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Abstract. The paper investigates if and how the topology of the peer-assessment
network can affect the performance of the Bayesian model adopted in Ope-
nAnswer. Performance is evaluated in terms of the comparison of predicted
grades with actual teacher’s grades. The global network is built by interconnect-
ing smaller subnetworks, one for each student, where intra-subnetwork nodes
represent student's characteristics, and peer assessment assignments make up in-
ter-subnetwork connections and determine evidence propagation. A possible
subset of teacher graded answers is dynamically determined by suitable selec-
tion and stop rules. The research questions addressed are: RQ1) “does the to-
pology (diameter) of the network negatively influence the precision of predicted
grades?”; in the affirmative case, RQ2) “are we able to reduce the negative ef-
fects of high-diameter networks through an appropriate choice of the subset of
students to be corrected by the teacher?” We show that RQ1) OpenAnswer is
less effective on higher diameter topologies, RQ2) this can be avoided if the
subset of corrected students is chosen considering the network topology.
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el of peer assessment, Network topology.

1 Introduction

In Bloom’s taxonomy of educational objectives [1] learners need wider and deeper
comprehension of topics when passing from pure knowledge (just remembering),
to comprehension, application, analysis, evaluation and finally synthesis, as higher
metacognitive skills. Peer assessment is a possible tool to help students exer-
cise/enforce these abilities [6]. Open answers to questions allow challenging as-
sessment methods, e.g., exercises, free text answers to questions, etc., which are
more effective than multiple-choice tests [5], but also harder to handle for teachers.
OpenAnswer [7][8][9] (OA) allows (semi-)automated grading of open answers
through peer assessment. During an OA session, each student is assigned a number
of peers’ answers to grade. To enforce the reliability of the grading results, the sys-



tem provides the (not mandatory) possibility for teacher grading of a subset of an-
swers, chosen step by step according to some select-next-or-stop strategy.

In OA, each student cognitive/metacognitive state is modeled by a fragment of a
global Bayesian Network (BN). Assignments of peer answers to grade make up the
interconnections among the subnetworks and determine the topology of the global
one. Assessments fed by peers (and possibly by the teacher) are propagated within
the BN. The system allows providing the students not only marks, but also an esti-
mate of their knowledge and ability to judge, that spurs metacognitive awareness.
Earlier works [4][7][8][9] analyzed several factors affecting the accuracy of pre-
dicted grades. Present research questions are: RQ1) “does the topology of the net-
work (in particular its diameter) negatively influence the precision of predicted
grades?” If the response to RQ1 is positive, RQ2) “are we able to reduce the nega-
tive effects of high-diameter networks through an appropriate choice of the subset
of students to be corrected by the teacher?” To answer RQ1 we modified OA: 1) to
produce topologic indicators (e.g. diameter of the peer assessment graph, coverage
percentage of corrected students plus their immediate neighbors, average distance
between inferred and corrected students); 2) to choose the set of corrected students
through topological strategies. The available datasets were used to generate also
graphs with higher diameter than the original ones. As hypothesized, OA is less ef-
fective on higher diameter topologies. While this represents a general result regard-
ing Bayesian models, the response to RQ2 indicates how this can be avoided in the
specific case of peer assessment, if the students to be corrected are chosen by con-
sidering the network topology. The results provide an educational-specific opera-
tional strategy for using OA in a concrete setting, and for designing a suitable peer
assessment network for each single session. The topology-based strategies perform
even better than the formerly identified best one, as the experiments section shows.

2 Related work

Peer-assessment entails a higher cognitive level activity [1]. It pursues different
goals [10], especially to allow the learner to appreciate the personal cognitive state
and progress. A comprehensive study of peer assessment in a prototype application is
in [2]. OA evaluates open answers through peer-assessment, by modeling students
and assessment by Bayesian Networks. A different machine learning approach to
student modeling is in [3], where Bayesian Networks are used within an Intelligent
Tutoring System.

3 The model underlying OpenAnswer

The OA system models peer-assessment as a Bayesian network composed of inter-
connected individual sub-networks. Each such subnetwork represents a student, and is
made of three discrete nodes/variables, representing respectively: K - student’s know-
ledge about the topic; C - the correctness of student’s answer being evaluated; J -
student’s ability to judge/assess the answer of a peer; one variable G for each grade



given to a peer (G variables represent the interconnections among subnetworks). K, J
and C are updated by information propagation. The final values of C wvariables
represent the estimated answers correctness (grades).

Each variable above has a 6-valued discrete domain ranging from A (best) to F
(fail). A-E corresponds to 10-6 (sufficient marks one by one), and F is from 5 below.

For all student’s marks of a peer’s answer, a corresponding Grade variable (G) and
value is injected as evidence into the network, and propagates its effects depending on
both the current value of J of the grading student, and on current estimation of C of
the answer corrected. Variables C and J are assumed depend from K with conditional
probabilities P(C | K) and P(J | K). The C dependence is because writing an essay
cannot be easily guessed as it happens in multiple-choice quizzes. As for J, the inspi-
ration is from Bloom’s taxonomy of cognitive levels [1] assuming that judging a
peer’s answer can be considered as a more difficult task than knowing the topic and
answering it. The distribution of values for G is conditioned by J and C with distribu-
tion P(G | J, Q).

When the teacher corrects the essays, OA suggests the next answer to grade and
notifies her when no further correction is needed. The possible alternatives for stop
condition can be found in [4]. In this work we use a fixed condition, i.e., reaching
30% of answers. The next answer to grade is chosen to maximize the information gain
achieved by its teacher correction. Possible criteria are in [4]. Here only the best
achieving of past experiments is compared with the new topological selection criteria.
Such rule is maxEntropy: where the next answer to grade is the one with the highest
entropy, i.e., the one the system knows less about.

4 Methodology

To show (RQ1) if the propagation of information through the BN drops in quality
the more it moves far from the set of corrected nodes, we need networks with higher
diameter (the maximum of minimal distances between any two nodes). In our datasets
we have two groups of real assessments (datasets I and M, respectively with 2 and 6
peer-assessment sessions) where each student graded the 3 next peers in order from
the group (modulo the size of the group). This produced “ring-shaped” networks with
a diameter proportional to the number of nodes and inversely proportional to the
number of corrected peers (Fig. 1, left).

To get even higher diameters we can either cut the ring (Fig. 1, bottom, “broken”
network) or reduce the number of assessments by each student (Fig. 1, right, “2-
peers” network), or both (Fig. 1, bottom right). The figure shows also the teacher
grades for each student (node color, darker=better) and the grades given by each peer
(edge color, darker=better). When a new teacher grade is asserted for a student C
variable (new evidence), two information propagations happen in two directionsfrom
the corrected student towards her “judging” peers, and towards her “judges” peers..
Because the information flows both directions the edges are considered as undirected
(propagation has same weight in both directions).



Fig. 1. Peer-assessment from dataset I - left: 3 peers - right: 2 peers — top: ring, bottom: broken
- node color intensity: teacher’s grade - edge color intensity: peer’s grades, (darker=better)

Table 1 shows for each assessment in datasets I and M the diameter for the graphs
depending on the transformations: 3 peers or 2 peers, and ring shaped or broken.

The aim of the experiments is to show that the distance traversed by the informa-
tion in the model has an adverse effect. This requires: 1) topological indicators that
describe the network with respect to both static properties (diameter) and to dynamic
ones (e.g. the current average distance between corrected students and inferred ones);
2) a new group of selection strategies which takes into account the static and dynamic
topological measures of the network when selecting the next student to be corrected.

To this aim three new “good” strategies for the OA greedy selection algorithm are
introduced here, to counteract the (expected) negative outcomes of higher distances:
maxCoverage: chooses the next student so to maximize the network coverage (the
number of corrected students union their immediate neighbors); maxAvgDistCor-
rected: chooses the next student so to maximize the average distance among corrected
students (to distribute them better through the network); minAvgDistInferredCor-
rected: chooses the next student so to minimize the average distance among the in-
ferred students and their nearest corrected peer (to reduce the average distance the
information should traverse). For further verification, three corresponding “bad” strat-
egies are tested that try to keep higher the distance among inferred and corrected stu-
dents: minCoverage, minAvgDistCorrected, maxAvgDistInferredCorrected.

The available ground truth (complete teacher grades) allows us to simulate differ-
ent settings and strategies for teacher’s correction. The experiments presented here
adopt and compare the above strategies to select the next answer to grade, together
with the former maxEntropy, and stop teacher’s grading when 30% of the students
have been corrected. The remaining grades are inferred. To compare the prediction
performances we examine the percentage of exact inferred grades (OK/INFERRED),
and the average distance in the graph between inferred students and their nearest cor-
rected peer (AVG_PEER_DISTANCE). The simulations have been run with these
different sets of parameters: Selection strategy: maxEntropy or the above topology
based ones; Initialization of the P(K) distribution: flat or TgradeDist ; Number of
peers corrected by each student: 3 or 2; Shape of the network: ring or broken.



Table 1. Diameter of original and modified peer-assessments for datasets I and M

NUM. PEERS 2 peers Original (3 peers)
TYPE ring | broken Ring | broken
DATASET ASSESSMENT ID NUM. STUDENTS DIAMETER
| 3 14 4 7 3 5
High School, physics 4 12 3 6 2 4
3 13 3 6 2 4
4 13 3 6 2 4
M 6 11 3 5 2 4
University, C programming 7 11 3 5 2 4
8 9 2 4 2 3
9 11 3 5 2 4

5 Experimental results

Table 2 shows the OK/INFERRED percentage and the maximum
AVG_PEER_DISTANCE at the end of the correction. Because of space limits we
show only one of the topology-based “good” and “bad” strategies. As a first observa-
tion, the maximum AVG_PEER_DISTANCE is very low (1) for the “good” topolo-
gy-based selection strategies, and that also maxEntropy shows a low value for this
outcome (near 1.4). Conversely, the “bad” topology-based strategies show higher
AVG_PEER_DISTANCE, as expected (in particular, 2 peers-based networks and
broken networks show the highest distances). Yet, the max AVG_PEER_DISTANCE
when 30% of students have been corrected is not too high (max 2.9).

When we examine the OK/INFERRED results we see that the “good” topology-
based selection strategy outperform the “bad” one and the maxEntropy strategy. In
this we affirmatively answer to both our research questions RQ1 and RQ2, regarding
the accuracy of correctly inferred marks: network diameter seems to have a negative
effect on prediction accuracy, but this can be addressed by suitable topology-oriented
strategies for selecting the answers to grade by the teacher.

Other observations can be drawn from the table. The P(K) initialization affects the
outcome with better results for TgradeDist , i.e. OA, as expected, works better with
some global knowledge about the class. Cutting the ring to increase the diameter
(“broken” shape) reduces the OA performances for almost all selection strategies.
Reducing the number of peers from 3 to 2 reduces the performances as expected.
More investigation is due on the “perfect” number of corrected peers per student.

6 Conclusions

Higher-diameter networks induced by assignments of peer grading tasks to stu-
dents, reduce the prediction precision of OpenAnswer. However, an appropriate
choice of the selection strategy for teacher graded answers can counteract this nega-
tive effect and perform even better than the earlier best selection strategy, maxEntro-

py.



Table 2. OK/INFERRED vs NUM. PEERS, STRATEGY, RING/BROKEN, P(K) initialization
averaged over all assessments in the I and M datasets (green = best values, red = worst values)

Average of Max of
OK/INFERRED Avg Peer Distance
SHAPE ring | broken ring | broken
NUM. PEERS P(K) init. STRATEGY
maxEntropy 33% 35% 1.5 1.5
flat maxCoperture 38% 38% 1 1
5 minCoperture 29% 29% 1.9 2.9
maxEntropy 38% 39% 1.5 1.5
TgradeDist | maxCoperture 47% 49% 1 1
minCoperture 34% 39% 1.9 2.9
maxEntropy 32% 33% 1.4 1.4
flat maxCoperture 37% 36% 1 1
3 minCoperture 34% 32% 1.5 2
maxEntropy 39% 38% 1.5 1.5
TgradeDist | maxCoperture 45% 42% 1 1
minCoperture 43% 35% 1.5 2
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