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Abstract

We investigate the space complexity of refuting 3-CNFs in Resolution and
algebraic systems. We prove that every Polynomial Calculus with Resolution
refutation of a random 3-CNF ϕ in n variables requires, with high probability,
Ω(n) distinct monomials to be kept simultaneously in memory. The same
construction also proves that every Resolution refutation of ϕ requires, with
high probability, Ω(n) clauses each of width Ω(n) to be kept at the same
time in memory. This gives a Ω(n2) lower bound for the total space needed
in Resolution to refute ϕ. These results are best possible (up to a constant
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factor) and answer questions about space complexity of 3-CNFs posed in
[FLN+12, FLM+13, BGT14, BG15].

The main technical innovation is a variant of Hall’s Lemma. We show
that in bipartite graphs with bipartition (L,R) and left-degree at most 3, L
can be covered by certain families of disjoint paths, called VW-matchings,
provided that L expands in R by a factor of (2− ε), for ε < 1

5
.

Keywords: proof complexity, polynomial calculus, monomial space,
random CNFs, resolution, total space

1. Introduction

The space of proving a theorem in a given proof system is the minimal
memory occupation of an algorithm verifying the correctness of the proof.
Since the initial study of space measure for proofs [ET01, ABSRW02], its
central role in proof complexity has become clear. The reason was initially
theoretical, since proof space plays for proofs the analogous role as space
complexity does for computations. Therefore, understanding why tautolo-
gies require high space led to numerous connections with many other proof
complexity measures (like size, length, width, degree) [Ben02, AD08, BN08,
Nor09, BN11, FLN+12, FLM+13, BGT14, BG15].

At present, understanding proof space is becoming relevant in more ap-
plied algorithmic contexts such as SAT solvers. Using various heuristics, SAT
solvers search for proofs in systems often studied in proof complexity. Hence,
upper and lower bounds for these proof systems give information about the
potential and limitations of such algorithms. For example, well-known SAT-
solvers used in practice, like CDCL, are based on low-level proof systems
such as Resolution, which is widely studied theoretically [Nor15].

In this work we focus on two well-known proof systems: Resolution
[Rob65, Bla37] and Polynomial Calculus [CEI96]. Resolution (resolution)
is a refutational proof system for unsatisfiable propositional CNF formulas
using only one logical rule: A∨x ¬x∨B

A∨B . Polynomial calculus is an algebraic
refutational proof system for unsatisfiable sets of polynomials (over {0, 1}
solutions) based on two rules: linear combination of polynomials and multi-
plication by variables. In this article, we consider the stronger system Poly-
nomial Calculus with Resolution (PCR) which extends both Resolution and
Polynomial Calculus [ABSRW02].
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Several different measures for proof space were investigated for these two
systems [ET01, ABSRW02, Ben02, AD08, BN08, Nor09, BN11, FLN+12,
BGT14, BG15]. In this work we focus on total space (for resolution), which
is the maximum number of variables (counted with repetitions) to be kept
simultaneously in memory while verifying a proof; and monomial space (for
PCR), which is the maximum number of distinct monomials to be kept simul-
taneously in memory while verifying a proof. Both measures were introduced
in [ABSRW02], where some preliminary lower and upper bounds were given.
In particular, for every unsatisfiable CNF in n variables, there is an easy
upper bound of O(n) for monomial space in PCR and O(n2) for total space
in resolution.

Lower bounds for these two measures were initially studied in [ABSRW02].
Several questions raised in that seminal work have only recently been an-
swered [FLM+13, BG15, BGT14]. In particular, in [BG15, BGT14] the au-
thors prove that, for r ≥ 4, random r-CNFs over n variables require Θ(n2)
total space in resolution and Θ(n) monomial space in PCR. However, it is
not at all obvious how to generalize the techniques in [BG15, BGT14] to han-
dle 3-CNFs. Indeed, before this work it was an open problem if there exists
any family of 3-CNFs requiring large total space in resolution and monomial
space in PCR.

1.1. Results

Let ϕ be a random 3-CNF in n variables. We prove that every PCR
refutation of ϕ requires, with high probability, Ω(n) distinct monomials to
be kept simultaneously in memory (Theorem 5.3). Moreover, every resolution
refutation of ϕ has, with high probability, Ω(n) clauses each of width Ω(n)
to be kept at the same time in memory (Theorem 5.3). This gives a Ω(n2)
lower bound for the total space of every resolution refutation of ϕ1. These
results resolve questions about space complexity of 3-CNFs mentioned in
[FLM+13, BGT14, BG15, FLN+12].

Both results follow using the framework proposed in [BG15], where the
construction of suitable families of assignments called k-winning strategies
(Definition 2.1) leads to monomial space lower bounds in PCR (Theorem 2.2).

1Recently, [Bon16] proved a general inequality between total space and width in resolu-
tion which also implies this result. Our proof has the advantage of being more constructive
and explicit.
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(a) (b) (c)

vertex in L

vertex in R

Figure 1.1

This construction relies on a modification of Hall’s Lemma [Hal35] from
matchings to VW-matchings (Lemma 1.2).

Definition 1.1 (VW-matching). Let G be a bipartite graph with bipartition
(L,R). A VW-matching in G is a subgraph F of G such that each connected
component of F is a path with at most 4 edges and both endpoints in R. A
VW-matching F covers a set of vertices S if S ⊆ V (F ). Define L(F ) =
V (F ) ∩ L and R(F ) = V (F ) ∩R.

Figure 1.1 compares matchings (Figure 1.1.(a)), 2-matchings as used in
[BGT14, BG15] (Figure 1.1.(b)) and VW-matchings (Figure 1.1.(c)). Note
that for technical reasons, we allow 2-matchings and VW-matchings to con-
tain isolated vertices from R. We can now state our variant of Hall’s Lemma.
This lemma and its proof are independent from the proof complexity results
and might be useful in other contexts.

Lemma 1.2 ((2 − ε)-Hall’s Lemma). Let ε < 1
5
. Let G be a bipartite graph

with bipartition (L,R) such that each vertex in L has degree at most 3 and
no pair of degree 3 vertices in L have the same set of neighbors. If |NG(L)| ≥
(2 − ε)|L|, and each proper subset of L can be covered by a VW-matching,
then L can be covered by a VW-matching.

Note that the converse of Lemma 1.2 does not hold (unlike in Hall’s
Lemma). For instance, the graph shaped as a W in Figure 1.1.(c) satisfies
|NG(L)| = 3 < (2− ε)2, whenever ε < 1/2.

The original proof of Lemma 1.2 is from an earlier version of this work
[BBG+15], where we showed that it holds for ε < 1

23
. In our earlier version,

we also conjectured that Lemma 1.2 holds for ε ≤ 1
3
. Since then, Susanna

Figueiredo De Rezende [dR17] simplified our proof and showed that ε < 1
5

suffices. Finally, very recently [Rob16] proved our conjecture by showing that
Lemma 1.2 does indeed hold for ε ≤ 1

3
.

In this paper we present the proof given in [dR17], as it is the shortest
of the three, and the precise value of ε is not relevant for our results. We
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thank Susanna Figueiredo De Rezende for kindly allowing us to include it.
In Proposition 3.1, we complement Lemma 1.2 by showing that Lemma 1.2
does not hold for ε > 1

3
. Therefore, the result in [Rob16] is best possible.

1.2. Outline of the paper

In section 2 we recall some preliminary notions about proof complexity. In
particular, we recall the formal definitions of Resolution and Polynomial Cal-
culus with Resolution, the model of space, and the formal definitions of total
space and monomial space. Families of partial assignments, called k-winning
strategies, were used in [BG15] to prove monomial space lower bounds for
PCR. Here we use the same k-winning strategies2 to prove, not only space
lower bounds for PCR but also total space lower bounds for resolution.

In section 3, we prove our (2 − ε)-Hall’s Lemma (Lemma 1.2). We also
prove that Lemma 1.2 does not hold for ε > 1

3
(Proposition 3.1).

In section 4, we define a two player covering game CoverGame, whose
aim is to dynamically build a VW-matching inside a fixed bipartite graph G
(Definition 4.1). Informally, a player, Choose, queries nodes in the graph G
and the other player, Cover, attempts to extend the current VW-matching
to also cover the node queried (if not already covered). The main result of
section 4 is Theorem 4.3, where we prove that if the graph G has large left-
expansion (large enough to apply Lemma 1.2 to sufficiently large subgraphs
of G), then there is a winning strategy for Cover to force Choose to query
a very large portion of the graph G. In the analysis of the game, we use
the (2 − ε)-Hall’s Lemma and VW-matchings in a similar manner to how
matchings and 2-matchings were used in [BSG03, Ats04, BGT14, BG15]. A
key difference is that we are looking for winning strategies of Cover for the
CoverGame only on graphs G where the number of high degree vertices is
suitably bounded (Theorem 4.3). This additional information allows us to
identify a VW-matching covering all high degree vertices in G but preserving
expansion properties of the remaining graph. Cover will use this information
to obtain a winning strategy.

In section 5, we prove (Lemma 5.1), that if Cover wins CoverGame on the
adjacency graph of a CNF ϕ (see section 2 for the definition of adjacency
graph) guaranteeing VW-matchings of a maximum of μ connected compo-
nents, then there exists a μ-winning strategy for the polynomial encoding of

2For simplicity, the definition we present here is only a special case of the definition of
a k-winning strategy from [BG15].
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ϕ. Finally, the monomial space in PCR and the total space in resolution for
random 3-CNFs (Theorem 5.3) follow from well-known results about expan-
sion of its adjacency graph [CS88, BP96, BSW01, BSG03]. In order to get
optimal lower bounds, we show in Lemma 5.2 that the number of variables
appearing in many clauses of a random CNF is w.h.p. suitably bounded as
required in the conditions of Theorem 4.3.

2. Preliminaries

Let X be a set of variables. A literal is a boolean constant, 0 or 1, or a
variable x ∈ X, or the negation ¬x of a variable x. A clause is a disjunction
of literals: C = (�1 ∨ . . .∨ �k). The width of a clause is the number of literals
in it. A formula ϕ is in Conjunctive Normal Form (CNF) if ϕ = C1∧ . . .∧Cm

where Ci are clauses. It is a k-CNF if each Ci contains at most k literals.
Let ϕ be a CNF and X be the set of variables appearing in ϕ. The adjacency
graph of ϕ is a bipartite graph Gϕ with bipartition (L,R) such that L is the
set of clauses of ϕ, R = X, and (C, x) ∈ E if and only if x or ¬x appears in
C. If ϕ is a k-CNF, then Gϕ has left-degree at most k.

A partial assignment over a set of variablesX is a map α : X −→ {0, 1, �}.
The domain of α is dom(α) = α−1({0, 1}). Given a partial assignment α and
a CNF ϕ we can apply α to ϕ, obtaining a new formula α(ϕ) in the standard
way, i.e. substituting each variable x of ϕ in dom(α) with the value α(x) and
then simplifying the result. We say that α satisfies ϕ, and we write α |= ϕ,
if α(ϕ) = 1. Similarly, for a family F of partial assignments, F |= ϕ means
that for each α ∈ F , α |= ϕ.

Resolution [Bla37, Rob65] is a propositional proof system for refuting
unsatisfiable CNFs. Starting from an unsatisfiable CNF ϕ, resolution allows
us to derive the empty clause ⊥ using the following inference rule:

C ∨ x D ∨ ¬x
C ∨D

.

Following [ABSRW02], we define X = {x̄ : x ∈ X}, which we regard
as a set of formal variables with the intended meaning of x̄ as ¬x. Given a
field F, the ring F[X,X] is the ring of polynomials in the variables X ∪ X
with coefficients in F. We use the following standard encoding (tr) of CNF
formulas over X into a set of polynomials in F[X,X]: tr(ϕ) = {tr(C) : C ∈

6



ϕ} ∪ {x2 − x, x+ x̄− 1 : x ∈ X}, where

tr(x) = x̄, tr(¬x) = x, tr(
n∨

i=1

�i) =
n∏

i=1

tr(�i).

A set of polynomials P in F[X] is contradictory if and only if 1 is in the ideal
generated by P . Notice that a CNF ϕ is unsatisfiable if and only if tr(ϕ) is
a contradictory set of polynomials.

For each partial assignment α over X ∪ X we assume that it respects
the intended meaning of the variables; that is, α(x̄) = 1 − α(x) for each
x, x̄ ∈ dom(α). Given a partial assignment α and a polynomial p in F[X,X],
we can apply α to p, obtaining a new polynomial α(p) in the standard way,
similarly as before. The notation α |= p means that α(p) = 0. If F is a
family of partial assignments and P a set of polynomials, we write F |= P
if α |= p for each α ∈ F and p ∈ P . Notice that if ϕ is a CNF and α is a
partial assignment then α |= ϕ if and only if α |= tr(ϕ).

Polynomial Calculus with Resolution (PCR) [ABSRW02] is an algebraic
proof system for polynomials in F[X,X]. Starting from an initial set of con-
tradictory polynomials P in F[X,X], PCR allows us to derive the polynomial
1 using the following inference rules: for all p, q ∈ F[X,X]

p q

αp+ βq
∀α, β ∈ F,

p

vp
∀v ∈ X ∪X.

To force 0/1 solutions, we always include the boolean axioms {x2−x, x+
x − 1}x∈X among the initial polynomials, as in the case of the polynomial
encoding of CNFs.

In order to study space of proofs we follow a model inspired by the defi-
nition of space complexity for Turing machines, where a machine is given a
read-only input tape from which it can download parts of the input to the
working memory as needed [ET01].

Given an unsatisfiable CNF formula ϕ, a resolution (resp. PCR) refu-
tation of ϕ is a sequence Π = 〈M0, . . . ,M�〉 of sets of clauses (resp. poly-
nomials), called memory configurations, such that: M0 = ∅, ⊥ ∈ M� (resp.
1 ∈ M�), and for all i ≤ �, Mi is obtained by Mi−1 by applying one of the
following rules:

(Axiom Download) Mi = Mi−1 ∪ {C}, where C is a clause of
ϕ (resp. a polynomial of tr(ϕ));
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(Inference Adding) Mi = Mi−1 ∪ {O}, where O is inferred
by the resolution inference rule (resp. PCR inference rules) from
clauses (resp. polynomials) in Mi−1;
(Erasure) Mi ⊂Mi−1.

If in the definition of PCR refutation we substitute the Inference
Adding rule with:

(Semantical Inference) Mi is contained in the ideal gener-
ated by Mi−1 in F[X,X],

we have what is called a semantical PCR refutation of ϕ [ABSRW02].
The total space of Π is the maximum over i of the number of variables

(counted with repetitions) occurring in Mi.
The monomial space of a PCR refutation Π, denoted by MSpace(Π), is

the maximum over i of the number of distinct monomials appearing in Mi.

2.1. A framework for space lower bounds

Let A be a family of partial assignments, and let dom(A) be the union of
the domains of the assignments in A. We say that a set of partial assignments
A is flippable if and only if for all x ∈ dom(A) there exist α, β ∈ A such that
α(x) = 1− β(x). Two families of partial assignments A and A′ are domain-
disjoint if dom(α) and dom(α′) are disjoint for all α ∈ A and α′ ∈ A′. Given
non-empty and pairwise domain-disjoint sets of assignments3 H1, . . . , Ht, the
product-family H = H1 ⊗ · · · ⊗Ht is the following set of assignments

H = H1 ⊗ · · · ⊗Ht = {α1 ∪ · · · ∪ αt : αi ∈ Hi},

or, if t = 0, H = {λ}, where λ is the partial assignment of the empty
domain. Note dom(H) =

⋃
i dom(Hi). We call the Hi the factors of H. For

a product-family H = H1 ⊗ · · · ⊗ Ht, the rank of H, denoted ‖H‖, is the
number of factors of H different from {λ}. We do not count {λ} in the rank
since H⊗{λ} = H. Given two product-families H and H′, we write H′ � H
if and only if each factor of H′ different from {λ} is also a factor of H. In
particular, {λ} � H for every H.

3We always suppose that the partial assignments respect the intended meaning of the
variables in X. That is, if x ∈ dom(α), then α(x̄) = 1 − α(x); hence a variable x is in
dom(Hi) if and only if x̄ is in dom(Hi).
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A family of flippable product-families is called a strategy and denoted by
L . We now present a definition of suitable families of flippable products:
the k-winning strategies [BG15] .

Definition 2.1 (k-winning strategy [BG15]). Let P be a set of polynomials
in the ring F[X,X]. A non-empty strategy L is a k-winning strategy for P
if and only if for every H ∈ L the following conditions hold:

(restriction) for each H′ � H, H′ ∈ L ;

(extension) if ‖H‖ < k, then for each p ∈ P there exists a flippable
product-family H′ ∈ L such that H′ � H and H′ |= p.

Notice that, by the restriction property, {λ} is in every k-winning strat-
egy.

Theorem 2.2. Let ϕ be an unsatisfiable CNF and k ≥ 1 an integer. If there
exists a non-empty k-winning strategy L for tr(ϕ), then for every seman-
tical PCR refutation Π of ϕ, MSpace(Π) ≥ k

4
. Moreover, every resolution

refutation of ϕ must pass through a memory configuration containing at least
k−1
2

clauses each of width at least k−1
2
. In particular, the resolution refutation

requires total space at least (k−1)2

4
.

The monomial space lower bound follows directly from the main theorem
of [BG15].

We show now how to use k-winning strategies to construct the combina-
torial objects used in [BGT14] to the obtain total space lower bound stated
in the theorem.

A piecewise (p.w.) assignment α of a set of variables X is a set of non-
empty partial assignments to X with pairwise disjoint domains. We will
sometimes call the elements of α the pieces of α. A piecewise assignment
gives rise to a partial assignment

⋃
α to X together with a partition of the

domain of
⋃

α. For piecewise assignments α, β we will write α � β to mean
that every piece of α appears in β. We will write ‖α‖ to mean the number
of pieces in α. Note that these are formally exactly the same as α ⊆ β and
|α|, if we regard α and β as sets.

Definition 2.3 (r-free [BGT14]). A family F of p.w. assignments is r-free
for a CNF ϕ if it has the following properties:

(Consistency) No α ∈ F falsifies any clause from ϕ;
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(Retraction) If α ∈ F , β is a p.w. assignment and β � α, then β ∈ F ;

(Extension) If α ∈ F and ‖α‖ < r, then for every variable x /∈ dom(α),
there exist β0, β1 ∈ F with α � β0, β1 such that β0(x) = 0 and β1(x) =
1.

Theorem 2.4 ([BGT14]). Let ϕ be an unsatisfiable CNF formula. If there
is a family of p.w. assignments which is r-free for ϕ, then any resolution
refutation of ϕ must pass through a memory configuration containing at least
r
2
clauses each of width at least r

2
. In particular, the refutation requires total

space at least r2

4
.

By this theorem, in order to prove the total space lower bound of Theo-
rem 2.2 we just have to prove that given a k-winning strategy for tr(ϕ) we
can build a (k − 1)-free family for ϕ.

Proposition 2.5. Let ϕ be an unsatisfiable CNF. Given a k-winning strategy
for tr(ϕ) there exists a (k − 1)-free family for ϕ.

Proof. Let L be the k-winning strategy. Define the (k − 1)-free family F
as follows: α ∈ F if and only if there exists H1 ⊗ · · · ⊗ Ht ∈ L such that
α = α1 ∪ . . . ∪ αt with αi ∈ Hi and t ≤ k − 1. The p.w. structure of
α is inherited from the domain-disjointness of H1 ⊗ · · · ⊗ Ht; in particular,
‖α‖ = ‖H1⊗ · · · ⊗Ht‖. The retraction property of F is immediate from the
corresponding property of L .

To prove the consistency property of F assume, by contradiction, that
there is an α ∈ F such that α falsifies some clause C ∈ ϕ. Since ||α|| ≤
k − 1 < k, there exists H = H1 ⊗ · · · ⊗ Ht ∈ L such that α ∈ H and
‖α‖ = ‖H‖. By the extension property of L , there is an H′ � H such that
H′ |= tr(C). In particular there exists some partial assignment β ⊇ α such
that β |= tr(C). By construction, for every assignment γ, γ |= tr(C) if and
only if γ |= C. Thus β |= C, which is impossible since α falsifies C.

For the extension property let α ∈ F , with ||α|| < k − 1 and let x be a
variable of ϕ not in dom(α). By construction, there exists some H ∈ L such
that α ∈ H, ‖α‖ = ‖H‖ and dom(α) = dom(H). By the extension property
of F there exists some flippable H′ ∈ L such that H′ � H and H′ |= x2−x.
By taking restrictions in L we can suppose that ‖H′‖ = ‖H‖ + 1. Hence
there exist β0, β1 ∈ F extending α, setting x respectively to 0 and 1 and
such that ||β0|| = ||β1|| = ‖α‖+ 1 ≤ k − 1.

10



3. A (2− ε)-Hall’s Lemma for VW-matchings

We now prove our variant of Hall’s Lemma. We use the discharging
method, which is a standard tool in graph theory (see [CW13]). The idea is
to give each vertex some initial charge and then to redistribute the charge
according to some rules that do not change the total charge. The final distri-
bution of charges typically reveals some structure of the graph (in our case
the existence of our required VW-matching).

Restated Lemma 1.2 ((2 − ε)-Hall’s Lemma). Let ε < 1
5
. Let G be a

bipartite graph with bipartition (L,R) such that each vertex in L has degree
at most 3 and no pair of degree 3 vertices in L have the same set of neighbors.
If |NG(L)| ≥ (2− ε)|L|, and each proper subset of L can be covered by a VW-
matching, then L can be covered by a VW-matching.

Proof. Define a hypergraph H = (V,E), where V = NG(L) and E =
{NG(x) : x ∈ L}. If degG(v) = 1, then {v} cannot be covered by a VW-
matching, which is a contradiction. If u and v are distinct vertices with
degG(u) = degG(v) = 2, then {u, v} cannot be covered by a VW-matching,
which is a contradiction. Also note that by assumption, no degree 3 vertices
of G have the same neighbourhood. The above remarks imply that all hy-
peredges of H have size 2 or 3, and NG : L→ E is a bijection. Moreover, by
assumption |V | ≥ (2− ε)|L| = (2− ε)|E|.

(a) (b) (c) (d) (e)

vertex of degree 1

vertex of degree 2

vertex of any degree

hyperedge

2-path cover

Figure 3.1: A set of reducible configurations for H

The degree of a vertex v in H, denoted degH(v), is the number of distinct
hyperedges which contain v. Let L′ ⊆ L and let E ′ = {NG(x) : x ∈ L′}.
Suppose there is a VW-matching M in G covering L′. For each e = NG(x) ∈

11



E ′ we define f(e) to be e∩NM(x). Since each component of M is either a V
or a W it follows that

1. f(e) is a subset of size 2 of e, for all e ∈ E ′;

2. f(e1) �= f(e2), for all distinct e1, e2 ∈ E ′;

3. f(e1) ∩ f(e2) = ∅ or f(e2) ∩ f(e3) = ∅, for all distinct e1, e2, e3 ∈ E ′.

Conversely, if there exists a function f satisfying the above three condi-
tions, then L′ can be covered by a VW-matching. We call such a function f
a 2-path cover of E ′.

Observe that all the configurations shown in Figure 3.1 have a 2-path
cover that is disjoint from all hyperedges of H not in the configuration.
Therefore, if any of these configurations appear in H, we can by assumption
find a 2-path cover f of the remaining hyperedges, and then extend f to a
2-path cover of H.

We may hence assume that no configuration from Figure 3.1 appears in
H. Two vertices u and v of H are adjacent if there is a hyperedge containing
both u and v.

We now give each vertex v ∈ V a charge of degH(v). We then redistribute
the charges according to the following discharging rule. For each vertex
v ∈ V such that degH(v) = 1, v receives 1

3
units of charge from each vertex

u adjacent to v (and u loses 1
3
units of charge). For each v ∈ V we let w(v)

be the charge of v after the discharging process. Note that the following
properties hold.

1.
∑

v∈V degH(v) =
∑

v∈V w(v), since the discharging rule preserves the
total charge.

2. If degH(v) = 1 and e is the unique hyperedge containing v, then

w(v) =

{
1 + 1/3 if |e| = 2

1 + 2/3 if |e| = 3.

Indeed, since the configurations in Figures 3.1.(a) and (b) do not appear
in H, no two degree 1 vertices of H are adjacent.

12



3. If degH(v) = 2, then
w(v) ≥ 2− 1/3.

Indeed, since the configurations in Figures 3.1.(c), (d) and (e) do not
appear in H, there is at most one vertex u such that degH(u) = 1 and
u and v are adjacent.

4. If degH(v) ≥ 3, then
w(v) ≥ 2.

Indeed, suppose degH(v) = d ≥ 3. In particular, there are at most d
degree 1 vertices in H that are adjacent to v. Thus,

w(v) ≥ d− d

3
=

2

3
d ≥ 2.

Let E = E2 ∪ E3, where Ei are the edges of size i in E. Let V1 be the set of
degree 1 vertices of V that belong to some edge in E2 and let V2 = V \ V1.
Since Figure 3.1.(b) does not appear in H, we have |V1| ≤ |E2|. Also, by the
above observations, w(v) = 4

3
for all v ∈ V1 and w(v) ≥ 5

3
for all v ∈ V2.

Therefore

3|V |
(2− ε)

≥ 3|E| = 3|E3|+ 2|E2|+ |E2| =
∑
v∈V

degH(v) + |E2| =

=
∑
v∈V

w(v) + |E2| =
∑
v∈V1

w(v) +
∑
v∈V2

w(v) + |E2| ≥

≥ 5

3
|V | − 1

3
|V1|+ |E2| ≥ 5

3
|V |.

It follows that ε ≥ 1/5. But this contradicts that ε < 1/5.

We end this section with a comment on the parameter ε. Since VW-
matchings expand by a factor of at least 3

2
, we certainly require ε ≤ 1

2
in the

statement of Lemma 1.2. In Proposition 3.1 we show a stronger upper bound
that ε ≤ 1

3
is necessary.

Proposition 3.1. For all ε > 1
3
there exists a bipartite graph Gε with bi-

partition (L,R) such that each vertex in L has degree at most 3 and no
pair of degree 3 vertices in L have the same set of neighbours. Moreover,
|NGε(L)| ≥ (2 − ε)|L| and each proper subset of L can be covered by a VW-
matching but L cannot be covered by a VW-matching.
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In an earlier version of this work [BBG+15], we conjectured that Lemma 1.2
holds for ε ≤ 1

3
. Very recently, [Rob16] proved our conjecture, which is best

possible by Proposition 3.1.
We now prove Proposition 3.1, rephrased in terms of hypergraphs.

x

(a) the gadget

x
y

e
x

y
xx

(b) a minimal ex-
ample

x

the gadget

x

(c) the amplification

Figure 3.2: The construction

Proposition 3.2. For every ε > 1
3
, there exists a hypergraph Hε such that

Hε has no isolated vertices, each hyperedge of Hε has size 2 or 3, |V (H)| ≥
(2− ε)|E(H)|, every proper subset of E(Hε) has a 2-path cover, but Hε does
not have a 2-path cover.

Proof. Let ε > 1
3
and consider the gadget G shown in Figure 3.2.(a). It is

easy to verify that every 2-path cover of G must cover the vertex x. Next
note that the hypergraph H shown in Figure 3.2.(b) is obviously not 2-path
coverable, but every proper subset of E(H) is 2-path coverable. We have
|V (H)|
|E(H)| =

6
4
. However, we can increase this ratio via the amplification trick

shown in Figure 3.2.(c).
That is, let e be a hyperedge of H of size 2. Label the vertices of e as

x and y, where y has degree 1. Let H1 be the hypergraph obtained from
H by deleting y and then gluing G to H − y along x. Since every 2-path
cover of G must use the vertex x, H1 does not have a 2-path cover. On the
other hand, since every proper subset of E(G) has a 2-path cover avoiding x,
it follows that every proper subset of E(H1) has a 2-path cover. Note that
this amplification trick increases the number of vertices of H by 10 and the
number of edges of H by 6. Moreover, we can repeat this amplification trick

14



arbitrarily many times since G also has pendent edges of size 2. So, choose
n such that

6 + 5n

4 + 3n
≥ 2− ε

and takeHε to be the graph obtained fromH by performing the amplification
trick n times.

4. A cover game over bipartite graphs

As an application, we use the previous result to build a winning strategy
for a game played on bipartite graphs.

Definition 4.1 (Cover Game). The Cover Game CoverGameVW(G, μ) is a
game between two players, Choose and Cover, on a bipartite graph G with
bipartition (L,R). At each step i of the game the players maintain a VW-
matching Fi in G. At step i+ 1 Choose can

1. remove a connected component from Fi, or

2. if the number of connected components of Fi is strictly less than μ, pick
a vertex (either in L or R) and challenge Cover to find a VW-matching
Fi+1 in G such that

(a) Fi+1 extends Fi. That is, each connected component of Fi is also
a connected component of Fi+1;

(b) Fi+1 covers the vertex picked by Choose.

Cover loses the game CoverGameVW(G, μ) if at some point she cannot answer
a challenge by Choose. Otherwise, Cover wins.

Definition 4.2 ((s, δ)-bipartite expander). Let s be a positive integer and
δ be a positive real number. A bipartite graph G with bipartition (L,R) is
an (s, δ)-bipartite expander if all subsets X ⊆ L of size at most s satisfy
|NG(X)| ≥ δ|X|.

The next theorem shows that Cover has a winning strategy for the game
CoverGameVW(G, μ) for expander graphs G with appropriately chosen pa-
rameters.

Theorem 4.3. Let G be a bipartite graph with bipartition (L,R), s,D be
integers, and ε < 1

5
be a real number. For every integer d ≥ D let Sd ⊆ R be

the set of vertices of R with degree larger than d. Suppose that
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1. each vertex in L has degree 3;

2. G is an (s, 2− ε
2
)-bipartite expander;

3. for every d ≥ D, 72d
ε
(|Sd|+ d) + 1 ≤ s

2
.

Then Cover wins the cover game CoverGameVW(G, μ) with μ = εs
144D

.

The proof of this result is similar to constructions that can be found in
[BSG03, Ats04, BGT14].

For the rest of this section, fix a bipartite graph G with bipartition (L,R),
an integer s, and a real number ε < 1

5
such that G is an (s, 2 − ε

2
)-bipartite

expander where each vertex in L has degree 3. Given A ⊆ L and B ⊆ R, we
let GA,B be the subgraph of G induced by (L ∪R) \ (A ∪ B).

Definition 4.4 (VW-matching property). Given two sets A ⊆ L and B ⊆
R, we say that the pair (A,B) has the VW-matching property, if for every
C ⊆ L \A with |C| ≤ s, there exists a VW-matching F in GA,B covering C.

Lemma 4.5. Let A ⊆ L and B ⊆ R be such that the pair (A,B) does not
have the VW-matching property. Then there exists a set C ⊆ L \ A with
|C| < 2

ε
|B|, such that no VW-matching in GA,B covers C.

Proof. Take C ⊆ L \ A of minimal size such that no VW-matching in GA,B

covers C. We have that |C| ≤ s and by minimality of C and Lemma 1.2 it
follows that

|NGA,B
(C)| < (2− ε)|C|.

But, by hypothesis G is an (s, 2− ε
2
)-bipartite expander; hence (2− ε

2
)|C| ≤

|NG(C)|. Therefore,

(2− ε

2
)|C| ≤ |NG(C)| ≤ |NGA,B

(C)|+ |B| < (2− ε)|C|+ |B|.

Hence |C| < 2
ε
|B|, as required.

Lemma 4.5 is the only place where we directly use the (2 − ε)-Hall’s
Lemma (Lemma 1.2) from the previous section. However, Lemma 4.5 itself
plays a crucial role in proving the following Lemmas.

Lemma 4.6. The pair (∅, ∅) has the VW-matching property.
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Proof. Apply Lemma 4.5 with A = ∅ and B = ∅.

Lemma 4.7 (component removal). Let A ⊆ L and B ⊆ R be such that
the pair (A,B) has the VW-matching property and 2

ε
|B| ≤ s. Then for

each VW-matching F contained in the subgraph of G induced by A ∪ B,
(A \ L(F ), B \R(F )) has the VW-matching property.

Proof. Let A′ = A\L(F ) and B′ = B \R(F ) and suppose, by contradiction,
that (A′, B′) does not have the VW-matching property. By Lemma 4.5, it is
sufficient to prove that for each set C ⊆ L \ A′ with |C| < 2

ε
|B′|, there is a

VW-matching in GA′,B′ covering C. Let C ′ = C ∩ L(F ) and C ′′ = C \ C ′.
By construction, F is a VW-matching such that L(F ) ⊆ A, R(F ) ⊆ B and
F covers C ′. Moreover, we have that

|C ′′| ≤ |C| < 2

ε
|B′| < 2

ε
|B|

(�)

≤ s,

where the inequality (�) is by hypothesis. Hence there exists a VW-matching
F ′′ of C ′′ in GA,B, and so F ∪F ′′ is a VW-matching covering C in GA′,B′ .

Lemma 4.8 (covering a vertex in L). Let A ⊆ L and B ⊆ R be such that
the pair (A,B) has the VW-matching property and let d be the maximum
degree of a vertex in R \ B. If 24d

ε
(|B| + 3) + 1 ≤ s, then for each vertex

v in L \ A, there is a VW-matching F in GA,B covering v and such that
(A ∪ L(F ), B ∪R(F )) has the VW-matching property.

Proof. Let A′ = A\L(F ) and B′ = B \R(F ) and suppose, by contradiction,
that (A′, B′) does not have the VW-matching property. By Lemma 4.5, it is
sufficient to prove that for each set C ⊆ L \ A′ with |C| < 2

ε
|B′|, there is a

VW-matching in GA′,B′ covering C. Let C ′ = C ∩ L(F ) and C ′′ = C \ C ′.
By construction, F is a VW-matching such that L(F ) ⊆ A, R(F ) ⊆ B and
F covers C ′. Moreover, we have that

|C ′′| ≤ |C| < 2

ε
|B′| < 2

ε
|B|

(�)

≤ s,

where the inequality (�) is by hypothesis. Hence there exists a VW-matching
F ′′ of C ′′ in GA,B, and so F ∪F ′′ is a VW-matching covering C in GA′,B′ .
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Lemma 4.9 (covering a vertex in R). Let A ⊆ L and B ⊆ R be such that
the pair (A,B) has the VW-matching property and let d be the maximum
degree of a vertex in R \ B. If 24d

ε
(|B| + 3d) + 1 ≤ s, then for each vertex

v in R \ B, there is a VW-matching F in GA,B covering v and such that
(A ∪ L(F ), B ∪R(F )) has the VW-matching property.

Proof. Fix v ∈ L \ A and let Π be the set of all VW-matchings F in GA,B,
covering v and such that F is connected.

Since 1 ≤ s and (A,B) has the VW-matching property, we know that Π is
non-empty. For every F ∈ Π, let (AF , BF ) be the pair (A∪L(F ), B∪R(F )),
and suppose for a contradiction that for every F ∈ Π, (AF , BF ) does not
have the VW-matching property. By Lemma 4.5, for every F ∈ Π there is a
set CF ⊆ L \ AF with |CF | < 2

ε
|BF | and such that there is no VW-matching

of CF in GAF ,BF
.

Let C =
⋃

F∈Π CF . Then

|C| ≤
∑
F∈Π

|CF | < |Π|2
ε
(|B|+ 3) ≤ 12d

2

ε
(|B|+ 3),

since |Π| ≤ 3 + 3 · 2 · (d − 1) · 2 ≤ 12d and |BF | ≤ |B| + 3. Hence, by our
assumption about the size of |B|, we have that |C ∪ {v}| ≤ s. Furthermore,
C ∪ {v} ⊆ L \A, so by the fact that (A,B) has the VW-matching property,
there is a VW-matching F ′ covering C ∪ {v} in GA,B.

There must be some F ∈ Π such that F is a connected component of F ′.
Let F ′′ be F ′ with the component F removed. Then F ′′ is a VW-matching
in GAF ,BF

and F ′′ covers CF , contradicting the choice of CF .

We now have all the preliminary lemmas needed to prove Theorem 4.3.

Proof of Theorem 4.3. By the hypothesis on |Sd|, for each d ≥ D, we can
repeatedly apply Lemma 4.9 starting from (∅, ∅) to cover vertices in R of
degree larger than D. By starting from vertices of R of maximum degree
and proceeding in decreasing order until reaching the vertices of degree D,
we can build a VW-matching M covering SD such that (L(M), R(M)) has
the VW-matching property. Moreover, by the choice of SD, GL(M),R(M) (the
subgraph induced by (L∪R)\(L(M)∪R(M))) has maximum degree at most
D. We say that a VW-matching F is compatible with M if each connected
component of F is either a connected component of M or disjoint from all
connected components of M .
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We describe a winning strategy for Cover to win CoverGameVW(G, μ).
Take L to be the set of all VW-matchings F in G compatible with M such
that

1. (L(M) ∪ L(F ), R(M) ∪R(F )) has the VW-matching property, and

2. 2
ε
|R(M) ∪R(F )| ≤ s.

This family is non-empty since the empty VW-matching is in L . More-
over, L is closed under removing connected components by Lemma 4.7.
Suppose now that at step i + 1 of the game Choose picks a vertex v in
GL(M),R(M) and that Fi has strictly less than μ = εs

144D
components. Then,

(L(M) ∪ L(Fi), R(M) ∪ R(Fi)) satisfies the hypotheses of Lemma 4.8 and
Lemma 4.9:

24D

ε
(|R(M) ∪R(Fi)|+ 3D) + 1 ≤ 24D

ε
(|R(M)|+ |R(Fi)|+ 3D) + 1

≤ 24D

ε
(|R(M)|+ 3D) + 1 +

24D

ε
|R(Fi)|

(�)

≤ 24D

ε
(3|SD|+ 3D) + 1 +

72D

ε
μ

(��)

≤ s

2
+

72D

ε
μ =

s

2
+

72D

ε

εs

144D
= s,

where the inequality (�) follows from the fact that |R(Fi)| ≤ 3μ and |R(M)| ≤
3|SD|, where SD is the set of vertices in R of degree bigger than D. The in-
equality (��) follows by the hypothesis on the size of SD.

Hence, if v is covered by Fi we take Fi+1 = Fi. If v is covered by M
we take Fi+1 = Fi ∪Mv, where Mv is the connected component of M cov-
ering v. Otherwise, by Lemma 4.8 and Lemma 4.9 applied to (L(M) ∪
L(Fi), R(M) ∪ R(Fi)), there exists a VW-matching Fi+1 extending Fi ∪M
by a new connected component covering v such that (L(Fi+1), R(Fi+1)) has
the VW-matching property. From the previous chain of inequalities, it fol-
lows easily that the pair (L(Fi+1), R(Fi+1)) satisfies the cardinality condition
2
ε
|R(M) ∪R(Fi+1)| = 2

ε
|R(Fi+1)| ≤ s.

5. Space lower bounds for random 3CNFs

Lemma 5.1. Let ϕ be an unsatisfiable 3-CNF and Gϕ its adjacency graph.
If Cover wins the cover game CoverGameVW(Gϕ, μ), then there is a μ-winning
strategy L for tr(ϕ).
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x
x

y
x ∨ y

x

y
x ∨ y

z
y ∨ z

x

y
x ∨ y

z
¬y ∨ z

x �→ 0
x �→ 1

(x, y) �→ (0, 1)
(x, y) �→ (1, 0)

(x, y, z) �→ (0, 1, 0)
(x, y, z) �→ (1, 0, 1)

(x, y, z) �→ (0, 1, 1)
(x, y, z) �→ (1, 0, 0)

Table 5.1: Flippable assignments from VW-matchings

Proof. First of all we prove that for every VW-matching F in Gϕ, there
exists a flippable product-family of assignments HF such that HF |= L(F ),
dom(HF ) = R(F ), and ‖HF‖ is the number of connected components of F .

We prove the result by induction on the number of connected compo-
nents of F . If F is the union of two disjoint VW-matchings F ′, F ′′ then by
hypothesis HF ′ |= L(F ′), dom(HF ′) = R(F ′) and ‖HF ′‖ is the number of
connected components of F ′. And analogously for F ′′. Then, since R(F ′)
and R(F ′′) are disjoint, HF = HF ′⊗HF ′′ is well-defined. We immediately see
that HF |= L(F ), dom(HF ) = R(F ) and ‖HF‖ is the number of connected
components of F .

It remains to consider the case when the VW-matching F is just one
connected component. It is easy to see that all the possibilities can be reduced
to those in Table 5.1.

It is straightforward to check that a winning strategy for Cover in the
game CoverGameVW(Gϕ, μ) defines, by previous observations, a family L of
flippable product-families such that for all H ∈ L

1. for each H′ � H, H′ ∈ L ;

2. if ‖H‖ < μ, then: (a) for each C ∈ ϕ, there exists a flippable product-
family H′ ∈ L such that H′ |= C and H′ � H; and (b) for each
variable x �∈ dom(H), there exists a flippable family H′ ∈ L such that
H′ � H and x ∈ dom(H′).

We claim that L is a μ-winning strategy. The restriction property is
immediate. For the extension property we use the properties in (2) above: if
we have to extend to something in L that satisfies a boolean axiom we use
property 2.(b), otherwise for all other polynomials in tr(ϕ) we use property
2.(a).

Let n,Δ ∈ N and let X = {x1, . . . , xn} be a set of n variables. The
probability distribution R(n,Δ, 3) is obtained by the following experiment:
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choose independently uniformly at random Δn clauses from the set of all
possible clauses with 3 literals over X. It is well-known that when Δ exceeds
a certain constant θ3, ϕ is almost surely unsatisfiable, see for example [Fri98].
Hence we always consider ϕ ∼ R(n,Δ, 3), where Δ is a constant bigger than
θ3, which implies that ϕ is unsatisfiable with high probability.

Lemma 5.2. Let Δ > θ3 and ϕ ∼ R(n,Δ, 3) a random 3-CNF. For every
integer d let Sd be the set of variables of ϕ appearing in at least d clauses of
ϕ. Then for every constant c > 0 and ε > 0, with high probability there exists
a constant D such that for every d ≥ D,

72d

ε
(|Sd|+ d) + 1 ≤ cn.

Proof. Let Gϕ be the adjacency graph of ϕ. First of all we show that w.h.p.
there are at most en

2d
many variable nodes of degree d for every d ≥ 24eΔ and

that w.h.p. there is no variable node of degree bigger than log n. First note
that the expected number of variable nodes of degree at least log n is

n

(
Δn

log n

)(
3

n− 2

)logn

≤ n

(
eΔn

log n

)logn (
3

n− 2

)logn

= o(1).

So w.h.p. there are no such nodes. Let d ≥ 24eΔ. The probability that there
are en

2d
many variable nodes of degree d is at most

(
n
en
2d

)[(
Δn

d

)(
3

n− 2

)d
] en

2d

≤
(
en
en
2d

) en

2d

[(
eΔn

d

)d (
3

n− 2

)d
] en

2d

≤
(
12eΔ

d

) edn

2d ≤
(
1

2

) edn

2d

,

so, by the union bound, the probability that there exists any d between 24eΔ
and log n such that there are en

2d
many variable nodes of degree d is at most

∑
24eΔ≤d≤logn

(
1

2

) edn

2d

.

To bound this sum, note that the ratio of consecutive terms is

2
edn

2d
− e(d+1)n

2d+1 = 2
e(d−1)n

2d+1 ≥ 2
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for d in this range, and so the sum is of the order of its last term, which is(
1
2

) en logn

2logn = o(1).
So we have that w.h.p.

|Sd| ≤
∑
d′≥d

en

2d′
≤ 2en

2d

and, for (a not yet chosen constant) D ≥ 24eΔ, we have that for each d such
that D ≤ d ≤ log n:

72d

ε
(|Sd|+ d) + 1 ≤ 72d

ε

(
2en

2d
+ d

)
+ 1 ≤ 72D

ε

2en

2D
+O(log2 n) ≤ cn,

where the last inequality holds if D is a sufficiently large constant.

Theorem 5.3. If Δ > θ3 and ϕ ∼ R(n,Δ, 3), then the following statements
hold with high probability. For every semantical PCR refutation Π of tr(ϕ),
MSpace(Π) ≥ Ω(n). Moreover, every resolution refutation of ϕ must pass
through a memory configuration containing Ω(n) clauses each of width Ω(n).
In particular, each refutation of ϕ requires total space Ω(n2).

Proof. Let Gϕ be the adjacency graph of ϕ. It is well known that for every
δ > 0 there exists a γ such that Gϕ is a (γn, 2 − δ)-bipartite expander
[CS88, BP96, BSW01, BSG03]. Hence in particular for 0 < δ < 1

5
and using

Lemma 5.2 with c = γ
2
, we satisfy all the hypotheses of Theorem 4.3. Thus,

Cover wins the cover game CoverGameVW(Gϕ, μ) for μ = Ω(n). Lemma 5.1
provides a Ω(n)-winning strategy and by Theorem 2.2 we have the monomial
space lower bound in semantical PCR and the total space lower bound in
resolution.
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