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Background: Inadequate nutritional intake and altered response of aging muscles to anabolic stimuli
from nutrients contribute to the development of sarcopenia. Nutritional interventions show inconsistent
results in sarcopenic older adults, which might be influenced by their basal nutritional status.
Objective: To test if baseline serum 25-hydroxyvitamin D (25(OH)D) concentrations and dietary protein
intake influenced changes in muscle mass and function in older adults who received nutritional
intervention.
Methods and design: Post-hoc analysis was performed in the PROVIDE study that was a randomized
controlled, double blind trial among 380 sarcopenic older adults. This study showed that those who
received a vitamin D and leucine-enriched whey protein medical nutrition drink for 13 weeks gained
more appendicular muscle mass (aMM), and improved lower-extremity function as assessed by the chair
stand test compared with controls. To define low and high groups, a baseline serum concentration of
50 nmol/L 25(OH)D and baseline dietary protein intake of 1.0 g/kg/d were used as cut offs.
Results: At baseline, participants with lower 25(OH)D concentrations showed lower muscle mass,
strength and function compared with participants with a high 25(OH)D, while the group with lower
protein intake (g/kg/day) had more muscle mass at baseline compared with the participants with higher
protein intake. Participants with higher baseline 25(OH)D concentrations and dietary protein intake had,
independent of other determinants, greater gain in appendicular muscle mass, skeletal muscle index
n D; aMM, Appendicular Muscle Mass; BW, Body weight; GDS, Geriatric Depression Scale; MNA-SF, Mini Nutritional
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(aMM/h2), and relative appendicular muscle mass (aMM/body weight � 100%) in response to the
nutritional intervention. There was no effect modification of baseline 25(OH)D status or protein intake on
change in chair-stand test.
Conclusions: Sufficient baseline levels of 25(OH)D and protein intake may be required to increase muscle
mass as a result of intervention with a vitamin D and protein supplement in sarcopenic older adults. This
suggests that current cut-offs in the recommendations for vitamin D and protein intake could be
considered the “minimum” for adults with sarcopenia to respond adequately to nutrition strategies
aimed at attenuating muscle loss.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sarcopenia, the geriatric syndrome characterized by lowmuscle
mass, strength, and function, will become increasingly prevalent as
the global population ages. This syndrome places considerable
stress on health care systems since it is implicated with impaired
outcomes in chronic disease [1], as well as higher rates of hospi-
talization and nursing home admissions [2]. Inadequate nutritional
intake and altered response of aging muscles to anabolic stimuli
from meals contribute to the multifactorial pathogenesis of sarco-
penia. In particular, inadequate intake of high quality protein
including essential amino acids such as leucine and low 25-
hydroxyvitamin D (25(OH)D) serum levels in older adults are
potentially modifiable risk factors for sarcopenia [3e5].

Recent long-term nutrition intervention studies aimed at
improving muscle mass, strength and function, however, have
shown inconsistent results in sarcopenic and frail older adults [6,7].
The composition of the nutritional supplements, the amount and
source of protein and amino acids, fat, carbohydrates and micro-
nutrients such as vitamin D varied among the interventions.
Moreover, variations in the health condition of the study pop-
ulations, presence of multimorbidity, physical activity level, and
nutritional status may have influenced the outcomes.

As a result of these heterogeneous findings, we hypothesized
that baseline nutritional status could influence the efficacy of
vitamin D and protein interventions. To test this hypothesis, we
used the data from the PROVIDE study, in which sarcopenic older
adults were randomized to either a vitamin D and leucine-enriched
whey protein supplement or isocaloric control [8].

2. Materials and methods

2.1. Study design and participants

The PROVIDE study was a 13-week, multi-center, randomized,
controlled, double blind, two parallel-group study among older
adults with sarcopenia. Detailed information of the trial (registered
under the Dutch trials register with the identifier NTR2329) has
been published previously [8]. In brief, community-dwelling adults
over 65 years were recruited from 18 study centers in Europe, and
were eligible when presenting mild to moderate limitations in
physical function (Short Physical Performance Battery (SPPB) score
4e9), and low skeletal muscle mass (�37% (men) and �28%
(women)) using bioelectric impedance analysis (BIA 101 Akern,
Florence, Italy). Those who received the vitamin D and leucine-
enriched whey protein medical nutrition drink gained more
appendicular muscle mass (aMM), and improved lower-extremity
function as assessed by the chair stand test, compared with con-
trols (8).

Participants were randomized to receive either the interven-
tion or an iso-caloric control product twice daily. The interven-
tion product contained per serving 20 g whey protein, 3 g total
et al., Sufficient levels of 25-h
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leucine, 9 g carbohydrates, 3 g fat, 800 IU vitamin D and a
mixture of vitamins, minerals and fibers, and the iso-caloric
control drink contained only carbohydrates, fat and some trace
elements.

Blinded and trained research staff collected information about
the baseline characteristics via a questionnaire and assessed the
outcomes during the study visits week 7 and 13. Self-reported
amount of physical activity was assessed using the European
version of the Physical Activity Scale for the Elderly (PASE). Health-
related quality of life was determined using the EQ-5D, both as an
index (0e1) and as a visual analogue scale (0e100). Cognitive
function was measured using the Mini Mental State Examination
(MMSE, 0e30) and cognitive impairment; i.e., MMSE <25 was an
exclusion criterion. The Geriatric Depression Scale (GDS, 0e15
points) was used to assess potential depression symptoms. Finally,
the Mini Nutritional Assessment-Short Form (MNA-SF®) was used
to evaluate participants' nutritional status. The total score of the six
questions (0e14 points) indicated whether the participant was
well-nourished (12e14 points), at risk for malnutrition (8e11
points) or malnourished (0e7 points).

2.2. Muscle related outcomes

Appendicular muscle mass (aMM) was measured at baseline
and week 13 using Dual energy x-ray absorptiometry (DXA,
different models from Hologic, Bedford, USA; and Lunar, Fairfield,
USA). Raw DXA data were centrally analyzed at the Vrije Uni-
versiteit Brussel, Brussels, Belgium, using a standardized protocol
by the same researcher. Analyses were performedwith andwithout
correction for height2 (skeletal muscle mass index, SMI: aMM/h2)
[9] or body weight (relative appendicular muscle mass: aMM/
BW � 100%) [10].

The chair stand test measures the time required to rise five
times from a chair without arm rests. It is one of the three com-
ponents of the SPPB, along with gait speed and balance tests [2].
Maximum handgrip strength was calculated by taking the average
of the highest measurement of two consecutive measures in each
hand by using a hydraulic hand dynamometer (Jamar™, Preston,
Jackson, Missouri, USA).

2.3. Serum 25-hydroxyvitamin D analysis

Analysis of serum 25(OH)D was performed at Reinier de Graaf
Groep medical laboratory, Delft, the Netherlands using chem-
iluminescense micro-particulate immunoassay (Abbott Labora-
tories, Wiesbaden, Germany). The recovery of endogenous 25(OH)
D both D3 and D2 species were 105% and 85%, respectively
compared with a chromatography-based reference method. Serum
25(OH)D concentration was used as a dichotomous variable for
most analyses with a cut-off of 50 nmol/L, which was similar to
generally accepted threshold of serum 25(OH)D deficiency in older
adults [11e13].
ydroxyvitamin D and protein intake required to increase muscle mass
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2.4. Dietary protein intake assessment

Dietary assessment was carried out at baseline and week 13
using 3-day food intake records for two days during the week and
one day during the weekend. Additional energy and protein intakes
from the supplements were added to the habitual 3-day intakes to
estimate total intakes. Baseline protein intake was expressed as
gram protein per kg of body weight per day. Baseline protein intake
(g/kg/d) was used as a dichotomous variable for most analyses with
a cut-off of 1.0 g/kg/day, representing the low-end of the most
recent intake recommendations for healthy older adults [14,15].

2.5. Statistical analyses

We compared descriptive statistics to assess differences in
characteristics at baseline between the low and high 25(OH)D and
protein intake subgroups. Continuous data that were normally
distributed were described with means and standard deviations
and between-group comparisons were performed by two sample t-
tests. Non-normally distributed data were described with medians
and interquartile ranges and between-group comparisons were
done using a ManneWhitney test. Categorical variables were pre-
sented as percentages and either a ManneWhitney test (ordinal
data) or Fisher's exact (dichotomous data) was performed to test for
significant differences between subgroups. ANCOVA models were
used to test for a difference in the effect of the intervention on
change in serum 25(OH)D concentrations between baseline 25(OH)
D subgroups. These models were also used to test for a statistically
significant difference of the effect of intervention group on
appendicular muscle mass and chair-stand time between the
25(OH)D and protein intake subgroups (interaction effects). The
ANCOVA models analyzed change from baseline of the endpoint in
question and included the baseline value of the endpoint, age and
sex as covariates. A separate sensitivity analysis was performed to
test the difference between nutritional subgroups on the effect of
intervention group on appendicular muscle mass and chair-stand
time by men and women separately. A statistically significant
interaction effect between treatment group and the subgroup in-
dicates that the variable acted as an effect modifier. A separate
ANCOVA was used with the PASE score or energy intake as a co-
variate to assess whether 25(OH)D and protein remained effect
modifiers after adjusting for reported physical activity levels or
dietary energy intake at baseline respectively.

In addition to the separate analyses with treatments by
respectively baseline 25(OH)D concentration and baseline protein
intake, combination of these two baseline factors in relation to
treatment effects was tested in a combined ANCOVA model. The
existing covariates (treatment group, age, sex) as well as baseline
25(OH)D, interaction of treatment group by baseline 25(OH)D,
baseline protein, and interaction of treatment group by baseline
protein were put as covariates into one model analyzing the
intervention effects on change of aMM, SMI or relative appendic-
ular muscle mass from baseline.

3. Results

The characteristics of a total of 380 participants of the PROVIDE
study stratified by baseline 25(OH)D and baseline dietary protein
intake are presented in Table 1, with body composition and muscle
mass, strength and function characteristics separately for men and
women. Participants with lower (<50 nmol/L) baseline 25(OH)D
concentrations (n ¼ 195) were less likely to be living indepen-
dently, had slightly lower PASE, MMSE, and MNA scores, slightly
higher GDS scores, and, predominantly in men, lower mean body
weight, appendicular muscle mass, muscle strength and function
Please cite this article in press as: Verlaan S, et al., Sufficient levels of 25-h
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compared with participants with higher (>50 nmol/L) baseline
25(OH)D concentrations (n ¼ 179). Mean fat and lean body mass,
dietary vitamin D intake, and protein intake were not different
between the 25(OH)D groups.

There were no significant differences in demographic and clin-
ical baseline characteristics between the two baseline protein
intake subgroups, aside from more women in the higher protein
intake subgroup (>1.0 g/kg/d). The participants in the higher pro-
tein intake (g/kg/day) subgroup had a lower mean weight, BMI,
appendicular muscle mass and fat mass compared with the lower
protein intake subgroup.

3.1. Effect modification of baseline 25-hydroxyvitamin D and
protein intake on change in appendicular muscle mass and chair-
stand time

The 25(OH)D concentrations increased significantly in the active
group relative to baseline. Participants in the active group with
lower baseline 25(OH)D concentrations had a greater increase in
25(OH)D (b active-control: 38.5 nmol/L (95% CI: 33.8e43.2)) than
the higher 25(OH)D subgroup (b active-control: 25.3 nmol/L (95%
CI: 20.4e30.3), overall p¼<0.001). Participants in the high baseline
25(OH)D concentration group had significantly higher gain in
appendicular muscle mass, SMI, and relative appendicular muscle
mass compared with participants with 25(OH)D concentrations
<50 nmol/L at baseline (Table 2). Adjustment for physical activity or
dietary energy intake at baseline did not substantially change the
results. There was no difference in chair-stand time between the
low and high baseline 25(OH)D subgroups in their response to the
intervention (Table 2).

Comparing the baseline dietary protein intake subgroups, a
significantly higher gain of appendicular muscle mass, SMI, and
relative appendicular muscle mass was observed in participants
with a higher baseline protein intake. No effect of the intervention
was found on change in chair-stand time dependent on baseline
protein intake (Table 2).

The analysis of the combined effects on aMM change from
baseline by both baseline 25(OH)D concentration and baseline
protein intake resulted in a statistically significant interaction effect
of treatment by baseline 25(OH)D (b active-control: 0.39 kg,
p ¼ 0.025), as well as statistical significant interaction effect of
treatment by baseline protein (b active-control: 0.38 kg, p¼ 0.032).
Since both interactions were fitted in one model, this indicates that
both baseline 25(OH)D concentration as well as baseline protein
intake affected the change in aMMby the intervention corrected for
each other. Participants in the intervention group with both higher
baseline 25(OH)D concentrations and higher baseline protein in-
takes had a significant increase in aMM (b active-control: 0.59 kg
(95% CI: 0.29e0.90), p < 0.001, Fig. 1), while no significant differ-
ence was found in the other composite subgroups. Similar results
were found for SMI and relative appendicular muscle mass. In a
sensitivity analysis, there were similar effects in both male and
female participants when analyzed separately (Supplemental
Table 1).

4. Discussion

In this post-hoc analysis of the PROVIDE study, a greater muscle
mass gain was observed in sarcopenic participants with higher
baseline serum 25(OH)D concentrations as well as a higher baseline
dietary protein intake in response to a vitamin D and leucine-
enriched whey protein supplement. There was, however, no ef-
fect modification of baseline 25(OH)D status or protein intake on
change in lower-extremity function as measured by chair-stand
test. Thus, this indicates that sufficient baseline levels of 25(OH)D
ydroxyvitamin D and protein intake required to increase muscle mass
), http://dx.doi.org/10.1016/j.clnu.2017.01.005



Table 1
Baseline characteristics by baseline 25-hydroxyvitamin D and protein intake subgroups.

Baseline 25(OH)D concentration (n ¼ 374) Baseline protein intake (n ¼ 364)

<50 nmol/L
n ¼ 195

�50 nmol/L
n ¼ 179

P-value <1.0 g/kg/d
n ¼ 200

�1.0 g/kg/d
n ¼ 164

P-value

Demographic, clinical and nutritional characteristicsa

Age, years 78.3 (7.1) 77.2 (6.5) 0.134 78.0 (6.6) 77.3 (7.3) 0.293
Sex, female, n (%)b 134 (68.7%) 112 (62.6%) 0.231 119 (59.5%) 115 (70.1%) 0.037
Living independently, n (%)b 156 (80.0%) 167 (93.3%) <.001 176 (88.0%) 138 (84.1%) 0.359
Number of co-morbiditiesc,d 4.0 (3.0, 6.0) 4.0 (2.0, 5.0) 0.038 4.0 (3.0, 5.0) 4.0 (3.0, 6.0) 0.718
PASE questionnaireb 89.7 (68.9) 111.1 (74.5) 0.004 100.2 (71.1) 102.5 (73.8) 0.770
Geriatric Depression Scalec,d 2.0 (1.0, 4.0) 1.0 (0.0, 3.0) 0.005 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 0.412
MMSEc,d 28.5 (27.0, 30.0) 29.0 (28.0, 30.0) 0.023 29.0 (27.0, 30.0) 29.0 (28.0, 30.0) 0.508
MNA score 12.9 (1.5) 13.4 (1.1) <.001 13.2 (1.4) 13.1 (1.3) 0.563
25(OH)D concentration, nmol/L 34.0 (9.2) 70.6 (17.5) <.001 49.8 (19.7) 52.9 (26.3) 0.218
Vitamin D intake (mg) 3.1 (4.2) 3.7 (3.7) 0.194 3.0 (3.9) 3.7 (4.0) 0.079
Protein intake, g/kg/dayc,d 1.0 (0.8, 1.2) 1.0 (0.9, 1.2) 0.366 0.8 (0.7, 0.9) 1.2 (1.1, 1.4) <.001
Body composition parameters
Weight, kg 68.6 (11.2) 71.0 (11.2) 0.039 73.1 (10.2) 66.2 (11.4) <.001

_ 75.9 (10.8) 80.1 (9.3) 0.020 80.3 (9.5) 74.7 (10.7) 0.002
\ 65.3 (9.7) 65.6 (8.3) 0.817 68.3 (7.3) 62.6 (9.7) <.001

BMI, kg/mb 26.0 (2.9) 26.2 (2.5) 0.560 26.7 (2.4) 25.5 (2.8) <.001
_ 26.2 (2.8) 26.8 (2.2) 0.258 26.8 (2.3) 26.1 (2.8) 0.114
\ 25.9 (2.9) 25.8 (2.5) 0.804 26.6 (2.4) 25.2 (2.8) <.001

Appendicular Muscle Mass, kg 17.0 (3.6) 18.4 (4.1) 0.001 18.6 (4.0) 16.7 (3.7) <.001
_ 20.6 (2.8) 22.8 (2.8) <.001 22.3 (3.0) 20.8 (2.8) 0.009
\ 15.4 (2.6) 15.9 (2.3) 0.118 16.1 (2.3) 15.0 (2.6) <.001

SMI, aMM/h2, kg/m2 6.4 (0.9) 6.7 (0.9) 0.002 6.8 (1.0) 6.4 (0.9) <.001
_ 7.1 (0.8) 7.6 (0.7) <.001 7.4 (0.8) 7.2 (0.7) 0.230
\ 6.1 (0.8) 6.3 (0.7) 0.146 6.3 (0.8) 6.1 (0.8) 0.020

Appendicular Muscle Mass/BW, % 24.9 (3.2) 25.9 (3.1) 0.002 25.4 (3.2) 25.3 (3.3) 0.757
_ 27.4 (2.6) 28.4 (2.5) 0.032 27.8 (2.4) 28.1 (2.9) 0.484
\ 23.7 (2.7) 24.5 (2.5) 0.028 23.8 (2.6) 24.1 (2.7) 0.333

Fat Mass, kg (DXA) 25.7 (6.6) 25.5 (5.5) 0.779 27.2 (5.4) 23.8 (6.3) <.001
_ 23.5 (6.9) 25.4 (5.4) 0.124 25.8 (5.5) 22.5 (6.6) 0.006
\ 26.6 (6.3) 25.6 (5.5) 0.206 28.1 (5.2) 24.3 (6.1) <.001

Muscle strength and function
Handgrip strength, kg 19.3 (6.8) 22.3 (8.3) <.001 21.8 (8.2) 19.8 (6.9) 0.010

_ 25.2 (6.6) 29.2 (7.0) 0.001 28.4 (7.1) 25.2 (6.8) 0.013
\ 16.6 (5.0) 18.1 (5.8) 0.037 17.3 (5.4) 17.4 (5.5) 0.826

SPPB, score 7.2 (1.9) 7.8 (2.0) 0.002 7.5 (1.9) 7.5 (2.0) 0.901
_ 7.2 (2.0) 8.2 (1.8) 0.004 7.7 (1.9) 7.7 (2.1) 0.930
\ 7.2 (1.8) 7.6 (2.0) 0.118 7.3 (1.9) 7.4 (2.0) 0.729

Gait Speed, m/s 0.7 (0.2) 0.8 (0.2) <.001 0.8 (0.2) 0.7 (0.2) 0.221
_ 0.7 (0.2) 0.9 (0.2) <.001 0.8 (0.2) 0.8 (0.2) 0.083
\ 0.7 (0.2) 0.8 (0.2) 0.109 0.7 (0.2) 0.7 (0.2) 0.862

Chair-stand time, sc,d 17.8 (14.9, 21.4) 16.9 (14.8, 19.8) 0.065 17.2 (15.1, 20.5) 17.2 (14.4, 21.2) 0.862
_ 17.1 (14.8, 21.3) 16.4 (14.6, 18.3) 0.108 16.7 (15.3, 19.3) 16.7 (14.1, 20.6) 0.471
\ 17.9 (14.9, 21.4) 17.2 (14.9, 20.8) 0.324 17.8 (15.1, 20.6) 17.8 (14.5, 21.4) 0.894

a Results are presented as mean (SD) with the P-value based on a two-sample t-test unless otherwise stated.
b P-value based on a Fisher's exact test.
c P-value based on a ManneWhitney test.
d Median (IQR).
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and protein intake may be required to increase muscle mass in
response to this specific 3-month nutritional intervention.

In observational as well as experimental studies, both vitamin D
(status and intake) and dietary protein have been associated with
muscle mass, strength and function in older adults. Baseline char-
acterization of the PROVIDE study participants showed that those
with higher baseline 25(OH)D had higher muscle mass, handgrip
strength, and better physical performance. These cross-sectional
findings are in line with other studies where lower or deficient
levels of 25(OH)D were associated with lower muscle mass and
lower extremity function, higher risk for falls and fractures, and
nursing home admissions [3,16e19].

Intervention studies combining adequate levels of vitamin D
and high quality protein in older populations are scarce. We
observed that higher baseline vitamin D levels may be required to
lead to a gain in muscle mass in response to a specific nutritional
intervention. This effect was independent of the level of physical
Please cite this article in press as: Verlaan S, et al., Sufficient levels of 25-h
in sarcopenic older adults e The PROVIDE study, Clinical Nutrition (2017
activity. A recent meta-analysis found an overall positive effect of
vitamin D supplementation on muscle strength and function, but
not on muscle mass [6]. Based on the present results it could be
suggested that a beneficial effect of vitamin D supplementation
may be dependent on both the dose given and the baseline 25(OH)
D concentration. Older adults with deficient baseline concentra-
tions may need an even higher dose of vitamin D or longer sup-
plementation periods to achieve the desirable serum 25(OH)D
concentrations (>50 nmol/L [12], or even 75e100 nmol/L [20]) and
effects on muscle outcomes.

Similarly, a higher baseline protein intake (>1.0 g/kg BW/d) led
to a greater increase in muscle mass in response to the supple-
mentation. At baseline, however, both men and women with a
lower relative protein intake (<1.0 g/kg BW/d) had more muscle
mass and stronger handgrip strength. This is counter to what is
frequently described in literature, where insufficient daily protein
intake is associated with low muscle mass and strength [21e24].
ydroxyvitamin D and protein intake required to increase muscle mass
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Table 2
Effect modification of baseline 25-hydroxyvitamin D and protein intake on change in muscle parameters.

Baseline 25(OH)D concentrationa Baseline protein intaked

<50 nmol/L
b active-controlb

(95% CI),
p-value

�50 nmol/L
b active-controlc

(95% CI),
p-value

Between-subgroup
P-value

<1.0 g/kg/d
b active-controle

(95% CI),
p-value

�1.0 g/kg/d
b active-controlf

(95% CI),
p-value

Between-subgroup
P-value

Change in appendicular
muscle mass (kg)

�0.01
(�0.24, 0.22),
p ¼ 0.94

0.35
(0.11, 0.60),
p ¼ 0.004

0.034 0.00
(�0.23, 0.23),
p ¼ 0.97

0.42
(0.16, 0.67),
p ¼ 0.001

0.020

Change in appendicular muscle
mass/height2 (kg/m2)

�0.00
(�0.09, 0.08),
p ¼ 0.95

0.12
(0.03, 0.21),
p ¼ 0.007

0.048 0.00
(�0.09, 0.09),
p ¼ 1.00

0.15
(0.06, 0.24),
p ¼ 0.002

0.021

Change in appendicular muscle
mass/body weight (%)

�0.05
(�0.39, 0.28),
p ¼ 0.75

0.51
(0.16, 0.86),
p ¼ 0.004

0.023 0.01
(�0.33, 0.34),
p ¼ 0.75

0.56
(0.19, 0.92),
p ¼ 0.003

0.029

Change in chair-stand time (sec)g �1.50
(�3.07, 0.07),
p ¼ 0.388

�0.52
(�2.22, 1.19),
p ¼ 0.278

0.850 �1.67
(�2.93, �0.41),
p ¼ 0.061

�0.70
(�2.45, 1.06),
p ¼ 0.564

0.440

a n ¼ 256 and n ¼ 250 participants with complete data for both baseline 25(OH)D and muscle mass measures and chair stand test respectively.
b n ¼ 64 active vs. n ¼ 70 control in muscle mass measures and n ¼ 65 active vs. n ¼ 66 control in chair stand test.
c n ¼ 60 active vs. n ¼ 62 control in muscle mass measures and n ¼ 57 active vs. n ¼ 62 control in chair stand test.
d n ¼ 249 and n ¼ 241 participants with complete data for both baseline protein intake and muscle mass measures and chair stand test respectively.
e n ¼ 64 active vs. n ¼ 70 control in muscle mass measures and n ¼ 67 active vs. n ¼ 72 control in chair stand test.
f n ¼ 55 active vs. n ¼ 60 control in muscle mass measures and n ¼ 49 active vs. n ¼ 53 control in chair stand test.
g Chair stand time was not normally distributed; therefore p-values are from the ANCOVA model using log-transformed chair stand time. To avoid complex interpretation

with log transformed values, the mean and 95% CI for intervention e control for changes in chair stand time based on a t-test using untransformed values are presented in
italics.
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Fig. 1. Effect modification by combined baseline 25(OH)D and baseline protein intake
subgroups on mean change (95% CI) in appendicular muscle mass (kg) between active
and control in four subgroups (<50 nmol/L 25(OH)D, <1.0 g/kg/d protein, active n ¼ 37
and control n ¼ 37; <50 nmol/L 25(OH)D, �1.0 g/kg/d protein, n ¼ 26 and n ¼ 31;
�50 nmol/L 25(OH)D, <1.0 g/kg/d protein, n ¼ 28 and n ¼ 32; �50 nmol/L 25(OH)D,
�1.0 g/k/d, n ¼ 27 and n ¼ 28).
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We found that a higher absolute protein intake (expressed in g/
d and not as ratio g/kg BW/d), was significantly associated with
higher skeletal muscle mass, strength and function.

In addition to insufficient intake, older adults often display a
blunted muscle protein synthetic response to dietary protein
ingestion [25e27] and to insulin [28], which is known as anabolic
resistance. Physical activity in addition to the optimal type and
amount of protein per meal [4,5] and other nutritional factors such
as vitamin D might help to overcome the anabolic threshold in
sarcopenic older adults. Since vitamin D deficiency is associated
with reduced muscle mass and insulin resistance among older
adults [16,29], vitamin D might play a role in anabolic stimulation
induced by amino acids like leucine and insulin. In a recent report
Please cite this article in press as: Verlaan S, et al., Sufficient levels of 25-h
in sarcopenic older adults e The PROVIDE study, Clinical Nutrition (2017
[30], vitamin D acted synergistically with leucine and insulin to
stimulate muscle protein synthesis, likely through sensitizing the
anabolic pathways induced by insulin and leucine. These data
emphasize that nutritional interventions combining vitamin D and
amino acid supplementation might be a promising strategy tar-
geting muscle preservation, especially in conditions as in sarcope-
nia where vitamin D deficiency often coincides with a decreased
response to amino acids [26], and insulin [28].

For both vitamin D and protein, recent recommendations
encourage increased intakes for both healthy older adults and older
patients. The optimal diet of healthy older adults should contain
>1.0 g protein/kg body weight/day and up to 1.5 g/kg/d for older
patients, with at least 25e30 g of high-quality protein at each main
meal [14,31,32]. This is in addition to adequate vitamin D intake at
800 IU/day to maintain serum 25(OH)D levels >50 nmol/L [11].
Recently, the European Society for Clinical and Economic Aspects of
Osteoporosis and Osteoarthritis (ESCEO) presented similar recom-
mendations for maintaining musculoskeletal health [13]. The cut-
offs of these recommendations (1.0 g protein/kg/d and 50 nmol/L
25(OH)D) may thus be required in order to surpass the threshold of
anabolic stimulation and thus improved muscle mass gain in the
older population. Participants with a lower protein intake or low
25(OH)D status may require a prolonged period of supplementa-
tion to improve protein and 25(OH)D status.
4.1. Strengths and limitations

The relatively large sample size provided the statistical power to
detect small differences in muscle mass gain between the sub-
groups. In addition, we standardized the analysis of raw DXA data
centrally to provide uniform and reliable body composition data.
The multi-centre nature of this study improves the generalizability
of our findings, especially given the variability in baseline vitamin D
concentrations by country.

The following limitation must also be discussed to give context
to the study strengths. Though changes in muscle mass, in partic-
ular gain, is most often achieved with resistance exercise [4,5,33]
we did not combine the intervention with exercise. We were
ydroxyvitamin D and protein intake required to increase muscle mass
), http://dx.doi.org/10.1016/j.clnu.2017.01.005
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interested in investigating the effect of nutritional supplementation
alone on measures of sarcopenia to act as a reasonable facsimile for
times when exercise is neither possible nor feasible (e.g. post-
surgery). However, we acknowledge that exercise in combination
with adequate nutritional intake is the clinical gold standard for
managing sarcopenia. Furthermore, from the current study design
we cannot conclude whether a specific protein source and/or spe-
cific amino acids, or merely the total protein intake resulted inwhat
we observed.

5. Conclusion

Sarcopenic participants may need serum 25(OH)D concentra-
tions exceeding 50 nmol/L and a fairly high dietary protein intake
(>1 g/kg body weight/day) in order to experience meaningful
muscle mass gain from a vitamin D and protein supplement in long
term interventions. This suggests that cut-offs in current recom-
mendations for vitamin D status and dietary protein intake could
be considered the “minimum” for adults with sarcopenia to
respond adequately to nutrition strategies aimed at attenuating
muscle loss. Nutritional interventions combining adequate
amounts of protein and vitamin D, ideally in combination with
physical activity, are promising strategies to attenuate sarcopenia
development, which can contribute to prolonged independence
and vitality with age.
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