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Dear Editor, 

the manuscript we intend to submit for consideration of publication in Solar Energy reports for the 

first time the photoelectrochemical properties of p-type dye-sensitized solar cells (p-DSCs), which 

employ nanostructured NiO photocathodes previously sensitized by pyran based colorants. The 

series of dye-sensitizers here proposed represents an original choice in the framework of the 

research on p-DSCs. The light conversion performance of the photoelectrochemical cells here 

described for the first time  compares to the  ones of the best performing devices of the same type. 

For these reasons we believe that the content of the present work fits with the aims of this journal 

and  attracts the interest of a broad audience ranging from organic chemists to electrochemists and 

materials scientists that are involved in the science of p-DSCs and analogous solar conversion 

devices. 

Thank you for the consideration. 
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Danilo Dini                          
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Abstract 15 

Three different pyran based dyes were synthesized and tested for the first time as photosensitizers 16 

of NiO based p-type dye-sensitized solar cells (p-DSSC). The molecules feature a similar molecular 17 

structure and are based on a pyran core that is functionalized with electron acceptor groups of 18 

different strength and is symmetrically coupled to phenothiazine donor branches. Optical properties 19 

of the dyes are deeply influenced by the nature of the electron-acceptor group, so that the overall 20 

absorption of the three dyes covers the most of the visible spectrum. The properties of devices 21 

based on the NiO electrodes sensitized with the investigated dyes were evaluated under simulated 22 

solar radiation: the larger short circuit current density exceeded 1 mA/cm
2
 and power conversion 23 

efficiency as high as  0.04 % could be recorded. The performances of the fabricated p-DSSC have 24 

been compared to a reference cell sensitized with P1, a high level benchmark, which afforded a 25 

photoelectrochemical activity similar to the best example of our pyran sensitized devices (1.19 26 

mA/cm
2
 and 0.049 %).  27 
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INTRODUCTION 29 

 30 

Dye-sensitized solar cells (DSSCs) represent one of the emerging photovoltaic technology which 31 

gained a considerable interest in the last twenty years[1–8] as a viable low cost alternative to 32 

traditional photovoltaics based on silicon modules[9]. DSSCs technology presents further appealing 33 

features as optical transparency, the possibility of being realized in different colours and the 34 

possibility to be integrated in architectural elements different from the roof, so paving the way to 35 

the so-called building integrated photovoltaics[10,11]. The heart of a DSSC device is a wide 36 

bandgap semiconductor oxide, sensitized with a photoactive dye able to inject, upon 37 

photoexcitation, electrons (n-type) or holes (p-type) in the semiconductor substrate. Following the 38 

seminal work of Grätzel and O’Regan[12],  n-type DSSC have been thoroughly investigated and a 39 

power conversion efficiency (PCE, ) exceeding 14 % have been reached[13].  Conversely, the 40 

number of studies regarding p-type DSSCs is significantly lower[14–19] but it is increasing in the 41 

last years as it has become clear that efficiency of n-type DSSC has reached a plateau: these kinds 42 

of devices are in fact extremely interesting because they open the way to the realization of tandem 43 

DSSC device[20,21] based on the connection of a p-type photoelectrode with a n-type 44 

photoelectrode, each contributing to the total photovoltage generated by the cell. Applying this 45 

concept, photovoltaic devices with a theoretical efficiency up to 40 % could be obtained[22,23]. 46 

However, so far, the performances of p-DSSCs[24] remain a way lower than the n-type 47 

counterparts, with a maximum reported PCE of 2.5 %[25]. Different reasons can explain the poor 48 

performance of these devices: the typically used photocathode, NiO, suffer from some intrinsic 49 

drawbacks, as low hole mobility[26], which is consequential to a stronger bond between the 50 

injected hole and electron residing on the dye, thus easing the detrimental charge recombination 51 

process, and  low dielectric constants[19]. The latter feature lowers the radiation penetration depth 52 

(self absorption phenomenon). Moreover, the valence band position of NiO, relatively to the 53 

classically used iodide/triiodide redox mediator, limits the maximum attainable VOC[27]. 54 
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Optimization of both p-type semiconductor and electrolyte is undoubtedly required for improving 55 

the performance of p-DSSC. The sensitizers as well play a very important role[28–32]: absorption 56 

in a broad range of the solar spectrum along with high molar extinction coefficients are highly 57 

desirable. Moreover, it is essential that, upon photoexcitation, electron density moves away from 58 

the anchoring points on NiO surface so that charge recombination occurs at lower rate.  The design 59 

of novel dyes that fulfil such requirements is then highly demanded in the way for high efficiency 60 

p-DSSC devices. Pyran based dyes are molecular systems that have shown interesting properties for 61 

applications in different field of organic electronics e.g.  as red emitters in OLED[33,34] or 62 

photovoltaic materials[35,36], and photonics, for their nonlinear optical properties[37–42]. Their 63 

synthetic procedure is well established and affords a chemical structure  typically based on a pyran 64 

core functionalized with an electron acceptor group and symmetrically linked to donor conjugated 65 

branches; this kind of structure could be extremely interesting for the application of these molecular 66 

systems as photosensitizers in p-DSSCs because it is in principle possible design chromophores 67 

with an electron acceptor core placed far away from peripheral groups acting as anchoring units for 68 

binding the dye to NiO surface. Their use in p-DSSC is, up to our knowledge, not yet reported 69 

while in the literature some examples of their application as photosensitizers in n-type DSSCs can 70 

be found[43–45]. In particular, in  a recent work[45], some of us prepared the dyes reported in 71 

Figure 1 and used them as photosensitizers for classical Grätzel cells.  72 

The functionalization of the same molecular core (pyran) with electron acceptor groups of 73 

increasing strength (moving from dyes CB1 to CB3) resulted in the tuning of the optical absorption 74 

properties of the dyes and in the obtainment of chromophores the colour of which ranged from 75 

orange to blue, so covering most part of the visible spectrum. A moderate efficiency, up to 2.8 %, 76 

was reported in this paper[45]. One of the factors limiting the efficiency of these photosensitizers in 77 

n-DSSC is that, upon photoexcitation, electron density moves away from the peripheral carboxylic 78 

groups (representing the anchoring points of the dyes on TiO2 surface). This feature hinders the 79 
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electron injection process from the dye to the semiconductor oxide thus limiting the overall 80 

efficiency. 81 

 82 

 83 

Figure 1. Chemical structures of the reported pyran based photosensitizers 84 

At the same time, as previously mentioned, this behaviour is highly desirable if the dyes must be 85 

used as photosensitizers for p-DSSC[46]. This consideration prompted us to explore the potentiality 86 

of these molecular systems in the field of p-DSSC: the devices have been prepared by sensitizing 87 

NiO thin film and using iodide/triiodide as redox mediator[47].The fabricated devices have been 88 

photoelectrochemically characterized under simulated solar radiation and the contribution to current 89 

generation by each single wavelength was determined by the analysis of the IPCE (incident photon-90 

to-current conversion efficiency) spectra.  91 

 92 
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EXPERIMENTAL 93 

 94 

The details regarding the synthesis of the dyes as well as the their optical, electrochemical and the 95 

computed electronic properties, have been previously reported elsewhere[44,45]. For what concerns 96 

the preparation of the photocathode, we adopted a procedure described in previous works from 97 

us[46,48]. As far as the preparation of screen-printed NiO electrodes is concerned, preformed NiO 98 

nanospheres (with a diameter smaller than 50 nm) have been grinded in a mortar and hydrochloric 99 

acid (1 mL), H20 (5 mL), ethanol (30 mL), terpineol (20 mL) and ethylcellulose (10% w/w in 100 

ethanol solution) were added. All chemicals employed were purchased from Sigma-Aldrich or 101 

Fluka at the highest degree of purity available and they were used without any further purification. 102 

Both addition and grinding of the various mixtures have been performed at room temperature. After 103 

the addition of terpineol and ethylcellulose the solution has been homogenized by stirring and 104 

ultrasonic treatment. Then the mixture has been heated at 50 °C under continuous stirring till the 105 

paste had the appearance of a viscous slurry. Anhydrous terpineol was used as a mixture of 106 

enantiomers. The ultrasonic homogenization was performed with a Ti-horn-equipped sonicator 107 

(Vibracell 72408 from Bioblock scientific). The resulting paste was spread onto a FTO-covered 108 

glass via screen-printing and after a pre-drying period of 15 minutes at 120 °C in oven it was 109 

sintered at 450 °C for half an hour (heating ramp of 15 °C/min). The thickness of the resulting 110 

electrodes (~ 2 m) was measured with a Dektat 150® profilometer from Veeco. 111 

Sensitization of NiO photocathodes was obtained by electrodes dipping in a 0.2 mM dye-sensitizer 112 

solution with THF as solvent. All electrodes were sensitized at room temperature for 16 hours. 113 

Pt-counter electrodes were prepared by screen-printing onto FTO-coated glass as reported 114 

elsewhere[49]. 115 

NiO photocathodes and Pt-FTO counter-electrodes were assembled in a sandwich configuration 116 

using a Bynel® (a thermoplastic polymeric film) as sealant. Bynel® also acts as a spacer that 117 

determines the thickness of the cell. The iodine-based electrolyte solution (HSE from Dyesol) was 118 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

injected inside the device by vacuum backfilling technique. The hole for injection was finally sealed 119 

with a commercial glass/glass glue. The photoactive area of the samples was 0.25 cm
2
.  120 

The measurements of optical transmittance were made with a double ray spectrometer (model UV-121 

2550 from Shimazdu). Photoelectrochemical performances were evaluated using a solar simulator 122 

Solar Test 1200 KHS (class B) at 1000 W/m
-2

 with artificial solar spectrum AM 1.5 G. The IPCE 123 

curves were recorded using a computer controlled set-up consisting of a Xe lamp (Mod.70612, 124 

Newport) coupled to a monochromator (Cornerstone 130 from Newport), and a Keithley 2420 light-125 

source meter. 126 

 127 

RESULTS AND DISCUSSION 128 

 129 

The chemical physical characterization of the dyes has been previously reported[45]. For sake of 130 

clarity, in Table 1 the main optical parameters of wavelength of maximum absorption (λmax) in THF 131 

solution, corresponding molar extinction coefficient (),  and the energies of the frontier’s 132 

molecular orbitals of the dyes are summarized[45]. The energy levels of the highest-occupied 133 

molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) have been 134 

estimated by a combined optical-electrochemical approach. 135 

 136 

Table 1. Optical and electrochemical properties of the synthesized chromophores 137 

Dye λmax  /nm
a 

ε /L
.
mol

-1
 
.
cm

-1
 
a 

HOMO /eV
b 

LUMO / eV
b 

CB1 464 4.1∙10
4 

-5.51 -3.51 

CB2 521 4.3∙10
4 

-5.51 -3.69 

CB3 582 3.8∙10
4
 -5.59 -3.95 

a) Scan rate 200 nm/min, in  THF solution; b) determined, as reported in ref. 38, by a combined electro-138 

chemical and optical approach on thin film of the dyes,. 139 

The dyes are characterized by a similar chemical structure (see Figure 1) and differ only for the 140 

nature of the electron acceptor group which functionalizes the pyran core. The electron-141 

withdrawing strength of this group exerts a strong influence on the optical properties of these dyes 142 
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as evinced from the data of Table 1 and the absorption spectra of Figure 2. The absorption spectra 143 

of the dyes in solution were recorded. Upon increasing the strength of the electron withdrawing 144 

character of the electron acceptor group that functionalizes the pyran core, the larger is the red shift 145 

of the characteristic absorption of the dye so that the colour of the dye is tuned from orange (dye 146 

CB1) to magenta (dye CB2) and to blue (dye CB3). 147 

 148 

Figure 1. Molar absorptivity of the reported dyes in THF solution 149 

 150 

The coverage of a such large part of the visible spectrum along with a high molar extinction 151 

coefficients presented by all the dyes (up to 4.3∙10
4
) represent important properties in view of the 152 

use of the reported dyes as photosensitizers for DSSC of p-type. Energetic levels of the frontier’s 153 

molecular orbital, estimated by a combined optical-electrochemical approach in the previous paper 154 
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(see Table 1) are well suited for the application of the dyes in NiO based device (p-type DSSCs). In 155 

fact, the HOMO energy level of the dyes are placed below the upper edge of NiO valence band 156 

(VB) located at -5.0 eV[50,51], while  the LUMO energy level of the sensitizer lies above the redox 157 

potential of the redox couple I
-
/I3

-
(4.8 eV). The latter two features are mandatory to ensure efficient 158 

hole injection into the semiconductor VB and regeneration from the redox species. Moreover, the 159 

dyes are characterized by the presence of two anchoring groups that allow a firm adhesion of the 160 

molecules on an oxide surface as previously shown by the stability measurement of the n-DSSC 161 

devices with TiO2 electrodes sensitized with the compounds of Figure 1. A further appealing aspect 162 

of the dyes here reported is that the electron withdrawing groups (EWGs) are located far away from 163 

the carboxylic anchoring groups. By virtue of this spatial arrangement  the EWGs are expected to 164 

be oriented far from NiO surface  and disfavor kinetically electronic recombination if one assumes 165 

that the site of triiodide reduction is mostly localized at the EWG[20,52]. By means of a 166 

computational analysis at DFT level it was shown  that upon photoexcitation in all the dyes electron 167 

density moves from the peripheral part to the core and LUMO of the molecules is localized on the 168 

pyran core[45]. This aspect could be of great interest in the application of such dyes as 169 

photosensitizers for p-DSSC because it results in a minimization of recombination phenomena the 170 

LUMO of the dyes being far from NiO surface.  At the same time, the localization of the LUMO far 171 

from NiO surface can induce the acceleration of the electron transfer (et) from the excited dye to the 172 

redox shuttle.  173 

All these features suggest an efficient use of these dyes in p-DSSC. First of all, we tested the 174 

goodness of sensitizers chemisorption onto NiO surface. NiO was sensitized as described in 175 

Experimental Section. In Figure 3 the transmittance spectra of the sensitized photocathodes are 176 

reported: the sensitization provokes a depletion of electrodes transmittance in the absorption region 177 

typical of the dyes, as compared to bare NiO. This evidence is a key proof of a good sensitization: 178 

all the tested dyes experimented a very good binding.  179 
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 180 

Figure 2. Trasmittance spectra of NiO sensitized with four different dye compared with NiO/P1. 181 

Black line refers to the unsensitized electrode. 182 

 183 

The electrical characterization of the fabricated devices has been performed under simulated solar 184 

radiation and the characteristic JV curves are shown in Figure 4. A reference cell sensitized with a 185 

high level benchmark as P1 dye[52] has been fabricated and tested as well: its electrical 186 

characterization is reported in Figure 4.  From JV curves some key parameters as open circuit 187 

voltage (VOC in mV), short circuit density (JSC in mA∙cm
-2

), fill factor (FF, %) and overall 188 

efficiency () could be obtained. The values of these parameters, averaged on five nominally 189 

equal devices have been reported in Table 2. 190 

All the devices based on the reported dyes present interesting photoelectrochemical activity proving 191 

their efficiency as photosensitizers for p-DSSC. The best performing device is the one based on dye 192 
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CB2 with a power conversion efficiency of 0.040 %. The devices based on dyes CB1 and CB3 193 

afforded similar performances showing PCE values of 0.032 and 0.034 %, respectively.  The 194 

obtained performances are only slightly lower that of the reference cell based on P1 ( = 0.049 %).   195 

 196 

Figure 3. JV curves of NiO-based device sensitized with four different sensitizer and compared 197 

with a reference cell NiO/P1. The reported curves refer to the most performing device for each dye. 198 

 199 

Table 2. Characteristic values of the parameters characterizing the photoelectrochemical 200 

performance of the p-DSSCs sensitized with the pyran based dyes of Figure 1 and P1 benchmark. 201 

 Jsc / mA cm
-2

 Voc /mV FF / %  / % 

CB1 -0.780 ± 0.017 124.3 ± 0.3 32.6 ± 0.5 0.032 ± 0.002 

CB2 -1.000 ± 0.033 124.1 ± 0.4 32.3 ± 0.3 0.040 ± 0.002 

CB3 -0.844 ± 0.027 122.7 ± 1.1 31.0 ± 0.6 0.034 ± 0.002 

P1 (ref) -1.188 125.6 32.9 0.049 

 202 

From the examination of the various electrical parameters reported in Table 2, it seems evident that 203 

VOC values are not strongly dependent on the dye used to sensitize NiO. This is quite expected since 204 

all the dye own similar molecular structures that differ just for the acceptor group (Figure 1). 205 

Nevertheless, this unit is quite far away from the NiO surface and it should hardly influence the 206 
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energetic modulation of the semiconductor valence band. The same explanation could be used to 207 

justify the similarity in FF values. In fact, FF is deeply linked to open circuit potential value[53]. In 208 

this case, the higher the latter the higher the former. The different overall efficiency values reported 209 

in Table 2 are mainly controlled by the differences in the photocurrent produced by each device. 210 

CB2/NiO device is the sole cell able to supply a current density higher than 1 mA/cm
-2

. CB1/NiO 211 

and CB3/NiO cells provide slightly lower current density that led to overall efficiency of 0.032 % 212 

and 0.034 %, respectively. This behaviour is consistent with the different molar absorption 213 

coefficients of the dyes: the higher is the latter, the higher is the efficiency of the cell. Therefore, we 214 

could hypothesize that the here reported difference are mainly due to the light harvesting efficiency 215 

(LHE) of each dye whereas the photo-injection efficiency is unvaried no matter of the sensitizer 216 

employed. 217 

The results obtained by JV curves have been strengthen by IPCE spectral measurements (Figure 5).  218 

 219 

Figure 4. IPCE spectra of NiO-based devices sensitized with the different dyes and compared with 220 

a reference cell NiO/P1. The reported spectra refer to the most performing device for each dye. 221 

 222 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The IPCE profiles directly provides the percentage of incident photons that are converted into 223 

electrons for each wavelength of the incident radiation. In our case, the peak at shorter wavelengths 224 

( < 420 nm) is due to the intrinsic photoactivity of NiO (especially Ni
3+

 available sites)[48,54] 225 

whereas the broad peak at longer wavelength is characteristic of each sensitizer. IPCE spectra give 226 

us some additional information with respect to JV curves. Interestingly, the intensity of the IPCE 227 

peak characteristic of NiO decreases with the increase of the steric hindrance of the acceptor group. 228 

At this regard we expect that the bulkiness of the EWG might influence the extent of dye-loading 229 

with the larger groups preventing the anchoring of dye-sensitizers at large surface concentrations 230 

with respect to the colorants with relatively smaller size. Nevertheless, the goodness of each device 231 

performances is mainly linked to the dye peak. Better efficiencies have been recorded when the 232 

sensitizer IPCE peak is high and/or broad.  233 

It is well know that non stoichiometric NiO promotes triiodide reduction even in dark 234 

conditions[54]. In order to prove the magnitude of the dark reduction of triiodide to iodide (I3
− 

+ 2e 235 

−
→ 3 I

−
) dark JV curves measurements (Figure 6) were conducted on the most performing devices. 236 

The dark reduction process occurs at both NiO/electrolyte and at the FTO/electrolyte interfaces. The 237 

FTO can participate in the electrochemical process if some channels are present through the porous 238 

film of NiO semiconductor.  This morphological characteristic allows the penetration of the 239 

electrolyte till the substrate of charge collection. In our case, we are not going to consider the 240 

charge transfer process at the FTO/electrolyte interface. In dark conditions, the p-DSSC devices 241 

here characterized feature a higher open circuit voltage as compared to devices based on 242 

unsensitized NiO cathode. Therefore, we could state that a part of the NiO/dye surface charge arise 243 

either from a dark charge transfer process between the sensitizer and the semiconductor film or 244 

from the spontaneous adsorption of some anion[55,56]. The extent of the latter phenomenon 245 

depends on the surface concentration of the sensitizer, its anchoring geometry and the nature of the 246 

adsorbed anion.  247 
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Some further information could be obtained by the analyses of dark JSC on the nature of the dye 248 

(Table 3). The sensitization of NiO electrodes with CCB2 and CB1 produces cell with a larger 249 

value of dark current density with respect to bare NiO cathode.  250 

 251 

Figure 5. In dark JV curves of NiO-based device sensitized with three different sensitizers and 252 
compared with a reference cell NiO/P1 and bare NiO devices. The reported curves refer to the most 253 

performing device for each dye. 254 

 255 

Table 3. Characteristic values of p-DSSC parameters obtained from the JV curves recorded in dark 256 
conditions 257 

 CB1 CB2 CB3 P1 NiO bare 

Voc / mV 83 90 86 76 80 

Jsc / A cm
-2

 5.9 6.1 5.2 4.3 5.3 

 258 

This evidence implicates that these two dyes mediate the dark process of electron transfer from the 259 

semiconductor to triiodide anion. Conversely, CB3/NiO device showed a dark current very close to 260 

that of the bare NiO device while P1/NiO cell afforded a reduced dark current indicating that P1 261 

behaves actually as an agent of passivation towards the dark reduction process, as already reported 262 
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by a previous work realized with different electrodes of mesoporous NiO[54]. Nevertheless, it is 263 

mandatory to remark that the dark currents constitute less than 2% of the photocurrent. 264 

 265 

CONCLUSIONS 266 

 267 

Three custom-made full organic dyes have been employed to sensitize screen-printed NiO 268 

photocathodes for p-DSSC. The dyes are based on a pyran core that has been functionalized with 269 

different electron acceptor groups and symmetrically coupled to two phenothiazine donor moieties. 270 

The latter moieties bear carboxylic groups which act as anchoring units. Such a design is based on 271 

the placement of the electron acceptor group in a site far away from the anchoring carboxylic 272 

groups that bind to the NiO surface. Such a structural feature is highly desirable to reduce the 273 

internal recombination between the LUMO of the dye and the VB of NiO with resulting 274 

enhancement of the cell performances. The optical properties of the sensitizers in solution and in the 275 

NiO immobilized state have been evaluated before their employment in a complete device. All dyes 276 

experimented a very good binding onto the electrode surface as evidenced by transmittance spectra. 277 

When implemented in a complete device, dye CB2 showed the best photoelectrochemical 278 

performance  by displaying a photocurrent density of short circuit larger than 1 mA cm
-2

  and an 279 

overall efficiency of 0.04%. These results are just slightly lower than the values reported for a high 280 

performing reference cell like the p-DSSC employing  P1 as benchmark sensitizer.  The comparison 281 

of the IPCE spectra evidence that dye CB2 gives the higher efficiency thanks to a more efficient 282 

light harvesting efficiency due to its higher molar extinction coefficient with respect to the other 283 

sensitizers. 284 

In conclusion, the sensitizers here proposed have showed a very good photoelectrochemical 285 

behavior in p-DSSCs when screen-printed NiO is the cathode. In future works some similar dyes 286 

will be investigated to optimize the molecular skeleton as well as the nature and strength of the 287 

electron withdrawing group. The optimization will be conducted in the perspective of applying 288 

these dyes as sensitizers of p-DSSC device. 289 
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Table 1. Optical and electrochemical properties of the synthesized chromophores 

Dye λmax  /nm
a 

ε /L
.
mol

-1
 
.
cm

-1
 
a 

HOMO /eV
b 

LUMO / eV
b 

CB1 464 4.1∙10
4 

-5.51 -3.51 

CB2 521 4.3∙10
4 

-5.51 -3.69 

CB3 582 3.8∙10
4
 -5.59 -3.95 

a) Scan rate 200 nm/min, in  THF solution; b) determined, as reported in ref. 38, by a combined electro-

chemical and optical approach on thin film of the dyes,. 

 

Table 2. Characteristic values of the parameters characterizing the photoelectrochemical 

performance of the p-DSSCs sensitized with the pyran based dyes of Figure 1 and P1 benchmark. 

 Jsc / mA cm
-2

 Voc /mV FF / %  / % 

CB1 -0.780 ± 0.017 124.3 ± 0.3 32.6 ± 0.5 0.032 ± 0.002 

CB2 -1.000 ± 0.033 124.1 ± 0.4 32.3 ± 0.3 0.040 ± 0.002 

CB3 -0.844 ± 0.027 122.7 ± 1.1 31.0 ± 0.6 0.034 ± 0.002 

P1 (ref) -1.188 125.6 32.9 0.049 

 

 

Table 3. Characteristic values of p-DSSC parameters obtained from the JV curves recorded in dark 

conditions 

 CB1 CB2 CB3 P1 NiO bare 

Voc / mV 83 90 86 76 80 

Jsc / A cm
-2

 5.9 6.1 5.2 4.3 5.3 
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Figure 1. Chemical structures of the reported pyran based photosensitizers 

Figure



 

Figure 1. Molar absorptivity of the reported dyes in THF solution 

 



 

Figure 2. Trasmittance spectra of NiO sensitized with four different dye compared with NiO/P1. 

Black line refers to the unsensitized electrode. 

 



 

Figure 3. JV curves of NiO-based device sensitized with four different sensitizer and compared 

with a reference cell NiO/P1. The reported curves refer to the most performing device for each dye. 

 

 

 



 

Figure 4. IPCE spectra of NiO-based devices sensitized with the different dyes and compared with 

a reference cell NiO/P1. The reported spectra refer to the most performing device for each dye. 

 

 

 

 



 

Figure 5. In dark JV curves of NiO-based device sensitized with three different sensitizers and 

compared with a reference cell NiO/P1 and bare NiO devices. The reported curves refer to the most 

performing device for each dye. 

 



 

- Electroactive NiO films are deposited via screen printing with NiO nanoparticles  

- Screen-printed NiO is mesoporous  

- New Pyran-based dyes has been tested as sensitizers in p-DSSC 

- CV measurements reveals a good photoelectrochemical behavior for all the devices 

- Overall efficiencies are comparable with P1-based device   

 

Highlights (for review)


