
LECTURES ON SPHERICAL AND WONDERFUL VARIETIES

GUIDO PEZZINI

Abstract. These notes contain an introduction to the theory of spherical
and wonderful varieties. We describe the Luna-Vust theory of embeddings of

spherical homogeneous spaces, and explain how wonderful varieties fit in the

theory.

1. Introduction

These are the notes of a course given at the CIRM (Luminy), in occasion of the
conference “Actions hamiltoniennes: invariants et classification”, April 2009, and
are intended as an introduction to the theory of spherical and wonderful varieties.
Their goal is to explain the first main themes and provide some insight, mainly in
the direction of the work in progress about the classification of spherical varieties.

The richness in examples is quite distinctive for this theory, and we illustrate
here the details of some of the easiest ones. Other examples are found in the notes
[Br09] of Michel Brion and [B09] of Paolo Bravi. On the other hand there exist
already excellent references for many results hereby reported, especially [Br97] but
also [K91] and [T06]. Therefore we skip or only sketch the proofs whenever they
are easily found in the literature.

Prerequisites are basic notions of algebraic geometry and structure of linear
algebraic groups; a general reference is the book [H75].

For simplicity, we work over the ground field C of complex numbers, although
the entire theory of embeddings of spherical homogeneous spaces holds in any char-
acteristic.

Acknowledgments. I would like to thank Paolo Bravi and Michel Brion for many
useful comments and suggestions.

General notations. In these notes G will be a reductive connected linear algebraic
group, B ⊆ G a fixed Borel subgroup and T ⊆ B a maximal torus. We will denote
by B− the opposite Borel subgroup of B with respect to T . We will denote by
S = {α1, α2, . . .} the associated set of simple roots, by α∨1 , α

∨
2 , . . . the corresponding

coroots, and when G is semisimple we will denote by ω1, ω2, . . . the fundamental
dominant weights.

If G is a classical group, we choose always B to be the set of upper triangular
matrices in G and T the set of diagonal matrices in G. Unless otherwise stated, we
implicitly define symplectic and orthogonal groups using bilinear forms such that
this choice of B and T gives resp. a Borel subgroup and a maximal torus.
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If H is any affine algebraic group, we define the abelian group of its set of
characters:

Λ(H) = {λ : H → C∗ homomorphism of algebraic groups},
and we will denote the group operation additively. As a particular case, we recall
that Λ(B) and Λ(T ) are canonically isomorphic, and they are free abelian groups
of rank equal to rankG.

We will also denote by H◦ the connected component containing the unit element
e ∈ H, by C(H) the center of H, by Hu the unipotent radical of H and by Hr the
radical of H.

A homogeneous space for G is a couple (X,x) with X a homogeneous G-variety
and x ∈ X, which is called the base point. The quotient G/H for H a closed
subgroup is naturally a homogeneous space, with base point H.

2. Spherical varieties

2.1. Introduction and toric varieties.

Definition 2.1.1. A G-variety X is spherical if it is normal, and B has an open
orbit on X.

Let x ∈ X be a point in the open B-orbit. Then its G-orbit Gx is open in X; if
we denote by H the stabilizer of x in G, then Gx is equivariantly isomorphic to the
homogeneous space G/H. We also say that X is an embedding of the homogeneous
space G/H (a slightly more precise definition is needed and will be given in §2.5).
On the other hand, when a quotient G/H is a spherical variety, we will say that H
is a spherical subgroup. In this case the B-orbit of H ∈ G/H is open if and only if
BH is an open subset of G; we will say that H is B-spherical if this occurs.

Definition 2.1.2. Let X be a spherical G-variety. We denote by X◦G its open
G-orbit, and by X◦B its open B-orbit.

The study of spherical G-varieties can be divided into two big steps:
(1) Fix a spherical subgroup H ⊆ G, and study all the embeddings X of G/H.
(2) Study all possible spherical subgroups H ⊆ G.

In this paper, we will discuss the first step. A general theory of embeddings of
homogeneous spaces has been developed by Luna and Vust in [LV83] in great gen-
erality, using essentially discrete valuations. For a spherical homogeneous space,
this theory can be reformulated in a quite effective way, leading to results that have
strong formal analogies with the theory of toric varieties.

Example 2.1.1. Let G = SL2, and H = T . Then H is the stabilizer of a point in
G/H = P1×P1\diag(P1), where G acts diagonally (and linearly on each copy of P1).
The Borel subgroup B has an open orbit, namely the set of couples (p, q) ∈ P1×P1

where p 6= q and both are different from the unique point [1, 0] fixed by B in P1.
As we will check in §2.5, the homogeneous space G/H admits only two embed-

dings: the trivial embedding X = G/H, and X = P1 × P1.

Example 2.1.2. Let again G = SL2, but take H = U the set of unipotent upper
triangular matrices (see [Br09, Example 1.12.3]). Then G/H is equivariantly iso-
morphic to C2 \ {(0, 0)}, where G acts linearly. The Borel subgroup B has an open
orbit, namely all points (x, y) ∈ C2 with y 6= 0.
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Here G/H admits five different nontrivial embeddings (with obvious action of G
extending the one on G/H):

(1) X1 = C2,
(2) X2 = P2, viewed as C2 ∪ (the line at infinity) (i.e. P2 = P(C2 ⊕ C)),
(3) X3 = P2 \ {(0, 0)}, where we mean (C2 \ {(0, 0)}) ∪ (the line at infinity),
(4) X4 = the blowup of X1 in (0, 0),
(5) X5 = the blowup of X2 in (0, 0).

As an introduction to the techniques we will use, let us review very briefly the
basics of the theory of toric varieties. We refer to [F93] for a complete tractation.

Definition 2.1.3. A toric variety for the torus T = (C∗)n is a normal variety X
where T acts faithfully with an open orbit.

The faithfulness is only convenient and not essential, one can indeed pass to the
quotient of T by the kernel of the action.

Definition 2.1.3 is a special case of Definition 2.1.1, where G = B = T . In other
words a toric variety is an embedding of the spherical homogeneous space T/{e}.

The theory begins describing the affine toric varieties for T : such an X is com-
pletely described by its ring of regular functions C[X]. The T -action induces a
structure of rational T -module on C[X], which is itself a T -submodule of the ring
C[T ] of regular functions on T .

We know that C[T ] contains all irreducible T -modules exactly once, and each
is 1-dimensional (see also [Br09, Examples 2.3.2 and 2.11.1]). The choice of C[X]
inside C[T ] is therefore equivalent to the choice of its irreducible submodules, and
this is also equivalent to the choice of which characters of T extend to regular
functions on X. Loosely speaking, this gives a correspondence:

C[X]←→ a convex polyhedral cone σ ⊂ Λ(T )

A further step is done by looking at the vector space N(T ) = HomZ(Λ(T ),Q),
and taking the dual convex cone σ∨, defined to be the set of functionals that are
non-negative on σ:

C[X]←→ σ ⊂ Λ(T )←→ σ∨ ⊂ N(T ).

Before stating a precise theorem, let us introduce a little twist in this procedure.
Although being completely equivalent, this will look non-standard compared to the
usual approach. Let X be an affine toric variety; each irreducible T -submodule of
C[X] is 1-dimensional, so it is made of T -eigenvectors: we consider their common
T -eigenvalue (again a character). We then associate to C[X] all the T -eigenvalues
obtained in this way.

This is non-standard, in the following sense. If a character λ ∈ Λ(T ) extends to
a regular function on X, then it is a T -eigenvector of C[X]. But its T -eigenvalue,
also called its T -weight, is (−λ), thanks to the fact that the action on C(T ) induced
by left translation is given by:

(tλ)(•) = λ(t−1•) = λ(t−1)λ(•) = (−λ)(t)λ(•).
This produces a correspondence where the convex cone σ∨ is the opposite of the

cone usually considered in the theory of toric varieties. For example, the “standard”
Cn, where (C∗)n acts linearly with weights λ1, . . . , λn (where λi(t1, . . . , tn) = ti),
will be represented here by:

σ∨ =
(
spanQ≥0

{−λ1, . . . ,−λn}
)∨ ⊂ N(T )
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which is exactly the opposite of the usual convention.

Theorem 2.1.1. Let us fix an algebraic torus T .

(1) Any toric T -variety is the union of affine T -stable open sets, which are
themselves toric T -varieties.

(2) In a toric T -variety each orbit closure is the intersection of T -stable subva-
rieties of codimension 1.

(3) The above correspondence induces a bijection between the affine toric T -
varieties (up to T -equivariant isomorphism) and the strictly convex polyhe-
dral cones in N(T ).

(4) As a consequence, toric T -varieties (up to T -equivariant isomorphism) are
classified by families of strictly convex polyhedral cones in N(T ), called fans,
that satisfy the following properties:
• any face of a cone of the fan belongs to the fan;
• the intersection of two cones of the fan is always a face of each.

Example 2.1.3. Let us consider (C∗)3 acting linearly on C3 with weights λ1, λ2, λ3.
It induces naturally an action of the quotient T = (C∗)3/diag(C∗) on P2 in such a
way that P2 is a toric T -variety. A cover with affine T -stable open sets is given by
Ui = {[x1, x2, x3] | xi 6= 0} for i = 1, 2, 3. Taking µ1 = λ1 − λ3 and µ2 = λ2 − λ3 as
a basis for Λ(T ), and setting σ∨i the cone in N(T ) associated to Ui, the fan of P2

is:

�
�
�
�

-
6

σ∨1

σ∨2
σ∨3

0

Before getting back to spherical varieties we make a few remarks about the
differences arising when we replace the torus T with a reductive group G, possibly
non-abelian. The basic observation is that T is both reductive and solvable, whereas
if G is non-abelian we have two different groups: a reductive one (G) and a solvable
one (B). This induces significant differences in the theory; more precisely, Theorem
2.1.1 as stated above is false for the general (i.e. spherical) case:

• Part 1 does not hold, as shown by the example of SL2 acting linearly on
P1.
• Part 2 does not hold, take for example SL2 acting linearly on C2.
• No analog of parts 3 and 4 can hold without substantial modification, see

e.g. Example 2.1.1 where there is only one non-trivial embedding.

Nevertheless, it is possible to generalize the notions and definitions we have seen
so far, and prove a somewhat similar classification for the embeddings of a fixed
spherical homogeneous space. Roughly speaking, one approaches the problems
arising with Theorem 2.1.1 by:

• using covers of quasi-projective open sets, instead of affine ones;
• using B-stable codimension 1 subvarieties, instead of G-stable ones;
• adding further structure to N(T ) and to the fans of convex cones.
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2.2. Invariants and G-stable subvarieties. From now on G/H will denote a
spherical homogeneous space; unless otherwise stated, X will denote a spherical
variety whose open orbit is G-isomorphic to G/H.

Definition 2.2.1.
(1) We define the set of rational functions on X that are B-eigenvectors (or

B-semi-invariant):

C(X)(B) =
{
f ∈ C(X) \ {0} | b f = χ(b) f ∀b ∈ B, where χ : B → C∗

}
.

(2) For any f ∈ C(X)(B) the associated B-weight χ is a character of B and it
is also denoted by χf .

(3) The set of all B-weights of rational functions on X is denoted by:

Λ(X) =
{
χf | f ∈ C(X)(B)

}
.

It is a free abelian group; its rank is by definition the rank of X.
(4) For any χ ∈ Λ(X), the functions f ∈ C(X)(B) such that χ = χf are all

proportional by a scalar factor. We will denote by fχ one of them, which
is intended as defined up to a multiplicative scalar.

(5) We define the Q-vector space:

N(X) = HomZ(Λ(X),Q).

Part 4 is an immediate consequence of the fact that X is spherical: if f1, f2 have
weight χ then f1/f2 is B-invariant, therefore constant on X.

All the above objects defined for X are obviously invariant under G-equivariant
birational maps. In other words, they depend only on the open G-orbit G/H of X.

Example 2.2.1. (Rank 0.) Let G = SLn+1. Then X = Pn with the linear action
of G is a spherical homogeneous space G/H, where H is the stabilizer of a point
in Pn (a maximal parabolic subgroup). Any Grassmannian of subspaces of Pn is
spherical, and more generally any complete homogeneous space for any reductive
group G:

X = G/P.

with P a parabolic subgroup of G. To check that G/P is spherical, let us suppose
that P ⊇ B−. Then, the Bruhat decomposition implies that the B-orbit BP/P is
open in G/P .

The varieties X = G/P admit no non-constant B-semi-invariant rational func-
tion. Such an f must be invariant under the unipotent radical Bu of B, but BuP/P
is open in X too, hence f is constant. In other words C(G/P )(B) = C∗ and Λ(G/P ),
N(G/P ) are trivial.

Example 2.2.2. (Rank 1.) Let G = SL2 and H = T . The homogeneous space
G/H is spherical and has rank 1; if we consider the B-stable open set:{

([x, 1], [y, 1] | x 6= y
}
⊂ P1 × P1 \ diag(P1) ∼= G/H

then the function (x − y)−1 is in C(G/H)(B) and its weight is equal to α1. It is
easy to show that Λ(G/H) = Zα1.

Example 2.2.3. Again with G = SL2, we can take H = U to be the set of
unipotent upper triangular matrices. Then:

G/H ∼= C2 \ {(0, 0)}.
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where G acts lineary on C2. If x and y are the coordinates on C2 then the function
y is a B-eigenvector with weight ω1. This implies Λ(G/H) = Zω1 = Λ(T ).

Example 2.2.4. Take now G = SLn+1 with n > 1 and H = GLn. The homoge-
neous space:

G/H ∼=
{

(p, V ) ∈ Pn ×Gr(n,Cn+1) | p /∈ P(V )
}

is spherical and affine. If e1, . . . , en+1 is the canonical basis of Cn+1, we can take
H to be the stabilizer of ([e1], span{e2, . . . , en+1}). Consider the quotient map
π : G → G/H; the pull-back of any f ∈ C(G/H)(B) from G/H to G is a rational
function on G, it is invariant under the right translation action of H and B-semi-
invariant under the left translation.

Define f1 ∈ C[G] to be the lower right n× n minor and f2 the lower left matrix
entry. Then f1f2 is the pull-back from G/H of a function in C(G/H)(B). Its
B-weight is σ = α1 + . . .+ αn, and we have Λ(G/H) = Zσ.

Example 2.2.5. (Rank 2.) Let G = SL3 acting on the space of smooth conics in
P2, with the action induced by linear coordinate change on P2. The stabilizer of
a conic q is H ∼= SO3 · C(SL3), and the homogeneous space G/H is spherical. We
choose q so that H = SO3 · C(SL3) where SO3 is defined in the standard way as
{A−1 = tA}◦. Then define the two following functions on SL3:

f1(A) = the lower right 2× 2 minor of A · tA,
f2(A) = the lower right matrix entry of A · tA.

Then the functions f1/f
2
2 and f2/f

2
1 descend to B-semi-invariant functions on G/H,

with weights resp. 2α1 and 2α2. These two weights are a basis of Λ(G/H).

Example 2.2.6. (Higher rank.) Let G = SLn+1 × SLn+1 and H = diag(SLn+1);
see also [Br09, Example 2.11.3]. The homogeneous space G/H is spherical and
isomorphic to SLn+1 where G acts simultaneously with left and right multiplication,
i.e. (g, h)x = gxh−1. We choose T to be the couples of diagonal matrices and:

B = {(b1, b2) ∈ G | b1 is upper triangular, b2 is lower triangular}
Define fi ∈ C[G] by:

f(a, b) = the upper left (i× i)-minor of ba−1

for i = 1, . . . , n. It follows that fi descends to a function on G/H for all i. Let us
denote by ω1, . . . , ωn and ω′1, . . . , ω

′
n the fundamental dominant weights of the two

copies of SLn+1. We have that the B-weight of fi is (ωi,−ω′i). It follows easily that
Λ(G/H) can be identified with Λ(BSLn+1) where BSLn+1 is our standard choice of
a Borel subgroup of SLn+1.

We can reproduce this example with any connected reductive group H and G =
H ×H.

Example 2.2.7. Let G be any semisimple group and set H = Bu. Then G/H is
spherical, again as a consequence of the Bruhat decomposition. The ring C[G] has
the well known G×G-module structure:

C[G] =
⊕

V ⊗ V ∗

where the sum is taken over all irreducible G-modules V (see [Br09, Lemma 2.2]).
It immediately follows that for each dominant weight ω there exists on G exactly
one regular function (up to scalar multiplication) that is Bu-invariant on the right
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and B-semi-invariant on the left, with weight ω. It is not difficult to deduce that
Λ(G/H) = Λ(T ).

Let us now discuss the first basic results of geometric nature. The first theorem
and its corollary hold in full generality for actions of G on normal varieties.

Theorem 2.2.1. Let X be a normal G-variety, Y a G-orbit. Then there exists an
open set U of X containing Y , G-stable, and isomorphic to a G-stable subvariety
of P(V ) for some finite dimensional rational G-module V .

Proof. (sketch, see [KKLV89, Theorem 1.1]) Let U0 be an open affine set intersect-
ing Y . Then X \ U0 has pure codimension 1, let us call D the effective divisor on
X which is the sum of the irreducible components of X \ U0.

Now one can show that D is Cartier on a G-stable neighborhood of Y (using
the same approach as in [Br97, proof of Proposition 2.2]), therefore we can suppose
that D is Cartier on X. For m ∈ N big enough, the invertible sheaf O(mD) is G-
linearizable (see [KKLV89, Proposition 2.4]); choose such an m so that f1, . . . , fn ∈
H0(X,O(mD)), where f1, . . . , fn are generators of the C-algebra C[U0]. Set W =
the G-submodule generated by f1, . . . , fn in H0(X,O(mD)); the associated rational
map X 99K P(W ∗) is G-equivariant and biregular on GU0, and we can set U =
GU0. �

Corollary 2.2.1. Let X be a normal G-variety with only one closed orbit Y . Then
X is quasi-projective.

Proof. Let U be the quasi-projective G-stable open set as in Theorem 2.2.1. Its
complementary X \ U is closed and G-stable, therefore either it is empty, or it
contains a closed G-orbit different from Y . The claim follows. �

Corollary 2.2.2. Let X be a normal G-variety and Y an irreducible G-stable
closed subvariety. Then B-semi-invariant rational functions on Y can be extended
to B-semi-invariant rational functions on X, obtaining Λ(X) ⊇ Λ(Y ).

Proof. (sketch, see [Br97, proof of Proposition 1.1]) Suppose at first that X is affine.
If f ∈ C(Y )(B), then the B-module:{

q ∈ C[Y ] | qf ∈ C[Y ]
}

is non trivial, thus contains a B-eigenvector. It follows that f is the quotient of
two functions in C[Y ](B). Then, the induced G-equivariant map C[X] → C[Y ] is
surjective, and one can lift all B-semi-invariant regular functions from Y to X,
obtaining Λ(X) ⊇ Λ(Y ).

If X is not affine, we can use Theorem 2.2.1 to reduce the problem to a quasi-
projective X ⊆ P(V ), and then apply the affine case on the cones over X and Y in
V . �

We end this Section with an important finiteness result.

Theorem 2.2.2. Let X be a spherical G-variety. Then both G and B have a finite
number of orbits on X. Moreover, if Y is a G-stable closed subvariety of X, then
Y is spherical.

Proof. The finiteness of the number of G-orbits and the last assertion is proved
for affine spherical varieties in [Br09, Theorem 2.14]. It is not difficult to extend
these two claims to the case where X ⊆ P(V ) is quasi-projective, using the cone
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over X inside V equipped with the action of G × C∗, where C∗ acts by scalar
multiplication on V (see also [Br09, Lemma 2.17 and Proposition 2.18]). Theorem
2.2.1 then assures the two claims for any spherical variety.

The finiteness of the number of B-orbits follows from the claim on G-orbits
together with [Br09, Theorem 2.15]. �

2.3. Local structure. Let X be a spherical variety and Y a closed G-orbit. We
are interested, in analogy with differentiable actions of compact Lie groups, in a
local structure theorem of X around Y . One could hope for some result describing a
G-invariant neighbourhood of Y with nice properties such as admitting a retraction
onto Y , but examples show that this is not possible (see e.g. [Br97, §1.4]).

However, we can restrict the problem to the action of a parabolic subgroup of
G; in this case a result on the local structure is possible. This is very useful to
attack geometric problems on X (equipped with the action of G) by reducing them
to some smaller variety M , spherical under the action of a smaller reductive group
L ⊂ G.

Example 2.3.1. Let G = SL2 acting on X = P1×P1 with (diagonal) linear action,
and consider the closed G-orbit Z = diag(P1). The orbit Z does not admit any
G-stable neighbourhood except for the whole X, but let us consider the action of
the Borel subgroup B. There exist two B-stable prime divisors other than Z:

D+ = P1 ×
{

[1, 0]
}
, D− =

{
[1, 0]

}
× P1;

and there exists one B-stable affine open set intersecting Z, which we will call XZ,B ,
namely:

XZ,B = X \ (D+ ∪D−) =
{

([x, 1], [y, 1])
} ∼= A2

The action of B on XZ,B is particularly simple. First of all, the action of the
unipotent radical Bu is simply the translation in the direction of the line {x =
y} ⊂ A2, which is by the way Z ∩ XZ,B . Now we consider the maximal torus
T ⊂ B: its action is also simple. It is just the scalar action on the whole A2 with
weight α1.

It is useful to notice that XZ,B splits into the product of Z ∩ XZ,B , which is
B-stable, and a “section” M , i.e. a T -stable closed subvariety. Here one can take
for M any other line through the origin, e.g. {x+ y = 0} ⊂ A2.

The following local structure theorem can be stated in many different forms;
here we report a version which is best suited for our needs.

Definition 2.3.1. For any spherical G-variety X and any closed G-orbit Y ⊂ X,
we define the open set:

XY,B = X \
⋃
D

where the union is taken over all B-stable prime divisors D that do not contain Y .

Theorem 2.3.1. Let X be a spherical G-variety and Y ⊂ X a closed G-orbit.
Then:

(1) The set XY,B is affine, B-stable, and is equal to
{
x ∈ X | B · x ⊇ Y

}
.

(2) If Y is the only closed G-orbit, then the B-stable prime divisors not con-
taining it are all Cartier and generated by global sections.
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(3) Define the parabolic subgroup P ⊇ B to be the stabilizer of XY,B, and choose
a Levi subgroup L of P . Then there exists an affine L-stable L-spherical
closed subvariety M of XY,B such that the action morphism:

Pu ×M → XY,B

is a P -equivariant isomorphism. Here the action of P on Pu×M is defined
as p · (v,m) = (ulvl−1, lm) where p = ul ∈ P and u ∈ Pu, l ∈ L. Moreover
we have Λ(X) = Λ(M): in particular X and M have same rank.

Proof. We only sketch the strategy of the proof of the decomposition in (3) in the
special (not necessarily spherical) case where X = P(V ) is the projective space of a
simple non-trivial G-module V , and we take for XY,B the complementary in P(V )
of the unique B-stable hyperplane U . All parts of the theorem follow from this (see
[Br97, Proposition 2.2 and Theorem 2.3]).

So let X = P(V ) and Y be its unique closed G-orbit. Consider the open set
Y◦ = Y \ U of Y : it is isomorphic to Pu. The stabilizers of the points in Y◦ are
exactly the Levi subgroups of P . Let us choose m ∈ Y◦ such that its stabilizer is L.

The action of L on Cm ⊆ V is the multiplication by a scalar, which is not
constantly = 1. Therefore the tangent space Tm(Gm) is actually an L-submodule
of V . Since L is reductive, the module V admits a decomposition:

V = Tm(Gm)⊕W

where W is a complementary L-submodule. Set:

M = P(Cm⊕W ) \ U.

This is evidently an L-stable affine subvariety of P(V ) \ U , and it is possible to
prove that P(V ) \ U is equivariantly isomorphic to Pu ×M . �

Corollary 2.3.1. A spherical variety has rank 0 if and only if it is a complete
homogeneous space G/P for some parabolic subgroup P .

Proof. The “if” part has been proved in Example 2.2.1. For the converse, see [Br97,
Corollary 1.4.1]. �

Corollary 2.3.2. In the hypotheses of Theorem 2.3.1, the variety X is smooth if
and only if M is.

The following proposition and its corollary are straightforward.

Proposition 2.3.1. Let X be a spherical G-variety and Y ⊂ X a closed G-orbit.
Define the set XY,G to be GXY,B. Then:

XY,G =
{
x ∈ G | G · x ⊇ Y

}
.

This set is open, G-stable, and Y is its unique closed G-orbit.

Definition 2.3.2. A spherical G-variety X is simple if it contains a unique closed
G-orbit.

Corollary 2.3.3. Any spherical G-variety admits a cover by open G-stable simple
spherical G-varieties.
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Example 2.3.2. We consider the spherical homogeneous spaceG/H = SLn+1/SLn.
It can be described as:

G/H =
{

(v, V ) ∈ Cn+1 ×Gr(n,Cn+1) | v /∈ V
}
.

We define the embeddingX ⊃ G/H to be the closure ofX inside Pn+1×Gr(n,Cn+1),
where we consider Pn+1 as Cn+1 plus the hyperplane Pn∞ at infinity. This X has
two closed G-orbits: Y , given by the condition v = 0, and Z, given by the condition
v ∈ Pn∞ ∩ V (with obvious meaning).

The open set XY,G is given by the condition v /∈ Pn∞, and XZ,G is simply X \Y .

The first steps of our analogy with toric varieties can now be made more precise.
Our last statements suggest that the sets XY,B , being open B-stable and affine,
are good candidates for a description of their rings of functions C[XY,B ] using the
B-weights of their B-eigenvectors. On the other hand the sets XY,G, i.e. in general
the simple spherical varieties, are good candidates to play here the role of affine
toric varieties.

2.4. Discrete valuations. We approach now the additional structures on N(X)
that are required for the classification of embeddings. We use discrete valuations
on the field of rational functions of G/H; the strategy is to relate this notion, which
is in some sense quite abstract, to the invariants we have already defined.

Definition 2.4.1. A map ν : C(X)∗ → Q is a discrete valuation on X if, for all
f1, f2 ∈ C(X)∗:

(1) ν(f1 + f2) ≥ min{ν(f1), ν(f2)} whenever f1 + f2 ∈ C(X)∗;
(2) ν(f1f2) = ν(f1) + ν(f2);
(3) ν(C∗) = {0};
(4) the image of ν is a discrete subgroup of Q.

Definition 2.4.2.
(1) Let D be a prime divisor on X. Then we denote by νD the associated

discrete valuation.
(2) There is a naturally defined map:

ρX : {discrete valuations on X} → N(X)

such that the image of ν is the functional ρX(ν) that takes the value ν(fχ)
on χ ∈ Λ(X). This is well defined since fχ is determined by χ up to a
multiplicative constant. For a prime divisor D of X, we will also write for
brevity ρX(D) instead of ρX(νD); we will also drop the subscript “X” if no
risk of confusion arises.

(3) A discrete valuation ν on X is G-invariant if ν(g · f) = ν(f) for all f ∈
C(X)∗ and all g ∈ G. We denote by V(X) the set of G-invariant valuations
on X.

Let us make a few remarks. If Y is a G-invariant prime divisor, then it is obvious
that νY is G-invariant. Also, if Z is any G-stable irreducible closed subvariety Z,
let us define ν to be the valuation associated to an irreducible component of π−1(Z)
where π : X̃ → X is the normalization of the blow-up of X along Z. The result is
a discrete valuation with the following properties: f ∈ OX,Z implies ν(f) ≥ 0, and
f |Z = 0 implies ν(f) > 0. Whenever these conditions are satisfied for some ν, we
say that ν has center on Z.
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The last element we have to introduce for the classification of embeddings is the
notion of the colors of a spherical variety.

Definition 2.4.3. A prime divisor D on X is called a color if it is B-stable but
not G-stable. We denote by ∆(X) the set of all colors of X.

Again, all definitions here are invariant under G-equivariant birational maps,
and thus depend only on G/H. This hold also for colors, if we accept the abuse of
notation given by identifying the colors of G/H with their closures in X.

Example 2.4.1. Consider again the spherical homogeneous space G/H = SL2/U ,
which can be seen as C2 \ {(0, 0)}. The unique color D is given by the equation
{y = 0}, and we have:

〈ρ(D), ω1〉 = νD(fω1) = νD(y) = 1.

We claim that V(SL2/U) is equal to the whole N(SL2/U). Choose any η ∈ N(X),
and define ν : C[x, y]∗ → Q by:

ν(f) = min〈η, nω1〉

where the minimum is taken over all n ∈ N such that f has some part of degree
n. This ν extends to a G-invariant valuation defined on C(SL2/U), and it satisfies
ρ(ν) = η.

The above example is a particular case of an interesting class of varieties.

Definition 2.4.4. A spherical variety with open orbit G/H is horospherical if
H ⊇ U where U is a maximal unipotent subgroup of G.

We will see in Corollary 3.2.1 thatX is horospherical if and only if V(X) = N(X).

Example 2.4.2. If X ⊃ G/H is the embedding P1×P1 ⊃ SL2/T , we have already
seen its two colors D+ and D−, and its unique closed G-orbit Z = diag(P1). We also
know a local equation f(x, y) = (x− y) of Z in XZ,B = {([x, 1], [y, 1]) ∈ P1 × P1},
and obviously f(x, y) is a B-eigenvector with weight −α1.

It follows that 〈ρ(Z), α1〉 = −1, and we have V(X) = Q≥0νZ . On the other hand,
f(x, y) has poles of order 1 along both colors, thus 〈ρ(D+), α1〉 = 〈ρ(D−), α1〉 = 1.

Example 2.4.3. If G/H is equal to the space of smooth conics for G = SL3, it
is easy to see that there are two colors D1, D2. Their pull-backs on G have global
equations resp. f1 and f2, in the notation of Example 2.2.5. A straightforward
computation leads to:

ρG/H(D1) =
1
2
α∨1 |Λ(G/H), ρG/H(D2) =

1
2
α∨2 |Λ(G/H)

It is possible to prove that ρG/H(V(G/H)) is equal to the negative Weyl chamber
intersected with Λ(G/H).

The discrete valuations on C(G/H) are the best-suited tool to describe any
embedding of the homogeneous space G/H, and we will see that invariant ones will
play a central role. The next theorem assures that there is no “loss of information”
if we only calculate them on B-semi-invariant rational function, which are the core
of our approach.
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Theorem 2.4.1. Let X be a spherical G-variety. Then the application ρX re-
stricted to the set of G-invariant valuations:

ρX |V(X) : V(X)→ N(X)

is injective.

Proof. (sketch, see [Br97, Corollary 3.1.3]) Let ν be an invariant valuation: we want
to prove that it depends only on its values at B-eigenvectors. It is possible to lift
ν to a G-invariant (under left translation) discrete valuation defined on C(G)∗, via
the quotient G→ G/H where G/H is the open G-orbit of X (we skip the proof of
this lifting, see [Br97, Corollary 3.1.1]).

Let now f be a regular function on G and W = span{gf | g ∈ G} the G-
submodule generated by f . We claim that:

ν(f) = min
F∈W (B)

ν(F ).

Indeed, for any B-eigenvector F ∈W , we know that:

F = g1f + g2f + . . .+ gnf

for some g1, . . . , gn ∈ G. From invariance and the properties of discrete valuations
it follows ν(F ) ≥ ν(f).

On the other hand W is a G-module, therefore we can also generate it with
elements of the form gF for g ∈ G and F a B-eigenvector. It follows that:

f = g′1F1 + g′2F2 + . . .+ g′mFm

for g′1, . . . , g
′
m ∈ G, and F1, . . . , Fm ∈ W (B). Our claim follows, and it is now easy

to deduce that ν calculated on rational functions depends only on its values on
C(G)(B). It follows at once that the original valuation on X depends only on its
values on C(X)(B). �

We remark that ρX is not injective on all discrete valuations; see e.g. Example
2.4.2.

2.5. Classification of embeddings. Recall that we have fixed a spherical homo-
geneous space G/H, with the base point H.

We will say that (X,x) is an embedding of G/H if X is spherical, the G-orbit
Gx is open in X, and H is the stabilizer of x. If no confusion arises, we will denote
sometimes an embedding (X,x) simply by X.

Given two embeddings (X,x) and (X ′, x′) of G/H, any G-equivariant map be-
tween X and X ′ will be assumed to send x to x′.

Now that we have all the necessary elements, we begin the classification of em-
beddings from the case of simple ones.

Definition 2.5.1. Let X be a simple spherical G-variety, with closed orbit Y .
Then we define:

D(X) =
{
D ∈ ∆(X) | D ⊃ Y

}
.

Proposition 2.5.1. Let (X,x) be a simple embedding of G/H.
(1) Let f ∈ C(X). Then f ∈ C[XY,B ] if and only if f is regular on the open

B-orbit X◦B of X and νD(f) ≥ 0, where D runs through all G-invariant
prime divisors of X and all elements of D(X).

(2) Among simple embeddings of G/H, (X,x) is uniquely determined by D(X)
and the valuations of the G-stable prime divisors of X.
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Proof. (sketch, see [Br97, Proposition 3.2.1]) From the definition of XY,B we know
that it contains X◦B ; the complement XY,B \X◦B is the union of the prime divisors
in D(X) and of all the G-stable prime divisors of X. Since XY,B is normal, any
function is regular if it is regular in codimension 1, and the first part follows.

If (X,x) and (X ′, x′) are simple embeddings of G/H with same D(X) and the
same valuations of theG-stable prime divisors ofX, then we know from the first part
that C[XY,B ] = C[X ′Y,B ] as subrings of C(G/H). More precisely, the G-equivariant
birational map X 99K X ′ sending x to x′ induces an isomorphism between XY,B

and X ′Y,B . Since GXY,B = X and GX ′Y,B = X ′, the second part follows. �

We are ready to define the objects that classify simple embeddings. In what
follows, we consider V(X) as a subset of N(X) (via the map ρX).

We also consider the set of colors ∆(G/H) simply as an abstract set, equipped
with a map ρX |∆(G/H) to N(X) (also denoted simply by ρ). The reason is that
we want to consider our invariants as combinatorial objects, just like the convex
polyhedral cones of toric varieties.

Definition 2.5.2. Let (X,x) be a simple embedding ofG/H. Define C(X) ⊆ N(X)
to be the convex cone generated by ρX(D(X)) and by all the G-invariant valuations
associated to G-stable prime divisors of X. The couple (C(X),D(X)) is called the
colored cone of X.

The “combinatorial counterpart” of this definition is the following:

Definition 2.5.3. A colored cone in N(G/H) is a couple (C,D), where C ⊆ N(X)
and D ⊆ ∆(X), such that:

(1) the set C is a strictly convex polyhedral cone generated by ρG/H(D) and a
finite number of elements in V(G/H);

(2) the relative interior of C intersects V(G/H);
(3) we have 0 /∈ ρ(D).

It is not difficult to show that the colored cone of an embedding satisfies the
properties of Definition 2.5.3.

Theorem 2.5.1. The map (X,x) 7→ (C(X),D(X)) induces a bijection between
simple embeddings of G/H (up to G-equivariant isomorphism) and colored cones
in N(G/H).

Proof. See [Br97, Theorem 3.3]. �

It is convenient to make some remarks. First of all we recall that the G-
equivariant isomorphisms between embeddings (X,x) and (X ′, x′) are here required
to send x to x′: this is obviously necessary for the theorem to hold. Then, the in-
jectivity of the map is essentially Proposition 2.5.1. Most of the next results on
embeddings are proven using in the chart XY,B and its ring of functions C[XY,B ],
in the same spirit of Proposition 2.5.1.

Finally, we point out that C(X) might be already generated as a convex cone
by its intersection with V(G/H): it is however necessary to keep track of D(X) in
order to distinguish between different embeddings.
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Example 2.5.1. Let G/H be the homogeneous space SL2/T . Then the picture of
N(G/H), V(G/H) and ∆(G/H) is:

0

V(G/H) rρ(D+)

ρ(D−)

where ρ(D+) = ρ(D−). We only have two possible colored cones (including the
trivial one), and two simple embeddings:

(1) (C1,D1) = ({0},∅), giving the trivial embedding G/H;
(2) (C2,D2) = (V(G/H),∅), giving the embedding P1 × P1.

Example 2.5.2. Let G/H be the homogeneous space SL2/U . Here the picture is
the following:

0

V(G/H) r
ρ(D)

where D is the unique color of G/H. We have three nontrivial colored cones, which
correspond to three nontrivial simple embeddings:

(1) (C1,D1) = (Q≤0ρ(D),∅), giving the embedding G/H ∪ (line at infinity);
(2) (C2,D2) = (Q≥0ρ(D), {D}), giving the embedding C2 = G/H ∪ {(0, 0)};
(3) (C3,D3) = (Q≥0ρ(D),∅), giving the blowup of C2 in (0, 0).

Example 2.5.3. Let G/H be the homogeneous space SL3/SO3C(SL3) of smooth
conics. Then we have:

�
�
�
�
�

T
T
T
T
T

T
T
T
T
T

�
�
�

"
"

"
"

"

rρ(D2)

rρ(D1)

V(G/H)

Here there are infinitely many simple embeddings; some of them are:

T
T
T
TT

���
���

���

��
���

���

��
���

���
��

Q
QQ
Q
Q

Q
QQ
Q
QQ

C
C
C

C
C
C
C
CC

C
C
C
C
C
C
C

C
C
C
C
C
C
C
C

"
"

"
"

"

rρ(D2)

rρ(D1)

D(X)={D1}

"
"

"
"

"

rρ(D2)

rρ(D1)

D(X)=∅

"
"

"
"

"

rρ(D2)

rρ(D1)

D(X)={D2}

The first one is the variety of all conics in P2, obviously an embedding of the space
of smooth conics. More precisely, any nonsingular conic C ⊂ P2 is defined by
an homogeneous equation of degree 2 in three variables. The coefficients of the
equation correspond to a point in P5, and we obtain in this way an identification
of G/H with an open subset of P5. The closure of G/H, i.e. P5 itself, is the variety
of conics (of points) in P2.
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If we replace C with its dual C ∗ ⊂ (P2)∗, we obtain a point in the dual projective
space (P5)∗. The embedding (P5)∗ of G/H is the variety of conics of lines, and is
represented by the third colored cone. The second colored cone corresponds to the
closure in P5×(P5)∗ of the set of couples (C ,C ∗): it is called the variety of complete
conics, see Example 3.4.5 and [B09, Example 1.3].

The geometry of a simple embedding has many relations with the geometry of
its colored fan. Nonetheless, the correspondence is not as well developed as for
toric varieties; for example the characterization of smooth simple embeddings is in
general more complicated.

The next result explains one of these relations, which is also useful for general
embeddings.

Definition 2.5.4. A face of a colored cone (C,D) is a colored cone (C′,D′) where
C′ is a face of C and D′ = D ∩ ρ−1(C′).

Proposition 2.5.2. Let (X,x) be an embedding of G/H and Y one of its G-orbits.
Then there is a bijection between the G-orbits of X containing Y in their closure
and the faces of (C(XY,G),D(XY,G)), induced by associating to Z ⊆ X the colored
cone of the simple embedding XZ,G.

Proof. See [Br97, Proposition 3.4]. �

Finally, simple embeddings can be glued together to obtain general embeddings.
As one would expect, this corresponds to the following:

Definition 2.5.5. A colored fan in N(G/H) is a collection F of colored cones such
that:

(1) any face of a colored cone of F is in F;
(2) the relative interiors of the colored cones of F do not intersect.

Given an embedding (X,x) of G/H, we define its colored fan as:

F(X) =
{

colored cones associated to XY,G for any G-orbit Y of X
}
.

Theorem 2.5.2. The map (X,x) 7→ F(X) induces a bijection between embeddings
of G/H (up to G-equivariant isomorphism) and colored fans in N(G/H).

Proof. See [Br97, Theorem 3.4.1]. �

It is not difficult to prove the following last result:

Proposition 2.5.3. An embedding (X,x) is complete if and only if the union of
all C for (C,D) running through all colored cones in F(X) contains V(G/H).

Example 2.5.4. We can now complete the list of embeddings for G/H = SL2/T
and G/H = SL2/U we started in Examples 2.5.1 and 2.5.2. For the first one, it is
clear that the two possible colored cones do not give rise to any other colored fan.
Therefore SL2/T does not admit any other embedding.

For SL2/U , non-simple embeddings exist and are all complete. Precisely:

(1) F = {({0},∅), (C1,D1), (C2,D2)}, giving the embedding P2;
(2) F = {({0},∅), (C1,D1), (C3,D3)}, giving the blow up of P2 in the origin of

C2.
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Example 2.5.5. Let us describe the colored fan of an embedding X of G/H =
SLn+1/SLn. The homogeneous space G/H was described in Example 2.3.2.

The lattice Λ(G/H) has basis γ1 = ω1 and γ2 = ωn, which are the B-weights
of the functions f1, f2 ∈ C[G] defined in Example 2.2.4 (both functions descend to
functions in C[G/H](B)). There are two colors D1, D2, where Di is the set of zeros
of fi on G/H, and (ρ(D1), ρ(D2)) is the dual basis of (γ2, γ1).

Let X be the closure of G/H in the variety Bl0(Pn+1)×Gr(n,Cn+1) where Pn+1

is considered as Cn+1 plus the hyperplane at infinity, and the point 0 ∈ Pn+1 is
just the origin of Cn+1.

This embedding X is smooth, and its colored cones do not contain colors. Those
of maximal dimension (= 2) give a subdivision of V(G/H):

-
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rρ(D1)

ρ(D2)

2.6. Functorial properties. Let us discuss two functorial properties of the clas-
sification of embeddings. The first one is a generalization of dominant equivariant
morphisms between toric embeddings of two given algebraic tori.

Let G/H and G/H ′ be two spherical homogeneous spaces with H ⊂ H ′. Then
the natural morphism:

ϕ : G/H → G/H ′

induces an injective homomorphism:

ϕ∗ : Λ(G/H ′)→ Λ(G/H)

and a surjective linear map:

ϕ∗ : N(G/H)→ N(G/H ′)

We define Cϕ = kerϕ∗. It is also possible to prove that ϕ∗(V(G/H)) = V(G/H ′),
using the lifting technique cited in the proof of Theorem 2.4.1.

Definition 2.6.1. We define Dϕ to be the set of colors:

Dϕ =
{
D ∈ ∆(G/H) | ϕ(D) = G/H ′

}
We remark that if a color D is not in Dϕ then it is not difficult to show that

ϕ(D) is a color of G/H ′.

Theorem 2.6.1. Let (X,x) and (X ′, x′) two embeddings resp. of G/H and G/H ′.
Then ϕ extends to a G-equivariant map X → X ′ if and only if F(X) dominates
F(X ′), in the following sense: for each colored cone (C,D) ∈ F(X) there exists
(C′,D′) ∈ F(X ′) such that ϕ∗(C) ⊆ C′ and ϕ∗(D \Dϕ) ⊆ D′.

Proof. See [Br97, Theorem 3.4.2]. �
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Example 2.6.1. It is easy to check Theorem 2.6.1 for embeddings of Examples
2.5.1, 2.5.2, 2.5.4, and 2.5.3 assuming some familiarity with the variety of complete
conics.

The embedding of Example 2.5.5 admits a G-equivariant surjective morphism
to the unique non-trivial embedding X ′ of SLn+1/GLn. The variety X ′ can be
described as:

X ′ = Pn ×Gr(n,Cn+1),
and the morphism has an obvious definition which we leave to the Reader.

Our last theorem is a very useful result which describes all subgroups H ′ ⊇ H of
G such that H ′/H is connected. It is also a generalization of the fact that connected
subgroups of an algebraic torus T are described by linear subspaces of N(T ).

Definition 2.6.2. A colored subspace of N(G/H) is a colored cone (C,D) such
that C is a vector subspace of N(G/H).

Theorem 2.6.2. The map H ′ 7→ (Cϕ,Dϕ) is a bijection between the set of sub-
groups H ′ ⊇ H of G such that H ′/H is connected, and the set of colored subspaces
of N(G/H). For each such H ′, the map ϕ induces a bijection between ∆(G/H ′)
and ∆(G/H) \Dϕ.

Proof. See [Br97, Theorem 3.4.2]. �

3. Wonderful varieties

Wonderful varieties first appeared in the work of De Concini and Procesi [DP83],
where they constructed special embeddings for symmetric homogeneous spaces
G/NGG

θ. Here Gθ is the subgroup of elements fixed by a given involution θ : G→
G.

These embeddings shared very nice properties, and were used to approach in
a new way classical problems in enumerative geometry: for example counting the
number of quadrics simultaneously tangent to nine given quadrics in P3.

Their properties were then taken as axioms of the class of wonderful varieties,
and apparently do not involve at all what we have seen in the previous Sections.
In [Lu96] Luna showed that such varieties are always spherical, and we will see an
alternative definition based upon the theory of embeddings.

We start with the properties of a more general family of spherical varieties, which
is interesting on its own.

3.1. Toroidal embeddings.

Definition 3.1.1. An embedding (X,x) is toroidal if no color contains a G-orbit.
Equivalently, if all colored cones (C,D) ∈ F(X) satisfy D = ∅.

In the case of toroidal embeddings we can give a much stronger local structure
theorem:

Theorem 3.1.1. Let X be a toroidal embedding and Y ⊆ X a closed G-orbit, let P
be the stabilizer of XY,B and choose a Levi subgroup L ⊆ P . Then, as in Theorem
2.3.1, there exists an affine L-stable L-spherical closed subvariety M of XY,B such
that the action morphism:

Pu ×M → XY,B

is a P -equivariant isomorphism. For any such M :
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(1) the action of (L,L) on M is trivial, therefore M is a toric variety under
the action of a quotient of the torus L/(L,L);

(2) the intersection with M induces a bijection between G-orbits in X and L-
orbits in M .

Proof. See [Br97, Proposition 2.4.1]. �

The proof of above theorem uses Theorem 2.3.1; one of the other ingredients is
the following result, which is nice to single out:

Lemma 3.1.1. Let H be a subgroup of G such that G = BH. Then H contains
(G,G).

Proof. We can suppose that G is semisimple, and it is not difficult to show that
G = BH implies G = BH◦. Consider the semisimple group K = H◦/(H◦)r: since
G = BH◦ then G/B = H/B ∩H. Hence the flag varieties of G and K are equal.
Therefore the ranks of G and K are equal, being the ranks of the Picard group of the
respective flag varieties, and they have the same number of roots (being the double
of the dimensions of the respective flag varieties). It follows that dimG = dimK
and thus G = K. �

Obviously, Corollary 2.3.2 holds for toroidal varieties too. Here it is in some
sense particularly relevant, due to the following:

Proposition 3.1.1. Let X be a toroidal simple embedding, with colored cone (CX ,∅).
Then the convex cone associated to the affine toric variety M is CX .

The Proposition follows at once from Theorem 3.1.1, and its importance comes
from the fact that smoothness of toric varieties is easily checked on the associated
convex cones.

3.2. The cone of invariant valuations and canonical embeddings.

Theorem 3.2.1. Let X be a spherical variety. Then V(X) is a convex polyhedral
cone which spans N(X). Moreover, it can be defined as:

V(X) =
{
η ∈ N(X) | 〈η, σi〉 ≤ 0, i = 1, . . . , n

}
where σ1, . . . , σn ∈ Λ(X) are linearly independent.

Proof. See [Br97, Theorem 4.1.1] for the first part of the Theorem. The proof of
the second part is much more involved and is carried out in [Br90] where it rests
ultimately on a case-by-case verification. See also [K96] for a proof with a different
approach. �

Theorem 3.2.1 suggests the possible existence of a simple toroidal embedding
which is in some sense “distinguished”: the one associated to the colored cone
(V(G/H),∅). Its interest comes from the fact that it would only depend on G/H,
without any further choice.

Unfortunately, the cone V(G/H) is not always strictly convex: namely, its linear
part has a precise relationship with the group (NGH/H)◦.

Theorem 3.2.2.
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(1) There exists a choice of σ1, . . . , σn as in Theorem 3.2.1, such that:

NGH/H ∼= Hom
(

Λ(G/H)
spanZ{σ1, . . . , σn}

,C∗
)
.

As a consequence, the group NGH/H is diagonalizable and its dimension
is equal to the dimension of the linear part of V(G/H).

(2) We have a short exact sequence:

0→ V(G/H)→ N(G/H)→ N(G/NGH)→ 0.

(3) If H is B-spherical, the group NGH is the stabilizer on the right of BH ⊆ G;
we also have NGH = NG(H◦).

Proof. See [Br97, Theorem 4.3]. �

Corollary 3.2.1.
(1) The cone V(G/H) is strictly convex if and only if NGH/H is finite.
(2) The subgroup H contains a maximal unipotent subgroup of G if and only if

V(G/H) = N(G/H).

Proof. Part (1) follows immediately from Theorem 3.2.2. We prove part (2). Sup-
pose that V(G/H) = N(G/H); from Theorem 3.2.2 it follows that G/NGH has
rank 0, in other words NGH is a parabolic subgroup. The quotient NGH/H is
diagonalizable, therefore H contains a maximal unipotent subgroup of NGH and
thus of G.

Inversely, suppose that H contains a maximal unipotent subgroup U . We know
that the normalizer of U is a Borel subgroup, hence V(G/U) = N(G/U). Then
V(G/H) is a vector space too, as a consequence of §2.6. �

The two above results are easily verified on all the examples we have given so
far.

Definition 3.2.1. If NGH/H is finite then we define the canonical embedding of
G/H to be the simple embedding associated to the colored cone (V(G/H),∅).

It is immediate to check that if the canonical embedding exists, it is the unique
simple toroidal complete embedding of G/H.

It exists if and only if H has finite index in its normalizer. We remark that thanks
to Theorem 3.2.2 we know that NG(NGH) = NGH; as a consequence, a spherical
homogeneous space of the form G/NGH always admit a canonical embedding.

3.3. Wonderful varieties. Let us define wonderful varieties with the original def-
inition, coming from the properties of the De Concini-Procesi compactifications of
symmetric homogeneous spaces.

Definition 3.3.1. Let X be a G-variety. Then X is wonderful if:
(1) X is smooth and complete;
(2) X contains an open G-orbit X◦G, whose complementary is the union of

smooth G-stable prime divisors X(1), . . . , X(r), which have normal crossings
and non-empty intersection;

(3) for all x, y ∈ X we have:

Gx = Gy ⇐⇒
{
i | X(i) 3 x

}
=
{
j | X(j) 3 y

}
.
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The number r is by definition the rank of X, and the union of the G-stable prime
divisors is called the boundary of X, denoted ∂X.

As an immediate consequence, on a wonderful variety X the G-orbits are exactly
the sets: ⋂

i∈I
X(i) \

⋃
j /∈I

X(j)

for any subset I ⊆ {1, 2, . . . , r}. So a wonderful variety has 2r orbits, and only
one is closed. Being simple and complete, a wonderful variety is always projective,
thanks to Corollary 2.2.1.

We remark that Definition 3.3.1 does not assume X to be spherical. This is
actually a consequence, as shown by Luna:

Theorem 3.3.1. Any wonderful G-variety is spherical.

Proof. See [Lu96]. �

We will give several examples of wonderful varieties at the end of §3.4, together
with some relevant invariants.

We now show that wonderful varieties can be defined purely in terms of embed-
dings.

Proposition 3.3.1. A spherical variety is wonderful if and only if it’s the canonical
embedding of its open G-orbit and this embedding is smooth. The ranks as wonderful
variety and as spherical variety coincide.

Proof. Let X be the smooth canonical embedding of G/H with rank r as a spherical
variety: we prove it’s wonderful of rank r. First of all it is simple and projective,
and all its G-stable prime divisors contain its closed orbit Y . Consider the local
structure of XY,B as in Theorem 3.1.1. Then M is a smooth affine toric variety;
it also has a fixed point because T has a fixed point in XY,B lying on the closed
G-orbit Y (the unique point fixed by B−). It follows that M ∼= Cr where r is the
rank of G/H. Its dimension is correct because V(G/H) is strictly convex therefore
its equations (as in Theorem 3.2.1) are exactly r.

The correspondence between G-orbits on X and T -orbits on Y implies that the
G-stable prime divisors of X cut M along its r coordinate hyperplanes, so they are
smooth with normal crossings. It also implies readily axiom (3) of Definition 3.3.1,
since it is obviously true for M .

Now let X be a wonderful variety, of rank r. Then it is spherical, smooth, simple
and projective, with open orbit G/H and closed orbit Y ; it remains to show that it
is toroidal, and its rank r′ as spherical variety is equal to r. Let (C(X),D(X)) be
its colored cone. Recall that ∂X denotes the set of the r prime G-stable divisors of
X. Hence C(X) is generated as a convex cone by ρ(D(X)) and ρ(∂X), and contains
V(G/H). It also follows that V(G/H) is strictly convex and simplicial, defined by
r′ equations as in Theorem 3.2.1. Thus G/H admits a canonical embedding X ′.

Consider now ρ(∂X) in view of the structure of the G-orbits of X. Proposition
2.5.2 and the orbit structure of X imply that any subset of ρ(∂X) generates a face
F of ρ(∂X), in such a way that F is also a face of C(X) and its relative interior
intersects V(G/H). In other words ρ(∂X) must be a simplicial cone equal to C(X)
and to V(G/H). It follows also that r = r′.

Finally, we must prove that D(X) = ∅. Consider the canonical embedding X ′

of G/H. The identity of G/H extends to a G-equivariant map ϕ : X ′ → X, and
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applying Proposition 2.5.2, we see that ϕ induces a bijection between G-orbits of X
and X ′. In particular ϕ−1(Z) = Z ′, where Z and Z ′ are the closed G-orbits of resp.
X and X ′. The crucial observation is that this bijection preserves the dimensions,
another easy consequence of the structure of orbits of X.

Suppose that there exists D ∈ D(X) and call D′ the closure in X ′ of D ∩
X◦G. Then D ⊃ Z, but D′ 6⊃ Z ′. We have that ϕ(D′) = D, which implies that
(ϕ|D′)−1(Z) = ϕ−1(Z) ∩D′ = Z ′ ∩D′ has some irreducible component with same
dimension as Z. This is in contradiction with D′ 6⊃ Z ′. �

Hence a spherical homogeneous space admits at most one wonderful embedding:
namely its canonical one, in the case it exists and is smooth.

The question whether a spherical homogeneous space admits a wonderful embed-
ding is not yet completely settled. We have already seen the necessary condition
that NGH/H be finite, but this is not sufficient (see Example 3.4.3).

A sufficient condition is for example that NGH = H, as shown by a deep theorem
of Knop (see [K96]). We skip its precise statement (see [B09, Theorem 3.9])

3.4. Subvarieties. From now on we assume that X is the wonderful embedding
of a spherical homogeneous space G/H, of rank r.

Let Y be a G-stable closed subvariety of X. Definition 3.3.1 implies that Y is
the intersection of some of the prime divisors:

Y =
⋂
i∈I

X(i)

for some subset I ⊆ {1, 2, . . . , r}, and any choice of I will produce such a subvariety.
It also follows immediately that Y is wonderful, of rank r − |I|.

In other words, we have seen in the proof of Proposition 3.3.1 that the prime
divisors X(i) “intersect like” the coordinate hyperplanes in Cr; any intersection of
some of them gives a wonderful subvariety.

Another consequence of the local structure of X is that the B-weights in the
statement of Theorem 3.2.1 can be chosen to be a basis of the lattice Λ(X). This
choice gives an important invariant of X: its spherical roots. The T -equivariant iso-
morphism M ∼= Cr shows that they can also be defined in the following alternative
way:

Definition 3.4.1. Let z ∈ X be the unique point fixed by B−; it lies on Z = Gz
the unique closed G-orbit. Then consider the vector space:

TzX/TzZ

which is naturally a T -module. Its T -weights are called spherical roots of X, and
their set is denoted by ΣX .

Spherical roots are in bijection both with 1-codimensional G-stable closed sub-
varieties, and with (r − 1)-codimensional ones. Indeed for any σ ∈ ΣX one can
define a correspondence:

σ ←→ Xσ ←→ Xσ

where Xσ is the wonderful subvariety of rank r− 1 uniquely determined by ΣXσ =
ΣX \{σ}, and Xσ is the rank 1 wonderful subvariety uniquely determined by ΣXσ =
{σ}.

At this point the set of spherical roots of any wonderful subvariety Y of X is
clear. From our analysis follows immediately also Λ(Y ), which is equal to spanZΣY ,
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and V(Y ) which is given by equations 〈·, σ〉 ≤ 0 for all σ ∈ ΣY . It remains the set
of colors, for which it holds:

Proposition 3.4.1. Let Y be any wonderful subvariety of X, and D ∈ ∆X . Then
D ∩ Y is the union of some colors of Y . Furthermore, any color of Y is some
irreducible component of D ∩ Y for some D ∈ ∆X .

Proof. We must prove that D ∩ Y has no G-stable irreducible component, but this
follows from the fact that D doesn’t contain the unique closed G-orbit Z ⊆ Y ⊆ X.
The second part can be proven using the same approach as Corollary 2.2.2, and we
leave the details to the Reader. �

It is possible to determine precisely the irreducible components of D∩Y and the
induced functionals on Λ(Y ), but we do not state here a precise result. It would
require Lemmas 3.6.1 and 3.6.2, and a further analysis of the relationship between
colors and spherical roots. We refer to [BL08, Proposition 1.2.3] and [Lu97, §3.5].

We now give some examples of wonderful varieties, together with their colors
and spherical roots.

Example 3.4.1. The wonderful varieties of rank 0 are exactly the complete ho-
mogeneous spaces G/P for P a parabolic subgroup of G, see Corollary 2.3.1. Their
colors are the closures of the Bruhat cells of codimension 1 in G/P .

Example 3.4.2. The group G = SL2 admits exactly 4 wonderful G-varieties (see
also [Br09, Example 2.11.2]). They are:

(1) X = {a point} with trivial G-action.
(2) X = G/B ∼= P1, the flag variety of SL2.
(3) X = P1 × P1, which has spherical root α1.
(4) X = P2 = P(Sym2(C2)) where SL2 acts linearly on C2. This variety can

also be seen as the quotient of P1 × P1 by (p, q) ∼ (q, p). It has spherical
root 2α1, and only one color D with 〈ρ(D), 2α1〉 = 2.

Example 3.4.3. The symmetric homogeneous spaces G/H = H ×H/diag(H) for
H semisimple adjoint admit a wonderful compactification X, as shown in [DP83].
Denote by α1, . . . , αn, α′1, . . . , α

′
n the simple roots of the two copies of H. Then X

has spherical roots σi = αi +α′i for i = 1, . . . , n. There are n colors, and the values
of their functionals on the spherical roots are given by the Cartan matrix of H.

For PSL2 there is an elementary description of X as the projective space of 2×2
matrices, i.e.:

X = P(M2×2(C)),

with the action of PSL2 × PSL2 by left and right multiplication. The group SL2

admits a wonderful compactification too, and it’s the only non-adjoint simple group
with this property. The compactification is:

X =
{
ad− bc = t2

}
⊂ P(M2×2 ⊕ C).

where
(
a b
c d

)
∈M2×2, t ∈ C. The spherical root in this case is 1

2 (α1 + α′1).

Example 3.4.4. Let G = SLn+1 × SLm+1, and choose the Borel subgoup B to be
the set of couples of upper triangular matrices. Call α1, . . . , αn the simple roots of
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SLn+1, and α′1, . . . , α
′
m those of SLm+1. Define the variety:

X =

(E,F,M)

∣∣∣∣∣∣
E ∈ Gr(2,Cn+1),
F ∈ Gr(2,Cm+1),
p ∈ P(Hom(E,F ))

 .

The group G has a natural action on X, which is obvious on the coordinates E and
F , and on p = [M ] is given by:

(g1, g2)p = [(g1, g2)M ] = [g2 ◦M ◦ g−1
1 ]

where M ∈ Hom(E,F ) and (g1, g2) ∈ G.
The variety X is wonderful of rank 1, and its G-stable prime divisor is:

X(1) = {rank M = 1}.

The spherical root is σ1 = α1 + α′1, and there are three colors:

D1 = {[M ] /∈ D1 ∪D2, π(M) is upper triangular};
D2 =

{
E ∩ span{e1, . . . , en−1} 6= {0}

}
;

D3 =
{
F ∩ span{e′1, . . . , e′m−1} 6= {0}

}
.

where (e1, . . . , en+1) and (e′1, . . . , e
′
m+1) are the canonical bases of Cn+1 and Cm+1,

and π(M) ∈ Hom(span{en, en+1}, span{e′m, e′m+1}) is induced by M in an obvious
way using the projections along span{e1, . . . , en−1} and span{e′1, . . . , e′m−1}. The
values of ρ(D1), ρ(D2) and ρ(D3) on σ1 are resp. 2,−1,−1.

This variety is obtained from the wonderful compactification above defined of
PSL2 × PSL2/diag(PSL2) via a procedure called parabolic induction.

Example 3.4.5. The variety X of complete conics is the wonderful compactifica-
tion of the homogeneous space SL3/SO3C(SL3). It has rank 2 and can be described
as follows:

X = {([A], [B]) ∈ P(M3×3)× P(M3×3) | AB ∈ C · 13×3} .

where 13×3 is the unit (3× 3)-matrix. The two G-stable divisors are:

X(1) = {A non-invertible},
X(2) = {B non-invertible}.

The spherical roots are σ1 = 2α1 and σ2 = 2α2.

Example 3.4.6. Let G = Sp2a×Sp2b, and call Ω, Ω′ the bilinear forms on C2a and
C2b corresponding to Sp2a and Sp2b. Call α1, . . . , αa the simple roots of Sp2a, and
α′1, . . . , α

′
b those of Sp2b. Consider the variety X of Example 3.4.4 for n + 1 = 2a,

m + 1 = 2b: G has a natural action on X defined in the same way as in Example
3.4.4.

Under this action X is wonderful of rank 3, with G-stable prime divisors:

X(1) = {rank M = 1},
X(2) = {Ω|E1 = 0},
X(3) = {Ω′|E2 = 0}.
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The three spherical roots are:

σ1 = α1 + α′1,

σ2 = α1 + 2α2 + . . .+ 2αn−1 + αn,

σ3 = α′1 + 2α′2 + . . .+ 2α′m−1 + α′m.

The 3 colors D1, D2, D3 are the same as before, and their induced functionals have
the following values on the spherical roots:

σ1 σ2 σ3

ρ(D1) 2 0 0
ρ(D2) −1 1 0
ρ(D3) −1 0 1

3.5. Morphisms. We have seen in §2.6 that colored subspaces of N(G/H) corre-
spond to inclusions H ⊆ H ′ such that the quotient H ′/H is connected. It is also
clear that if G/H admits a canonical embedding, then G/H ′ has this property too,
and from Theorem 2.6.1 it follows that G/H → G/H ′ extends to a G-equivariant
surjective map between the two canonical embeddings.

Since in this case V(G/H) is strictly convex, it is possible to simplify the cor-
respondence between morphisms and colored subspaces, in the sense that we can
state Theorem 2.6.2 purely in terms of the functionals associated to colors.

Definition 3.5.1. Let ∆′ be a subset of ∆X . We say that ∆′ is distinguished
if there exists a linear combination η of ρ(D) for D ∈ ∆′ with positive integer
coefficients, such that 〈η, σ〉 ≥ 0 for all σ ∈ ΣX .

Theorem 3.5.1. Let X be a fixed wonderful variety. The map ϕ 7→ Dϕ (in
the notations of §2.6) induces a bijection between G-equivariant surjective maps
ϕ : X → X ′ (up to G-equivariant isomorphisms of X ′) with connected fibers where
X ′ is the canonical embedding of some spherical homogeneous space G/H ′, and
distinguished subsets of ∆X .

Proof. Consider a distinguished subset ∆′ ⊆ ∆X , and all possible linear combina-
tions η as in the above Definition. For each such η we have −η ∈ V(G/H), and we
can consider the face F of V(G/H) of maximal dimension whose relative interior
contains some −η. If we let C be the subspace spanned by F and ρ(∆′), then (C,∆′)
is a colored subspace.

Viceversa, any map ϕ gives rise to a distinguished subset of colors Dϕ, and from
the strict convexity of V(G/H) we deduce that if Dϕ = Dψ for some other map ψ,
then also Cϕ = Cψ. �

From §2.6 we know that the colors of X ′ are in bijection with ∆X \∆′, and that:

N(G/H ′) =
N(G/H)

Cϕ
, Λ(G/H ′) =

{
γ ∈ Λ(G/H) | 〈η, γ〉 = 0 ∀η ∈ Cϕ

}
.

Also, the cone V(G/H ′) is defined inside N(G/H ′) by equations which are in the
monoid: { ∑

σ∈ΣX

n(σ)σ

∣∣∣∣∣ n(σ) ∈ Z≥0

}
∩ Λ(G/H ′).

The irreducible elements of the above monoid are a basis of Λ(G/H ′) if and only if
X ′ is smooth, i.e. if it’s wonderful. We say in this case that ∆′ is (*)-distinguished.
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It is interesting to remark that no example is known of a distinguished but not
(*)-distinguished subset of colors, and a conjecture of Luna states that none exists
in general.

3.6. The Cartan pairing of a wonderful variety. The last topic of these notes
is towards the classification of wonderful varieties. The invariants we have seen so
far, namely the spherical roots and the colors, can be used to define some combi-
natorial object associated to a wonderful variety, called its spherical system. Luna
conjectured in [Lu01] that these spherical systems classify all wonderful varieties
for adjoint groups. The conjecture has been verified in many particular cases, and
Losev also proved in [L07] the so called “uniqueness part”, i.e. that these invariants
separate wonderful varieties.

Luna also showed in [Lu01] that a proof of this conjecture would lead to a
complete classification of spherical homogeneous spaces.

We explain now why the behaviour of spherical roots and colors has a “discrete”
nature, and thus can be represented by combinatorial objects. The first observation
is that for any G, the set of all possible spherical roots of wonderful G-varieties is
finite and known, thanks to the classification of wonderful varieties of rank 1 in
[A83], [HS82], [Br89].

Then, the functionals associated to colors do respect some rather strict condi-
tions. We mention that the map ρX on colors can also be represented as a pairing:

cX : spanZ∆X × spanZΣX → Z

and this is called the Cartan pairing of X. The definition is motivated by the
fact that for the wonderful compactification of an adjoint group G this pairing is
represented by the Cartan matrix of G. We point out that ΣX is always the set of
simple roots of some root system (see [Br90] and [K96]), whereas the set of colors
behaves in general in a much more complicated way than the coroots.

Definition 3.6.1. Let X be a wonderful G-variety, D ∈ ∆X , and α a simple root
of G. Then we say that α moves D if PαD 6= D where Pα is the minimal parabolic
subgroup of G containing B and associated to α. We define ∆(α) to be the set of
colors moved by α.

Lemma 3.6.1. For any simple root α, the set ∆(α) has cardinality at most 2.
More precisely, only one of the following cases can occur:

(1) ∆(α) = ∅. In this case α is among the simple roots associated to the
stabilizer in G of X◦B.

(2) ∆(α) = {D} and no multiple of α is in ΣX . In this case:

ρ(D) = α∨|Λ(X).

(3) ∆(α) = {D} and some multiple of α is in ΣX . In this case 2α ∈ ΣX , and:

ρ(D) =
1
2
α∨|Λ(X).

(4) ∆(α) = {D+, D−}. This case is equivalent to α ∈ ΣX , and we have:

ρ(D+) + ρ(D−) = α∨|Λ(X).

Proof. See [Lu97, §3.2 and §3.4]. �
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Lemma 3.6.2. Let α, β be simple roots. If α ⊥ β and α+β or 1
2 (α+β) is in ΣX ,

then ∆(α) = ∆(β) = {D} and case (2) of the above Lemma occurs for both α and β.
Otherwise, if α and β move the same color then α, β ∈ ΣX and |∆(α)∪∆(β)| = 3.

Proof. See [Lu01, Proposition 3.2]. �

The two above Lemmas can be proved using the technique of localization and
then the known classifications of wonderful varieties of rank 1 and 2.

They are a crucial tool to reduce the combinatorial complexity of our invariants.
Indeed, as soon as a color D is moved by simple roots which are not spherical
roots, then its associated functional is immediately determined by ΣX and the
simple root(s) moving D. This almost allows us to “forget” about these colors, and
focus only on the pairs of colors ∆(α) = {D+, D−} where α ∈ ΣX ∩ S.

So, in the end, the only relevant invariants are these particular colors, the set
ΣX , and the set of simple roots moving no color. These elements form the so-called
spherical system of a wonderful variety.
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