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Abstract: This paper deals with the mathematical study of the small oscillations of a system formed by a a cylindri-
cal liquid column bounded by two parallel circular disks and an internal spherical bubble constitued by a barotropic
gas, under zero gravity. From the equations of motion, the authors deduce a variational equation. Then the study
of the small oscillations depends on the coerciveness of a hermitian form that appears in this equation. It is proved
that this last problem is reduced to an auxiliary eigenvalue problem. A careful discussion shows that our problem
is a classical vibration problem.
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1 Introduction

The problem of the small oscillatons of an incom-
pressible inviscid liquid under zero gravity, in which
the surface tension determine the character of the mo-
tion, is very important in the experiments in space lab-
oratories.

This problem has been sudied by numerous re-
searchers [(1), (2), (14), (15), (22), (16), (11), (17)].
The authors have made their contributions in a few
papers [(3)-(9), (21)].

In this paper, they study the small motions of a
system formed by a cilindrical liquid column bounded
by two parallel circular disks, the liquid being an-
chored at the rim of the disk, and an internal spher-
ical bubble constitued by a barotropic gas under zero
gravity.

From the equations of motion in linear theory,
they deduce a variational formulation of the problem.

The study of the spectrum depends on the coer-
civeness of a hermitian sesquilinear form that appears
in the variational equation. The authors prove that
the last problem is reduced to an auxiliary eigenvalue
problem. From a careful discussion, the authors show
that the problem is of the small oscillations of the sys-
tem is a classical vibration problem.

In this paper the researches started in [(9)] are fin-
ished.

2 Position of the problem
In the absence of gravity, in the equilibrium position,
with respect to orthogonal axes Oxyz, the system is
formed by (see fig.):

1) an incompressible inviscid liquid occupying
the domain Ω defined by x2+y2 ≤ b2, x2+y2+z2 ≥
a2,−h ≤ z ≤ z (a < b).

This domani is bounded by two rigid disks C and
C ′ (C : z = h, x2 + y2 ≤ b2; C ′ : z = −h, x2 +
y2 ≤ b2), the boundaries of which are denoted by c
and c′, the cilindrical surface S defined by x2 + y2 =
b2,−h ≤ z ≤ z and the spherical surface S0 defined
by x2 + y2 + z2 = a2;

2) a barotropic gas which occupies the domain
Ω0 : x2 + y2 + z2 ≤ a2.

We denote by ~n and ~n0 the unit vectors normal to
S and S0 directed to the exterior of S and S0.

We introduce the cilindrical coordinates (r, θ, z)
and the spherical coordinates (R, θ, ψ)(0 ≤ θ ≤
2π; 0 ≤ ψ ≤ π).

At the instant t, S (resp. S0) occupies the position
St (resp. S0t) defined by equation r = b + ζ(θ, z, t)
(resp. R = a+ ζ0(θ, ψ, t)). ζ and ζ0 and their deriva-
tives will be considered as quantities of the first order
with respect to amplitude of the oscillations.

We denote by α (resp.β) the surface tension on S0

(resp. S).



We suppose that the liquid is anchored at the rims
c and c′ of the disks C ans C ′, so that we have

(1) ζ = 0 on c and c′.

3 Equations of motion
We study the problem in the framework of the linear
theory: for all details see ge.

1) At first, we consider the liquid.
If ρ is its constant density, P the pressure, ~u the

displacement of a particle with respect to its position
at the equilibrium, we have

(2) ρ ~̈u = − ~grad P (Euler′s equation),

div ~̇u = 0 (incompressibility),

}
in Ω

where (~̈u = ∂2~u
∂t2

). From the last equations, we deduce
by integrating between the dates of the equilibrium
and t

(3) div ~u = 0 in Ω.

The kinematic conditions are:
(4) uz = 0 for z = ±h, r ≤ b,

(5) un|S
def︷︸︸︷
= ~u · ~n|S = ζ,

(6) ~u · ~n0|S0 = ζ0.

The dynamic condition on St is given by the
Laplace law

P − pa = −β
 1

R1
+

1

R2

,
where pa is the constant atmospheric pressure and
R1, R2 are the principal radii of curvature of St.

The formula that gives the mean curvature of a
surface that differs from a circular cylinder is well
known [10] and we have a

(7) PSt − pa = −β[ − 1
b + 1

b2
(ζθθ + ζ) + ζzz],

(ζθθ = ∂2ζ
∂θ2

).

2) Now, we consider the gas.
If ρ∗ is the density, P ∗ the pressure, ~u0 the dis-

placement, we have in Ω0 :
(8) P ∗ = P(ρ∗) (equation of state),
where P is an increasing function of ρ∗,
(9) ρ∗ ~̈u0 = − ~grad P ∗ (Euler’s equation)

(10)
∂ρ∗

∂t
+ div(ρ∗ ~̇u0

∗
) = 0 (continuity equa-

tion).

The kinematic condition is
(11) ~u0 · ~n0|S0 = ~u · ~n0|S0 = ζ0.

The Laplace law gives, using the formula giving
the mean curvature of a surface that differs little form
a sphere [(13)]

(12) P ∗S0t
− PS0t = α

[
2
a −

2ζ0
a2
−

1
a2

 1
sin2 ψ

ζ0θθ + 1
sinψ

∂
∂ψ (sinψζ0ψ)

].
We are to linearize the equations of motion of the

gas.
We set

ρ∗ = ρ0 + ρ̃+ ... , P ∗ = P0 + p0 + ... ,

where ρ̃ and p0 are of the first order and the dots rep-
resent terms of more large order.

The continuity equation gives, after integration

ρ̃ = −ρ0 div ~̇u0

and the equations of state
(13) p0 = c2

0ρ̃ = −c2
0ρ0 div ~u0, c

2
0 = P ′

(ρ0).

The Euler’s equation becomes

ρ0 ~̈u0 = − ~grad p0 = c2
0

~grad(div ~u0) in Ω0.

If we suppose that the conditions of Lagrange’s theo-
rem are satisfied, ~u0 is a gradient.

As the volume of the liquid is constant, we have

(15)

∫
S
ζ dS −

∫
S0

ζ0 dS0 = 0.

Finally introducing the dynamic pressures p0 and
p we obtain easily:

(16) p|S = − β
b2

(ζθθ + ζ + ζzz),
(17) p0|S0 − p|S0 =

− α
a2

[
2ζ0 + 1

sin2 ψ
ζ0θθ + 1

sinψ
∂
∂ψ

(sinψζ0ψ

].
3.1 Remark
It is easy to see that the right-hand side of
(17) is equal to zero if we replace ζ0 by
cosψ, sinψ cos θ, sinψ sin θ. If these functions are
solutions of the problem, we must discard them be-
cause we are no longer in the framework of the lin-
earization.

4 Variational formulation of the
problem

1) We define the space of the kinematically admissive
displacements ~̃u and ~̃u0. The functions are sufficiently
smooth and verify:

div ~̃u = 0 in Ω; ~̃uz on z = ±h, r ≤ b;



we write ũn|S = ζ̃ with ζ̃ = 0 for z = ±h;
ũ0n0 |S0 = ũn0 |S0 and ũ0n0 |S0 = ζ0; moreover∫
S
ζ̃ dS =

∫
S0

ζ̃0 dS0.

This will started more precisely in what follows.
From the equation (2) and (14) and Green’s for-

mula. we obtain∫
Ω
ρ~̈u · ~̄̃u dΩ +

∫
Ω0

ρ0~̈u0 · ~̄̃u0dΩ0 =

−
∫

Ω0

c2
0 ρ0 div ~u0 div ~̄̃u0 dΩ0

−
∫
S
p|S ¯̃un|S dS −

∫
S0

(p0|S0p|S0)¯̃un0 |S0 dS0,

and using (16) and (17):∫
Ω
ρ~̈u · ~̄̃u dΩ +

∫
Ω0

ρ0~̈u0 · ~̄̃u0 dΩ0+

∫
Ω0

c2
0 ρ0 div ~u0 div ~̄̃u0 dΩ0−

β

b2

∫
S

(ζθθ+ζ+ζzz)
¯̃
ζdS−

− α
a2

∫
S0

[
2ζ0 +

1

sin2 ψ
ζ0θθ+

1

sinψ

∂

∂ψ

 sinψζ0ψ

]¯̃ζdS0 = 0.

Integrating by parts the last two integrals, we ob-
tain the formal variational equation of the problem:

(18)

∫
Ω
ρ~̈u · ~̄̃u dΩ +

∫
Ω0

ρ0~̈u0 · ~̄̃u0 dΩ0+

c2
0 ρ0

∫
Ω0

div ~u0 div ~̄̃u0 dΩ0 +

β

b2

∫
S

ζθ ¯̃
ζθ + b2ζz

¯̃
ζz − ζ ¯̃

ζ
dS +

α

a2

∫
S0

 1

sin2 ψ
ζ0θ

¯̃
ζ0θ + ζ0ψ

¯̃
ζ0ψ − 2ζ0

¯̃
ζ0

 dS0 = 0.

It is easy to see that the last two terms of (18) is the
virtual work of the surface tension forces.

2) Let us introduce the Hilbert spaces H1
0 (S),

H̃1(S0) =

{
ζ0 ∈ L2(S0), ζ0ψ,

ζ0θ

sinψ
∈ L2(S0)

}
,

H1 =

{
Z =

(
ζ
ζ0

)
∈ H1

0(S)⊕ H̃1(S0);

∫
S
ζdS −

∫
S0

ζ0dS0 = 0

}
,

equipped with the normwwwZwww
H1

=
[ ∫

S

ζ2
θ + b2ζz

dS+

∫
S0

 1

sin2 ψ
ζ2

0θ + ζ2
0ψ − 2ζ2

0

 dS0

]1/2
.

Recalling that ~u and ~u0 are gradient, we introduce
now the space V :

V =

{
U =

(
~u
~u0

)
; ~u = ~grad ϕ, ϕ̃ ∈

H̃1(Ω)

def︷︸︸︷
= {ϕ ∈ H1(Ω),

∫
Ω ϕ dΩ; div ~u = 0};

un|S ∈ H1
0 (S), un = 0 for ± h; ~u0 =

~grad ϕ0; ϕ̃0 ∈ H̃1(Ω0); div ~u0 ∈
L2(Ω0); u0n0 |S0 = un0 |S0 ∈ H̃1(S0),

∫
S un|SdS −∫

S0
u0n0 |S0dS0 = 0

}
equipped with the norm defined bywwwUwww2

V
=

∫
Ω
ρ|~u|2dΩ+||un|S ||2H1

0 (S)+

∫
Ω0

ρ| ~u0|2dΩ0

+

∫
Ω0

|div ~u0|2dΩ0 + ||u0n0 |S0 ||2H̃1(S0)
,

and the space H, completion of V for the norm asso-
ciated to the scalar product

(U, Ũ)H =

∫
Ω
ρ~u · ~̄udΩ +

∫
Ω0

ρ ~u0 · ~̄u0dΩ0.

Denoting by M(Z, Z̃) the last two terms of (18), we
obtain the precise variational equation of the prob-
lem:

(19)(Ü , Ũ)H+ρ0c
2
0

∫
Ω0

div ~u· ~̃u0dΩ0+M(Z, Z̃) = 0

∀ Ũ ∈ V.

5 Study of the sesquilinear form
M(Z, Z̃)

1) This form is obviously hermitian and continuous
onH1.

In order to study its coercivness, we use a method
that we can find in the book 16, so that we will sketch
the proof.

We set

λ = inf︸︷︷︸
Z∈H1

 β
b2

∫
S(ζ2

θ + b2ζ2
z )dS

β
b2

∫
S ζ

2dS + α
a2

∫
S0

2ζ2
0dS0

+

α
a2

∫
S0

( 1
sin2 ψ

ζ2
0θ + ζ2

0ψ) dS0

β
b2

∫
S ζ

2dS + α
a2

∫
S0

2ζ2
0dS0


We can prove that there exists Ẑ ∈ H1 such that λ is
the value of the ratio for ζ = ˆzeta and λ > 0.



By defintion of λ, we have
β

b2

∫
S

(ζ2
θ + b2ζ2

z )dS +
α

a2

∫
S0

(
1

sin2 ψ
ζ2

0θ + ζ2
0ψ) dS0

−λ
[ β
b2

∫
S
ζ2dS +

α

a2

∫
S0

2ζ0dS0

]
≥ 0 ∀ Z ∈ H1.

Setting Z = Ẑ + εδZ, ε ∈ [−∞,+∞], δZ =(
δζ
δζ0

)
∈ H1, we can see that the inequality is pos-

sible for each ε ∈ [−∞,+∞] only if the coefficient
of 2ε is equal to zero
∀δζ ∈ H1

0 (S), ∀δζ0 ∈ H̃1
0 (S0),

∫
S ζdζ −∫

S0
ζ0dS0 = 0.
Introducing the multiplier µ associated to the last

condition, we obtain∫
S

{
β

b2

[
(ζ̂θδζθ + b2ζ̂zδζz − λζ̂δζ

]
+ µδζ

}
dS

+

∫
S0

{
α

a2

[
1

sin2 ψ
ˆζ0θδζ0θ + ˆζ0ψδζ0ψ − 2λζ̂0δζ0

]

−2µδζ0

}
dS0 = 0 ∀δζ ∈ H1

0(S), ∀δζ0 ∈ Ĥ1(S0).

Since D(S) ⊂ H1
0(S), we have

β

b2

 ˆζθθ + b2 ˆζzz + λζ̂
− µ = 0 in D′(S),

and by virtue of a Schwartz theorem on the elliptic
equation 18, in the classical sense.

By virtue of known results concerning the
Laplace-Beltrami operator on the sphere [8], we ob-
tai the classical equation

α

a2

[
1

sin2 ψ
ˆζ0θθ+

1

sinψ

∂

∂ψ
(sinψ ˆζ0ψ)+2λζ̂0

]
+2µ = 0.

Eliminating λ and using the condition
∫
S ζdζ −∫

S0
ζ0dζ0 = 0, we obtain

µ =
b3

k

∫ 2π

0

[
ζ̂z(θ, h)− ζ̂z(θ,−h)

]
dθ, with

k = 2π(
a4

α
+

2b3h

b
).

Finally, we obtain inf︸︷︷︸
H1

by solving the classical eigen-

values problem Pλ :

(20)ζθθ + b2ζzz + λζ − b5

βk

∫ 2π
0

[
ζ̂z(θ, h) −

ζ̂z(θ,−h)

]
dθ =,

(21) 1
sin2 ψ

ζ0θθ + 1
sinψ

∂
∂ψ (sinψζ0ψ) + 2λζ0 +

a2b3

αk

∫ 2π

0

[
ζ̂z(θ, h)− ζ̂z(θ,−h)

]
dθ = 0,

(22) ζ, ζ02π − periodic in θ,
(23) ζ(θ,±h) = 0,
(24)

∫
S ζdS −

∫
S0
ζ0dS0 = 0

and λ is the smallest eigenvalue of the problem.

2) For solving the problemPλ,we use the method
of separation of the variables.

We seek the solution in the form

ζ = Θ(θ)χ(z) ; ζ0 = Θ0(θ)Ψ0(ψ).

We carry out in (20) e (21) and the conditions (23),
(24) give

(25) χ(±h) = 0,

(26)
∫ 2π

0 Θ(θ)dθ ·
∫ h
h χ(z)bdz =

∫ 2π
0 Θ0(θ)dθ ·∫ π

0 Ψ0(ψ)a2 sinψdψ.
The discussion is a little long, but not difficult, so

we sketch it.
We must distinguish four case.

5.1 Case I
∫ 2π

0 Θ(θ)dθ = 0;
∫ 2π

0 Θ0(θ)dθ = 0

1) At first, we have

Θ
′′
χ+ Θ(b2χ

′′
+ λχ) = 0

and consequently

Θ(θ) = An cosnθ +Bn sinnθ

(An, Bn constants; n = 1, 2, ...)
and the classical problem

χ
′′

+
λ− n2

b2
= 0 ; χ(±h) = 0 (n = 1, 2, ...).

We obtain easily for the problem Pλ the double eigen-
values

λ = n2+
k2π2b2

h2
, λ = n2+

(2k − 1)2π2b2

4h2
, (k = 1, 2, ...),

that are strictly greater than 1.
2) We have the equation

Θ
′′
0Ψ0 + Θ0

[
sinψ

d

dψ
(sinψΨ′0) + 2λΨ0 sin2 ψ

]
= 0

and consequently

Θ0(θ) = A0n cosnθ +B0n sinnθ, (n = 1, 2, ...)

and setting ξ = cosψ −
d

dξ

[
(1− ξ2)

]
dψ0

dξ
] +

n2

1− ξ2
ψ0 = 2λψ0,

ψ0 regular in ξ = ±1,



or
LnΨ0 = 2λΨ0

where Ln is the Legendre operator with index n
[(10)].

The eigenfunctions are the Legendre functions
Pnm(ξ)(m = n, n + 1, ...) associated to the Legendre
polinomials Pm.

For the problem Pλ, we have for n = 1, 2, ... the
eigenfunctions

cosnθPnn+p(cosψ) , sinnθPnn+p(sinψ) , p = 0, 1, 2, ...

with the double eigenvalues λ = (n+p)(n+p+1)
2 .

We remark that, for n = 1, p = 0, we have λ = 1
and the eigenfunctions

cos θP 1
1 (cosψ) , sin θP 1

1 (sinψ) ,

that we will obliged to discard by virtue of a provious
remark.

The other eigenvalues are strictly grater than 1.

5.2 Case II.
∫ 2π

0 Θ(θ)dθ 6= 0;
∫ 2π

0 Θ0(θ)dθ = 0

We find easily

χ
′′

+
λ

b2
χ = 0 ; χ(±h) = 0 ;

∫ h

−h
χ(z)dz = 0

and
Θ = constant.

For the problem Pλ, we have the eigenvalues

λ =
k2π2b2

h2
, k = 1, 2...

The smallest eigenvalue is obtained for k = 1; it is
π2b2

h2
. It is greater tha 1 if hb < π.Under this condition,

all the other eigenvalues are strictly grater than 1.
It is easy to see that the problem for Ψ0 and Θ0 is

the problem treated in the case I.

5.3 Case III.
∫ 2π

0 Θ(θ)dθ = 0;
∫ 2π

0 Θ0(θ)dθ 6= 0

For Θ and χ,we obtain the problem treated in the case
I.

We find easily Θ0 =constant and for Ψ0 the prob-
lem

1

sinψ

d

dψ
(sinψΨ

′
0) + 2λΨ0 = 0;

Ψ0 regular for ψ = 0, ψ = π.

Then, we have Ψ0 = Pm(cosψ)(m = 0, 1, 2, ...),
where the Pm(ξ) are the Lagendre polinomials, the
eigenvalues being m(m+ 1).

For the problem Pλ, the eigenfunctions are
Pm(cosψ) and the eigenvalues λ = m(m+1)

2 .
Form = 0, we have P0(cosψ) = 1, that we must

discar by virtue of a previuos remark.
The other eigenvalues are strictly greater than 1.

5.4 Case IV.
∫ 2π

0 Θ(θ)dθ 6= 0;
∫ 2π

0 Θ0(θ)dθ 6= 0

We obtain easily Θ =constant and Θ0 =constant.
These constants being arbitrary, the condition (26)
gives∫ h

−h
χ(z)dz = 0 ;

∫ π

0
Ψ0(ψ)a2 sinψdψ = 0,

so that, for Θ, χ we find the problem of the case II and
for Θ0,Ψ0 the problem of the case III.

Finally, by virtue of the properties of eigenfunc-
tions that we have found, we have obtaind all the
eigenvalues of the problem Pλ.

3) Then, if Z belong to the space

H0 =

{
Z ∈ H1;

∫
S0

ζ0P1(cosψ)dS0 = 0;

∫
S0

ζ0P
1
1 (cosψ) cos θdS0 = 0;

∫
S0

ζ0P
1
1 (cosψ) sin θdS0 = 0

}
and if h

b < π, all the eingenvalues of the problem Pλ
is strictly greaten then 1 and we have

λ0 = inf︸︷︷︸
Z∈H0

 β
b2

∫
S(ζ2

θ + b2ζ2
z )dS

β
b2

∫
S ζ

2dS + α
a2

∫
S0

2ζ2
0dS0

+

α
a2

∫
S0

( 1
sin2 ψ

ζ2
0θ + ζ2

0ψ) dS0

β
b2

∫
S ζ

2dS + α
a2

∫
S0

2ζ2
0dS0

 > 1.

The, we can write, with 0 < ε < 1 :

M(Z,Z) ≥ ε
[
β

b2

∫
S

(ζ2
θ + b2ζ2

z )dS+

α

a2

∫
S0

(
1

sin2 ψ
ζ2

0θ + ζ2
0ψ) dS0

]
+

[(1− ε)λ0 − 1]

[
β

b2

∫
S
ζ2dS +

α

a2

∫
S0

2ζ2
0dS0

]
.

Choosing 0 < ε < λ−1
0 , we see that M(·, ·) is coer-

cive inH0.



6 The problem is a classical vibra-
tion problem

1) We introduce the space

V0 =
{
U =

(
~u
~u0

)
∈ V ;

∫
S0
u0n0 |S0 ·


P1(cosψ)
P 1

1 (cosψ) cos θ
P 1

1 (cosψ) sin θ
dS0 = 0

}
equipped with the hilbertean norm defined bywwwUwww2

V0
=

∫
Ω
ρ|~u|2dΩ+||un|S ||2H1

0 (S)+

∫
Ω
ρ0| ~u0|2dΩ0

+

∫
Ω0

|div ~u0|2dΩ0 + ||u0n0 |S0 ||2H̃1(S)

and the space H0 completion of V0 for the norm asso-
ciated with the scalar product

(U, Ũ)H0 =

∫
Ω
ρ~u · ¯̃~udΩ +

∫
Ω0

ρ0 ~u0 · ¯̃
~u0dΩ0.

We set

a(U, Ũ) = ρ0c
2
0

∫
div ~u0 · div ¯̃

~u0dΩ0 +M(Z, Z̃).

The final variational equation of the problem is:
To find U(·) ∈ V0 such that

(27)(Ü , Ũ)H0 + a(U, Ũ) = 0 ∀Ũ ∈ V0.

2) Using the method introduced by [(17), p.65-68] we
can prove, by means of litttle long, but analogous cal-
culations, that we omit, that the problem is a classical
vibration problem: there is a countable set of eigen-
values ω2

n such that
0 < ω2

1 ≤ ω2
2 ≤ ... ≤ ω2

n ≤ ...; ω2
n →

∞ when n→∞,
and the eigenelements {Un} form an orthogonal

basis in H0.
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