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Abstract—This paper addresses the problem of efficiently
restoring sufficient resources in a communications network to
support the demand of mission critical services after a large scale
disruption. We give a formulation of the problem as an MILP
and show that it is NP-hard. We propose a polynomial time
heuristic, called Iterative Split and Prune (ISP) that decomposes
the original problem recursively into smaller problems, until
it determines the set of network components to be restored.
We performed extensive simulations by varying the topologies,
the demand intensity, the number of critical services, and the
disruption model. Compared to several greedy approaches ISP
performs better in terms of number of repaired components,
and does not result in any demand loss. It performs very close to
the optimal when the demand is low with respect to the supply
network capacities, thanks to the ability of the algorithm to
maximize sharing of repaired resources.

Index Terms—Network recovery, flow restoration, massive
network disruption.

I. INTRODUCTION

Natural disasters or intentional attacks can severely disrupt

critical infrastructures such as communication, power, and

emergency control networks [1] at a large scale. Because so-

ciety has come to depend heavily on communication networks

to support mission critical services, especially in times of

emergency, it is critical that such infrastructures be repaired

quickly, at least to the point where mission critical services

can be supported.
A widespread collapse of critical infrastructures occurred

after Hurricane Katrina hit the Gulf Coast of the United

States, in 2005. The damage extended for an area of approxi-

mately 93,000 square miles. More than 2,000 cell towers were

knocked out. The backbone conduit for landline service was

flooded as well as many central switching centers [2], [3].
In 2011, the “great east Japan earthquake” hit a large part

of the north-east of Japan. The earthquake was just the start

of a widespread disaster, which also included a huge tsunami

and the nuclear failure at Fukushima. The tsunami destroyed

almost all terrestrial communication infrastructures including

many of the wired communication networks and emergency

municipal radio communication systems [4], [5].
In both cases, the communication outage consequent to

the disaster hampered the assessment of residents’ safety. It

also precluded efficient rescue operations by government and
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public organizations, such as distribution of medical aid and

emergency supplies. The restoration of the communication

infrastructure and its related services took months, a time

that is far from meeting the requirements of critical ser-

vices or normal local communications of people living in

the affected areas. For this reason, a major challenge in

disaster management scenarios is to sufficiently recover the

communication network infrastructure so that it may support

mission critical applications in the shortest time and with

minimum interventions.

In this paper we focus on the communication network

and the mission critical applications it supports. The latter

represents critical services such as communication between

government offices, police stations, fire stations, power plants,

gas-duct control centers and hospitals, that rely on the commu-

nication network for control and cooperation. We address the

problem of fulfilling the requirements of the communications

network through the restoration of network components. Our

goal is to optimize the recovery actions, in order to obtain the

restoration of the required capacity to support mission critical

services at minimum cost.

We model the mission critical services as a demand graph

which takes account of the demand increase consequent to

the occurred incidents [6]. This graph defines a set of demand

flows on the communication network, to which we refer to as

the supply network. We consider scenarios in which a major

disruption of the supply network makes it unable to meet

the capacity requirements of demand flows. Therefore, the

flows must be accommodated by means of recovery actions

or deploying new links and nodes.

We model the recovery problem in terms of mixed integer

linear programming. The problem looks for the best strategy

that recovers the damaged infrastructure and deploys new links

and nodes in order to minimize the cost of the recovery actions

under the constraints on network capacity and demand flows

satisfaction.

We show that the problem is NP-hard and propose a

heuristic called Iterative Split and Prune (ISP) to recover the

network efficiently in polynomial time with a solution close

to the optimal. ISP is based on a new metric called demand

based centrality, specifically meant to measure the importance

of a node in a supply graph given the demand flows. ISP

makes use of this metric to determine the most important

nodes to be repaired. In particular, ISP iteratively selects

the node with the highest centrality, repairs it if damaged,
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and splits some demand flows to force them to pass through

the selected node. This way, ISP minimizes the repairs by

concentrating flows towards the areas of the network already

repaired. Additionally, it prunes the demand flows which can

be satisfied by the currently repaired network.
We formally prove that ISP terminates in a finite number

of steps by returning both a recovery strategy and a routing

solution for the demand flows.
We also propose other heuristics to the recovery problem,

based on the standard multi-commodity approach as well as

greedy approaches. We compare the performance of ISP and

the other heuristics against the optimal solution under a variety

of scenarios. Such scenarios include both real and synthetic

network topologies, geographically correlated failures, as well

as different demand requirements. Results show that ISP

always outperforms all the other heuristics. In particular, it

performs very close to the optimal when the demand is

relatively low with respect to the network capacity. We also

compare the algorithms in terms of execution time, showing

that ISP provides solutions for complex cases in the order of

5 minutes, whereas the optimal solution takes on the order of

27 hours.
In summary the original contribution of the paper is the

following:

• We formulate a recovery problem as an MILP and show

its NP-hardness.

• We introduce a new metric of demand based centrality,

specifically meant to measure the importance of a node in

a supply graph of a multi-commodity problem instance.

• We propose a polynomial time heuristic called ISP, which

uses the new centrality to address the recovery problem.

• We propose other heuristics based on the standard multi-

commodity approach, as well as greedy heuristics and

shortest paths repair approaches, as baseline solutions.

• We evaluate the proposed solutions through simulations

on real and synthetic topologies, under geographically

correlated failures. Results show that ISP performs close

to the optimal, while other heuristics incur a much higher

cost to accommodate the demand flows.

II. RELATED WORK

While there is a considerable amount of research on re-

covery from single or sparse failures in a network, our paper

addresses the problem of network recovery from large scale

failures. Hence, in this section, we do not consider the previous

work on the first problem, and describe only works that are

related or are applicable to the case of massive failures.
The work by Wan, Qiao and Yu [32] introduced a problem

related to ours. They study the impact of recovery actions in

terms of improved throughput over time. Their work aims at

formulating a schedule of repair interventions under limited

daily budget, so as to optimize the achieved throughput. The

authors modeled the problem as an MILP and showed that is

it NP-hard. They proposed a greedy heuristic for solving the

problem in multiple stages by analyzing the shadow prices

of the related optimization problem and using an iterative

evaluation of these values to repair the edges with highest

potential for contributing to the objective function. Unlike this

work which aims at optimizing throughput over time, we aim

at optimizing costs of recovery under constraints on quality

of service. Moreover, our algorithm also produces a routing

solution that guarantees that the demand flows are actually

accommodated.
The multi-commodity flow problem, addressed in a large

amount of research work, aims at finding the routing of

several multi-commodity flows in a supply network, so as

to optimize the totally routed flow. This problem seems the

most reasonable reduction of our problem to a classic problem.

Nevertheless this approach has considerable limitations when

applied to the problem of recovery. We discuss these aspects in

detail in Section VI-A. Many heuristics have been proposed to

solve several variants of the multi-commodity flow problem.

Most of these works [17], [9] rely on the idea that a higher

total flow can be obtained by balancing the load distributing

the flow over many paths. This idea is opposite to what is

needed in the recovery problem, where we want to maximize

the flow traversing repaired paths, and concentrate the flow

towards shared paths.
Some works focus on the rent or buy multi-commodity

problem, which aims at installing possibly unlimited capacities

on the edges of a network so that a prescribed amount of flow

can be routed between several pairs of terminals. Unlike our

problem, the rent or buy problem assumes that each edge can

obtain unlimited capacity at a given cost. The works by Kumar

et al. [24] and Fleischer et al. [15] address this problem and

propose polynomial time heuristics with a given approximation

of the optimal solution.
Other works address the problem of service restoration in

the case of heterogeneous non-telecommunication networks.

Among these, in their work [25], Lee et al. address the problem

of restoring service in an interconnected network by creating

new links. They propose a formulation of the problem in

terms of a high complexity optimization model. Other works

[8], [22] address the problem of recovery beyond the field of

telecommunications with solutions tailored to the specific type

of network being considered.
Finally, the work of Magnanti et al. [26] addresses the prob-

lem of network design under connectivity only requirements. It

shows that the simplified version of our main problem in which

every demand pair requires only to be connected regardless of

the capacity of the interconnecting paths, is a specific instance

of the Steiner Forest problem.

III. THE NETWORK RECOVERY PROBLEM

In this section we formulate the MINIMUM RECOVERY

(MinR) problem as a mixed integer linear optimization prob-

lem. MinR aims at minimizing the cost to repair broken nodes

and links so as to restore the necessary network capacity to

meet a given demand.
Table I summarizes the notation used throughout the paper.

We model the communication network as an undirected graph

G = (V,E), called the supply graph, where V and E
represent nodes and links of the network, respectively. Each

edge (i, j) ∈ E has capacity cij . We also consider a demand
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Notations Descriptions

G = (V, E) supply graph

G(n) = (V (n), E(n)) supply graph at iteration n

H = (VH, EH) demand graph

H(n) = (V
(n)
H

, E
(n)
H

) demand graph at iteration n

cij capacity of edge (i, j) ∈ V

dh = dsh,th demand flow of edge (sh, th) ∈ EH

c
(n)
ij , d

(n)
shth

capacity of (i, j), demand of (sh, th) at the
n=th iteration

VB ⊆ V and EB ⊆ E broken vertices and edges

V
(n)
B

and E
(n)
B

VB and EB at iteration n

h ∈ EH, demand pair (sh, th) ∈ EH

kvi , keij cost of vertex i and edge (i, j)

fh
ij quantity of flow h from i to j

δij decision to use edge (i, j) ∈ E,

δi decision to use vertex i ∈ V

ηmax maximum degree of the network

bhi flow h generated at node i

ℓ(p), l(ei) length of path p, length of edge ei
n(p) number of edges of p

c(p) capacity of path p: min
e∈p

ce

P(i, j) paths in G between i and j

P∗(i, j) shortest paths necessary to route demand dij
P∗

ij |v set of paths in P∗
ij that include v

cd(v) demand based centrality, see (3)

v
(n)
BC

node with highest centrality at iteration n

C(n)(v
(n)
BC

) ⊆ E
(n)
H

demand pairs that contributed to the centrality

of v
(n)
BC

, updated at iteration n

L(n) list of repairs, updated at iteration n

TABLE I
NOMENCLATURE AND NOTATION

graph H = (VH, EH), where VH ⊆ V , and EH ⊆ VH×VH is the

set of pairs of nodes in VH having a positive flow demand. Each

pair (sh, th) ∈ EH has a source sh, a destination th and an

associated demand flow dsh,th . For sake of simplicity, we write

h ∈ EH, when (sh, th) ∈ EH, and we shortly use the notation

dh for dsh,th when the context allows. Notice that the demand

flows modeled by the sets VH and EH can take emergency

related priorities into account. These sets define the endpoints

of critical communication services and an estimate of the

related demand flow, which may account for the increased

needs due to the disaster [6].
In order to model the network failure, we define the sets

VB ⊆ V and EB ⊆ E of damaged vertices and edges,

respectively. We denote with kvi the cost of repairing vertex

i ∈ EB and with keij the cost of repairing the edge (i, j) ∈ EB
1.

The recovery costs are heterogeneous and dependent on the

location and on the technology in use.
We then introduce the decision variables fh

ij ∈ R, with

fh
ij ≥ 0, to represent the fraction of the demand flow h that

will be routed through the link (i, j) ∈ E, going from vertex

i to vertex j. Notice that other flows may traverse the same

1Notice that this model can also be adopted as is to support decisions
to replace broken links with new links of higher capacity, or to deploy and
connect new nodes, by formulating a related decision space. These additional
choices may be considered in the model as parts of the sets EB and VB and
included in the correspondent supply graph G. The model can also be extended

to the case of multiple choices for link technology and related capacity. For
simplicity of presentation, in this paper we refer to the only case of recovery
decisions.

edge in the opposite direction.
We also define the binary variables δij and δi. The variable

δij represents the decision to use link (i, j) ∈ E, therefore

δij = 1 if link (i, j) is used, and δij = 0 otherwise. If the link

(i, j) ∈ EB, the decision to use this link implies that it must

be recovered. Similarly, δi represents the binary decision to

use the node i ∈ V , which has to be recovered if it is broken,

that is if i ∈ VB.
The objective function of the MinR problem can be ex-

pressed as in 1(a), where we optimize the cost of repairing the

only vertices and edges that are both used (the corresponding

binary decision variable is 1) and that were initially broken

(the related vertices and edges belong to VB and to EB,

respectively).
The capacity constraint of our problem is expressed by 1(b).

According to this constraint the total amount of flow traversing

the edge (i, j) in both directions cannot exceed the maximum

capacity of the link.
Notice that if an edge (i, j) is used, the corresponding

endpoints i and j are also used, which implies that δi ≥
δij , ∀i, j ∈ V . To express this constraint in a compact form,

with fewer equations, we consider that the degree of each

vertex is lower than or equal to the maximum degree ηmax of

the network. Therefore the relationship between δi and δij can

be expressed by the constraint given by 1(c).
We consider a flow balance constraint, in the form expressed

by 1(d). In this equation bhi = dh if i = sh, bhi = −dh if

i = th, and bhi = 0 otherwise. Finally, 1(e) shows that we

are considering non negative, continuous decision variables

for the flow assignment to edges, while 1(f) expresses the

binary constraint for the decision variables which determines

whether some vertices and edges are used in the solution of

the problem.
The MinR problem can therefore be formulated in linear

terms in the variables δij , δi and fh
ij as follows:

min
∑

(i,j)∈EB
keijδij +

∑
i∈VB

kvi δi (a)

cij · δij ≥
∑|EH|

h=1(f
h
ij + fh

ji) ∀(i, j) ∈ E (b)
δi · ηmax ≥

∑
j:(i,j)∈E δij ∀i ∈ V (c)

∑
j∈V fh

ij =
∑

k∈V fh
ki

+ bhi ∀(i, h) ∈ V × EH (d)

fh
ij ≥ 0 ∀(i, j) ∈ E, h ∈ EH (e)

δi, δij ∈ {0, 1} ∀i ∈ V, (i, j) ∈ E (f)

(1)

Theorem 1. The problem MinR is NP-Hard.

Proof. Let us consider a generic instance of the Steiner Forest

problem [21], [26]. Given a graph Gsf = (Vsf, Esf), a set of

node pairs Ssf = {(s1, t1), . . . , (sn, tn)} and a cost function

csf : E → R
+, the goal of the Steiner Forest problem is to

find a forest Fsf ⊆ E with minimum cost, such that for each

pair (si, ti), si and ti belong to the same connected component

in Fsf.
We reduce this problem to an instance of MinR as follows.

We consider a supply graph G = (V,E) with V = Vsf and

E = Esf. We consider EB = E and VB = ∅. We create a

unitary demand flow for each pair in Ssf. For each edge in E
we set the cost of repair equal to the cost of the corresponding

edge in Gsf, and its capacity equal to a value L that is

sufficiently large that any link of E can accommodate the sum
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of all demand flows. Therefore, considering a requirement of

one unit of flow for each demand pair, it is L≫ |Ssf|.
Given such instance, MinR returns the set of nodes V ∗ ⊆ V

and edges E∗ ⊆ E to be repaired to accommodate all the

demand flows. However, V ∗ = ∅, since no node is damaged.

Additionally, since the capacity of each edge in E is large

enough to accommodate an amount of flow exceeding the sum

of all demand flows, for each demand pair (si, ti) a single

path from si to ti is sufficient to accommodate the demand

flow between si and ti. As a result, the union of the links

in E∗ generates a Steiner forest, since any cycle would imply

unnecessary repairs. This is also the forest with minimum cost,

since MinR minimizes the costs of repairs.
We can therefore conclude the reducibility of the Steiner

Forest problem to MinR, and consequently that the problem

MinR is NP-Hard.

IV. ITERATIVE SPLIT AND PRUNE

The algorithm ISP (ITERATIVE SPLIT AND PRUNE) works

by iteratively selecting the best candidate nodes and links

for repair, then simplifying the demand by either removing

(pruning) or reducing it in smaller segments (split), so as to

consider simpler instances of the problem at every iteration.

The termination condition is the complete removal of the

demand or the achievement of an instance whose demand is

routable through the currently working links. Notice that at

the end of its execution the algorithm ISP will output both the

set of repairing interventions and the corresponding routing of

demands.
The pseudo-code of the algorithm is shown in Algorithm

1. More details on the single activities can be found in the

following sections.

Algorithm : Iterative Split and Prune (ISP)

Input: Supply graph G, demand graph H , broken nodes VB and broken
edges EB

1 while routability test fails do
2 while pruning condition do

3 Prune demands satisfying pruning condition;
4 Update G and H;

5 if there are repairable links then

6 Repair broken repairable links;
7 Update G and EB;

8 else

9 Find best candidate vBC for split;
10 Repair vBC if broken;
11 Find best demand d to split on vBC;
12 Calculate the maximum splittable amount dx;
13 Split amount dx of demand d on vBC;
14 Update G, H, VB;

A. Routability test

At the basis of the algorithm is the use of flow balance

equations and capacity constraints to determine the feasibility

of an action or the termination condition. The algorithm should

terminate whenever there is no demand left, or the current

demand can be routed without additional repairs.

For some specific topologies of both supply and demand

graphs, as discussed by Schrijver in [31], the question whether

a demand can be routed through the links of the supply graph

can be answered by verifying the so called cut condition,

namely whether for every cut the total capacity crossing the

cut is no less than the total demand crossing it. While the cut

condition is always necessary to ensure the routability of a

set of demand flows through a supply graph, it is not always

sufficient, for example when the graphs G and H admit an odd

p-spindle as a minor as motivated by Chakrabarty, Fleischer

and Weible in [14], or a bad-k4-pair as discussed in the already

mentioned work by Schijver [31].
The specific instances of graph pairs G and H of a multi-

commodity flow problem for which the verification of the

cut condition is a necessary and sufficient condition for the

routability are called cut-sufficient instances. In this work we

are not assuming cut-sufficiency as we address general graph

instances.
Without assuming any structural property of the supply

and demand graph, the routability of the demand over the

supply graph can be determined by solving the following set

of inequalities, to which we will refer under the name of

routability conditions:
{ ∑

h∈EH
(fh

ij + fh
ji) ≤ cij ∀(i, j) ∈ E

∑
j∈V fh

ij =
∑

k∈V fh
ki

+ bhi ∀(i, h) ∈ V × EH

fh
ij ≥ 0 ∀(i, j) ∈ E,h ∈ EH

(2)

If the constraint system given by the routability conditions of

(2) determines a non empty region, then we can assert that the

supply graph G has enough capacity to ensure the routability

of the considered demand H . Any feasible solution of the

above system is a routing policy that can be adopted to satisfy

the demand H with routes in G.
Notice that at any iteration, the demand graph H and the

residual capacities of the edges of graph G are updated as a

consequence of either prune, or split actions. The sets VB and

EB are also updated after any repair decision.
For this reason we define the supply graph at iteration n

as G(n) = (V (n), E(n)), with link capacities c
(n)
ij , and where

V (n) = V \V
(n)
B , and E(n) = (E \E

(n)
B )\{(i, j) s.t. |{i, j}∩

V
(n)
B | ≥ 1}. Analogously, we consider the demand graph

H(n), updated at iteration n. When necessary, the routability

test is performed on the problem instance defined at iteration

n, with supply graph G(n) and demand graph H(n).

B. Centrality based ranking

The core actions of ISP rely on a ranking among nodes

based on a novel demand based centrality metric. Unlike

previous definitions of node centrality [16], [13], [10], [20],

[30], our metric takes account of the ability of each node to

accommodate flow throughout the network.
The metric extends the notion of betweeness centrality [16],

[13] as follows. A path p in the graph G is hereby defined as a

list of composing edges p =< e1, e2, . . . , en >. For shortness

of notation, we will also say that a vertex v ∈ p when v is an

endpoint of an edge belonging to p. We denote with ℓ(p) the

length of the path p, therefore ℓ(p) =
∑

ei∈p l(ei), where l(ei)
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is the length of the edge ei. Such a length can be defined in

several ways, as discussed in Section IV-D. The capacity of a

path is denoted by c(p) and is equal to the minimum capacity

of the links in p.
We denote with P(i, j) the set of acyclic paths in G

connecting nodes i, j ∈ V . We also denote with P∗(i, j) ⊆
P(i, j) the set of the first shortest paths necessary to ensure

the routability of the demand (i, j), when considered indepen-

dently of the other demands.
The demand pair (i, j) ∈ EH contributes to the centrality

of a node v with all the paths p ∈ P∗
ij |v, where P∗

ij |v ,

{p|v ∈ p ∧ p ∈P∗
ij}. In particular, for each path p ∈P∗

ij |v,

the pair (i, j) contributes to the centrality of v with a fraction

of the demand dij equal to the ratio between the capacity of

p, c(p), and the sum of the capacities of all the paths in P∗
ij .

Given the supply graph G (including broken elements) and the

demand graph H , the demand based centrality cd(v) of node

v is defined as:

cd(v) ,
∑

(ij)∈EH







∑

p∈P∗

ij
|v

c(p)

∑

p∈P∗

ij

c(p)
· dij






. (3)

If a static distance metric is adopted to calculate the path

length, P
∗(i, j) can be calculated offline for any demand

pair (i, j), and therefore it does not affect the complexity

of ISP. If otherwise, this pre-calculation is not available, the

demand based centrality can be calculated at runtime, with

some approximation, as follows. For each demand dij , with

endpoints (i, j) ∈ EH, we calculate iteratively the set of

shortest paths P̂
∗
ij , which estimates the actual set P

∗
ij to

reduce the complexity. Initially, P̂∗
ij = ∅. We iteratively use

Dijkstra’s algorithm to find the shortest path p between i and j,

and add p to P̂∗
ij . If the paths in P̂∗

ij have enough capacity, i.e.
∑

q∈P̂∗

ij

c(q) ≥ dij , then these paths are sufficient, otherwise

we consider the residual graph in which we reduce the capacity

of p by c(p), and we calculate the next shortest path at the

next iteration to satisfy a demand dij −
∑

q∈P̂∗

ij
c(q).

For each selected shortest path, we can update the centrality

of its nodes in linear time with respect to the path length. As

a result of this procedure, we obtain an estimate ĉd(v) of the

centrality of each node v, with an expression analogous to 3.
Notice that, the calculation of the centrality based ranking

is performed at each iteration considering the supply graph G
(including broken elements), the current demand graph H(n)

and the current values of link capacities which may vary

iteration by iteration as a consequence of pruning actions.

C. Split of the demand

At the n-th iteration, ISP selects the node v
(n)
BC ∈ V with

highest demand based centrality. The centrality ranking does

not take account of disruptions, but of the potentiality of a

node to contribute to an efficient routing. Hence, the centrality

calculation considers the original complete supply graph G
(including the broken elements), with updated residual capac-

ities, and the current demand graph H(n). If v
(n)
BC
∈ V

(n)
B , then

v
(n)
BC

is virtually repaired at the current iteration, therefore it is

removed from the set V
(n)
B and it is added to the list of items

to be repaired, referred to with L(n). Notice that once an

element is inserted in the list L(n) it is thereafter considered

by the algorithm as if it were already repaired (more details

on this list can be found in Section IV-E).

The next step of the algorithm ISP is the split of a demand

flow over the node v
(n)
BC

. Let us consider a split action occurring

at the n-th iteration. Let us consider also a demand pair

(sh, th) ∈ E
(n)
H of value d

(n)
h . Splitting dx units of the demand

d
(n)
h , with dx ≤ d

(n)
h is the action of removing dx units from

the demand associated to the couple (sh, th) and creation of

two new demand edges of dx units of flow on the node couples

(sh, v
(n)
BC

) and (v
(n)
BC

, th).

Fig. 1 illustrates the described split action.

s
h

t
h

u
1

u
i+1 u

n

d
h

u
i

s
h

t
h

u
1

v
BC

u
i+1 u

n

d
h
-d
x

u
i

d
x

d
x

v
BC

Fig. 1. Split of dx units of demand

The set of demand couples E
(n)
H will be updated as follows

E
(n+1)
H = {(sh, v

(n)
BC

), (v
(n)
BC

, th)} ∪ E
(n)
H . (4)

The demand flows associated to the edges of E
(n+1)
H will

be the same as in the previous iteration, with the exception of

the split pair and the two new derived pairs. Therefore,

d
(n+1)
zw = d

(n)
zw , ∀(z, w) 6= (sh, th), (5)

while

d
(n+1)
zw = d

(n)
zw − dx, if (z, w) = (sh, th) (6)

and the new demand pairs have the following flows:

d
(n+1)
zw = dx if (z, w) = (sh, v

(n)
BC )|(v

(n)
BC , th). (7)

The split action implies a routing decision, by imposing

that dx units of the split demand between sh and th be routed

across the intermediate node v
(n)
BC

through which the demand

has been split. Although this action requires the existence of

a set of paths that can be used to route the demand, the only

routing decision implied by the split action is the traversal of

the node v
(n)
BC

with dx units of the original demand d
(n)
h . The

algorithm ISP can be tuned to perform this action according

to several criteria, to address two different aspects following

the selection of the vertex v
(n)
BC

: (1) which demand should be

split, and (2) the amount of flow to split.

Let C(n)(v
(n)
BC ) ∈ E

(n)
H be the set of demand pairs that

positively contributed to the centrality value of the node v
(n)
BC

5



at the current iteration, that is:

C(n)(v
(n)
BC

) =
⋃

(i,j)∈E
(n)
H

{(i, j) s.t. P
∗(i, j)|

v
(n)
BC

6= ∅}.

Decision (1): The algorithm ISP selects the demand pair

h(n) ∈ C(n)(v
(n)
BC

) to be split as the one that can less likely be

routed elsewhere, which can be roughly estimated by taking

the demand which, if split onto vBC, would more likely use

the major portion of the maximum flow between its endpoints.

Therefore

h(n) = arg max
(i,j)∈E

(n)
H

min{d
(n)
ij ,

∑

p∈P∗(i,j)|v
(n)
BC

c(n)(p)}

f∗(i, j)
,

where f∗(i, j) is the maximum flow between nodes i and

j on the complete supply graph G (including broken com-

ponents) with currently updated capacities c(n)(·), while

min{d
(n)
ij ,

∑

p∈P∗(i,j)|v
(n)
BC

c(n)(p)} is the part of demand d
(n)
ij

that can be routed across node v
(n)
BC

in case of no conflicts with

other demand pairs.
Decision (2): ISP decides the actual amount of demand that

can be routed across v
(n)
BC

by taking account of all potential

conflicts with the other demands at the current iteration. Let

dx be such an amount, that is the part of d
(n)
h that can be split

on v
(n)
BC

without affecting the routability of the current iteration

instance of the problem on the supply graph G(n). The amount

dx can be calculated by solving the linear programming

problem to maximize dx under the constraints of dx ≤ d
(n)
h

and to the flow conservation and capacity constraints defined

by (2), where the set E
(n)
H is defined according to (4), and the

demand flows are defined according to (5), (6) and (7).
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Fig. 2. Pruning of k units of demand

D. On the use of a dynamic path metric

We use a measure of link length proportional to the cost of

repairing the link or its endpoints, if any of these is broken,

and inversely proportional to the link capacity. Such metric

is updated every time a broken component is repaired or the

residual capacity of a link is reduced due to a pruning action

(see Section IV-F).
Formally, we define the length of the edge eij = (i, j) ∈

E at iteration n as l(n)(eij) = [const + keij(n) + (kvi (n) +
kvj (n))/2]/cij , where the terms const, kvi (n) and keij(n) are

as follows. The term const is a constant needed to account for

the length of a working link. The terms kvi (n) and keij(n) are

non null only if the corresponding elements are broken and not

listed for repair in any previous iteration: therefore kvi (n) = kvi
if i ∈ V

(n)
B , and null otherwise. Similarly, keij(n) = keij if

(i, j) ∈ E
(n)
B and null otherwise.

This path metric gives an extraordinary strength to the

algorithm ISP because, if a decision to repair an element

has been made, all successive actions will be performed

accordingly, allowing the concentration of demand flows on

the repaired components.

E. Recovery of nodes and edges

The algorithm ISP works by virtually recovering network

components during its execution until a sufficient number of

edges and links are recovered to route the entire demand.

These progressive recovery decisions alter the problem in-

stance at any iteration. Therefore ISP considers a list of items

to be repaired L(n), which is updated at any new repairing

decision.
At any iteration n of the algorithm, if the best candidate

vBC is broken, that is vBC ∈ V
(n)
B , it is added to the current

list of repairs, so L(n + 1) = L(n) ∪ {vBC}, and the set of

broken vertices is updated as follows: V
(n+1)
B = V

(n)
B \{vBC}.

Moreover, we repair a broken link in the supply graph if such

link directly connects two endpoints of a demand, and such

demand cannot be satisfied by the current repairs. Formally, if

at any iteration n there is a demand (sh, th) ∈ E
(n)
H that cannot

be satisfied by any working path (including the links in L(n)),

and there is also a supply broken edge (sh, th) ∈ E ∩ E
(n)
B

with the same endpoints, then the supply edge (sh, th) is added

to the list of repairs, that is L(n + 1) = L(n) ∪ {(sh, th)}.
The set of broken edges at the current iteration is also updated

accordingly E
(n+1)
B = E

(n)
B \ {(sh, th)}.

F. Pruning

The algorithm ISP executes the pruning activity to simplify

the problem instance, when some units of demand can be

routed over working paths. This may occur at the beginning

of the algorithm execution or during its unfolding, after some

split or repair actions.
According to ISP, k units of the demand flow d between a

pair (u1, un) ∈ E
(n)
H , with k ≤ d, can be pruned at iteration

n only if there is a working path p between u1 and un in the

supply graph with capacity at least k. This is only a necessary

condition for a demand to be prunable, and it does not imply

that it will certainly be pruned. Fig. 2 illustrates the pruning

action. More formally, given the demand pair (u1, un) ∈ E
(n)
H

with a demand flow d, k units of this demand (k ≤ d) can

be pruned on path p if (1) p ⊆ E(n), and (2) c(p) ≥ k. The

pruning action consists in the removal of k units from the

demand edge (u1, un) ∈ E
(n)
H and routing these k units on a

selected path p, thus subtracting the related capacity from any

of the composing edges. Therefore, after the pruning action of

k units, d
(n+1)
u1,un ← d

(n)
u1,un−k, and for any edge of the selected

path (i, j) ∈ p, c
(n+1)
ij ← c

(n)
ij − k. If a demand is completely

pruned, the demand pair is removed from E
(n)
H . Moreover, if

6



one or both of its endpoints do not belong to any other demand

pair, then such endpoints are removed from V
(n)
H .

It must be noted that, like the splitting action, the pruning

action implies a routing decision which may possibly lead to

an unfeasible solution of the problem. In the following, we

give a sufficient condition for pruning to be feasible.
Given a demand h between the pair (sh, th), the set Sh ⊂ V

is a bubble for h if it contains only vertices that cannot be

reached by any demand node in VH without traversing either

sh or th. More formally, we give the following definition.

Definition 2 (Bubble). Given a supply graph G = (V,E) and

a demand graph H = (VH, EH), a set Sh ⊆ V , is a bubble for

demand h ∈ EH if Sh ∩ VH = {sh, th}, and ∀(i, j) ∈ δG(Sh),
it holds that |{i, j}∩ {sh, th}| = 1, where δG(Sh) = {(i, j) ∈
E, s.t. |{i, j} ∩ Sh| = 1} is the supply cut of Sh.

Theorem 3 (Prune conditions). Consider a supply graph

G and a demand graph H , which satisfy the routability

conditions given by (2). Let us consider a demand h ∈ EH

between the pair (sh, th) and flow dh. If there is a set of

working paths P(sh, th) with maximum flow f∗(P(sh, th))
that can satisfy the demand, such that the set of vertices Sh

forming the paths of P(sh, th) is a bubble for the demand

h, then the demand between sh and th can be pruned on

the paths of P(sh, th) for an amount equal to kh , min
{f∗(P(sh, th)), dh} without compromising the routability of

the demand and without worsening the final solution in terms

of recovered components.

Proof. As the paths of P(sh, th) form a bubble, any poten-

tially conflicting demand which requires capacity from the

links of the paths of P(sh, th) should traverse the endpoints

sh and th. Let us consider a potentially conflicting demand

(sq, tq) requesting at least f∗(sh, th) − kh + ǫ units of flow,

so that it is conflicting with demand (sh, th) for an amount

of capacity exactly equal to ǫ. Due to the hypothesis of

routability of the overall demand, if the conflicting demand

of ǫ of the couple (sq, tq) is routed in P(sh, th), there is

an alternative set of paths of capacity at least ǫ which goes

from sh to th traversing the nodes of V \ Sh. Therefore such

an alternative path can equivalently be assigned to (sq, tq)
without harming the routability of the demand. In terms of

routability the two solutions, routing either one or the other

of the two conflicting demands, are alike. Nevertheless in

terms of resource consumption, the bandwidth consumed to

route the demand dh over its bubble is lower than the one

potentially consumed by routing the conflicting demand dq
over the bubble of dh. In fact, if dq is routed over the bubble

of dh, this last demand will require the traversal of more edges

than dq to reach the alternative path. Hence routing dh will

result in the same or in a lower number of repairs than with

the corresponding alternative solution.

Notice that, in order to find demand bubbles, ISP adopts

a modified breadth first search visit starting from one of the

demand endpoints, and discarding all paths that lead to any

endpoint of another demand. As the purpose of ISP is to

minimize the number of repairs and not to find an efficient

routing of the demand, any of the feasible assignments of

a demand to one or several paths of one of its bubbles

can be used for pruning. Moreover the pruning action must

be performed by routing on the selected path the maximum

amount of demand that is prunable, that is kh which is the

minimum between the maximum flow f∗(P(sh, th)) of the

set of paths from sh to th and the demand dh.

V. PROPERTIES OF ISP

Theorem 4. Algorithm ISP terminates in a finite number of

steps which is polynomial in the input size.

Proof. At each iteration, ISP performs either a repair, a split

or a prune action. The number of repairs is limited by the

number of broken network elements in the supply graph, that

is |VB |+ |EB |.
Let us consider the case of split actions. When a demand dh

between the pair (sh, th), is split on the node v, ISP produces

two new demand pairs for a flow dx, namely (sh, v) and

(v, th), and updates the original pair to a demand d− dx.

Let us consider the case of a partial split, where dx is

strictly lower than d. In such a case, dx is the maximum

value of splittable demand under the constraints given by

2, with the updated demands. Every time such a problem

is executed, at least one capacity constraint acts as binding

constraint of the linear programming problem, and is met

with an equality in correspondence to the optimal. New partial

splits will have new binding capacity constraints. As there

is a capacity constraint for every edge, it follows that the

number of partial splits is limited to the number of edges of

the supply graph, that is |E|. This also shows that split actions

can never produce infinitesimal demand values. This property

is necessary to prove that also complete splits (which do not

create binding capacity constraints) and pruning actions are

executed a finite and limited amount of times.

We recall that the surplus [29] of a set of vertices U ⊂ V is

defined as: σ(U) =
∑

(i,j)∈δG(U) cij −
∑

(i,j)∈δH(U) dij , where

δG(U) = {(i, j) ∈ E, s.t. |{i, j}∩U | = 1} is a cut determined

by U on the supply graph; similarly the cut on the demand is

δH(U) = {(i, j) ∈ EH, s.t. |{i, j} ∩ U | = 1}. We denote with

σ(n)(v) the surplus, at iteration n, of the set formed by the

single vertex v ∈ V . By using the properties of cuts given in

[14] we can prove that the algorithm actions affect the value

of the surplus of single vertices as follows (details are omitted

due to space limitation): a split action of d demand units over

the intermediate vertex v decreases the surplus of v for a value

of 2d, while it leaves the other individual vertex cuts unaltered;

a prune action of a demand amount of d along a path p causes

a decrease of 2d in the surplus of the nodes belonging to p that

are not endpoints of the pruned demand and leaves all other

individual vertex cuts unaltered. As routability is a requirement

for any action of ISP the action preserves the cut condition

and all surplus will be non negative (cut condition). Therefore

the number of splits of any demand d on a node v is bounded

by ⌊σ(v)/2d⌋ which is finite and limited.
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Finally, let us consider the effect of pruning actions. A prune

action of a demand d to a path p reduces the capacity of the

edges of p of an amount equal to min{d, c(p)}. Therefore,

as the capacity of each edge is limited, the number of prune

actions is also limited, as d is always finite.

Theorem 5. The computational complexity of ISP is polyno-

mial.

Proof (sketch). The proof is omitted due to space limitation.

It follows from Theorem 4 which shows that ISP terminates

in a polynomial number of iterations and from the analysis

of the complexity of the algorithm activities at each iteration,

which is also polynomial.

VI. HEURISTICS

A. A multi-commodity based solution

One way to address the problem of finding the subset of

broken components to be recovered is to minimize the amount

of flow that makes use of broken links.

min
∑

(i,j)∈EB
keij ·

∑
h∈EH

fh
ij (a)

∑
h∈EH

(fh
ij + fh

ji) ≤ cij ∀(i, j) ∈ E (b)
∑

j∈V fh
ij =

∑
k∈V fh

ki
+ bhi ∀(i, h) ∈ V ×EH (c)

fh
ij ≥ 0 ∀(i, j) ∈ E,h ∈ EH (d)

(8)

In terms of recovery decisions, this approach repairs only

those broken links and vertices that are actually used by the

optimal solution. Notice that this new problem is a particular

instance of the MULTI-COMMODITY FLOW problem.
Under this formulation, which is a relaxation of the problem

of (1), the problem is no longer NP-hard, but has polynomial

time complexity, being it solvable efficiently with LP methods

such as the interior point method [18].
Nevertheless, the multi-commodity flow formulation has a

wide range of equally optimal solutions which vary signif-

icantly in the number of repaired edges and vertices. We

denote with MCB and MCW the best and the worst of

these solutions, respectively, in terms of number of repaired

elements. Fig. 3 illustrates the performance of MCB and

MCW, versus the optimal solution of MinR and the trivial

solution of repairing all broken elements (OPT and ALL in

the figure, respectively). The results are obtained with the

Bell-Canada topology [7], [23] by increasing the demand flow

per pair under the experimental setting explained in Section

VII. The results show that the multi-commodity approach
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Fig. 3. Total number of repairs of multi-commodity solution

has a wide solution space, which includes solutions close to

the optimum as well as solutions equivalent to repairing all

broken elements. Note that finding MCB among the wide set

of solutions is NP-hard, being it an instance of MinR. For this

reason we do not include the multi-commodity approach in

our results.

B. Shortest Path Heuristic (SRT)

This heuristic is based on a very intuitive approach to

the MinR problem, that is to consider all the demand pairs

(si, ti, di) in decreasing order of demand di, and repair all

the shortest paths that are necessary to meet the demand

requirements. Let Si be the set including the first shortest

paths for the i − th demand, such that the maximum flow

traversing the sub-graph formed by the only paths in Si is at

least di. According to SRT, for each demand di, all broken

nodes and edges in Si are repaired. The pseudo-code of SRT

is shown in Algorithm SRT.

Algorithm SRT

Input: G, H , VB and EB

1 Sort demand pairs in EH in decreasing order of di;
2 for i = 1, . . . , |EH| do
3 Calculate the set Si for the demand pair (si, ti, di);
4 Repair nodes and links of all paths in Si;

Notice that the sets of shortest paths of different demands

may overlap, therefore the repaired links may be insufficient

to route all flows and there can be some demand loss.

C. Greedy Heuristics

We developed two other heuristics based on a mapping

between paths of the MinR problem and objects of an instance

of a Knapsack problem. According to this mapping, we create

a knapsack object for each path between a demand pair in

H . The cost of repairing such path is the weight of the

corresponding knapsack object, while the path capacity is the

object value. Both heuristics make use of the set P (H,G) of

all simple paths between the demand pairs in H .
Notice that the number of paths in P (H,G) is potentially

exponential in the graph size, hence these heuristics can only

be adopted if paths are pre-computed offline.
Thanks to the described Knapsack analogy, we can formu-

late two different heuristics based on the greedy approach to

Knapsack [27].

Algorithm GRD-COM

Input: G, H , VB, and EB

1 Calculate (offline) P (H,G);

2 for p ∈ P (H,G) do w(p) =
cost(p)

capacity(p)
;

3 Sort paths according to their weight;
4 while ∃ unsatisfied demands and available paths do

5 Let p be the next path, (si, ti, di) its demand pair;
6 Repair p;
7 Assign a quantity of demand min{di, capacity(p)} to p;
8 Update G and H;
9 for each routable demand flow (sk, tk , dk), k 6= i do

10 Assign the maximum quantity of demand;
11 Update G and H;
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The first heuristic, called Greedy Commitment (GRD-

COM), assigns to each path p ∈ P (H,G) a weight w(p) =
cost(p)

capacity(p) , where cost(p) is the sum of the costs of repairing

the edges composing p, while capacity(p) is the residual

capacity of p.
GRD-COM sorts the paths in P (H,G) in ascending order

of weight, and iteratively repairs paths following this order. Let

p be the path repaired at the current iteration, and (si, ti, di)
the demand pair for which p was included in P (H,G). GRD-

COM assigns the maximum possible quantity of such demand

to p, and updates the residual capacities of edges and the

residual demand accordingly. It then verifies if also some

other demands may be routed through the current graph,

considering all the paths already repaired including p. The

algorithm proceeds to the next iteration, selecting the next path

in the order. GRD-COM terminates as soon as all demands are

satisfied, or there are no more paths to repair. The pseudo code

is shown in Algorithm GRD-COM.
Note that considering the residual graph capacities allows a

lower amount of repairs with respect to the following greedy

heuristics GRD-NC, but as in the case of SRT, there is no

guarantee that all the demands can be satisfied due to the

possibility to have wrong routing decisions, which may create

inhibiting flow allocations, even if the capacity of the repaired

edges is enough to route the demand.

Algorithm GRD-NC

Input: G, H , VB, and EB

1 Calculate (offline) P (H,G);

2 for p ∈ P (H,G) do w(p) = cost(p)
capacity(p)

;

3 Sort paths according to their weight;
4 while routability test fails do
5 Repair the next path p;

The second heuristic is called Greedy No-Commitment

(GRD-NC). It is also inspired by the Knapsack heuristics, and

similarly to GRD-COM, it makes use of the set of all paths

P (H,G) and path weights w(·).
GRD-NC repairs paths one by one following the ascending

order of weights, but it does not provide a routing assignment

of flows to paths unlike GRD-COM. On the contrary, it

evaluates the routability of the overall demand, given the

current repaired paths, using the routability test described in

Section IV-A. GRD-NC terminates as soon as all demands are

routable with the current repairs. The pseudo code is shown

in Algorithm GRD-NC.
Note that unlike GRD-COM, GRD-NC does not provide

an update of the path capacity at each step, since there is

no routing assignment after the repairs. As a consequence,

this heuristic can repair more edges and vertices than GRD-

COM, but it has the advantage that if the demand is routable

in the original graph before the disruption, the heuristic finds

a solution with no demand loss.

VII. EXPERIMENTS

In the experiments we consider both real and synthetic

topologies of various size to highlight different aspects of the
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Fig. 4. Bell-Canada topology. Varying number of demand pairs (10 flow
units/pair). Repaired edges (a), repaired nodes (b), total repairs (c) and demand
loss (d).

performance of the algorithms.
We start the analysis with a real network topology of small

size so that optimal solutions may be obtained in a reasonable

time, and to provide a thorough experimental comparison of

all the algorithms discussed in this paper. A second experi-

mental scenario is based on synthetic topologies of varying

complexity, to study the computational time of the proposed

heuristics and of the optimal solution. We will evidence the

poor scalability of the optimal approach, motivating the need

to resort to heuristic solutions. In a last scenario we instead

show the results on a real large size topology, to evidence the

good approximation of ISP to the optimal solution even with

a large problem size.
In all the following experiments, where not otherwise stated,

we average the results over 20 runs.

A. First scenario

In this set of experiments we consider the Bell-Canada

topology, taken from the Internet Topology Zoo [7], [23]

collection. This network has 48 nodes and 64 edges. The

data set provides uniform edge capacities, which we manually

altered to consider non homogeneous capacities. In particular

we consider two backbones with capacity 30 and 50, respec-

tively, while all remaining edges have capacity 20. We use a

homogeneous unitary repairing cost for damaged nodes and

edges.
We build the demand graph H = (VH, EH) as follows. We

select the demand pairs to be far apart in the supply graph. In

particular, we randomly select the demand pairs among those

which have a hop distance greater than or equal to half the

diameter of the network.
We perform three sets of experiments. In the first set

(Section VII-A1) we fix the flow per pair, and increase the

number of pairs in the demand graph. In the second set

(Section VII-A2), we fix the number of demand pairs and

9



increase the demand flow per pair. In both these experiments,

we considered a complete destruction of the supply graph,

in order to have the maximum range of potential solutions.

On the contrary, in the third set of experiments (Section

VII-A3) we consider different failure scenarios according to a

geographically correlated failure model.

1) Variation of the number of demand pairs: In these

experiments we increase the number of demand pairs from

1 to 7, and each demand pair has a requirement of 10 flow

units. Fig. 4(a) and (b) show the number of edges and nodes

repaired by the considered approaches, respectively. Fig. 4(c)

shows the cumulative number of repairs. In the figures, the

line ALL refers to the total number of destroyed nodes and

links.

The experiments shown in Fig. 4(a)-(c) highlight that by

linearly increasing the number of demand pairs, the number

of repaired edges and vertices also grows.

ISP is the closest to the optimal among the considered

heuristics. In the most critical setting, with 7 demand pairs,

OPT repairs 37 edges, ISP repairs 42 edges, while GRD-COM

repairs 49 edges and GRD-NC repairs 55 edges. The number

of repaired vertices are consequently proportional, as in this

experimental scenario the entire network is damaged by the

destruction. We highlight that the greedy solutions are much

more computationally expensive than ISP, due to the necessity

to find all paths between any demand pairs. It is also worth

noting that ISP better approximates the optimal solution when

the demand requirements are low with respect to the available

bandwidth in the network. This result is visible in Fig. 4 (a)-

(c), when the number of demand pairs is less than 4.

As the figures show, SRT results in the lowest number of re-

pairs, however SRT, and similarly GRD-COM, does not ensure

that all demand flows can be routed. In particular, SRT repairs

the number of shortest paths up to the minimum necessary to

satisfy each demand, treating demands independently. As the

number of demand pairs increases, the paths selected by SRT

are more likely to be shared. Therefore when these shared

paths are saturated, the policy SRT is not able to satisfy all

demands, as Fig. 4(d) shows. In these experiments, this occurs

when the number of pairs grows from 2 to 3. This behavior

reflects the fact that two pairs can be commonly routed on a

path of capacity 20 units, but when 3 demand pairs require 30

units, the shortest paths may have some edge in common and a

portion of demand is lost. These arguments explain the initial

constant behavior of the demand loss shown in Fig. 4(d) and

in the analogous figures of the following sets of experiments.

Due to the similarity of the behavior of the policy SRT in all

the following experiments, we will not comment on this policy

any longer.

2) Variation of the demand intensity: In this section we

introduce a dual experiment in which we fix the number of

demand pairs to 4, and we vary the intensity of demand per

pair. Fig. 5(a) and (b) show the total number of repaired

elements and the demand loss. We omit the figures on the

number of node and edge repairs for space limitation. We

observe a similar behavior to what we discussed for the
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Fig. 5. Bell-Canada topology. Varying the intensity of demand flow (4 demand
pairs). Total repairs (a), demand loss (b).
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Fig. 6. Bell-Canada topology. Varying the extent of destruction (4 demand
pairs, 10 flow units/pair). Total repairs (a) and demand loss (b).

previous set of experiments. Nevertheless there are some

aspects worthy of note.
Even if the global demand increase of this experiment is the

same of the previous experiment, all policies tend to reveal a

smoother increase in the number of repairs when the number

of demand pairs is fixed. This is due to the need to repair

damaged elements to at least connect the demand pairs, even

when the demand intensity is low with respect to the link

capacity. Such repairs are sufficient until the demand reaches

an intensity for which more repairs are needed. This justifies

the step-wise behavior of OPT and ISP.
The above reasoning helps understanding the trend of the

greedy heuristics with respect to the intensity of the demand.

These approaches blindly repair paths with high rank until

all demands are satisfied. When the demand intensity is

low, and basically only connectivity between demand pairs

is needed, these heuristics still repair all paths in the list

which have a higher rank than those required for connectivity.

As the demand increases, this high number of paths is still

sufficient to serve the demand, and hence further repairs are

not needed. However, when the demand increases further, a

bunch of additional paths are repaired, as shown in Fig. 5(a)

in correspondence of the increase in demand intensity from

12 to 14 for the heuristic GRD-NC.

3) Variation of the extent of destruction: In this experiment

we consider the impact of the extent of destruction. We

consider a geographical failure model, to represent natural

disasters and intentional attacks. We generated the disruption

according to a bi-variate Gaussian distribution of the disruption

probability of network components. We varied the variance of

such a distribution and scaled the probability accordingly to

obtain larger failures with larger variance.
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In these experiments we consider 4 demand pairs, each

with a demand intensity of 10. We consider an increase in

the amount of disrupted components obtained by varying the

variance of the disruption. We consider the epicenter at the

barycenter of the nodes in the network, and same variance in

both dimensions of the bi-variate distribution of failures.
Fig. 6(a) and (b) show the total number of repaired elements

and the percentage of demand loss, respectively. The line

labeled ALL shows how many edges or vertices are disrupted

in the considered instance of the problem.
Even in this setting we observe similar behavior of the

considered policies, which highlights the superiority of ISP.

In particular, ISP performs close to the optimal, and when the

network is almost completely destroyed (i.e. a variance equal

to 150) ISP repairs only 53 elements, with respect to the 46

elements repaired by the optimal solution, whereas GRD-COM

requires 63 repairs and GRD-NC requires 68 repairs.

B. Second scenario

In this scenario, we analyze the scalability of ISP and OPT.

We consider synthetic network topologies of increasing com-

plexity and we evaluate the performance and the computation

time of the two algorithms.
We considered an Erdos-Renyi topology [12] with 100

nodes. We recall that in an Erdos-Renyi graph, any two

nodes are connected through an edge with probability p (edge

probability). In the experiments of Fig. 7 we varied the

parameter p.
As the purpose of this set of experiments is to evaluate the

algorithm scalability, we consider a relatively simple problem

instance in which we have only a connectivity requirement,

with a construction similar to the one of the proof of Theo-

rem 1 (an instance of the Steiner Forest problem).
We modeled the link capacity and flow demand as follows:

we considered 5 demand pairs, of one unit each, and we

analyzed the case of a completely destroyed network, where

each link has a capacity of 1,000 units of flow. Despite the

relative simplicity of the problem formulation (only connec-

tivity requirements), by growing p we increase the difficulty

of the problem.
In Fig. 7(a) we focus on the execution time of ISP and OPT.

For the calculation of the optimal solution we implemented

problem 1 using Python and the Gurobi [19] library, which is

known for its efficiency. For these experiments we used a 20
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Fig. 7. Erdos-Renyi topology. Varying edge probability p. Execution time (a),
number of total repairs (b).

Fig. 8. CAIDA topology AS28717, with 825 nodes and 1018 edges.

core/40 thread architecture composed of 2 Intel(R) Xeon(R)

CPU ES-2680 v2 (2.80GHz) and 64GB RAM, running Ubuntu

14.04. The experiments show that the optimal solution has a

prohibitive execution time, which as expected grows signif-

icantly with the parameter p. For instance, we observe that

when p=0.9 OPT requires 105 secs (about 27 hours), on

average.
The execution time of ISP is negligible and not affected by

this parameter setting. When p=1 the problem becomes trivial,

as the supply network is a clique, and the optimal solution

consists in repairing the endpoints of each demand pair and

the edges connecting them.
Notice that, when p grows, the graph becomes non planar

and in the case of non-planar graphs, the Steiner Forest

problem is known to be APX-hard [21], hence we do not

expect a good approximation of the optimal solution.
In fact, Fig. 7(b) shows that the gap between ISP and OPT

is much higher than in the other experiments which used real

topologies. This is because, as observed in [11], real topologies

are typically planar or mostly planar. Nevertheless, ISP is still

repairing a number of elements close to the optimal, and lower

than the number of repairs under SRT. Notice also that in

the case of p=1 the number of repairs is 15 for all the three

plotted algorithms, as the supply network is a clique and all

the algorithms are able to find the trivial solution of repairing

the endpoints of each demand pair and the links between them,

for a total of 5 pairs.
For these experiments, we do not show the demand loss, as

under this scenario, the link capacity is so high that none of

the heuristics has any loss. Notice also that we do not plot the

greedy heuristics that are based on the pre-computation of the

list of all paths, because with high values of p this knowledge

would require O(N !) steps.

C. Third scenario

For this final set of experiments, we consider the real

topology AS28717 of Fig. 8, taken from the CAIDA (Cen-

ter for Applied Internet Data Analysis) resource collection

11
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Fig. 9. CAIDA topology AS28717. Varying the number of demand pairs (22
flow units per pair). Total repairs (a), demand loss (b).

[33]. This topology represents IP-level connections between

backbone/gateway routers of several ASs from major Internet

Service Providers (ISPs) around the globe. Since CAIDA

topologies are often disconnected, we selected the giant con-

nected component, which has 825 nodes and 1018 edges. We

consider 22 units of flow per demand and vary the number of

demand pairs.
Fig. 9(a) shows the total number of repairs, while Fig. 9(b)

shows the demand loss. ISP performs close to the optimal,

and does not show any demand loss. The number of repairs

under heuristic SRT is also comparable to the optimal, but

the demand loss in this case is considerably high. We did not

run the greedy heuristics in this experiment, as despite their

simplicity, they do not scale to large topologies.

VIII. CONCLUSIONS

In this paper we consider, for the first time, the problem

of recovery of a communication network after large scale

failures. We model this problem, named MINIMUM RECOV-

ERY (MinR), as a Mixed Integer Linear Programming (MILP)

problem, and show it is NP-Hard. We propose ISP, an efficient

heuristic to solve MinR, based on a novel demand based

centrality metric. ISP makes use of this metric to iteratively

select the best nodes for repair, and concentrate the flow

on them by means of split actions. It additionally prunes

demand flows if they can be satisfied by the currently repaired

supply network. We also proposed several greedy heuristics.

Experimental results on real and synthetic topologies show

that ISP outperforms other approaches in number of repairs

and in execution time. In particular, it achieves a number of

repairs close to the optimum without incurring any demand

loss.
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