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Abstract—We study and solve a system of functional equations
coming from the theory of general information.

I. INTRODUCTION

The pseudo-analysis was introduced by Pap and his col-
leagues [18], [19], [17] and it has had and still has many appli-
cations in different fields. It involves the definition of two oper-
ations called “pseudo-addition” ⊕ and “pseudo-multiplication
� which generalize the addition and multiplication of classical
analysis. In some cases the pseudo-operations are defined by
using a function g, called generator function: for this reason
we speack about G−calculus (generalized calculus).

This research takes inspiration from the axiomatic theory of
the general information measures defined without probability
[14], [15], [11]. The basic problem is to express the infor-
mation J

A⋃B as a suitable function Φ of J(A) and
J(B). The most important equation derives from a type of
J−independence property obtained by using a pseudo-addition

The properties of the function Φ are translated into a system
of functional equations: we shall present some classes of
solutions.

After some preliminaries in Sect.2, in Sect.3 we present the
definition of J−independence property in pseudo-analysis and
its application to information measure for the union of two
disjont sets. Moreover, we give the system which expresses
the property of the union. The solutions of the system are
considered in Sect.4 and in Sect.5 we present the conclusions.

II. PRELIMINARY NOTIONS

The pseudo-addition ⊕ is a binary function [8]

⊕ : [0,M ]2 −→ [0,M ],M ∈ (0,+∞]

which is strictly increasing (with respect to ≤), commutative,
associative, with 0 as neutral element.

From now on, the pseudo-addition ⊕g will be defined by
a continuous and bijective function g : [0,M ] −→ [0,+∞]
called generator function

a⊕g b = g−1(g(a) + g(b)), with g(0) = 0. (1)

So the pseudo-addition satisfies the following properties:
(G1) a ≤ a′, b ≤ b′ =⇒ a⊕g b ≤ a′ ⊕g b

′

(G2) x⊕g y = y ⊕g x
(G3) (a⊕g b)⊕g c = a⊕g (b⊕g c)
(G4) x⊕g 0 = x
(G5) an −→ a, bn −→ b,=⇒ an ⊕g bn −→ a⊕g b.

Now, we recall the definition of general information mea-
sure [14], [15], [11].

Let Ω be an abstract space, A ⊂ P(Ω) a σ−algebra of
subsets of Ω, so (Ω,A) is measurable space.

Measure J(·) of general information is a mapping

J(·) : A −→ [0,+∞]

such that
(i) A′ ⊃ A =⇒ J(A′) ≤ J(A) ∀A,A′ ∈ A,
(ii) J(∅) = +∞, J(Ω) = 0.

Moreover, given a subfamily K ⊂ A, a definition of J-
independence has been proosed:

two sets K,K ′ ∈ K,K 6= K′ with K ∩ K ′ 6= ∅ are J-
Independent (independent with respect to an information J
[13], [16], [6], [3], [4]) if the couple (K,K ′) satisfies:

(iii) J(K ∩K ′) = J(K) + J(K ′).
This property has been generalized by the Authors in [21].

III. THE J -INDEPENDENCE PROPERTY IN
PSEUDO-ANALYSIS

This paragraph is devoted to introduce the J- independence
property in pseudo-analysis. Then this definition will be ap-
plied to calculate the general information of the union of two
disjoint sets.

A. Definition of J-independence property in pseudo-analysis

As in [21], we proose that that K,K ′ are J−independent
in pseudo-analysis if the couple (K,K ′) satisfies:

J(K ∩K ′) = J(K)⊕g J(K ′), (2)

K,K ′ ∈ K,K 6= K′,K ∩K′ 6= ∅.

When the generator function of ⊕g is a linear function, then
(2) coincides with (iii).



B. Application

Now, we want to apply the formula (2) in the case of the
union of two disjoint sets.

We shall suppose that the information J
A⋃B depends

only on J(A) and J(B), for this reason we set

J
A⋃B

 = Φ
J(A), J(B)

, (3)

where Φ : H −→ [0,+∞], is a continuous function with
H = {(x, y) : ∃ A,B ∈ A,A ∩ B = ∅, x = J (A), y =
J (B), x , y ∈ (0 ,+∞]}. Later, the properties of the function
Φ will be specified.

In the setting of pseudo-analysis, we suppose that there
exists a set K ∈ K which is J-independent by A,B and
A ∪B : from (2) it is

J
A⋂K

 = J(A)⊕g J(K) and (4)

J
B⋂K

 = J(B)⊕g J(K);

on the other hand

J
A⋃B

⋂K
 = J

A⋃B
⊕g J(K). (5)

By distributivity property

J
A⋃B

⋂K
 = J

A⋂K
⋃B⋂K

;

taking into account (3), (4) and (5), we get

Φ
J(A), J(B)

⊕g J(K) = (6)

Φ
J(A)⊕g J(K), J(B)⊕g J(K)

.

C. The function Φ

In order to study (6), by (3), we recall that the function Φ is
commutative, associative, strictly increasing (with respect ≤),
moreover Φ

J(A), J(B)
 ≤ J(A)

∧
J(B).

Setting x = J(A), y = J(B), z = J(C), t = J(K), x′ =
J(A′) with x, y, z, t, x′ ∈ (0,+∞], the function Φ satisfies
some properties, mentioned above, that lead to solve the
following system:

[p1] Φ(x, y) ≤ x ∧ y,
[p2] x′ ≤ x −→ Φ(x′, y) ≤ Φ(x, y) ∀y (monotonicity),
[p3] Φ(x, y) = Φ(y, x) (commutativity),

[p4] Φ
Φ(x, y), z

 = Φ
x,Φ(y, z)

 (associativity),

[p5] Φ
x, y⊕g t = Φ

x⊕g t, y ⊕g t


(compatibility equation).

If g is a linear function, the system above reduces to the form
studied in [2], [5], [9], [10], [12].

IV. SOLUTIONS OF THE SYSTEM

In this paragraph we present some classes of solutions of
the system: we distinguish the idempotent case and the not
idempotent case.

A. Idempotent case

We recall the following ([22])
Definition 1: An element x∗ is called an idempotent element

for any function Φ if

Φ(x∗, x∗) = x∗ (7)

In order to look for a solution of the system [p1]− [p5], we
shall proceed on step by step.

From now on, we shall suppose that ∀t > 0 there exists
K ∈ K, independent by A,B,A ∪B, such that t = J(K).

Lemma 2: Let Φ be any function which satisfies [p5]. If
there exists in (0,+∞] an idempotent element x∗ for Φ, then
every x 6= x∗ is again an idempotent element for Φ.
Proof. Let x ≥ x∗. From [p5], for x = y = x∗, it is

Φ(x∗ ⊕g t, x
∗ ⊕g t) = Φ(x∗, x∗)⊕g t = x∗ ⊕g t;

that means that x∗ ⊕g t is an idempotent element for Φ. As
t > 0, then x∗ ⊕g t > x∗ and every x > x∗ is an idempotent
element for Φ.

Let x < x∗. Then, there exists t > 0 such that x∗ = x⊕g t.
Setting x∗ = x⊕g t. in [p4], we get

Φ(x, y)⊕g t = Φ(x∗, y ⊕g t). (8)

For x = y, the (8) becomes

Φ(x, x)⊕g t = Φ(x⊕g (9)

But Φ verifies [p4], so Φ(x, x) = x : this means that every
x < x∗ is an idempotent element for Φ. �

Lemma 3: Let Φ be any function which satisfies [p1, p2, p5].
If there exists in (0,+∞] an idempotent element x∗ for Φ then

Φ(x, x∗) = x ∧ x∗ ∀x ∈ (0,+∞]. (10)

Proof. Let x ≥ x∗. For [p1], Φ(x, x∗) ≥ Φ(x∗, x∗) = x∗

and for [p2],Φ(x, x∗) ≤ x ∧ x∗ = x∗. Therefore, Φ(x, x∗) =
x ∧ x∗, for every x ≥ x∗.

Now, let x < x∗. For Lemma (2) x is an idempotent
element, then

x = Φ(x, x) ≤ Φ(x, x∗) ≤ x ∧ x∗ = x.

We have proved that

Φ(x, x∗) = x ∧ x∗.

�

Now we are ready to give the main proposition.
Proposition 4: Let x∗ be an idempotent element for Φ,

which satisfies [p1, p2, p5]. Then the solution of the system
[p1− p5] is

Φ(x, y) = x ∧ y ∀x, y ∈ (0,+∞). (11)



Proof. It is easy to see that the function (11) satisfies [p3] and
[p4]. Moreover, the proof is a consequence of Lemmas (2) and
(3) . �

B. Not idempotent case

Now, we consider the case in which there not exists an
idempotent element.

First of all, it is easy to see that there are all some classical
solutions of the system.

C. Examples

Example 5: If the generator function g of the pseudo-
addition ⊕g is a linear function, the system [p0 − p5] admits
as solutions [3]:

Φ(x, y) = x ∧ y, or

Φ(x, y) = −c log
 exp(−x/c) + (exp−y/c)

, c > 0,

which is Shannon’s information [20].

Example 6: Let g(x) be any generator function of the
pseudo-addition ⊕g and k(x) = exp(−g(x)/c), c > 0, the
class of functions

Ψk(x, y) = k−1
k(x) + k(y)

 (12)

satisfies the system [p1− p5] [3].

Now, we are going to find some classes of solutions of the
system [p1− p5]

Proposition 7: A class of solutions of the system [p1− p4]
is

Φh(x, y) = h−1
h(x)⊕g h(y)

 (13)

where h : [0,+∞] −→ [0,+∞] is any decreasing, continuous
function with h(0) = +∞ and h(+∞) = 0 and ⊕g is the
pseudo-addition defined by (1).
Proof. By the properties (G1) and (G2) any function Φh

satisfies [p2] and [p3].
Moreover gh(x) + gh(y) ≥ gh(x) as gh(y) > 0, then

g−1(gh(x) + gh(y)) ≥ g−1(gh(x)) = h(x)⇐⇒

h−1
h(x)⊕g h(y)

 ≤ x.
In the same way Φh(x, y) ≤ y and so Φh(x, y) ≤ x∧y, which
is [p1].

As regards [p4], by using (G3)

Φh

Φh(x, y), z
 =

h−1
{
hΦh(x, y)⊕g h(z)

}
=

h−1
{
hh−1

[
h(x)⊕g h(y)

]
⊕g h(z)

}
=

h−1
{
h(x)⊕g

[
h(y)⊕g h(z)

]}
=

h−1
{
h(x)⊕g hh

−1
[
h(y)⊕g h(z)

]}
=

Φh

x,Φh(y, z)
.

�

Proposition 8: Let g be any increasing generator function
of the pseudo-addition ⊕g, solution of the Cauchy equation
[1]

g(a+ b) = g(a · b), (14)

then any function h of the class (13) satisfies also [p5] if h is
a decreasing solution of the same Cauchy equation (14).
Proof. First of all, taking into account (14), it results

Φh(x, y) = h−1
h(x)⊕g h(y)

 = (15)

h−1
{
g−1

[
gh(x) + gh(y)

]}
=

h−1
{
g−1g

h(x)h(y)
} = h−1

{
h(x)h(y)

}
.

Moreover, from (15),

Φh(x, y)⊕g t = g−1
{
gΦ(x, y) + g(t)

}
= (16)

g−1
{
g
Φh(x, y) · t

} =

Φh(x, y) · t =
h−1{h(x)h(y)

} · t.
on the other hand, as x⊕g t = g−1(g(x) + g(t)) = g−1(g(x ·
t)) = x · t, y ⊕g t = y · t, and h(x ⊕g t) ⊕g h(y ⊕g t) =

g−1
gh(x · t) + gh(y · t)

 = g−1
g[h(x · t)h(y · t)

] =

h(x · t)h(y · t) it is

Φh(x⊕g t, y ⊕g t) = h−1
h(x⊕g t)⊕g h(y ⊕g t)

 = (17)

h−1
h(x · t)h(y · t)

.
Now, we apply the hypothesys on the function h to the
expressions (16) and (17). We get

Φh(x, y)⊕g t =
h−1{h(x+ y)

} · t.
Φh(x⊕g t, y ⊕g t) = h−1

h[(x · t) + (y · t)
].

By applying again the condition (14) to the previous equalities,
we get:

Φh(x, y)⊕g t =
h−1{h(x+ y)

} · t = (x+ y) · t =

(x ·t)+(y ·t) = h−1
h[(x ·t)+(y ·t)

] = Φh(x⊕g t, y⊕g t)

the equation [p5] of the given system is satisfied. �



V. CONCLUSION

In this paper we have considered a generalization of J−
independence property for a general measure of information,
applied to the union of two disjoint sets.

The properties of the union have been translated into a
system of functional equations. We have found classes of
solutions, which include those of the classical analysis.
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[17] R. Mesiar, J. Rybárik, Pseudo-aritmetical operations, Tatra
Mount.Math.Publ. 2 185-192 1993

[18] E. Pap, g-calculus, Zr. Rad. 23 (1), (1993), 145-156.
[19] E. Pap, Null-additive Set Functions Dordrecht. Kluver Academic Pub-

lishers, 1995
[20] C.E.Shannon, A Mathematical Theory of Communication, Bell System

Tech.J.27, (1949), 379-423, 623-656
[21] D.Vivona, M. Divari, An Independence property for

General Information, Natural Science 8, (2016), 66-69,
dx.doi.org/10.4236/ns.2016.82008

[22] K.Yosida, Functional analysis, Springer-Verlag, New York (1974).


