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Abstract. In the past 20 years, the Life Sciences have witnessed a
paradigm shift in the way research is performed. Indeed, the compu-
tational part of biological and clinical studies has become central or is
becoming so. Correspondingly, the amount of data that one needs to
process, compare and analyze, has experienced an exponential growth.
As a consequence, High Performance Computing (HPC, for short) is be-
ing used intensively, in particular in terms of multi-core architectures.
However, recently and thanks to the advances in the processing of other
scientific and commercial data, Distributed Computing is also being con-
sidered for Bioinformatics applications. In particular, the MapReduce
paradigm, together with the main middleware supporting it, i.e., Hadoop
and Spark, is becoming increasingly popular.
Here we provide a short review in which the state of the art of MapRe-
duce bioinformatics applications is presented, together with a qualitative
evaluation of each of the software systems that have been here included.
In order to make the paper self-contained, computer architectural and
middleware issues are also briefly presented.
Keywords: Bioinformatics, Distributed Computing, MapReduce, Hadoop,
Spark.

1 Introduction

The development of sequencing technologies has caused a stunning reduction
in sequencing costs, well illustrated in Figure 1, whose effect is an exponential
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increase in the production of genomic and proteomic sequences that need to
be analyzed. Unfortunately, computer hardware costs have not kept the same
reduction pace, causing an economic problem to research areas that use se-
quencing, i.e., the entire Life Sciences. Those aspects are well summarized in
[1,2], where it is envisioned that the cost of analyzing sequence data may be
a factor of 100 times more than the cost of its production. Solutions are also
proposed, one of which is to use Cloud and Distributed Computer Systems to
support the computer-related aspects of research in the Life Sciences. Although
High Performance Computing (HPC) is a fundamental part of Bioinformatics
and Computational Biology, it has been mainly used for computationally hard
problems such as prediction of protein structure. Unfortunately, the scenario has
changed dramatically due to the simple sheer quantity of data to be processed:
even the simple task of counting the number of k-mers in a set of strings, a
fundamental problem in Genomics and Epigenomics (see, e.g., [3,4,5]), is being
addressed with the use of multi-processor architectures, e.g., [6]. As opposed to
multi-processor architectures, the use of Distributed Architectures is emerging
only now and it seems to be the future, due to the scalability that this type
of architecture grants. In order to foster further development of Bioinformatics
and Computational Biology distributed software systems and platforms, here a
short review of this area is provided. Moreover, we also identify some desirable
properties that those software systems should have and provide a corresponding
evaluation of them. Specifically, Section 2 is dedicated to a short description
of distributed computing in the management of Big Data, with emphasis on
the architectural and middleware issues. In Section 3, we focus on MapReduce
implementations in bioinformatics. Finally, in Section 4, some conclusions are
offered.

Fig. 1. Cost (on a logarithmic scale) to obtain a good draft of the Human Genome, as
sequencing technology improves over the years. The well known Moore’s law governing
computer hardware costs is also shown. In 2008, it became cheaper to produce a DNA
sequence with respect to the hardware that would be needed to analyze and store it.
The figure is taken from [7]



2 Distributed Computing in the Management of Big
Data: Architectural and Middleware Issues

Many bioinformatics problems can be solved by partitioning the input in a num-
ber of independent parts that can be processed independently. Therefore, many
time-consuming applications in bioinformatics have been expressly designed to
exploit parallelism of the multi-core shared-memory architectures. Due to a num-
ber of architectural bottlenecks mainly related to the need of multiple cores to
share the same memory or I/O buses, multi-core shared-memory architectures do
not allow to efficiently use more than a rather limited number of cores. For this
reason, the performance of a parallel algorithm developed for those architectures
may not scale when the number of cores goes beyond a certain threshold. An
application can be considered scalable when its execution time is proportionally
reduced when the number of computing units is increased.

The above shortcoming of multi-core shared-memory architectures is by-
passed by resorting to Distributed Systems. It is well-know that this term refers
to a collection of independent computers (also called nodes) that communicate
over a network. The interested reader can find an introduction in this subject in
[8]. Theoretically, with this approach, an arbitrary large number of nodes can be
added to the system by exploiting its inherent scalability (i.e., scale out). This
is possible since each node can access local resources without competing with
other nodes. This feature can radically improve the performance of any properly
designed application reducing its execution time.

As a drawback, the adoption of a distributed approach often requires more
specific and complex skills to design and develop a distributed algorithm, given
the target architecture. To promote the transition toward distributed systems,
many new programming paradigms have been proposed in recent years. Among
those, MapReduce [9] paradigm is becoming a de facto standard. It is described
next, together with the two main middleware systems supporting it, i.e., Apache
Hadoop [10] and Apache Spark [11,12].

2.1 MapReduce Paradigm

It is based on the proper definition of two functions: map and reduce. Assum-
ing that the input is organized as a set of <key, value> pairs, the generic map
function takes as input one of these pairs and returns, as output, a set of inter-
mediate <key, value> pairs. The reduce function is then used to process all the
intermediate pairs having the same key, typically returning a synoptic render-
ing of the input. Map and reduce functions are executed, as tasks, by workers
running on the nodes of a distributed system complying to a MapReduce frame-
work. The communication between workers running map functions and workers
running reduce functions is accomplished in an automatic and transparent way
by the underlying framework (implicit parallelism). Therefore, the programmer
can focus on the definition of the map and reduce functions, since all the aspects
related to the execution in a distributed setting (e.g., the number of concur-



rent map and reduce tasks to issue) are addressed via the proper definition of
configuration variables.

An overview of MapReduce paradigm is depicted in Figure 2.

Fig. 2. Workflow of a MapReduce application (taken from [9]). Input files are split in
several parts, with each part processed by a distinct map task according to a user-
defined function. Each of these tasks emits, as output, 0, 1 or more intermediate
<K, V > pairs. Then, these pairs are shuffled and sorted so that all the pairs hav-
ing the same key are processed by the user-defined function of a same reduce task.
These produce, as output, a set of <K, V > pairs that are appended to a different part
of the same logical file.

Apache Hadoop It is currently the most popular and mature framework sup-
porting MapReduce. It is mainly composed of two modules: YARN (Yet An-
other Resource Negotiator) [13] and HDFS (Hadoop Distributed File System)
[14]. YARN is a data processing framework supporting the execution of dis-
tributed algorithms through different types of computing paradigms. HDFS is
a distributed and block-structured file system designed to run on commodity
hardware and able to provide fault tolerance through replication of data.

In general, a Hadoop cluster consists of a single master node and multiple
slave nodes: the master node runs the Resource Manager and the Name Node ser-
vices, while slave nodes run the Data Node and the Node Manager services. On
the master node, the Resource Manager arbitrates the assignment of computa-
tional resources to applications. On the slave nodes, the Node Manager monitors
and keeps informed the Resource Manager about the status of the node. Again,
on the master node, the Name Node service maintains the directory tree of all



files existing in the HDFS and keeps tracks of where data blocks are physically
placed. On the slave nodes, the Data Node service maintains a subset of the
HDFS data blocks using the local storage.

Applications are run on Hadoop via an Application Master. This is a ser-
vice instantiated by a Node Manager on a slave node upon a request coming
from the Resource Manager. Once created, it asks the Hadoop framework for
all the resources required to perform a computation (mainly in terms of CPU
and memory). The Resource Manager responds by reserving to the application
a set of workers (also called Containers) running on one or more slave nodes (a
worker is the basic processing unit in Hadoop to execute map or reduce tasks).

HDFS: Hadoop Distributed File System In a distributed system it is often more
efficient to run a task on local data, rather than to move the data where the
task is running. In fact, one of the main characteristics of Hadoop is its ability
to exploit data local computing. In particular, HDFS provides functionality to
enable applications to move closer to the data, minimizing network congestion
and increasing the overall throughput of the system.

It is a distributed and block-structured file system, optimized to run also on
commodity hardware and able to provide fault tolerance through replication of
data. The HDFS is able to reliably maintain very large files, in fact, it works by
automatically splitting large files in smaller blocks and spreading them across
nodes in a network.

Lifetime of a Hadoop MapReduce Algorithm The execution of a Hadoop MapRe-
duce application takes place in two consecutive (and potentially overlapping)
phases: the map phase and the reduce phase. During the map phase, one or
more map tasks are run by workers on the slave nodes of the Hadoop cluster.
Each worker may run one task a time, while several workers may run in parallel
on the same slave node. When an application is running, a worker in the cluster
is dedicated to the Application Master service.

The execution of a map task goes through four phases. At startup, the task
initializes the data structures required for managing the input and the output
of the task (init phase). Then, each worker begins the execution of the map
functions (execution phase). As soon as output pairs are returned, these are saved
in a temporary memory buffer. When the buffer gets almost full or when the
map functions execution ends, the output pairs are sorted, partitioned according
to the destination reduce task and written on disk (spilling phase). Then, data
belonging to each partition are moved to the slave nodes where the reduce tasks
will process them.

The execution of a reduce task requires three phases. At the beginning, all
the pairs produced by map tasks and included in a certain partition are moved
on the node where the reduce tasks assigned to that partition will be run (shuffle
phase). As soon as new pairs are received by a node, they are sorted in order to
keep them grouped according to their key (sort phase). Finally, for each group
of pairs with the same key, a reduce function will be run by a worker on that
node.



Apache Spark It is a distributed framework that supports applications with
acyclic data-flow model and in-memory computing. This framework also pre-
serves the scalability and fault tolerance of MapReduce-compliant frameworks.
Spark provides APIs in Scala, Java and Python programming languages, and
it can be used for programs that reuse a working set of data across multiple
parallel operations, such as iterative algorithms.

Apache Spark also has a master/slaves architecture like Hadoop. In partic-
ular, there are two main services: Worker and Driver. A Worker is a service
running on any slave node that can execute application code. An Executor is
a process launched for an application on a Worker node that runs tasks and
keeps data in memory or disk storage. In addition, each application has its own
Executors.

The Driver service runs on the master node and it manages the Executors
through a cluster resource manager, e.g., stand-alone cluster manager of Spark,
Apache Mesos or Hadoop YARN. In particular, the Workers create Executors
for the Driver, and then it can run tasks in those Executors.

The main feature of Spark is the Resilient Distributed Dataset (RDD). It
represents a read-only collection of objects partitioned across a set of nodes that
can be rebuilt if a partition is lost. An RDD can be used to cache data in memory
across nodes and it can be reused in multiple MapReduce-based operations.
Several parallel operations can be performed on RDDs, such as: reduce, collect
and foreach. The reduce operation combines dataset elements using an associative
function to produce a result, while the collect operation sends all elements of
the dataset to the Driver. Instead, the foreach operation passes each element
through a user provided function.

In addition, Spark also provides Datasets and DataFrames features. The
first is a distributed collection of data providing an interface that combines
the benefits of RDDs with those of Spark SQL’s optimized execution engine. A
Dataset can be constructed from objects and then manipulated using functional
transformations, such as: map, flatMap, filter, etc. Instead, a Spark DataFrame is
a Dataset organized into named columns, and it is equivalent to a table concept
in a relational database, but providing more optimizations. Roughly speaking, a
DataFrame is represented by a Dataset of rows.

Apache Spark can have the Hadoop framework as the underlining middle-
ware. Moreover, as opposed to Hadoop, it is not limited to support the MapRe-
duce paradigm. Finally, it allows the combination of streaming and batch pro-
cessing, while Hadoop can be only used for batch applications.

3 State of Art of MapReduce-based Software in
Bioinformatics

In this section, we report a classification of bioinformatics software tools that
are based on the MapReduce paradigm. The vast majority of them is supported
by Hadoop and some by Spark. A new special purpose framework has also been
proposed in [15], i.e., GATK.



As far as the qualitative evaluation of the presented software, the properties
that are desirable each must have are the following.

(a) Programming Platform (PP) This property means that the software
has been designed as a flexible programming platform to be used for a set of
customizable analyses. This property is held by any application that allows
custom queries or high level programming interface (API) to develop new
applications. For example the Hadoop-based BioPig [16] tool is considered
a good platform to solve bioinformatics problems and, therefore, holds this
property.

(b) Booster In some specific cases and in order to gain in time performance,
MapReduce applications are developed by distributing multiple instances of
a sequential package/library already existing, which is used as black box.
Therefore, such a wrapping provides a boosting of the sequential package.
For instance, CloudBLAST [17] has been developed starting from a well-
known existing application (namely BLAST [18]) through a “wrapper” for
the Hadoop framework. Another example is GRIMD [19] that was built on
Microsoft Windows Server System and on Microsoft VPN PT2P protocol
to set up secure connections between clients and server. GRIMD is fully
configurable and permits the deploy of quantum mechanical [20] as well as
molecular dynamics calculations [21,22] and genome analysis.

(c) New Algorithm (NewA) In this case the MapReduce application is devel-
oped based on a new algorithm (expressly designed for a target distributed
architecture) to solve a classic or new bioinformatics problem. For instance,
CloudAligner [23] has been specifically designed according to the MapReduce
paradigm and then implemented in Hadoop.

(d) New Algorithm and Engineering (NewAE) This property holds if the
MapReduce application is developed adopting an algorithm engineering ap-
proach [24,25] which, in addition to property (c), is supposed to provide
highly tuned code.

The software can be divided into the following categories.

– Tools and programming environments for the development of Bioin-
formatics applications. We have included in this category programming
tools and environments used to develop MapReduce pipelines and programs
for bioinformatics (see Table 1), e.g., processing of HTS sequence data. In
addition, we have also included libraries that provide interfaces that allow
high level applications to work on files that have a standard format in bioin-
formatics, such as Hadoop-BAM [26].

– Algorithms for Single Nucleotide Polymorphism Identification. We
have included in this category software that performs SNP identification and
analysis (see Table 2).

– Gene Expression Analysis. We have included in this category software for
gene expression analysis (see Table 3), e.g., gene set analysis for biomarker
identification.



– Sequence Comparison. We have included in this category software for
sequence comparison based on alignments and alignment-free methods (see
Table 4).

– Genome Assembly. We have included in this category software for de novo
genome assembly from short sequencing reads (see Table 5).

– Sequencing Reads Mapping. We have included in this category software
for mapping short reads to reference genomes (see Table 6).

– Additional Applications. We have included in this category MapReduce
bioinformatics applications for which there is only one implementation avail-
able (see Table 7).

Table 1. Tools and programming environments for the development of Bioinformatics
applications. With reference to the main text, the software reported in this category
is classified as shown. YES indicates that the property is held, while NO indicates
otherwise. Other possible values indicate to what extent the property is held: GE
stands for “to a great extent”, ME stands for “to a moderate extent” and SE stands
for “to a small extent”.
Software PP Booster NewA NewAE
BioPig [16] YES YES GE NO
Cloudgene [27] YES NO NO NO
FASTdoop [28] YES NO GE GE
GATK [15] YES NO GE NO
Hadoop-BAM [26] YES NO GE NO
SeqPig [29] YES YES GE NO
SparkSeq [30] YES NO SE SE

Table 2. Algorithms for Single Nucleotide Polymorphism Identification. This table is
analogous to Table 1
Software PP Booster NewA NewAE
BlueSNP [31] YES YES NO NO
Crossbow [32] NO YES SE NO

4 Conclusion

We have presented the state of the art regarding the use of Distributed Comput-
ing, in particular software designed with MapReduce paradigm, in Bioinformat-
ics and Computational Biology. Although such a body of work will grow in the



Table 3. Gene Expression Analysis. This table is analogous to Table 1
Software PP Booster NewA NewAE
Eoulsan [33] NO YES NO NO
FX [34] NO NO GE NO
MyRNA [35] YES YES SE SE
YunBe [36] NO NO GE NO

Table 4. Sequence Comparison. This table is analogous to Table 1
Software PP Booster NewA NewAE
Almeida et al. [37] NO NO GE NO
CloudBLAST [17] NO YES NO NO
HAFS [38] YES NO GE GE
K-mulus [39] NO YES NO NO
Nephele [40] NO NO NO NO
Strand [41] NO NO GE NO

Table 5. Genome Assembly. This table is analogous to Table 1
Software PP Booster NewA NewAE
CloudBrush [42] NO NO GE NO
Contrail [43] NO YES GE NO

Table 6. Sequencing Reads Mapping. This table is analogous to Table 1
Software PP Booster NewA NewAE
BlastReduce [44] NO NO GE NO
CloudAligner [23] NO NO GE NO
CloudBurst [45] NO NO GE NO
SEAL [46] NO YES NO NO
SparkSW [47] NO NO GE ME

Table 7. Additional Applications. This table is analogous to Table 1
Software PP Booster NewA NewAE
BioDoop [48] NO YES SE SE
Codon Counting [49] NO NO GE NO
GRIMD [19] YES YES ME ME
MrMC-MinH [50] NO NO GE NO
MrsRF [51] NO NO GE ME
PeakRanger [52] NO NO GE NO



future, it would be appropriate to follow good design and algorithm engineer-
ing approaches in order to use in full the available hardware and the scalability
MapReduce offers.
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