of air according to the 
rotation regime, so the weight of node 1 and node 25 decreases respect to the standard conditions. 

In order to provide some hints, Figure 6 shows the time plot of the two topological metrics, respectively the 
Diameter (Figure 5.a) and the Average Weighted Degree (Figure 5.b), calculated for all the graphs considered for 
each operating condition. 

Notably, both Diameter and Average Weighted Degree temporal plot remains clearly distinct within specific 
ranges corresponding to the three tested operating conditions in the monitoring interval. The observation of the 
averaged values, summarized in Table 3, it is possible to note that each operating condition is uniquely identified by 
specific topological values. 

5. Conclusions 

In this paper an analytical model was proposed for heterogeneous data gathered from sensor networks installed in 
ICE. The approach derives from the analysis of signals typically adopted in neuroscience and is based on the graph 
modeling of the network where the edge weights are defined by the evaluation of the MI between all the pairs of 
nodes. Finally, the topological metrics of the graph are extrapolated, with the aim of identifying the synthetic 
indicators characteristic of a given condition of the monitored system. Specifically, the method was tested for the 
identification of two abnormal operating conditions in the ICE: 50% clogged air filter and EGR valve OFF.  

For the laboratory tests, various monitoring systems (OBD sensors, emission analyzer and hydraulic brake) have 
been installed, each with a specific data acquisition and transmission protocol, for a total duration of 30 minutes and 
a frequency of acquisition of 0.125 Hz. The results show that the method is able to provide identification patterns of 
each of the analyzed conditions represented by a specific graph characterized  by well-defined correlations between 
the pairs of monitored variables (see Fig. 4). Furthermore, through the determination of the topological metrics of 
the graphs (Diameter and Average Weighted Degree) it is possible to define synthetic indicators that uniquely 
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identify the condition investigated (see Fig. 5 and Table 4). The analysis of these indicators can be used as basis to 
develop both a sensor failure check strategy and a malfunction prediction. The diameter of the graph and the average 
weighted degree, together with other information provided by functional graphs of several operating conditions, can 
provide a combination of indicators that are unique or typical of few specific operating conditions. On these bases, 
one can develop a tool to predict possible malfunction of the system. 
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For future developments, it would be interesting to test the method by simulating other types of typical failure of 
ICE, or increase the data acquisition frequency in order to characterize the engine behavior in unsteady state and 
transitional conditions. 
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Figure 4. Representation of the functional graph by Force Atlas Layout and Circular layout for 3 different operating conditions: (a) Standard; (b)
EGR valve opening; (c) 50% clogger air filter. The size and color intensity of the nodes are based on the weighted degree, while the thickness and
the color intensity of the edges are based on the weight measured by the MI. 
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Table 4: Summary of topological metrics (Diameter and AWD) evaluated for each investigated operating condition. 

   Standard  50% Clogged air Filter  EGR Valve OFF 

AverageWeightedDegree  27,49  20,39  15,45 

Diameter  1,30  0,38  0,81 
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