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Abstract. – OBJECTIVE: Sleep apnoea is com-
mon after stroke, and has adverse effects on the 
clinical outcome of affected cases. Its pathophys-
iological mechanisms are only partially known. In-
creases in brain connectivity after stroke might in-
fluence networks involved in arousal modulation 
and breathing control. The aim of this study was to 
investigate the resting state functional MRI tha-
lamic hyper connectivity of stroke patients affect-
ed by sleep apnoea (SA) with respect to cases not 
affected, and to healthy controls (HC).

PATIENTS AND METHODS: A series of stabi-
lized strokes were submitted to 3T resting state 
functional MRI imaging and full polysomnogra-
phy. The ventral-posterior-lateral thalamic nucle-
us was used as seed.

RESULTS: At the between groups comparison 
analysis, in SA cases versus HC, the regions sig-
nificantly hyper-connected with the seed were 
those encoding noxious threats (frontal eye field, 
somatosensory association, secondary visual 
cortices). Comparisons between SA cases ver-
sus those without SA, revealed in the former 
group significantly increased connectivity with 
regions modulating the response to stimuli inde-
pendently to their potentiality of threat (prefron-
tal, primary and somatosensory association, su-
perolateral and medial-inferior temporal, asso-
ciative and secondary occipital ones). Further 
significantly functionally hyper connections were 
documented with regions involved also in modu-
lation of breathing during sleep (pons, midbrain, 
cerebellum, posterior cingulate cortices), and in 
the modulation of breathing response to chemi-
cal variations (anterior, posterior and para-hippo-
campal cingulate cortices).

CONCLUSIONS: Our preliminary data support 
the presence of functional hyper connectivity in 
thalamic circuits modulating sensorial stimuli, 
in patients with post-stroke sleep apnoea, pos-
sibly influencing both their arousal ability and 
breathing modulation during sleep.
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Introduction

Sleep apnoea (SA) increases the risk of 
death, cardiovascular diseases, and stroke1. Af-
ter a stroke, SA is highly prevalent2, and stroke 
patients affected by SA have a worse clinical 
outcome than those not affected3,4. Involuntary 
control of breathing (i.e. changes in breathing 
mediated by hypoxic or hypercapnic stimuli) 
and arousal state are tightly connected one to 
the other: chemoreceptor stimulation produces 
arousal and, conversely, respiratory chemoreflex 
is arousal state dependent5,6. The neural mech-
anisms that underlie the reciprocal interactions 
between involuntary control of breathing and 
arousal are important because many sleep-relat-
ed pathologies manifest as breathing disorders7. 
The ventral group of thalamic nuclei is involved 
in both wakefulness and chemosensation. Func-
tional MRI (fcMRI) studies in awake healthy 
humans have shown that chemo-stimulation ac-
tivates ventral-posterior-lateral thalamic nuclei 
(vpl-Th-n)8,9. Thalamic connections modulate 
arousability either by the direct action on the 
threshold of cortical areas to gate internal and 
external stimuli, or by the Ascending Reticular 
Activating System (ARAS)10-12. Resting state fc-
MRI (rs-fcMRI) allows to reliably study spon-
taneous brain activity under resting conditions, 
based on the blood oxygenation level–dependent 
(BOLD) signal, which arises from differences 
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in local magnetic field in-homogeneities caused 
by changes in blood flow and deoxyhemoglobin 
content in the “active” tissue13. Rs-fcMRI, there-
fore, represents specific patterns of synchronous 
activity of anatomically separated brain regions14, 
and is often used to study the functional organi-
zation of brain networks in healthy15 and in stroke 
individuals16-18. Fluctuations in BOLD signal are 
correlated between regions of the motor network, 
both within and across hemispheres of the brain19, 
and represent composite functional relationships 
of the anatomical paths that exist between brain 
regions20. Stroke induces widespread effects in 
functional connectivity between remote regions 
not directly lesioned17,21. Persistent increases in 
connectivity have been detected at rest in adult 
rat models of traumatic brain injury22. Follow-
ing stroke enhanced functional activity has been 
reported, involving cortical and subcortical ar-
eas anatomically or functionally connected to 
the damaged ones23-28. Although the functional 
meaning of those “hyper connections” is still de-
bated17,29, it was postulated to represent compen-
satory neuronal plasticity phenomena30, possibly 
affecting both arousal state and breathing during 
sleep31. We report here the preliminary results 
of a single center case-control study aimed at 
investigating the rs-fcMRI hyper connectivity 
of vpl-Th-n in stroke patients affected by SA, 
and to compare acquired data to those of cases 
not affected and to healthy controls (HC). The 
hypothesis is that SA and arousability may result 
from altered (more active) thalamic networks 
connectivity, consequent to their reorganization 
after stroke. This information may change the 
diagnostic and therapeutic approach to patients 
with SA after stroke.

Patients and Methods

Patients and Diagnostic Work-up
A continues series of stroke patients admitted 

to the Emergency Department Stroke Unit of 
our University Hospital were screened over a six 
months’ period. Were eligible all acute ischemic 
strokes, confirmed by CT or MRI images, with-
out time limits from stroke onset. Causes for ex-
clusion were: general contraindications to MRI, 
any other known disease possibly influencing 
sleep or breathing during sleep (i.e. obstructive 
SA syndrome, sleep disorders, or polyneurop-
athy). At stroke onset, immediately before dis-
charge and then at 3 months after stroke onset, 

participants were submitted to a complete clinical 
and diagnostic work-up. The study was conduct-
ed with the understanding and written consent of 
each participant according to the Declaration of 
Helsinki, and ethical approval was provided by 
the Institutional Review Board of our University 
Hospital.

Stroke Workup
Stroke workup included estimation of stroke 

severity by means of National Institutes of Health 
Stroke Scale (NIHSS), and assessment of both 
risk factors and causes of stroke, according to 
TOAST criteria32-34.

Sleep Work-up
Sleep work-up included daytime sleepiness 

estimation with the Epworth Sleepiness Scale 
(ESS) questionnaire35, screening for obstructive 
SA related symptoms other than daytime sleep-
iness36, and an overnight home based full poly-
somnography (PSG)37. PSG was performed by 
the hand-held 34 channel Morpheus Ambulato-
ry recorder by Micromed®S.r.l. Ambulatory 34 
Channels. Home based PSG was preferred to 
standard laboratory recording in order to allow 
the patients to sleep in their home setting, without 
the need for adaptation. The following parame-
ters were recorded: body position; rib-gage and 
abdominal respiratory efforts (Dual thoracic-ab-
dominal respiratory inductance Plethysmography 
belts by Micromed®S.r.l. Accessories EPM915x 
A); oro-nasal airflow (thermistor transducer by 
Micromed®S.r.l. Accessories EPMs 1450-S); O2 
saturation (finger pulse oximeter sensor); 8 EEG 
channels (2 frontal, 2 central, 2 temporal, 2 occip-
ital); right and left electro-oculography, sub men-
tal electromyography from surface electrodes, 
and ECG. Morpheus was retrieved the morning 
after the day on which the sensors were attached. 
Data were downloaded to the SystemPlusEvo-
lution software, and subsequently analyzed by 
a sleep expert by the Rembrandt Sleep View 
software. Only PSGs with a total recording time 
> 4 hours and a total sleep time (TST) > 2 hours 
during which both NREM and REM sleep ep-
isodes were present were considered adequate. 
Sleep-stage scoring was done visually according 
to standard criteria37.

Definitions
Sleep apnoea was defined as the cessation 

of airflow for at least 10 seconds. The SA was 
scored as obstructive (OSA) for absent nasal pres-
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sure fluctuations with continued thoracic and/
or abdominal efforts; it was scored as central 
(CSA) in the absence of thoracic and/or abdomi-
nal efforts. Central periodic breathing (CPB) was 
defined so as recommended38. A hypopnea was 
scored for a reduction for at least 10 seconds of 
50% or more in nasal pressure. The nasal pres-
sure signal was considered unreliable during pe-
riods of breathing through the mouth, as detected 
from the oral thermistor signal. During these 
periods, hypopneas were scored for a lower than 
50% decrease in both thoracic and abdominal 
movement signals, lasting for 10 seconds or more, 
that were associated with an O2 desaturation of 
more than 3%, or an arousal37. The number of ap-
noeas and apnoeas plus hypopneas/hour of sleep 
was expressed as apnoea-hypopnea index (AHI). 
SA was diagnosed for AHI > 535. Arousals were 
defined as an abrupt change from a deeper stage 
of NREM sleep to a lighter stage, or from REM 
sleep toward wakefulness, with the possibility of 
awakening as the final outcome39. Arrhythmias 
were defined as any disturbance of the normal 
rhythmic beating of the heart according to Guil-
leminault et al40.

Statistical Analysis
Statistical analysis was performed with SPSS 

(Statistical Package for Social Sciences – SPSS 
Inc., Chicago, IL, USA) version 23.0 for Windows. 
Patients with post-stroke SA were compared to 
those without apnoea in terms of age, gender, 
days from stroke to PSG evaluation, NIHSS at 
entry and at discharge from the Stroke Unit, body 
mass index (BMI), ESS, TST, total sleep period 
(TSP), sleep efficiency index (SEI), arousals/h 
sleep, sleep phases, arrhythmias/h of sleep, O2 
desaturation index (ODI), and causes of stroke. 
Categorical comparisons were analyzed using 
the two-tailed χ2-test, and contingency analysis 
of 2×2 tables was performed via Fischer’s exact 
test. Continuous data were analyzed using one-
way Analysis of Variance (ANOVA). Correlation 
analyses were done using non-parametric tests 
(Spearman’s rho). Statistical significance was set 
at p<0.05. 

fMRI Acquisition and 
Analysis Methods

Stroke patients underwent conventional MRI 
and rs-fcMRI acquisitions on a single session 
(3 Tesla Siemens-Verio scanner equipped with 
a 12-channel head-coil), after 3 months from 
the acute event. Rs-fcMRI data of cases with 

SA were compared, separately, to rs-fcMRI data 
from 11 gender-matched HC and to those from 
patients without SA. During rs-fcMRI, subjects 
were instructed to keep their eyes closed, to 
remain motionless and to not think of anything. 
To minimize motion artifacts, subjects lay su-
pine with pillows under the head, foam wedges 
at the sides and a retaining strap. Images were 
obtained using a interleaved Double-echo Turbo 
Spin Echo (TSE) sequence with proton density 
(PD), T2-weighted images (repetition time, TR: 
3320 ms, echo time, TE: 10/103 ms, matrix: 
384×384, field of view, FOV: 220 mm, slice thick-
ness: 4 mm, gap: 1.2 mm, 50 axial slices), and a 
3D T1-weighted magnetization prepared rapid 
acquisition gradient echo (MP-RAGE) (TR: 2300 
ms, TE: 2.98 ms, inversion time: 900 ms, flip 
angle: 9°, FOV: 256 mm, 208 slices in the sagit-
tal plane, 1 mm isometric voxel). The rs-fcMRI 
study was performed with single-shot Echo-pla-
nar images (EPI) images (TR: 3000 ms, TE: 30 
ms, flip angle: 90°, FOV: 240 mm, 46 axial slices, 
thickness: 3 mm, 140 volumes). A seed analysis 
approach was performed to identify those voxels 
showing functional signal time-courses correlat-
ed with the vpl-Th-n (Talairach Daemon Labels 
distributed with FSL-FMRIB Software Library, 
http://www.fmrib.ox.ac.uk/fsl/) (peak Montreal 
Neurological Institute Coordinate System (MNI) 
coordinates: -18, -20, 4, with 3 mm radius). This 
region was selected because of its involvement in 
modulating the ventilatory response to chemical 
stimuli and in maintaining wakefulness8,12. On-
ly the left vpl-Th-n was used as seed since one 
patient presented a lesion in the right thalamus, 
and because no differences should be expected in 
thalamus-cortical connectivity between the left 
and the right side. Functional data were processed 
using FSL as described previously41, including 
motion correction, spatial smoothing with the 5 
mm full width half maximal Gaussian kernel, and 
a temporal high-pass filter. MELODIC Indepen-
dent Component Analysis (ICA) was performed 
in order to identify and remove noisy components 
due to scanner-related and physiological artifacts 
from the 4D fMRI data. Nonlinear registration 
using FMRIB’s Nonlinear Image Registration 
Tool (FNIRT) was applied between the subject’s 
structural and the standard space (the Montreal 
Neurological Institute 2 mm brain)42. Average 
time courses were extracted from seeds using 
FSL’s feat query function. The pre-processed 
time series were then fitted with a linear model, 
consisting of a regressor representing the extract-
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ed time courses. The spatially normalized effect 
size and standard error volumes served as input 
to a mixed effects group analysis in FSL FEAT. 
The modelled group and standard error were then 
divided to produce a volume whose voxels were T 
scores, subsequently transformed to Z scores. For 
both within- and between-group analyses, images 
were thresholded using clusters determined by Z 
> 2.3 and a corrected cluster significance thresh-
old of p < 0.05, including at least 20 contiguous 
voxels. 

Results

Twenty-eight patients entered the study. Af-
ter the exclusion of cases that did not consent 
(n=3), of those with contraindication to MRI 
examination (n=6), or affected by diseases in-
fluencing possibly sleep and/or breathing during 

sleep (Parkinson disease n=1; known obstructive 
sleep apnoea n= 2; polyneuropathy n=4), 12 con-
secutive stroke patients were enrolled. Patients’ 
mean age was 58.8±18 years. The mean BMI 
was 23.7±3 kg/m2. The NIH-SS at discharge 
was 2±1.8 (range 0-6; median value 2). None 
of our cases presented language dysfunction. 
PSG was performed meanly 134.2±53 days after 
stroke (range: 87-282; median 124.5 days). In six 
cases (50%) a SA was registered. None of our 
patients was affected by CPB. No significant dif-
ferences were found between patients with SA 
and non-apnoea-affected stroke cases in terms 
of demographics, clinical characteristics, risk 
factors or causes of stroke, risk factors for OSA, 
and PSG data (Table I). A significantly higher 
number of arrhythmias/h sleep was recorded 
in the group of cases without SA. Location of 
brain lesions at MRI after four months of stroke 
is reported in Table II.

Table I. Demographics, clinical characteristics, risk factors, polysomnographic data, and comparisons between stroke cases 
affected and not affected by sleep apnea.

 Cases affected Cases not affected
 by sleep apnea by sleep apnea p value*

Demographics   
  Age (mean ± SD) 55 ± 22 63 ± 15 0.08
  Gender (male) n (%)  5 (83)  2 (33) 0.08
Clinical characteristics (mean ± SD)  
  Body Mass Index 25 ± 3 22 ± 4 0.37
  Apnea-Hypopnea Index 12 ± 6  1 ± 1 0.00
Risk factors n (%)   
  Hypertension  5 (83)  3 (50) 0.22
  Smoke  1 (17)  1 (17) 0.89
  Atrial fibrillation  0 (0)  0 (0) /
  Internal carotid artery stenosis  2 (33)  2 (33) /
  Diabetes mellitus  1 (17)  0 (0) 0.30
  Ischemic heart diseases  1 (17)  0 (0) 0.30
  Overweight  0 (0)  1 (17) 0.30
TOAST classification n (%)   0.75
  Large vessels 1 (17)  1 (17) 
  Embolic 0 (0)  0 (0) 
  Lacunar 2 (33)  2 (33) 
  Other/unknown 3 (50)  3 (50) 
PSG data (mean ± SD)   
  Total sleep time (minutes) 324 ± 107 410 ± 85 0.42
  Total sleep period (minutes) 372 ± 110 490 ± 73 0.21
  Sleep efficiency index  78 ± 11  77 ± 13 0.35
  Time spent in NREM (minutes)  80 ± 7.1  80 ± 7.3 0.74
  Time spent in REM (minutes)  20 ± 7.1 19.3 ± 7.5 0.66
  Arousals/h sleep  34 ± 21  18 ± 21 0.61
  Arrhythmias/h sleep  1 ± 1  16 ± 35 0.04
  Oxygen desaturation index  9 ± 7   4 ± 5 0.53

*χ2 for categorical and T test for continuous variables.
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Whole Brain rs-fcMRI Connectivity 
Within group comparisons

Brain areas that showed high intrinsic cor-
relation (p<0.05, corrected) with the time-series 
of vpl-Th-n spontaneous activation patterns (i.e. 
significant high functional connectivity) in the 
3 groups under investigation are shown in Fig-
ure 1 (A, B, C), and in Tables III-V. In HC, the 

structures of the midline functionally hyper con-
nected with the seed included the contralateral 
thalamus, ipsilateral ventral portion of the pons, 
midbrain, and contralateral insular cortex. Hemi-
spheric regions with significant higher functional 
connectivity with the seed were the prefrontal, 
the ipsilateral somatosensory association cortex, 
the contralateral angular gyrus, the medial-infe-

Table II. Location of the brain lesions at conventional MRI performed after 3 months of stroke.

Patient N. Patients not affected by sleep apnea Patients affected by sleep apnea

 1 Insula(r) 
 2 Pons paramedial 
 3 Frontal-temporal-parietal (r); Basal ganglia (r) 
 4 Cerebellar cortex (bilatelally);Vermis (r) 
 5 Frontal-precentral (l) 
 6 Parietal cortex (l) 
 7  Basal ganglia (l); Insula (l); Temporal-occipital(l)
 8  Frontal-precentral (l)
 9  Frontal-precentral (r)
10  Basal ganglia (r); Insula (r); Internal capsule (r)
11  Frontal-temporal (l); Caudate and lenticular nuclei
12  Thalamus (l)

r = right side; l = left side.

Figure 1. A, Healthy controls. B, Stroke cases not affected by sleep apnea. C, Stroke cases affected by sleep apnea.
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rior temporal gyrus, the supero-lateral temporal 
regions, the secondary and associative visual 
cortices bilaterally, and the contralateral ventral 
posterior cingulate cortex (Figure 1A; Table III). 
In the group of cases not affected by SA, a sig-
nificantly hyper functional connectivity with the 
seed was found in the contralateral thalamus, in 
the cerebellum bilaterally, and in the ipsilateral 
hypothalamus. Regions with significant higher 
connectivity with the seed were also located in 
the prefrontal cortex, in the superolateral parietal 
regions, in the superior-lateral and medial inferi-
or temporal regions, and in ipsilateral secondary 
and contralateral associative visual cortices (Fig-
ure 1B; Table IV). The group of cases with SA 
showed significantly hyper functional connec-

tivity between left vpl-Th-n and the contralateral 
thalamus, the ventral portion of the ipsilateral 
pons, and the contralateral hypothalamus. The 
hemispheric regions significantly hyper connect-
ed to the seed were located in the prefrontal 
cortex, in the contralateral parietal lobe, in the 
supero-lateral and medial inferior temporal re-
gions, and in the associative and secondary visual 
cortices bilaterally (Figure 1C; Table V).

Between groups comparisons
At rs-fcMRI connectivity comparisons anal-

ysis, patients with SA distinguished from HC 
for a significantly higher functional connectivity 
between the left vpl-Th-n and the pons-midbrain, 
contralateral cerebellum and thalamus, and the 

Legend: Peak locations and significance of brain areas with increased connectivity with the left VPL-TN during resting state 
fMRI in 11 healthy controls. Data are reported according to the brain lobes and regions, and then ordered by significance; Zmax= 
maximum Z scores. MFG = middle frontal gyrus; IFG = inferior frontal gyrus; SFG = superior frontal gyrus; MFG = middle 
frontal gyrus; STG = superior temporal gyrus; IPL = inferior parietal gyrus; ITG = inferior temporal gyrus.

Table III. Whole brain rs-fMRI connectivity of left ventral-posterior-lateral thalamic nucleus in healthy controls.

     Talairach coordinates
      in MNI space

 Brain lobe and region Side BA x y z Zmax

  Thalamus r  18 -22 6 5,33
  Pons (ventral)  l  -8 -22 -40 3,62
  Midbrain  l  -2 -12 -14 2,36
  Insular cortex r  4 20 -2 2,1
Frontal 
 Prefrontal Dorso-lateral prefrontal cortex (MFG) r 9 46 32 40 2,33
  Orbito-frontal area Broca’s area (IFG) r 11 12 48 -26 2,29
  Orbito-frontal area Broca’s area (IFG) l 11 -22 56 -26 2,28
  Pars opercularis (IFG) r 44 62 16 28 2,19
  Dorso-lateral prefrontal cortex (MFG) r 46 52 46 24 2,15
  Premotor and Supplementary Motor Cortices (SFG) r 6 60 8 22 2,10
  Anterior prefrontal cortex (MFG) l 10 -20 74 16 2,07
  Premotor and Supplementary Motor Cortices (SFG) r 6 62 4 20 2,02
  Anterior prefrontal cortex (MFG) r 10 0 50 -12 2,01
Parietal 
 Superolateral Angulargyrus (IPL) r 39 64 -62 24 2,38
  Somatosensory association cortex l 7 -24 -54 68 2,11
Temporal
 Medial/inferior Inferior temporal gyrus (ITG) l 20 -48 -24 -32 2,59
 Superolateral Temporo-polar area (STG) r 38 34 -20 -40 2,57
 Medial/inferior Inferior temporal gyrus (ITG) r 20 50 -22 -30 2,50
 Superolateral Temporo-polar area (STG) l 38 -62 12 -16 2,38
 Superolateral Middle temporal gyrus r 21 70 -8 -10 2,20
Occipital 
 Superolateral Secondary visual cortex r 18 24 -98 20 2,40
  Associative visual cortex r 19 10 -84 46 2,38
  Associative visual cortex l 19 -34 -92 30 2,28
  Secondary visual cortex l 18 -12 -100 28 2,05
Limbic  
 Cingulate cortex (ventral posterior) r 23 20 -42 24 2,01
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following cortical regions: the ipsilateral frontal 
eye field, the somatosensory association cortex, 
the contralateral secondary visual cortex, and 
the ipsilateral cingulate cortex (Figure 2A; Table 
VI). Relative to cases not affected by SA, patients 
with SA showed significantly higher connectiv-
ity between the left vpl-Th-n and the cerebellar 
cortex bilaterally, the ipsilateral pons, and the 
contralateral thalamus and insula. Several corti-
cal regions showed significantly higher connec-
tion with the seed i.e. anterior prefrontal cortex 
bilaterally, the ipsilateral orbito-frontal area, the 
premotor and supplementary motor cortices bilat-
erally, the contralateral subgenual area of anterior 
cingulate cortex, the frontal eye field bilaterally, 
the pars triangularis of inferior frontal lobe, and 

the dorso-lateral prefrontal cortex bilaterally, the 
ipsilateral somatosensory association cortex, the 
primary somatosensory contralateral cortex, and 
ipsilateral supramarginal and angular gyri, the 
medial inferior temporal regions, the ipsilateral 
secondary and contralateral associative visual 
cortices and, finally, the anterior and posterior 
cingulate cortices (Figure 2B; Table VII).

Discussion

To test the hypothesis of a hyper activation 
of thalamus-cortical and subcortical connections 
modulating arousal state in stroke patients af-
fected by SA, the brain networks functionally 

Legend: Peak locations and significance of brain areas with increased connectivity with the left ventral-posterior-lateral thalamic 
nucleus during resting state fMRI in 6 stroke patients not affected by sleep apnea. Data are reported according to the brain lobes 
and regions, and then ordered by significance. Zmax= maximum Z scores.

Table IV. Whole brain rs-fMRI connectivity of left ventral-posterior-lateral thalamic nucleus in patients not affected by sleep apnea.

     Talairach coordinates
      in MNI space

 Brain lobe and region Side BA x y z Zmax

  Thalamus r  16 -20 4 5,31
  Cerebellum l  -42 -44 -44 3,03
  Cerebellum  r  12 -88 -24 2,58
  Hypothalamus l  -4 0 -12 2,56
Frontal 
 Prefrontal Pars orbitalis Broca’s area (IFG) r 47 22 20 -32 2,95
  Pars orbitalis Broca’s area (IFG) l 47 -58 26 -14 2,79
  Anterior prefrontal cortex (MFG) r 10 38 54 -18 2,72
  Orbito-frontal Broca’s area (IFG) r 11 24 32 -26 2,68
  Premotor and Supplementary Motor Cortices (SFG) r 6 8 -14 66 2,66

Parietal 
 Superolateral Angular gyrus (IPL) l 39 -56 -74 36 3,06
  Somato sensory association cortex r 7 34 -78 44 2,89
  Supramarginal gyrus (IPL) l 40 -60 -28 42 2,80
  Primary somatosensory cortex  r 1 38 -44 66 2,73
  Somatosensory association cortex l 7 -30 -70 60 2,60
  Supramarginal gyrus (IPL) r 40 62 -24 42 2,60
  Supramarginal gyrus (IPL) l 40 -52 -32 62 2,33
Temporal
 Superolateral Temporo-polar area (STG) r 38 34 26 -38 3,32
 Medial/inferior Inferior temporal gyrus (ITG)  l 20 -60 -26 -24 2,89
 Medial/inferior Inferior temporal gyrus (ITG)  r 20 64 -34 -22 2,87
 Medial/inferior Fusiform gyrus l 37 -50 -46 -22 2,82
 Superolateral Temporo-polar area (STG) l 38 -24 22 -34 2,47
 Superolateral Superior temporal gyrus (STG) r 22 66 -42 14 2,44

Occipital 
 Superolateral Secondary visual cortex l 18 -18 -96 14 2,70
  Associative visual cortex r 19 32 -94 26 2,49
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hyper connected with vl-Th-n in a continuous 
series of stabilized stroke patients and in an 
equal number of gender-matched HC were in-
vestigated. Differently from both HC and cases 
not affected by SA, in the group of patients with 
full PSG documented SA, a hyper connectivity 
with the primary motor cortex, the subgenual 
portion of the anterior cingulated cortex (ACC), 
and the inferior parietal regions has been found. 
The thalamic-pontine functional connectivity 
was increased, involving the pons from its dor-
sal inferior portion to the ventral-rostral one. To 
reveal areas significantly more hyper connected 
with the seed among the groups, rs-fcMRI data 

acquired from cases affected by SA were sub-
tracted from those not affected and from HC. 
This between groups comparison analysis has 
shown that, as respect to HC, in SA cases the 
regions significantly hyper connected to the seed 
were those involved in attentive processes and in 
encoding of noxious threats or aversive events 
(i.e. frontal eye field, somatosensory association 
and secondary visual cortices)43-45. Comparisons 
of rs-fcMRI thalamic connectivity of cases with 
SA relative to those without SA, revealed in the 
former group significantly increased functional 
connectivity with cortical regions modulating 
the response to external stimuli independently to 

Legend: Peak locations and significance of brain areas with increased connectivity with the left ventral-posterior-lateral thalamic 
nucleus during resting state fMRI in 6 stroke patients affected also by sleep apnea. Data are reported according to the brain lobes 
and regions, and then ordered by significance; Zmax= maximum Z scores.
Abbreviations: IFG=inferior frontal gyrus; MFG= middle frontal gyrus; SFG=superior frontal gyrus; ACC=anterior cingulate 
cortex; IPL=inferior parietal gyrus; STG=superior temporal gyrus; MTG=middle temporal gyrus; MTL= medial temporal lobe; 
ITG=inferior temporal gyrus.

Table V. Whole brain rs-fMRI connectivity of left ventral-posterior-lateral thalamic nucleus in patients with sleep apnea.

     Talairach coordinates
      in MNI space

 Brain lobe and region Side BA x y z Zmax

  Thalamus r  18 -20 8 5,05
  Pons (ventral)  l  -8 -2 -30 2,62
  Hypothalamus r  6 -4 -14 2,16
Frontal lobe 
 Prefrontal Orbito-frontal area (IFG) r 11 12 20 -28 2,80
  IFG Pars orbitalis l 47 -50 44 -18 2,65
  Dorso-lateral prefrontal cortex (MFG) r 46 58 52 -6 2,44
  Primary Motor Cortex (SFG) l 4 -54 -10 54 2,33
  IFG pars triangularis l 45 -58 34 18 2,28
  Anterior prefrontal cortex (MFG) l 10 -18 72 4 2,24
  Premotor and Supplementary Motor Cortices (SFG) r 6 38 -16 62 2,20
  IFG pars triangularis r 45 54 42 -10 2,15
  Dorso-lateral prefrontal cortex (MFG) l 46 -56 36 14 2,13
  Subgenual area (ACC) r 25 4 18 -14 2,02
  Primary Motor Cortex (SFG) r 4 48 -16 60 2,05
Parietal lobe
 Inferior Angulargyrus (IPL)  r 39 44 -88 36 2,25
  Supramarginal gyrus (IPL) r 40 60 -46 44 2,12
Temporal lobe
 Superolateral Temporo-polar area (STG) l 38 -36 18 -42 2,64
  Temporo-polar area (STG) r 38 46 28 -34 2,48
  Middle temporal gyrus (MTG) l 21 -68 -36 2 2,16
 Medial/inferior Ectorhinal area (MTL) l 36 -20 2 -30 2,41
  Inferior temporal gyrus (ITG) l 20 -54 -4 -42 2,23
  Inferior temporal gyrus (ITG) r 20 46 -16 -26 2,19
  Ectorhinal area (MTL) r 36 58 -48 -26 2,10
Occipital lobe
 Superolateral Associative visual cortex r 19 0 -90 36 2,17
  Secondary visual cortex r 18 28 -98 -16 2,13
  Secondary visual cortex l 18 -8 -98 16 2,09
  Associative visual cortex l 19 -36 -70 -14 2,07
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their potentiality of threat (i.e. prefrontal, prima-
ry and somatosensory association, superolateral 
and medial-inferior temporal, and associative and 
secondary occipital ones)45. Notably, with respect 
to both HC and cases not affected by SA, in pa-
tients with SA further significantly functionally 
hyper connections were documented with regions 

involved also in autonomic functions, including 
the modulation of breathing during sleep (i.e. 
pons, midbrain, cerebellum and posterior cingu-
late cortices)7-9,46-65, and in those involved in the 
modulation of breathing response to chemical vari-
ations (i.e. anterior, posterior and para-hippocam-
pal cingulate cortices)8,9,48,61,62. Honey et al23 have 

Legend: Peak locations and significance of brain areas with increased connectivity with the left ventral-posterior-lateral thalamic 
nucleus during resting state fMRI in 6 patients affected also by sleep apnea compared to 11 gender matched healthy controls. 
Data are reported according to the brain lobes and regions, and then ordered by significance; Zmax= maximum Z scores.

Table VI. rs-fMRI connectivity of left l ventral-posterior-lateral thalamic nucleus in stroke patients affected by sleep apnea as respect 
to healthy controls.

     Talairach coordinates
      in MNI space

 Brain lobe and region Side BA x y z Zmax

  Pons-Midbrain   -8 -30 -20 3,23
  Pons   14 -34 -24 3,07
  Cerebellum r  18 -62 26 2,42
  Thalamus r  10 -2 16 2,80
Frontal 
 Prefrontal Frontal eye field l 8 -10 62 32 2,44
Parietal 
 Medial/inferior Somatosensory association cortex (SPL-PreCu) l 7 -8 64 64 2,36
Occipital 
 Superolateral Secondary visual cortex r 18 22 -92 14 2,40
Limbic  
  Cingulate cortex (retrosplenial) l 29 -2 -44 12 3,20
  Cingulate cortex (dorsal anterior) l 32 -12 32 26 2,60

Figure 2. A, Stroke patients affected by sleep apnea relative to healthy controls. B, Stroke patients affected by sleep apnea 
compared to non-apnea-affected stroke cases.
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found that after stroke “connector hubs will most 
rapidly synchronize following an external pertur-
bation”. Our interpretation is that stroke might have 
determined a higher activation at rest of brain areas 
controlling the response to both internal and exter-
nal threatening stimuli, secondary influencing those 
modulating breathing during sleep. This result is 
congruent with the data emerged from PSG, which 
documents a greater number of arousals per hour of 
sleep in patients with SA.

The brain actively generates and maintains 
arousal through multiple grossly redundant au-
tochthonous arousal systems that evoke awaken-
ing from sleep in response to sensory stimula-
tion. Anyone neural system is not necessary and 
may be sufficient for maintaining wakefulness. 
Among them, thalamus-cortical projections play 
a critical role65-69. Physiologically, neocortical 
neurons’ threshold of arousability increases or 
decreases as sleep becomes deeper or lighter, up 

Legend: Peak locations and significance of brain areas with increased connectivity with the left ventral-posterior-lateral thalamic 
nucleus during resting state fMRI in 6 patients affected also by sleep apnea compared to 6 stroke patients not affected by sleep 
apnea. Data are reported according to the brain lobes and regions, and then ordered by significance. 
Abbreviations: Zmax= maximum Z scores. MFG= middle frontal gyrus; IFG=inferior frontal gyrus; SFG=superior frontal gyrus; 
ACC=anterior cingulate cortex; ITG=inferior temporal gyrus.

Table VII. rs-fMRI connectivity of left left ventral-posterior-lateral thalamic nucleus of stroke patients affected by sleep apnea as 
respect to cases not affected.

     Talairach coordinates
      in MNI space

 Brain lobe and region Side BA x y z Zmax

  Cerebellum r  44 -68 -30 3,22
  Pons l  -10 -30 -30 3,17
  Cerebellum l  -48 -72 -34 2,90
  Thalamus r  16 -2 4 2,85
  Insula r  48 20 -4 2,78
Frontal 
 Prefrontal Anterior prefrontal cortex (MFG) r 10 20 58 -4 3,17
  Orbito-frontal area (IFG) l 11 -20 52 -22 3,16
  Premotor and supplementary motor cortices (SFG) r 6 4 32 52 3,13
  Subgenual area (ACC) r 25 8 22 -26 2,99
  Frontal eye field r 8 22 40 46 2,97
  Premotor and supplementary motor cortices (SFG) l 6 -46 2 10 2,95
  Frontal eye field l 8 -2 46 40 2,95
  Anterior prefrontal cortex (MFG) l 10 -16 66 10 2,87
  Pars triangularis (IFG) l 45 -58 34 -4 2,51
  Dorsolateral prefrontal cortex (MFG) l 9 -40 38 32 2,59
  Premotor and supplementary motor cortices (SFG) l 6 -12 -16 56 2,48
  Dorsolateral prefrontal cortex (MFG) r 9 46 26 28 2,45
Parietal 
 Superolateral Somatosensory association cortex l 7 -42 -50 54 3,25
  Somatosensory association cortex l 7 -4 -66 56 3,23
 Medial/inferior Gyrus post-centralis- primary somatosensory r 3 50 -6 56 3,17
 Superolateral Supra-marginal gyrus l 40 -58 -38 36 2,82
  Angular gyrus l 39 -48 -68 28 2,85
Temporal 
 Medial/inferior Inferior temporal gyrus (ITG) l 20 -32 -10 -40 2,87
  Inferior temporal gyrus (ITG) r 20 36 -4 -46 2,72
  Peri-rhinal cortex r 35 24 -30 -16 2,79
  Gyrus fusiformis r 37 50 -38 -20 2,67
Occipital   
 Superolateral Secondary visual cortex l 18 -8 -78 30 3,15
  Associative visual cortex r 19 42 -82 28 2,65
Limbic  
  Cingulate cortex (ventral-posterior) l 23 -10 0 22 3,45
  Cingulate cortex (gyrus para-hippocampal) r 30 20 -40 -6 2,64
  Cingulate cortex (dorsal-anterior) l 32 -14 24 30 2,53
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to the point of a thalamus-cortical functional dis-
connection during slow wave sleep70-74. In partic-
ular, in a concurrently recorded electroencephalo-
graphic-fMRI study, the cingulo-insular-thalam-
ic network has been proposed to maintain tonic 
alertness75,76. Functional MRI studies in awaken 
healthy humans have shown that ventral-poste-
rior-lateral thalamic nuclei are activated during 
chemo-stimulation, together with cerebellum, 
cingulate and insular cortices8,77. In a fMRI study 
with included diffusion tractography, Pattinson 
et al9 observed that, during chemo stimulation, 
the ventral group of thalamic nucleus strongly 
connects with the frontal cortex, the amygdala, 
and the ACC. To summarize, evidences exist that 
thalamic connections with frontal, cingulated, 
and insular cortices, implicated in alertness and 
in encoding external and internal stimuli, con-
tribute also to the ventilatory response to chem-
ical stimuli, govern the access to the cortex of 
information coming from the respiratory system, 
and integrate respiratory signals to and from the 
respiratory nuclei of medulla.

Clinical evidence for thalamic involvement in 
sleep disordered breathing after stroke has been 
documented previously78,79. Our data are in line 
with previous findings and raise the question 
whether this hyper-functional connectivity makes 
the patient more easily arousable. The only case 
with a thalamic lesion enhances the results, which 
are focused on the hyper functional connectivity 
between the thalamus and all the other cerebral 
regions, rather than on hypo-connectivity. 

It can be argued that some of the brain le-
sions documented in our series are secondary 
to a pre-existed OSA. MRI studies in patients 
with newly diagnosed OSA have in fact shown 
damages in brain areas deputed to the control of 
breathing, such as in the medulla, basal ganglia, 
hippocampus, corpus callosum, corona radiate, 
cingulate gyrus, ventral-lateral frontal cortex, 
and cerebellum80,81. In our series, cases affected 
by SA did not differ from those not affected by 
factors predisposing to OSA, including being 
overweight, one’s BMI, or diurnal somnolence. 
In line with previous reports82,83, location of the 
brain lesions did not correlate with the presence 
of the SA84, reducing the possibility of a causal 
relationship between the site damaged and the 
breathing disturb during sleep observed in our 
patients. Even though it cannot be completely 
ruled out SA since before stroke, in this series of 
cases it is unlikely that SA pre-existed the cere-
brovascular event. 

The main limitation of our study consists of 
the small sample size that did not allow to investi-
gate possible differences in thalamic connectivity 
depending on the hemispheric lateralization85. 
Nonetheless, to our best knowledge, this is the 
first case-control study investigating thalamic 
functional hyper connectivity in patients with 
and without SA after stroke, compared to HC.

Conclusions

Our preliminary data suggest that, in post-
stroke SA cases, are present functional changes 
in thalamic brain networks that allow modulating 
participation of the cerebral cortex to both exter-
nal/internal stimuli. This over-activation might 
have determined their propensity toward arousal 
state, and SA may represent the chemoreflex re-
sponse consequent to the hyper thalamus-cortical 
and subcortical connectivity above detailed. Fur-
ther studies are needed to confirm these results 
that may change the diagnostic and therapeutic 
approach to patients with SA after stroke. 
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