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Abstract: This paper deals with the mathematical study of the small oscillations of a system formed by a a cylindri-
cal liquid column bounded by two parallel circular disks and an internal spherical bubble constitued by a barotropic
gas, under zero gravity. From the equations of motion, the authors deduce a variational equation. Then the study
of the small oscillations depends on the coerciveness of a hermitian form that appears in this equation. It is proved
that this last problem is reduced to an auxiliary eigenvalue problem. A careful discussion shows that our problem

is a classical vibration problem.
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1 Introduction

The problem of the small oscillatons of an incom-
pressible inviscid liquid under zero gravity, in which
the surface tension determine the character of the mo-
tion, is very important in the experiments in space lab-
oratories.

This problem has been sudied by numerous re-
searchers [(1), (2), (14), (15), (22), (16), (11), (17)].
The authors have made their contributions in a few
papers [(3)-(9), (21)].

In this paper, they study the small motions of a
system formed by a cilindrical liquid column bounded
by two parallel circular disks, the liquid being an-
chored at the rim of the disk, and an internal spher-
ical bubble constitued by a barotropic gas under zero
gravity.

From the equations of motion in linear theory,
they deduce a variational formulation of the problem.

The study of the spectrum depends on the coer-
civeness of a hermitian sesquilinear form that appears
in the variational equation. The authors prove that
the last problem is reduced to an auxiliary eigenvalue
problem. From a careful discussion, the authors show
that the problem is of the small oscillations of the sys-
tem is a classical vibration problem.

In this paper the researches started in [(9)] are fin-
ished.

2 Position of the problem

In the absence of gravity, in the equilibrium position,
with respect to orthogonal axes Oxyz, the system is
formed by (see fig.):

1) an incompressible inviscid liquid occupying
the domain 2 defined by 22432 < b2, 22 +y?+22 >
a’?,—h <z<z(a<b).

This domani is bounded by two rigid disks C' and
C'"(C:z=haz?+3y> <’ C :2=—h2®+
y? < b?), the boundaries of which are denoted by ¢
and ¢, the cilindrical surface S defined by 2% + ? =
b2, —h < z < z and the spherical surface Sy defined
by 2?2 + y% + 22 = a*;

2) a barotropic gas which occupies the domain
Qo : 22+ 9% + 22 < a2

We denote by 77 and 7i( the unit vectors normal to
S and Sy directed to the exterior of S and Sy.

We introduce the cilindrical coordinates (
and the spherical coordinates (R,0,v)(0 <
2m; 0 <9 < 7).

At the instant ¢, .S (resp. Sp) occupies the position
St (resp. Sot) defined by equation r» = b + ((0, z,t)
(resp. R =a+ (o(0,,t)). ¢ and (p and their deriva-
tives will be considered as quantities of the first order
with respect to amplitude of the oscillations.

We denote by « (resp.3) the surface tension on Sy
(resp. 5).

r,0,2)
0 <



We suppose that the liquid is anchored at the rims
c and ¢ of the disks C' ans C’, so that we have
(1) ¢=0 onc and .

3 Equations of motion

We study the problem in the framework of the linear
theory: for all details see ge.

1) At first, we consider the liquid.

If p is its constant density, P the pressure, i the
displacement of a particle with respect to its position
at the equilibrium, we have

(2) pii = —grad P (Euler’s equation), Q)
div 4 = 0 (incompressibility),

where (4 = %;j ). From the last equations, we deduce
by integrating between the dates of the equilibrium
and ¢

(3) divd=01in .

The kinematic conditions are:
(4) uy =0forz =+h,r <b,
def
(5) unls =i - iils = ¢,
(6) a- ’I’L_f)|50 = Co-
The dynamic condition on S; is given by the
Laplace law

1 1
P—p,=-0|—=—+—
Pa= =P [ 7t R ]
where p, is the constant atmospheric pressure and
R1, Ry are the principal radii of curvature of S;.

The formula that gives the mean curvature of a
surface that differs from a circular cylinder is well
known [10] and we have a

(7) Ps, —pa = =Bl — 3 + 32 (Coo + ) + 2,

2
(Coo = Z58).

2) Now, we consider the gas.

If p* is the density, P* the pressure, iy the dis-
placement, we have in € :

(8) P*="P(p*) (equation of state),

where P is an increasing function of p*,

(9) p*up = —grad P* (Euler’s equation)

ap* i

(10) a—pt + div(p*up ) = 0 (continuity equa-
tion).

The kinematic condition is

(11) wp - nols, = 4 - 10|s, = Co-

The Laplace law gives, using the formula giving
the mean curvature of a surface that differs little form
a sphere [(13)]

(12) P;gt - PSOt = Oé|:2 - i%_
s (ﬁ@ee + ﬁ%(sm1ﬁ€0¢)] }

We are to linearize the equations of motion of the
gas.
We set

pr=pot+p+.. , PP=P+p+.. ,

where p and pg are of the first order and the dots rep-
resent terms of more large order.
The continuity equation gives, after integration

p = —po div iy

and the equations of state
(13) po = ¢gp = —cipo div @y, 3 =P (po).
The Euler’s equation becomes

po Uy = —grad py = ct gr_dd(div ip) in .
If we suppose that the conditions of Lagrange’s theo-

rem are satisfied, i is a gradient.

As the volume of the liquid is constant, we have
(15)/ CdS—/ ¢o dSo = 0.
s So

Finally introducing the dynamic pressures py and
p we obtain easily:

(16) pls = — 1 (Coo + ¢ + Czz),
(17) pols, — pls, =

—az {2@ + 000 s oy [(Sin¢§o¢] ]

3.1 Remark

It is easy to see that the right-hand side of
(17) is equal to zero if we replace (y by
cos 1, sin cos B, sintsin@. If these functions are
solutions of the problem, we must discard them be-
cause we are no longer in the framework of the lin-
earization.

4 Variational formulation of the
problem

1) We define the space of the kinematically admissive
displacements % and ug. The functions are sufficiently
smooth and verify:

div i =0 in Q; @, on z==xh,r <b



we write @,|s = ¢ with { = 0 for z = =+h;
Wong | So Ungls, and Uong|s, (p; moreover

/Sédsz/s & dSo.

This will sotarted more precisely in what follows.
From the equation (2) and (14) and Green’s for-
mula. we obtain

/péi-%idmr/ poil - tipdQ =
Q Qo
—/ cg po div Uy div 7?_[0 dQg
Qo

—/p|5’ﬂ_n|s dS—/ (p0|50p|50)1:$n0|5'0 dSOa
S So

and using (16) and (17):

/pﬁ‘ng—l-/ poﬁo-godﬁoﬁ-
Q Qo

/Q C% o div ’U:Q div 170 on—bﬁz /g((@Q"‘C‘f‘sz)ZdS—
o .

(07

1
_— 2 -
2 /So { Co+ - wCoeeJr
1 0 5
— | si dSy = 0.
gy (s ) |dass
Integrating by parts the last two integrals, we ob-
tain the formal variational equation of the problem:

po’ij:() . ﬁo dQ(H‘

(18) / pii - 4 dS) +
Q Q0

C% £0 /Q div tg div ’30 dQg +
0

5 (o + et - ) as+

% /S [Sinlg " ConCos + Qongw - 2(050] dSy = 0.

It is easy to see that the last two terms of (18) is the
virtual work of the surface tension forces.

2) Let us introduce the Hilbert spaces H{ (.9),

H'(So) = {Co € L*(S0), oy Si?ip € LZ(SO)},

Hy = {z - ( go ) € H)(S) @ H! (So):

/SCdS _ /SO CodSo = 0},

equipped with the norm

20, =[], (6 +¥e:) as+

I 5 2 2 1/2
s + -2 dsS .

/So [sin2 ” Gog + oy — 260 ] 0}
Recalling that & and ug are gradient, we introduce
now the space V :

V:{U:<

N def

HY{(Q) =M € H(Q), Jo e d; divii = 0};
unls € HY(S), u, = 0 for £ h; uy =

grad ©o; Yo S Hl(QO); div  up €

LQ(QO)a uOno‘So - un0|So S Hl(SO)’ fS Un’SdS -

fSO UQng |50d50 =0
equipped with the norm defined by

); U = gr_&dgo,gé €

&=

2
HUHV_/pruRdm\un\s\@é(sﬁ/gopuo,zdao

. -2 2
+LO ’dZ’U UO| on + ‘|U0no|50‘|g1(50)7

and the space H, completion of Vfor the norm asso-
ciated to the scalar product

(U,U)H:/pa-{zd9+/ P - wpdQ.
Q Qo

Denoting by M (Z, Z) the last two terms of (18), we
obtain the precise variational equation of the prob-
lem:

(19)(TT, 0) s+ poc /Q div @-iyd+ M (Z,Z) = 0
0

YU eV.

5 Study of the sesquilinear form
M(Z,2)

1) This form is obviously hermitian and continuous
on Hy.

In order to study its coercivness, we use a method
that we can find in the book 16, so that we will sketch

the proof.
We set
N i Js(GG +v*¢2)ds
= 5 -

= fso(ﬁ (o + C&p) dSo ]
5 [4¢2dS + & [g, 2¢3dSy

We can prove that there exists Z € H; such that A is
the value of the ratio for ( = zeta and A > 0.



By defintion of A, we have

1
o [Gweis + 5 [ (s Gt G sy

)\[6/ Gas+ 5 [ 20ds)] > 0vZ e,

b2 Js a? Js,

Setting Z = Z + e6Z,¢ € [—00,4+00],6Z =
¢
Go

sible for each ¢ € [—o0, +00] only if the coefficient

of 2¢ is equal to zero ~
Vo € HL(S), ¥oCo € Hi(So), [qCd¢ —

J 5, G0dSo = 0.
Introducing the multiplier  associated to the last
condition, we obtain

/S {52 {(CA@&C@ +02C.6¢, — )\@54 n uéc} is
+/SO {; [sm12¢ 00900 + CoupdCoy — 2)\50540}

€ H1, we can see that the inequality is pos-

—z,usgo} dSy = 08¢ € HE(S),¥a¢o € H(So).
Since D(S) C H}(S), we have
g (Goo +8°C +AC) — =0 D/(8),

and by virtue of a Schwartz theorem on the elliptic
equation 18, in the classical sense.

By virtue of known results concerning the
Laplace-Beltrami operator on the sphere [8], we ob-
tai the classical equation

1
| S o o g sin G 4206 +2 = 0,

Eliminating A and using the condition [¢(d( —
Js, CodCo = 0, we obtain

b3 27 1 R
= | [~ o -m)as, witn
0
4 3
k= 277(& + %Th)

Finally, we obtain inf by solving the classical eigen-
Hl
values problem Py, :

(20)Cg9 + b2Con + A — & {CZ(H n -
¢.(8, h)}d@ -
(2”@ Coge + ﬁ%(sinzﬁ@w) + 20 +

2 [T [eom) - G, -m]an =0,

(22) ¢, (o2m — periodic in 6,

(23) (0, £h) =0,

(24) fSCdS Js, €0dSo =0

and X is the smallest eigenvalue of the problem.

2) For solving the problem P,, we use the method
of separation of the variables.
We seek the solution in the form

¢=0(0)x(2) ; Co=00(0)¥o(t).

We carry out in (20) e (21) and the conditions (23),
(24) give

(25) x(£h) =

(26) 2" ©(0 - (e —
Jo Yoy )a sin yda).

The discussion is a little long, but not difficult, so
we sketch it.

We must distinguish four case.

5 ©0(0)do

51 Casel [["O(0)d0 = 0; [~

1) At first, we have

©y(0)df = 0

O x+0(* +Ax) =0
and consequently

O(0) = A, cosnb + B, sinnd

(A, B, constants; n = 1,2, ...)
and the classical problem
" A — n2

X +—5—=0;

02 x(xh) =0 (n=1,2,...).

We obtain easily for the problem P, the double eigen-
values

k.2 212
h?

(2k — 1)%720?

_ .2
, A=n"+ e

A =n’+

that are strictly greater than 1.
2) We have the equation

" d
Oy ¥o + Og siw@(smwg) +2X\Tgsin® | =0

and consequently

O0(0) = Aon cosnb + By, sinnb, (n =1,2,...)

and setting £ = cos

d dpo,  n?
TdE [( - )] i —=+ 1_7527#0 = 2\,

1 regular in £ = +1,

L (k=1,2,...

)7



or
LT = 2\,

where L, is the Legendre operator with index n
[(10)].

The eigenfunctions are the Legendre functions
Pl (&)(m = n,n + 1,...) associated to the Legendre
polinomials P,,.

For the problem P, we have for n = 1,2, ... the
eigenfunctions

cosnf Py, (costp), sinnd Py, (siny) ,p=0,1,2,...
with the double eigenvalues A = w.

We remark that, forn = 1,p = 0, we have A = 1
and the eigenfunctions

cos OP} (cos 1)) , sinOP} (sin)) ,

that we will obliged to discard by virtue of a provious
remark.
The other eigenvalues are strictly grater than 1.

52 Casell. [Z7O(0)dd # 0; [;" ©0(0)dd =0
We find easily

P h
X +b3x=0;x(ih)=0;[hx(2)d220

and
© = constant.

For the problem P,, we have the eigenvalues

K2

A 2

L k=1,2...

The smallest eigenvalue is obtained for £ = 1; it is
”232 . Itis greater tha 1 if % < 7. Under this condition,
all the other eigenvalues are strictly grater than 1.

It is easy to see that the problem for ¥ and O is

the problem treated in the case I.

53 CaselIlIL [’ O(0)df = 0; [Z" Oy(#)db # 0

For © and y, we obtain the problem treated in the case
L
We find easily ©g =constant and for ¥ the prob-

lem 1 4
= (sinyV, +2\¥y = 0;
sin dip (sin o) + 2A%o = 0;

Ug regular for ¢» = 0, = .
Then, we have ¥y = P, (cosy)(m = 0,1,2,...),

where the P,, (&) are the Lagendre polinomials, the
eigenvalues being m(m + 1).

For the problem P, the eigenfunctions are
P,,(cos)) and the eigenvalues A = %

For m = 0, we have Py(cos) = 1, that we must
discar by virtue of a previuos remark.

The other eigenvalues are strictly greater than 1.

5.4 CaselIV. [Z" O(0)df # 0; [7™ ©o(0)dh # 0

We obtain easily © =constant and ©y =constant.
These constants being arbitrary, the condition (26)
gives

h T
| Xz =03 [ wow)a?sinydy = o,
—h 0

so that, for ©, x we find the problem of the case II and
for O, ¥ the problem of the case III.

Finally, by virtue of the properties of eigenfunc-
tions that we have found, we have obtaind all the
eigenvalues of the problem Pj.

3) Then, if Z belong to the space

Ho = {Z S 7‘(1;/ CUP1(C081/J)dSQ = 0;
So

/ CoPi (costh) cos BdSy = 0;
So

CoPi (cosp) sin BdSy = 0}
So

and if % < 7, all the eingenvalues of the problem Py
is strictly greaten then 1 and we have

B [5(G +b*¢?)ds
& [eC2dS+ 5 Jsy 2¢5dSo

)\0 = an (

ZeHO

= fso(ﬁ (G + C5w) dSo ]
5 [ C2dS + 5 [g, 2¢2dSo

The, we can write, with0 < e < 1:

M(Z,7) > g[g /S (2 + b%C2)dS+

1
- /So( (o + Cp) dso}*—

a? sin? )
(1= ) — 1] [g/sg2ds+§;/s QCSdSO].

Choosing 0 < ¢ < A\y*, we see that M (-, -) is coer-
cive in Hy.



6 The problem is a classical vibra-
tion problem

1) We introduce the space

%:{U:(“H )ev;

UuQ

Py (cosp)

P} (cos ) cos 6 dSy = ()}
P} (cosp)sinf

equipped with the hilbertean norm defined by

fSO Uong |So'

2
[U];, = [ elalassliunlsiby s+ | poliofdst

+/ [divids 24 + [[tton 5o 1 s
JQo

and the space Hy completion of Vj for the norm asso-
ciated with the scalar product

.0V, = [ pit-id2+ [ poio - iy,
Q J Qo
We set
a(U, U) = pocg/div ug - div uz(')ng + M(Z, Z)

The final variational equation of the problem is:
To find U(-) € Vp such that

20U, 0) g, +a(U,U) =0 YU € V.

2) Using the method introduced by [(17), p.65-68] we
can prove, by means of litttle long, but analogous cal-
culations, that we omit, that the problem is a classical
vibration problem: there is a countable set of eigen-
values w2 such that

0<w%§w§§...§wfl§
oo when n — oo,

and the eigenelements {U,,} form an orthogonal
basis in Hy.
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