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Abstract—Being unique and immutable for each person,
biometric signals are widely used in access control systems. While
biometric recognition appeases concerns about password’s theft
or loss, at the same time it raises concerns about individual
privacy. Central servers store several enrolled biometrics, hence
security against theft must be provided during biometric trans-
mission and against those who have access to the database. If a
server’s database is compromised, other systems using the same
biometric templates could also be compromised as well. One so-
lution is to encrypt the stored templates. Nonetheless, when using
traditional cryptosystem, data must be decrypted before executing
the protocol, leaving the database vulnerable. To overcame this
problem and protect both the server and the client, biometrics
should be processed while encrypted. This is possible by using
secure two-party computation protocols, mainly based on Garbled
Circuits (GC) and additive Homomorphic Encryption (HE). Both
GC and HE based solutions are efficient yet interactive, meaning
that the client takes part in the computation. Instead in this paper
we propose a non-interactive protocol for privacy preserving
biometric authentication based on a Somewhat Homomorphic
Encryption (SHE) scheme, modified to handle integer values,
and also suggest a blinding method to protect the system from
spoofing attacks. Although our solution is not as efficient as the
ones based on GC or HE, the protocol needs no interaction,
moving the computation entirely on the server side and leaving
only inputs encryption and outputs decryption to the client.

I. INTRODUCTION

Biometric signals such as faces, fingerprints and irises are
often used in access control systems to authorize users’ mem-
bership. This avoids problems linked to password leakage and
theft but at the same time raises concerns about individual’s
privacy. Biometric templates are unique for each person; if
a control system is compromised, then all the other systems
using the same biometrics are compromised as well. Hence in
a distributed biometric system with a high level of privacy
compliance, privacy protection between the server and the
client must also be guaranteed to avoid tracking users’ routine.
Usually, protection against eavesdropping is guaranteed by
traditional encryptions schemes. Regardless of this, several
attacks on biometric authentication protocols can be carried
out. Among all these possible threats the most studied are
spoofing attacks [18]. This is where the intruder uses some
kind of fake biometric to imitate a legitimate user (creating a
fake digital template) to fraudulently access the database or the
server. Recent studies have hypothesized the use of biometric
samples (taken from social media or stolen from latent prints)
to forge fake templates. In fact a biometric template can be
encoded in an integer vector of fixed length [1], [11], [12] and
usually a distance among the two template vectors is evaluated

to verify that they belong to the same individual. Unfortunately,
an attacker that has forged a biometric template could use the
resulting distance to improve the fake features by performing
a hill-climbing attack where the fake template is corrected
according the output of previous rounds. For this reason it
is important to also keep the resulting distance secret.

The most used approach to protect the privacy of both client
and server templates is to implement the matching process
by using Secure Two-Party Computation (STPC) protocols
[21]. Many biometric protocols [7, chapter 7] have been
proposed in the past, based on fingerprints [1], [2], irises [17],
face recognition [12], [22], etc. mainly relying on Garbled
Circuits theory (GC) [25] and Homomorphic Encryption (HE)
[13]. GC provides a generic implementation able to evaluate
any function represented through a boolean circuit wherein
one party “encrypts” the boolean circuit and another party
obliviously evaluates the circuit without accessing the plain
intermediate values. HE allows only upon specific operations
on ciphertexts, such as the addition in the well known Paillier
cryptosystem [19], while others operations can be evaluated by
using interactive protocols. GC and HE have also been used in
hybrid protocols where HE or GC are chosen according their
characteristics to evaluate different parts of the protocol corre-
sponding to different functionalities [3]. Despite the protocols
being quite efficient, interaction between the parties involved
is needed during protocol computation.

Full Homomorphic Encryption (FHE), allowing both adi-
tion and multiplication of encrypted data has been proposed
by Gentry [14]. A Somewhat Homomorphic Encryption (SHE)
scheme, performing a limited number of additions and multi-
plications on ciphertexts, is used to subsequently build a FHE
scheme, through undertaking a bootstrapping operation. Ac-
cording to Gentry’s approach, FHE encrypts single bits, allow-
ing computation of sums and products (modulus 2) between
them. Being possible to evaluate XOR and AND binary gates,
the universal NAND gate (and hence any boolean circuit) can
be evaluated. Even if FHE is far from being as efficient as GC
and HE protocols (despite the many optimizations of Gentry’s
cryptosystem proposed [15], [24]), FHE (and also SHE for
light protocols) have raised the interest of researchers because
all the computation is moved to the server, leaving only input
encryption and output decryption to the client.

In this paper, we propose a new SHE implementation of
biometric authentication protocol . The client first enrolls an
encrypted feature vector, derived from his biometric template,
in the server database. Then, during authentication, the client
sends a probe, a new instance of the same biometric, and the



server has to decide if the probe is sufficiently similar (meaning
if the distance between the two biometrics is under a certain
threshold) to the one stored in database. Usually, Hamming
distance is used for those biometrics encoded with bit’s vector
and Euclidean distance otherwise. The reason for resorting to
SHE instead of FHE, is that a solution based on SHE is more
feasible, due to the limited number of operations performed on
the encrypted data, and hence also more efficient. Moreover, to
reduce the number of products we use a SHE implementation
that can encrypt an integer number in a given interval. More
specifically, our protocol relies on the application of the SHE
scheme proposed by Pisa et al. in [20] into the biometrics
recognition problem. As a further contribution, we test the
general protocol on iris [11], [17] and fingerprint recognition
[1], [2] (but it can work on other biometrics as well). We also
propose a blinding method to protect computation’s distance
output from spoofing attacks. Further, as a side contribution,
we propose a way to extend the use of the scheme proposed
in [20] to negative numbers and use it to reduce the number
of multiplication in distances computation. To the best of our
knowledge, before this paper, a SHE solution has been applied
to biometric recognition only in [23] and in [26]. In respect
to them, we apply our protocol to two different templates,
iris and fingerprints, and we are able to confront the resulting
distance with threshold in encrypted domain without using a
third party or interactive protocols. Moreover we blind server
outputs distance in order to prevent spoofing attacks.

The paper is organized as follows. In Section II, we
describe the extension of Pisa et al. [20] that makes it possible
to operate on more than one bit at a time. In Section III,
we outline the working principles of the biometric-based
authentication systems and we describe a new protocol putting
in practice the theoretical principles underlying the proposed
extension. In Section IV, we validate experimentally the pro-
tocol. Finally, in Section V we draw some conclusions and we
present some possible future works.

II. CRYPTOGRAPHIC PRIMITIVES

An encryption scheme is defined Fully Homomorphic if
it is capable of performing implicit plain-text addition and
multiplication by manipulating only the ciphertexts. The first
construction of a Fully Homomorphic scheme has been pro-
vided by Gentry [14] who proposed a scheme based on the
use of lattices and additional noise.

A FHE scheme is the result of three steps. The first step
consists in constructing a Somewhat Homomorphic Encryp-
tion (SHE) scheme. In this sort of encryption schemes, the
message is usually hidden with some noise. SHE scheme can
perform only a limited number of operations before incurring
decryption errors due to the noise that increases following each
operation, especially multiplications. The second step is the
squash. This consists in representing the decryption function
as a low degree polynomial that can be applied to encrypted
data and secret key bits. When the noise becomes too large,
the decryption performed during the squashing stage becomes
impossible. Gentry’s intuition was to tackle with this problem
by introducing an additional third step, called bootstrapping.
This consists in the homomorphic evaluation of the polynomial
by implementing the decryption on ciphertexts and additional
encrypted key bits. By doing so, a new (refreshed) ciphertext

of the same bitlength is produced, but with reduced noise.
Intuitively, during bootstrapping the ciphertext is re-encrypted
with less noise. As a consequence, the ciphertext with reduced
noise can undergo further operations before again incurring
into errors. By repeating the bootstrapping step before the
noise becomes too large, the number of possible operations
becomes virtually unlimited, thus allowing the construction of
a fully homomorphic scheme. In subsequent years, a number
of variants improving Gentry’s original idea have been devised,
including: algorithmic optimizations [15]; Van Dijk et al.
variant implemented on integers ring [24], followed by its
improvement with shorter public keys [9], [10] and batch
version [8]; the schemes based on Learning With Error (LWE)
[5] and Ring Learning With Error (RLWE) [6]; plus many
others.

A. Extension of DGHV to the Integers

For our application, a FHE scheme is not really necessary,
because beforehand we know the number of operations that
will be performed. Hence, we focus on the SHE scheme
described in [20] that does not need the expensive squash
and bootstrapping operations. In this section, we present the
extension of Van Dijk et al. scheme (DGHV scheme [24]),
applied to integer numbers due to Pisa et al. in [20].

Given two integer numbers x and p, we indicate with
[x]p and (x mod p) the reductions of x modulo p, where
[x]p denotes the remainder r in the interval [0, p), while x
mod p, refers to the integer in the interval (−p/2, p/2], i.e. x
mod p = [x]p − p when [x]p > p/2.

In the original DGHV scheme, only binary messages can be
encrypted. Given a message m, it is encrypted as cdghv = m+
pq+2r for some q, r ∈ Z, where r is the added noise. Starting
from here, Pisa et al. adapt the encryption function as c =
m+p ·q+br, with m ∈ [0, b), where the integer p must be not
divisible by the base b. Even if b could be any integer we will
consider only bases that are powers of 2, i.e. given a bitlength
k, then b = 2k. Our small contribution to the cryptographic
scheme is the extension to negative numbers. Given the base
b, we can encrypt integers in the interval [−b/2, b/2). In this
case the decryption function is performed as ([c]p mod b).
Obviously to represent negative numbers the base b should be
twice the maximum integer that can be obtained during the
computation.

We now define the scheme presented in [20] by Pisa et al.:

KeyGen(λ). The secret Key is an integer p ∈ [bη−1, bη)∩Z
such that p is not divisible by b. The public key is a set of τ
elements obtained as xi = qi · p+ ri for all 0 ≤ i ≤ τ , where
ri ∈ (−bρ, bρ) is a randomly chosen noise and qi ∈ [0, bγ/p).
The element x0 must be greater than every other xi, it must
be odd and the noise must be even. The public key is pk =
{x0, x1, . . . , xτ}.

Encrypt(pk,m). Given an integer message m ∈ [0, b)
(or [−b/2, b/2) in our solution coping with negative numbers),
choose a random integer r ∈ (−bρ′ , bρ′) and let S be a sparse
subset of indexes in {1, . . . , τ}. The ciphertext c is:

c =

[
m+ br + b

∑
i∈S

xi

]
x0

. (1)



λ Base Secret Key Cipher Public Key

10

2 10 B 0.1 KB 0.1 MB
250 506 B 6.3 KB 6.6 MB
2100 1013 B 12.5 KB 13.8 MB
2150 1519 B 18.8 KB 21.7 MB

15

2 25Byte 7 KB 7 MB
250 1 KB 360 KB 352 MB
2100 2.4 KB 721 KB 704 MB
2150 3.5 KB 1081 KB 1056 MB

20

2 45 Byte 66 KB 216 MB
250 2.2 KB 3 MB 11 GB
2100 4.5 KB 6 MB 21 GB
2150 6.7 KB 10 MB 32 GB

TABLE I. SIZE OF THE CIPTHERTEXT, SECRET AND PUBLIC KEY IN
FUNCTION OF THE SECURITY PARAMETER AND THE BASE.

Decrypt(p, c). Given a ciphertext c, the decryption func-
tion is: m =

[
[c]p

]
b

if only positive numbers are needed,
m = [c]p mod b in our extension to negative numbers.

Evaluate(pk, C, c1, . . . , ct). By using the SHE scheme,
any circuit C composed by algebraic gates (additions and
products) can be evaluated. The addition and multiplication
between two messages mi, mj are mapped in the addition and
multiplication between the relative ciphertexts ci, cj , modulus
x0.

B. Parameters

As in [24] and [20], we define the following parameters:
the security parameter λ; the bitlength η of the secret key; the
bitlengths ρ and ρ′ of the noise in the public key and in the
ciphertext encryption respectively; the number τ of integers of
the public key. .

In order to preserve the semantic security of the reduction
to approximate-GCD problem as in [24], the parameters de-
pend on λ polynomially. According to [20]: ρ = λ, ρ′ = 2λ
respectively for the noise of each element of public key and
ciphertext; η = O(λ2) for the length of the private key; γ =
O(λ5) to define the length of the ciphertext; τ = γ+λ+log2(b)
is the number of elements of the public key.

The SHE scheme described above allows only a limited
number of operations on encrypted data. In order to decrypt
the message correctly, the total noise should not grow more
than p/2. While after a multiplication we have a significant
noise increase, addition is less problematic because it produces
only a slight increase. Determining the maximum number of
possible multiplications means finding the largest µ that satis-
fies Rµ < p

2 , where R = b2λ+1+λ5bλ(b2+b) is the maximum
allowed noise, yielding (b2λ+1 + λ5bλ(b2 + b))µ+1 < p

2 .
Similarly we can obtain the limit for the maximum number
of additions allowed by the scheme. As shown in [20], the
number of multiplications depends mainly on the security
parameter λ while they are quite independent from the base.
Only few multiplications can be evaluated before a decryption
error occurs, while the maximum number of additions is pretty
high. For the security basis of the scheme we refer to [20]. As
it is possible to see from Table I, public key is very expensive
in terms of memory. This had led to problems during the
implementation. Indeed for security we need large λ, but this
implies big public keys and therefore memory problems.

III. BIOMETRIC RECOGNITION

We here describe the general privacy preserving biometric
authentication protocol, based on SHE cryptosystem working
on integers. In an authentication protocol there are two parties
involved, client C and server S, and the client has to prove
that he is who he claims to be. First, during an enrollment
phase, the client generates a feature vector from his biometric
and sends it encrypted with his public key to the server for
future use as template. To him, the server gives back an
identification tag. This could be the client’s username or a
progressive number. Along with the template, the client sends
his public key (the server would need it to perform operations
on features).

We consider each biometric template represented as vector
of n elements belonging to a fixed integer interval (usually
[0, 1] for iris and [0, 2`] for some ` ∈ N for fingerprints. See
Section IV for details). The authentication protocol is evaluated
in three steps (Figure 1).

Step 1:
Encryption

Step 3:
Decryption

Step 2:
Computation

Client C Server S

Fig. 1. The three steps of the protocol.

Step one: Client encryption. The client generates a probe
q = (q1 . . . qn) from his biometric and sends it encrypted to
the server along with his identification tag.

Step two: Server computation. The server S runs a privacy
preserving protocol to calculate the Hamming or Euclidean
distance, D(q, s), between the probe and the features stored
in the server database, s = (s1, . . . , sn)(Sections III-1,III-2).
Then, given a similarity threshold ε, it must verify that
D(q, s) < ε. To evaluate the comparison, we should pass from
an integer representation of the value to a binary represen-
tation. Unfortunately this is not possible without interacting
with the secret key owner. To bypass the problem the server
computes d = D(q, s)−ε and opportunely blinds the obtained
integer d (Section III-3) without changing its sign and sends it
back to client. In fact the result of the authentication protocol
corresponds to the sign of d, but the magnitude needs to be
obfuscated to protect the database from malicious attacks (i.e.
spoofing).

JqK
JsK

ε

D(·, ·) SUB Blinding Result

Fig. 2. Step 2:Server computation.



Step three: Client decryption. The client decrypts the
received number. If it is a negative number he has demonstrated
that he is who he claims.

In the following, we investigate the SHE-based imple-
mentation of protocols necessary for biometric authentica-
tion: Hamming Distance, Euclidean Distance, Threshold and
Blinding. Given a message m we will indicate with JmK
its encryption with client public key. If t is a n elements
vector of messages then JtK is the element-wise encryption
(Jt1K, . . . , JtnK) of t. We remind that the representation of
negative numbers is possible as described in Section II.

1) Hamming Distance: If the features are binary values,
the Hamming distance HD(q, s) = ‖(q⊗ s)‖, is used (⊗
identifies the XOR and ‖·‖ the norm of the binary vector).
The XOR could be easily implemented through an addition
in a base 2 SHE scheme, but in our implementation a greater
base is used to facilitate the following sum computation. We
hence need to operate some necessary changes to fit the
distance’s calculus to our encryption scheme. Since we are
working with integers and our scheme can perform addi-
tions modulus b, the Hamming distance can be calculated as
HD(q, s) =

∑n
i=1 si + qi − 2qisi = si + qi(1 − 2si). Every

term of the previous formula is encrypted with user’s public
key, even 1− 2si. This last term could be either sent to server
in enrollment phase or calculated in advance by the server
as J1K + J−1K · JsiK. In practice, after S have received the
encryption of the probe JqK the server computes

JHD(q, s)K = J
n∑
i=1

qi · (1− 2si) + siK

=

n∑
i=1

(JqiK · J1− 2siK + JsiK) . (2)

2) Euclidean Distance: If the features are integers values
the squared Euclidean distance ED(q, s) =

∥∥∥(q− s)
2
∥∥∥ is

used. To compute the lowest possible number of multiplication,
the server stores in its database J−sK. It could either have been
sent in the enrollment phase or it could have been calculated as
J−1K · JsiK from the encryption of client’s template. Therefore
given the client probe, the server actually performs:

JED(q, s)K =
n∑
i=1

(JqiK + J−siK)2 . (3)

3) Thresholding and blinding : Now the distance D(q, s)
is compared with the threshold ε, by computing the difference
between the distance and the threshold under encryption, i.e.
JdK = JD(q, s) − εK = JD(q, s)K + J−εK. The sign of d
corresponds to the result of the authentication protocol.

In order to protect the biometrics enrolled in the database,
the number JdK has to be blinded, before being disclosed to the
client. Unfortunately, additive blinding cannot be used because
it could change the sign of D(q, s) − ε. On the other hand,
multiplicative blinding is known to be much less secure [4].
The best solution, among those affordable by the encryption
scheme in use, is to adopt a hybrid multiplicative/additive
blinding: in practice two random values k1 and k2 are chosen
so that the final result is obfuscated by the server through

computing Jk1(D (q, s)− ε)+k2K = Jk1KJD(q, s)−εK+Jk2K
and the sign of the result is not changed.

Given the base b, the range of possible values is
[−b/2, b/2), hence k1 has to be chosen so that the product
modulus doesn’t exceed b/2, limiting the possible values to the
range

[
1,
⌊

b
2(Dmax−ε)

⌋)
, where Dmax denotes the maximum

value the distance can assume. Then also k2 must be chosen
in such a way that the sign of the final result does not
change. First of all k2 can be positive or negative. To define
its range we have to address the two worst cases we can
encounter: i) if D(q, s) − ε = 1, then |k2| < k1; ii) if
D(q, s) = Dmax, then |k2| < b/2−k1(Dmax−ε). By defining
k2,lim = min{k1, b/2−k1(Dmax−ε)}, k2 is randomly chosen
in the range (−k2,lim, k2,lim). To guarantee high security
levels, a very large base would be needed, however this would
result in a too complex system so a trade-off is needed (Section
IV for more details about the trade-off we reached in our
system).

A. Improvements with respect to classical binary SHE imple-
mentation

A biometric authentication protocol can also be easily
implemented by relying on the classic binary DGHV scheme.
In the Hamming Distance, the XORs among the bits could be
implemented without products, but the sum of the n qi ⊕ si
elements requires a circuit composed by many AND gates.
In fact a reverse tree structure, is composed by log2 n layers
would be used, wherein the i-th layer is composed by n/2i

addition circuits [16] of i-bit long inputs (each one needing i
AND gates1). Hence 2(n−1)− log2 n products are needed for
the sum and being the depth of the tree log2 n, it is important
that at least log2 n multiplications are allowed before the SHE
incurs in a decryption error. A greater number of products
would be needed in a binary based Euclidean distance.

On the other side, since our solution works directly on
integer values, only n products are evaluated in parallel to
compute the XORs (qi · (1 − 2si)), plus one product for the
blinding. Also in Euclidean distance, n products are sufficient
to evaluate in parallel the square of qi − si and one for the
blinding. Hence in the computation of both the distances it
is sufficient that the SHE scheme allows the evaluation of at
least 2 products, if we consider that J1 − siK or J−siK have
been sent encrypted from client in enrollment phase, while if
the server has to compute them before executing the protocol,
SHE must deal with three multiplications.

IV. TECHNICAL RESULTS

The SHE-based iris and fingerprint authentication protocols
have been implemented and tested on a desktop equipped with
a Quad-Core CPU (Intel i7 at 3,40GHz) and 16 GB RAM,
mounting a 64-bit Windows OS, to measure the communi-
cation and computational complexity of the scheme in terms
of bandwidth and protocol runtime. To optimize the protocol,
distance computations have been parallelized into 4 threads,
as allowed by our system characteristics.

1The addition circuit in [16] is designed for a GC implementation but can
be evaluated also in SHE protocols.



λ Base Public Key Encryption Decryption Multiplication

10

2 0.01 s 0.20 ms 0.00 ms 0.00 ms
250 0.58 s 0.27 ms 0.93 ms 3.00 ms
2100 2.03 s 0.63 ms 2.57 ms 8.07 ms
2150 3.59 s 0.93 ms 4.80 ms 15.13 ms

15

2 0.18 s 0.60 ms 0.00 s 0.01 s
250 2 min 39 s 15.68 ms 0.18 s 1.11 s
2100 4 min 42 s 28.58 ms 0.45 s 3.01 s
2150 8 min 56 s 44.00 ms 0.75 s 5.66 s

TABLE II. TIMES NEEDED TO INITIALIZE THE SYSTEM

λ
Base

250 2100 2150

Iris 10 13 MB 25 MB 38 MB
15 750 MB 1.4GB 2 GB

Finger 10 606 KB 1.2 MB 1.7 MB
15 34 MB 68 MB 102 MB

TABLE III. IRISCODE AND FINGERCODE TEMPLATES
COMMUNICATION COMPLEXITY.

According to Sections II-A and II-B, the secret key is in
the range [bη−1, bη), with b = 2k and η = λ2, and hence is
represented with kη bits. Similarly the secret key and each
element composing the public key are represented with up to
kλ5 bits. Table I shows how the sizes of ciphertext, public
key and secret key increase as a function of the base b and the
security parameter λ. To guarantee a sufficient security level
in biometric recognition, high values of λ should be used.
However, for blinding we need at least b = 250, for which, if
λ = 20, we obtain a public key of 11GB, hence for our tests we
considered λ = 10, 15 for which public key is about 7MB and
350MB respectively. We ran 150 tests and we have measured
the average times (ms or s) required by single encryption,
decryption, key generation and multiplication, by using a Java
implementation of the SHE scheme. The averaged results of
the cryptosystem are shown in Table II. Addition and secret
key generation are not reported, because their runtimes are
negligible. The runtime of all the other operations grows with
the base’s bit-length and above all the security parameter. For
high values of b and λ, public key generation is an expensive
operation, but it must be executed only one time by the client
and it does not affect the authentication protocol.

Iris protocol. We considered the algorithm proposed in
[11], [17], where an iris is represented through a vector of
2048 binary features, hence the Hamming distance is used and
calculated as described in Section III-1. For λ = 10 we have
run the protocol on different bases 250, 2100, 2150. To perform
blinding, for b = 250 the choice of k1 is in the range

(
0, 239

)
,

for b = 2100 k1 ∈
(
0, 288

)
, while for b = 2150 k1 ∈

(
0, 2110

)
.

As shown in Table III with λ = 15, memory occupied by
a single iris template grows significantly with base’s increase
(for a 150 bits base it takes about 2GB) and during server
computation three 2048-elements vectors must be memorized
at the same time (that needs about 6 GB) plus the public key
(about 2GB). Due to those memory problems, we have run
test only for b = 250. 2048 ciphertexts are transmitted from
the client to the server and a single ciphertext from the server to
the client, resulting in the total transmission of 13MB, 25 MB
and 38MB respectively for each base with the lowest security
parameter considered, while with the biggest λ considered the
total transmission is 750MB (Table III). We repeated the tests
on iris protocols 50 times and the average results for each

λ Base Step 1 Step 2 Step 3
Client Encryption Server Computation Client Decryption

10
250 1.2 s 2.0 s 0.2 ms
2100 1.2 s 5.3 s 4.3 ms
2150 1.8 s 9.7 s 5.6 ms

15 250 29s 14 min 33 s 0.2 s

TABLE IV. IRISCODE PROTOCOL’S AVERAGE EXECUTION TIME

λ Base Step 1 Step 2 Step 3
Client Encryption Server Computation Client Decryption

10
250 0.03 s 0.10 s 1 ms
2100 0.06 s 0.30 s 3 ms
2150 0.09 s 0.53 s 5 ms

15
250 1.37 s 37 s 0.18 s
2100 2.80 s 1min 48 s 0.45 s
2150 4.25 s 3 min 17 s 0.79 s

TABLE V. FINGERPRINT PROTOCOL’S AVERAGE EXECUTION TIME

part of the protocol are shown in Table IV. As expected,
independently from the parameter set, the most expensive part
is server’s one. With λ = 10 the whole computation runtime
takes some seconds (from about 3 to 17 seconds), while with
λ = 15 server computation is really slow, it takes about 14
minutes (we remember that only b = 250 has been tested for
memory problems).

Fingerprint protocol. We considered the system described
in [1], [2], where the authors demonstrate that the representa-
tion of a fingercode through a vector of 192 features of 4 bits
guarantees an equal error rate of 6.7%. The implementation
requires the computation of the squared Euclidean distance,
whose maximum value is 43200, hence 16 bits are needed
for its representation. We also observe that according to
the results reported in [1], [2], by representing a fingercode
with a vector of 96 features of 2 bits each, the equal error
rate increases to only 7.6%, while the maximum distance
value decreases to 864. This can be represented with 10 bits,
allowing a larger range2 for k1 and making the configuration
more appealing for a privacy preserving SHE implementation.
For each security parameter’s value we run the tests using
different bases 250, 2100, 2150. The vector length of fingercode
is less than iriscode, allowing us to use a bigger base in tests
(for λ = 15 and b = 2150 public key is about 1GB, a iriscode
feature about 2GB while a fingercode feature is only about
101MB). In this case 96 ciphertexts are transmitted from client
to server and one from server to client, with a bandwidth
of about 102 MB in the biggest parameter set considered.
Bandwidth for different setups of bases and λ’s is summarized
in Table III. As for the iriscode case, the most expensive part
is server’s computation, which takes up to 3 minutes. In this
case execution time is faster than in the iris case, due to the
lower number of element’s for each fingerprint representation.
Results obtained for fingerprint matching are summarized in
Table V.

As expected the runtimes needed by the SHE implemen-
tation of the privacy preserving iris and fingerprint matching
protocols are by far larger than the execution time of protocols
based on Paillier HE or GC. Nonetheless in our protocol all the
computation is moved onto the server side and no interaction is
needed. Moreover, runtimes can be lowered by using powerful

2The range of k1 in each base set is similar to the Iris case.



servers allowing for parallelization across more threads. We
also underline that respect to the C++ implementation of the
face recognition protocol proposed in [23], our implementation
is faster or at least comparable, especially for fingerprints and
for some parameter sets on the iris case, (their implementation
runs in 12.3 seconds). Respect to [23], [26], we also propose a
solution (even if not perfectly secure) that obfuscates the final
result, while in [23] the final result is disclosed to the client or
to a third party, making their solution weak against spoofing
attacks.

V. CONCLUSION

We have implemented and tested a recently proposed SHE
scheme [20] that works on integers values. Then we used it to
build a privacy preserving biometric matching protocol. The
resulting complexity is lower than that of a SHE solution
working only on bits. Having prior knowledge of the number
of multiplication required by the protocol allows us to use a
SHE scheme instead of a FHE, avoiding in this way expensive
squash and bootstrap operations. Even if the protocol is not as
efficient as protocols based on other STPC techniques such as
Garbled Circuits and Homomorphic Encryption our solution
has the advantage of moving all computation to the server side,
without the necessity of interaction together with the biometric
source, hence making it suitable for computation with low
power devices. We have observed, from tests, that operation
runtime and bitsize of ciphertext and keys are more affected
from the security parameter than the base. Concerning the iris
and fingerprint authorization protocols, we have tested them
with different security parameters and observed that matches
take from some seconds to several minutes, especially in the
iris case.

In the future, we are interested to improve the protocol by
using innovative solutions that everyday are proposed on FHE
schemes. That is, to verify if a change of the base during the
protocol would make it possible to switch from base b to base
2 and implement a comparison with the threshold through a
binary circuit composed by AND and XOR gates.
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