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Causal influence in linear Langevin networks without feedback
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The intuition of causation is so fundamental that almost every research study in life sciences refers to this
concept. However, a widely accepted formal definition of causal influence between observables is still missing.
In the framework of linear Langevin networks without feedback (linear response models) we propose a measure
of causal influence based on a new decomposition of information flows over time. We discuss its main properties
and we compare it with other information measures like the transfer entropy. We are currently unable to extend
the definition of causal influence to systems with a general feedback structure and nonlinearities.
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I. INTRODUCTION

In the classical description of physical systems, observable
objects are interacting in a symmetric way and “causation”
means that a particular configuration at time t is followed by (it
causes) a new configuration at time t + τ which is univocally
determined by the laws of nature [1].

In the case of complex and living systems [2–4], we are
rarely able to provide a full mechanistic description because
of the overwhelmingly broad range of time scales involved.
Moreover, it is often hard even to observe (and define the
boundaries of) the objects taking part in these processes and ac-
curately measure their properties. This lack of knowledge leads
us to conceive and represent the world in the practical sense
as if there were some intrinsically free observables, the signals
or stimuli, which influence the behavior of other observables,
the responses, through asymmetric causal interactions. Signals
are free, meaning that their dynamics is not influenced by
the responses. As an example, the fluctuations of nutrients in
the environment are usually modeled as independent random
processes, and the cell responses as the consequent activation
of biochemical signaling pathways.

We see that the intuition of causal influence between
observables originates from a probabilistic description of
nature. When we say that a signal provokes a response we
mean that the knowledge of the status of the signal x(t) at
time t provides some information on the evolution y(t + τ ) at
time t + τ of the response which cannot be extracted solely by
the knowledge of the response y(t) at time t itself, i.e., which
is not already present in a redundant way in y(t).

The causal influence is a measure of nonredundant infor-
mation flow over time. It quantifies how, on average, the state
of the signal affects the evolution of the state of the response
after a time period τ .

In order to make this concept more precise, we first need
to find an appropriate picture of signals and responses. It
is convenient to use ergodic stochastic processes so that
the probability distributions can be calculated as temporal
averages on a single trajectory and the initial condition is
irrelevant. We considered the independence of the dynamics
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of the signals from their responses by excluding the possibility
of feedback. Whether a formalization of causal influence is
possible outside of the signal-response description remains an
open question. We choose to work on linear Langevin networks
without feedback (linear response models) because of their
analytical tractability and intuitiveness.

Causation is naturally linked with an asymmetry in time,
because the effects are defined to be successive to their causes.
The arrow of time is not given a priori but is empirically
understood, therefore the time asymmetry which is proper
of causality (the irreversibility of trajectories [5]) cannot be
derived from first principles but should be incorporated into
the definition of causal influence itself.

We define the causal influence in the partial information
decomposition (PID) framework [6] as the unique information
that the signal has on the evolution of the response, i.e., the
time-lagged Shannon’s mutual information I (x(t),y(t + τ ))
minus the redundancy R(x(t),y(t); y(t + τ )):

Cx→y(τ ) ≡ I (x(t),y(t + τ )) − R(τ ), (1)

where Cx→y(τ ), R(τ ), and I (x(t),y(t + τ )) are functions of
the time period τ and not of the time instant t because we
consider only ergodic stationary processes.

While Shannon’s mutual information is known [7], the
redundancy has to be defined. Some previously defined
redundancy measures have been demonstrated all to have the
same trivial and unintuitive form in Gaussian systems [8]:
they take as redundancy the minimum Imin of the information
on the output [y(t + τ )] given by the sources [x(t) and
y(t)] regardless of the mutual information that the sources
share, Imin = min[I (x(t),y(t + τ )),I (y(t),y(t + τ ))]. We de-
fine instead the redundancy as a composition of the mutual
information between the two sources x(t) and y(t), Ixy ≡
I (x(t),y(t)), and the total information that they give together
on the target y(t + τ ), Itot ≡ I [y(t + τ ),(x(t),y(t))]:

R(τ ) ≡ 1

2
ln

(
e2(Ixy+Itot)

e2Ixy + e2Itot − 1

)
. (2)

We study and motivate the use of this definition considering
the behavior of the resulting measure of causal influence
Cx→y(τ ) in linear response models. However, it results that
Cx→y(τ ) gives an appropriate description of the dynamics of
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influences only in linear response models. In the case of more
general systems of equations with feedback and nonlinearities,
Cx→y(τ ) can assume negative values for which we do not have
a clear physical interpretation.

In Sec. II A we review the information processing properties
of the bidimensional linear response model. It consists of a
fluctuating signal x produced by a unidimensional Ornstein-
Uhlenbeck process [9,10] that linearly influences the dynamics
of a response variable y. There we study the properties of the
causal influence Cx→y(τ ) and we compare it to the time-lagged
mutual information I (x(t),y(t + τ )), to the transfer entropy
Tx→y = I (x(t),y(t + τ )|y(t)), and to the previously defined
unique information measures. Then in Sec. II B we extend
the definition to the multidimensional case of directed acyclic
graphs and discuss some simple examples. Finally, in the
discussion section we consider in more detail the difficulties
in the search for a general definition of causal influence for
complex systems.

II. RESULTS

A. Basic linear response model

We define the basic linear response model (BLRM) with
the two stochastic differential equations

dx

dt
= − x

trel
+

√
D �(t),

(3)
dy

dt
= αx − βy.

The x(t) is an Ornstein-Uhlenbeck (OU) process [9,10]. It
depends on the realization of the uncorrelated Gaussian noise
�, which is defined as the dt → 0 limit of the normal random
variable N (0, 1

dt
). The OU process describes fluctuations

around zero mean with an autocorrelation function that decays
exponentially, 〈x(t)x(t + τ )〉 = σ 2

x exp (−τ/trel), where trel is
the relaxation time, and whose amplitude is proportional to
the square root of the diffusion coefficient D, σ 2

x = D trel
2 .

One easily shows that the probability density of x(t + t ′)
conditioned on the knowledge of x(t) for generic (positive or
negative) time shifts t ′ is given by the Gaussian distribution:

P (x(t + t ′)|x(t)) = G
[
x(t)e− |t ′ |

trel ,σ 2
x (1 − e

− 2|t ′ |
trel )

]
. (4)

The second equation in system (2) describes a linear response
to the OU process (α �= 0 and β > 0 are constants), whose
formal solution is

y(t + τ ) = y(t)e−βτ + α

∫ τ

0
dt ′x(t + t ′)e−β(τ−t ′). (5)

The BLRM is the simplest continuous-time dynamical
system with evident causal influence: the dynamics of the
variable y is driven by the position of the variable x, which
fluctuates around a mean value. The causal network is simply
x → y and from now on we call x the signal and y the response.

We see (Fig. 1) that the response is not following the signal
in its “smallest” fluctuations but is rather integrating it on a time
scale defined by the parameters β and trel as we show. Since
the BLRM is a stationary process, the mean of the derivative of
the variables products is vanishing 〈 d(y2)

dt
〉 = 〈 d(xy)

dt
〉 = 0, and

FIG. 1. Stochastic dynamics of the basic linear response model.
The parameters are α = 0.1, β = 0.2, trel = 10, and D = 10. All
graphs are produced using R [11].

the amplitude of the response fluctuations (driven by the signal)
σy proves to be proportional to α, σ 2

y = α2trel
β(βtrel+1)σ

2
x .

The expectation value of the response y at time t ± τ (τ >

0), conditioned on the knowledge of the signal x at time t

(Fig. 2), is found using Eq. (4):

〈y(t − τ )|x(t)〉 = x(t)
αtrel

βtrel + 1
e
− τ

trel , (6)

〈y(t + τ )|x(t)〉 = x(t)
αtrel

βtrel − 1

(
e
− τ

trel − 2e−βτ

βtrel + 1

)
. (7)

The Gaussianity of the OU process implies the Gaussianity
of the BLRM [12], so that the mutual information [7] that
x(t) and y(t + t ′) share is just a function of their correlation
C(x(t),y(t + t ′)):

I (x(t),y(t + t ′)) = ln

(
σy

σy(t+t ′)|x(t)

)

= −1

2
ln([1 − C2(x(t),y(t + t ′))]. (8)

FIG. 2. Conditional probability distributions over time. Given a
particular condition (input) at time t = 0, x(0) ≡ x0 = 28, we plot the
conditioned expectation values 〈y(t)|x(0)〉 and 〈x(t)|x(0)〉 with the
relative standard deviations ±σy(t)|x(0) and ±σx(t)|x(0) (thinner lines) as
a function of the time shift t . The parameters are α = 0.1, β = 0.2,
trel = 10, D = 10.
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The interpretation of the mutual information as the reduction
in uncertainty of the variable y(t + t ′) upon knowledge of the
variable x(t) is clearly seen in Eq. (8). We note that in the
BLRM, the conditional variance σy(t+t ′)|x(t) is independent of
the particular condition x(t).

Thanks to the fluctuation-dissipation theorem [13] we
can also interpret the mutual information as a function of
the signal-to-noise ratio RS/N, which is the average square
deviation from the mean of the estimate of y(t + t ′) provoked
by the knowledge of x(t) divided by the uncertainty that
remains σy(t+t ′)|x(t):

I (x(t),y(t + t ′)) = 1

2
ln(1 + RS/N), (9)

RS/N =
(

∂〈y(t+t ′)|x(t)〉
∂x(t)

)2
σ 2

x

σ 2
y(t+t ′)|x(t)

. (10)

The time shift which gives the optimal information trans-
mission is given by

τopt = trel

βtrel − 1
ln

(
2βtrel

βtrel + 1

)
, (11)

which is always positive as we expect since is the response y

that is following the fluctuations of the signal x producing a
natural delay in the correlation [14].

The mutual information corresponding to the optimal time
shift is

I opt = I (x(t),y(t+τopt)) = −1

2
ln

(
1−2

(
βtrel + 1

2βtrel

) βtrel+1
βtrel−1

)
,

(12)

which depends just on the product βtrel, which we understand
as the ratio of the two time scales of the model: the relaxation
time of the signal fluctuations trel and the response time of the
system for a deterministic input 1

β
. The limits of high and low

information are, respectively, I opt(βtrel → ∞) = ln(βtrel)
2 and

I opt(βtrel → 0) = 2βtrel.
The mutual information is a fundamental characterization

of the system, and in general one can use this measure to
infer causal relations in network reconstruction [15]. Still, it
is not a measure of causal influence. The time-lagged mutual
information is greater than 0 in both cases I (x(t),y(t + τ ))
and I (y(t),x(t + τ )), meaning that the response at time t gives
some information on the signal at successive times t + τ , as
we expect since the signal has autocorrelation. Nevertheless,
the response does not influence the dynamics of the signal,
therefore a measure of causal influence should be 0 in this case.

We could solve this problem considering instead the
conditional mutual information, the so-called transfer en-
tropy [16] (equivalent to the Granger causality [17] in linear
systems [18]), that is, the additional amount of information
that one gets on y(t + τ ) upon knowledge of x(t) when y(t) is
already known. For the BLRM it is given by

Tx→y(τ ) = I (x(t),y(t + τ )|y(t)) = ln

(
σy(t+τ )|y(t)

σy(t+τ )|x(t),y(t)

)

= 1

2
ln

(
1 + βtrel(e

− τ
tc − e−βτ )2

(1 − βtrel)2 − e−2βτ (1 + βtrel) + e
−(β+ 1

trel
)τ 4βtrel − e

− 2τ
trel βtrel(1 + βtrel)

)
, (13)

Ty→x(τ ) = I (y(t),x(t + τ )|x(t)) = ln

(
σx(t+τ )|x(t)

σx(t+τ )|y(t),x(t)

)
= 0, (14)

where σy(t+τ )|x(t),y(t) is the standard deviation of y(t + τ )
conditioned on the knowledge of x(t) and y(t).

Here we have Ty→x = 0 according to the fact that the
dynamics of the signal is independent of the response. Tx→y(τ )
is always positive instead and diverges for τ → 0 because
the knowledge of both x(t) and y(t) synergistically provides
information on y(t + τ ) since for small τ the yt+τ map is
(almost always) quasideterministic in xt and yt : y(t + τ ) −
y(t) = τ (αx(t) − βy(t)) + o(τ 2). This feature we would call
determinism, while the causal influence is rather the visible
(macroscopic) effect of the causation of the evolution of the
response by the signal, which is obtained gradually over time
after the “cause” x(t). It is the information on the evolution of
the response y(t + τ ) that we get looking at just the signal x(t),
I (x(t),y(t + τ )), minus that part of the information which is
already present in a redundant way also in the response y(t).

Following Barrett [8], we define a partial information
decomposition [6] of the total information that x(t) and y(t)

give on the evolution of the response y(t + τ ),

I [y(t + τ ),(x(t),y(t))] = R + Ux + Uy + S, (15)

where R is the redundancy, Ux and Uy are the unique
information contributions, respectively, of x(t) and y(t) alone,
and the synergy S is defined as the information that one gets in
addition when considering simultaneously both x(t) and y(t).
People are trying to define the information decomposition
such that the unique contribution from the signal Ux(τ )
can be interpreted as a measure of the actual information
flowing from the signal to the response over time [19]; this is
what we call causal influence. Since the input-output mutual
information is decomposed in I (x(t),y(t + τ )) = R + Ux and
the transfer entropy in Tx→y = Ux + S, in order to specify
the decomposition it is sufficient to give a definition of the
redundancy R.

In Gaussian systems [8] the previously defined PID are all
equal: they take as redundancy the minimum value between
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FIG. 3. Previously proposed PIDs where R(τ ) = Imin. Informa-
tion measures are expressed in natural units, Nats = bits

ln 2 . The τ axis
is on the logarithmic scale. The parameters are β = 0.2, trel = 10.

I ((t),y(t + τ )) and I (y(t),y(t + τ )), regardless of the infor-
mation shared between the two sources I (x(t),y(t)), Imin =
min[I (x(t),y(t + τ )),I (y(t),y(t + τ ))]. With this definition
(Fig. 3) the unique information Ux is 0 until I (x(t),y(t + τ ))
is smaller than I (y(t),y(t + τ )), suggesting the existence of
an unintuitive activation time for causality. Moreover, let us
consider the time shift τ = τe for which I (x(t),y(t + τe)) =
I (y(t),y(t + τe)). According to the previously defined PID,
where R(τ ) = Imin, the mutual information should be totally
redundant. However, redundancy does not mean that the two
sources give the same information here since the estimate of
y(t + τ ) given x(t) is in general different from the estimate of
y(t + τ ) given y(t), while only the (reduction in) uncertainty
of the estimates is the same; the similarity of these two
estimates is given by I (x(t),y(t)) and the Imin definition of
redundancy is not explicitly dependent on this.

We define instead the redundancy as a composition
of the information shared between the two sources x(t)
and y(t), Ixy ≡ I (x(t),y(t)), and the total information that
they share with the target y(t + τ ), Itot ≡ Itot(τ ) ≡ I [y(t +
τ ),(x(t),y(t))] [Eq. (2), Sec. I]:

R(τ ) ≡ 1

2
ln

(
e2(Ixy+Itot)

e2Ixy + e2Itot − 1

)
.

This definition is inspired by the logic of a linear Markov
chain; i.e., we use the formula of the information shared
between the variables A and C in the static Gaussian linear net-
work A → B → C, namely, IAC = IAB + IBC − 1

2 ln(e2IAB +
e2IBC − 1). In other words, we define the redundancy as the
information that x(t) has on y(t + τ ) “passing through” y(t).
The redundant information that the two variables x(t) and y(t)
both have on the third variable y(t + τ ) is a fraction of the
mutual information between them, Ixy , and that fraction is
determined by the total information that they have together on
y(t + τ ), Itot. The redundancy measure is symmetric in the two
sources (causes) x(t) and y(t) and, also, symmetric in Ixy and
Itot. We call our PID the linear information decomposition
(Fig. 4) and we suggest that the proposed definition of
redundancy [Eq. (2)] could be a linear approximation of a
more general definition to be found.

FIG. 4. Linear information decomposition x −→ y. The thick
black curve represents the unique information that x(t) gives on y(t +
τ ), which is our measure of causal influence Cx→y(τ ). The parameters
are β = 0.2, trel = 10.

The unique information Ux that results from Eq. (2), Ux =
I (x(t),y(t + τ )) − R(τ ), we claim to be a measure of causal
influence for the BLRM [Eq. (1), Sec. I]:

Cx→y(τ ) ≡ I (x(t),y(t + τ )) − R(τ ).

We define the causal influence Cx→y(τ ) only for positive τ � 0
to include the empirical knowledge that the effects are always
seen after the causes. Cx→y(τ ) is a measure of information
and, therefore, is measured in natural units, Nats.

Given the realization of the OU process x for a sufficiently
long time we can determine with any precision the position of
the y(t + τ ), and it is fair to say that this value is totally caused
by the sequence of x at previous times. This fact is mirrored in
the divergence of the transfer entropy for small time shifts τ →
0. Nevertheless, (in common language) we usually consider as
causes the single observable facts [x(t) and y(t) in the BLRM]
and as the effect a successive observable fact [y(t + τ )], and
we wish to quantify the relative strength of these causes in
giving the effect. The causal influence Cx→y(τ ) that the signal
has on the response over time is 0 for the time shift τ = 0 and
increases with τ (linearly for small τ ), meaning that we get the
effect of causality (that is the causal influence) gradually over
time after the cause x(t). For very long time intervals τ after the
cause we can no longer see the effect of the distant past and the
causal influence goes to 0. The time shift at which the causal
influence peaks τres is the response time of the system in the
probabilistic sense and is slightly different from the maximum
correlation time τopt. In general τres > τopt. We note that, as
it should be, we get zero causal influence of the response
y on the signal x (Fig. 5). This is because the information
I (y(t),x(t + τ )) that the response has on the evolution of the
signal is gained necessarily via the two steps y(t) → x(t) and
x(t) → x(t + τ ) due to the asymmetry of the interaction and
therefore is equal to the redundancy R(x(t),y(t); x(t + τ )). We
always get 0 also in the calculation of the self-causal influence
Cx→x = 0, meaning that causation is exerted only between
different observables, while the autocorrelation of one variable
just means memory of the previous states.

The concepts of redundancy and synergy were originally
defined (outside of the PID framework) as a single quantity, the
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FIG. 5. Linear information decomposition y −→ x. The redun-
dant information is equal to the mutual information, meaning that
there is no causal influence. The parameters are β = 0.2, trel = 10.

“net redundancy/synergy” coinformation measure IR/S [20]:

IR/S(y(t + τ ),x(t),y(t))

= Itot − I (y(t + τ ),x(t)) − I (y(t + τ ),y(t))

= I (y(t + τ ),x(t)|y(t)) − I (y(t + τ ),x(t)). (16)

Positive and negative values of CoI indicate, respectively,
synergy and redundancy. The BLRM is synergistic for small
time shifts τ and redundant for larger τ when the mutual
information exceeds the transfer entropy. IR/S is symmetric in
its three arguments [x(t), y(t), y(t + τ )] and the relation with
the PID measures is simply IR/S(y(t + τ ); x(t),y(t)) = S − R.

To understand the behavior of the causal influence in the
BLRM as a function of the parameters we study the limits of
high and low information (Figs. 6 and 7).

When βtrel 
 1 the mutual information is high and
increases with ln(βtrel). The peak of the causal influ-
ence also increases but only up to a limit of around
limβtrel→∞ maxτ Cx→y ≈ 0.55 Nat. The position of the peak
depends on β: at higher β the response is faster and the effect
of causality is seen earlier. When β is fixed, increasing trel

always gives an increase in the mutual information because
the slowdown of the dynamics of the signal lets the response

FIG. 6. Linear information decomposition x −→ y. High-
information scenario: β = 1000, trel = 1000.

FIG. 7. Linear information decomposition x −→ y. Low-
information scenario: β = 0.02, trel = 0.02.

follow the microscopical structure of the signal with more
precision, but at the same time the response is moved slowly
(in units of its standard deviation) by the signal, these two
effects asymptotically compensating and the peak of the causal
influence staying around ≈0.55 Nat. This limit we call the
causation capacity of the BLRM. In the case of low information
βtrel � 1 the peak of the causal influence is close to 75% of the
peak of the mutual information because I opt

Ixy
→ 4 for βtrel → 0.

The signal has a fast-decaying autocorrelation, the response is
slowly integrating (keeping the memory of) it, and therefore
most of the small amount of time-lagged mutual information
on the response is causal influence.

Let us now consider a more traditional approach in
data analysis. We write the vector autoregressive model for
the evolution of the response as y(t + τ ) = γyy(τ )y(t) +
γxy(τ )x(t) + ξ (τ ), where the γ ’s are the linear coefficients of
the expansion and ξ (τ ) is the error term. One could consider
the coefficient γxy(τ ) = αtrel

βtrel−1 (e− τ
trel − e−βτ ) as a measure

of the influence of the signal on the response, but then the
error term ξ (τ ) would have no explicit role. The intuition of
causal influence is based on the concept of information flow
and the fact that the uncertainty of the prediction 〈ξ 2(τ )〉 =
σ 2

y(t+τ )|x(t),y(t) increases with τ should consequently decrease
the causal influence. The discrepancy of the coefficient γxy(τ )
with the information measures is clearly shown in Fig. 8.

One dissatisfying feature of our definition, however, is that
the redundancy measure does not satisfy the local positivity
axiom of the PID; i.e., the synergistic information S = Tx→y −
Cx→y is negative when the causal influence is greater than the
transfer entropy, and this is always the case for long delays τ .
This means that part of the “same” information that x(t) and
y(t) give on y(t + τ ) is considered as causal influence and not
redundancy.

B. Multidimensional case: Networks without feedback

We can extend the causal influence measure for interactions
within linear Langevin networks without feedback. Let us
define the network of direct influences as the one that has
directed links for all the combination of variables (nodes in
the network) (i → j ) for which the variable i appears in the
equation for the dynamics of the variable j . The network of the
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FIG. 8. The coefficient γxy of the vector autoregressive model
compared with the information measures. γxy and

√
〈ξ 2(τ )〉 are

adimensional. The parameters are β = 0.2, trel = 10, α = 0.3, D =
0.03.

causal influence is not coincident with the network of direct
influences because we also have to consider as causal all the
indirect influences. Let us define the parents Px of a node x as
the set of all nodes in the network of direct influences that are
able to reach x with directed paths. We expect all the parents
Px to have a causal influence on x, in general with different
intensities and time scales. Similarly, we define the common
parents Pxy of two nodes x and y as the set of all nodes in the
network of direct influences that are able to reach both nodes
x and y with directed paths.

Then we generalize the definition of causal influence to the
multidimensional case, adding the condition of the knowledge
of the state of the common parents Pxy(t) at time t to all the
probability measures:

Cx→y(τ ) = I (x(t),y(t + τ )|Pxy(t))

−R(x(t),y(t); y(t + τ )|Pxy(t)), (17)

where R(x(t),y(t); y(t + τ )|Pxy(t)) is defined as in Eq. (2),
but with all the information measures conditioned to the
knowledge of the state of the common parents Pxy(t) at time t .

For simplicity we consider a network of three nodes without
feedback, the so-called feed-forward loop:

dz

dt
= − z

trel
+

√
Dz �z(t),

dx

dt
= αxz − βxx +

√
Dx �x(t),

dy

dt
= αyz − βyy + γ x + √

Dy �y(t). (18)

When the x → y interaction parameter is 0, γ = 0, the
variable x is not a parent of y and therefore it should have no
causal influence on it. Still, x and y can be highly correlated

FIG. 9. Feed-forward loop, the three-dimensional general case.
Causal influence x −→ y (numerical simulation). The parameters are
trel = 10, γ = αx = αy = 1, βx = βy = 0.2, Dz = 10, Dx = Dy =
0.1.

due to the common parent z. Applying the above definition
we analytically calculated the causal influence of x on y and
it proved to be 0 (see the Appendix), Cx→y(τ ) = I (x(t),y(t +
τ )|z(t)) − R(x(t),y(t); y(t + τ )|z(t)) = 0. When γ �= 0 our
causal influence measure Cx→y(τ ) would detect the presence
of the x → y influence (numerical results in Fig. 9). The shape
of Cx→y(τ ) is qualitatively the same as in the BLRM. We
verified numerically that the causal influence is correctly 0 for
the cases Cy→x = Cx→z = Cy→z = 0. The transfer entropy
Tx→y(τ ) = I (y(t + τ ),x(t)|y(t),z(t)) goes to 0 for τ → 0
because the white-noise term

√
Dy �y dominates the dynamics

for short intervals.
Importantly, the fact of having a very small (negligible)

direct interaction z → x, i.e., αx � αy , implies that the prob-
ability distributions in the calculation of the causal influence
Cx→y have to be conditioned on the common parent z(t). On
the contrary, without a direct interaction z → x, i.e., αx = 0, z
is not a common parent and therefore there is no conditioning
on z(t). However, as it should be, the conditioning makes no
difference in the limit αx → 0: we numerically verified that
limαx→0 Cx→y = Cx→y(αx = 0).

We note that even without a direct interaction z → y, that
is, αy = 0, the causal influence Cz→y can be positive due to
the indirect influence z → x → y. The larger is the number of
indirect passages between the considered nodes, the longer is
the time period τ after which the peak of the causal influence
is seen.

Here the conditioning on the common parents Pxy(t) can
be seen as a negative feature since it introduces again in
the multidimensional case the synergistic effects, which are
properties of the transfer entropy and of any conditioning [19].
However, there are no other possibilities since the construction
of a PID lattice such as the one proposed by Williams and
Beer [6] would require a generalization of our definition of
redundancy R(τ ) to more than two sources. For this we would
need to have an expression for the mutual information Ixy

between more than two variables, which is not defined in
information theory [7].
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III. DISCUSSION

Within the study of information flows in linear response
models, our aim was to quantify how the effects of the
asymmetric interactions are seen over time. In this work
we propose a measure of causal influence Cx→y . This is
defined as the unique information [8] on the evolution of
the response y(t + τ ) given by the signal x(t), i.e., the
difference between the mutual information I (x(t),y(t + τ ))
and the redundancy R(x(t),y(t); y(t + τ )). This is based on
the measure of redundant information R, which we define
as a composition of the mutual information between the two
sources I (x(t),y(t)) and the total information that they give
together on the target I [(x(t),y(t)),y(t + τ )]. We did not
derive the formula for this composition [Eq. (2)] from first
principles; it is a choice inspired by an analogy with Markov
chains. We stress that the causal influence is a function of the
mutual information, of the time-lagged mutual information,
and of the transfer entropy. In linear response models the causal
influence is a peak function of time starting from 0 at τ = 0,
meaning that the effects of the asymmetric interactions are
seen gradually over time, reflecting our view of the effects
being visible only after the causes. Importantly, when there is
no influence of a variable x on the dynamics of another variable
y, i.e., in the network of direct influences there is no directed
path starting from x and arriving in y, the causal influence is
correctly 0 even if the two variables are highly correlated. The
main difference in our information decomposition from the
previously defined ones is that our redundancy R is explicitly
dependent on the information shared between the two sources
giving the redundant information on the target and is always
less than or equal to that. Taking as redundancy just the
minimum mutual information leads to threshold effects that
do not seem to be appropriate for describing linear response
models.

Finally, we discuss the strong limitation of the present
work: there is currently no way of extending the definition
of causal influence to any system with a general feedback
structure. First, it is not clear whether the concept of causal
influence still makes sense in the presence of feedback. When
the variable x is influencing the dynamics of the variable
y, and vice versa, forming a feedback loop, we can no
longer define a signal and a response. The x(t) at time t is
influencing the evolution of the response y(t + τ ) at time
t + τ in many ways: directly and also indirectly through
the loop x(t) → y(t + t ′) → x(t + t ′′) → y(t + τ ) with τ >

t ′′ > t ′ > 0, but also through the loops x(t) → y(t + t ′) →
x(t + t ′′) → y(t + t ′′′) → x(t + t ′′′′) . . . → y(t + τ ), and so
on. These “successive” influences are in opposing directions
for negative feedback loops and this implies that the informa-
tion measures oscillate over time and our measure of causal
influence oscillates as well and also assumes negative values.
Since the mutual information I (x(t),y(t + τ )) periodically
assumes 0, we would have an oscillating causal influence with

any definition of R and we may conclude that the point-to-point
communication scheme (t,t + τ ) is not appropriate for a
definition of causal influence in the presence of feedback.

Another option could be to take the original defini-
tion of transfer entropy (it considers the entire history
of the studied processes) for discrete time sequences [16]
and generalize it for continuous signals: T

seq
x→y(τ ) = I [y(t +

τ ),(x(t − t ′))t ′�0|(y(t − t ′))t ′�0], where (x(t − t ′))t ′�0 and
(y(t − t ′))t ′�0 are the semi-infinite whole history of the
signal and response, respectively. For any set of stochastic
differential equations without delays (also in the presence
of feedback), if we already have the knowledge of the
present values of the signal x(t) and of the response
y(t), then the past of the signal (x(t − t ′))t ′�0 gives no
additional information on the future of the response y(t +
τ ) and T

seq
x→y(τ ) = I [y(t + τ ),x(t)|(y(t − t ′))t ′�0] = I [y(t +

τ ),x(t)|y(t),P [x(t)|(y(t − t ′))t ′�0]. This function is difficult
to estimate even in linear response models. However, in
the BLRM, since the knowledge of (y(t − t ′))t ′�0 gives an
infinitely large amount of information on x(t), the generalized
transfer entropy will be 0, T

seq
x→y(τ ) = 0, and this will be

the case also for any other bidimensional model (also in the
presence of feedback) with no intrinsic noise in the dynamics
of the response. The BLRM is the prototype in whose frame
we quantify the evident influence that the signal has on
the response and we would not be satisfied to identify the
generalized transfer entropy T

seq
x→y(τ ), which is here always 0,

as a measure of the causal influence.
An additional problem in defining a measure of causal

influence could be the partial information decomposition itself.
What is the meaning of decomposing the mutual information?
The mutual overlap between the two probability distributions
P (y(t + τ )|y(t)) and P (y(t + τ )|x(t)) could be defined as
〈∫ ∞

−∞ P (y(t + τ )|y(t))P (y(t + τ )|x(t))dy(t + τ )〉
x(t),y(t)

but
then it is not easy to say whether this quantity can be used to
define a measure of overlap in the space of Shannon entropies,
i.e., the common information (redundancy) of I (y(t + τ ),y(t))
and I (y(t + τ ),x(t)).

In general, the causal influence quantifies the effective
strength of asymmetric causal interactions and the time scale
over which the effects are seen. Our measure is a good
description of the dynamics of influences in linear response
models. However, a generalization to nonlinear and non-
Gaussian dynamics and for systems that have feedback is
needed to approach the data analysis in complex systems.
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APPENDIX: THE CORRELATION DUE TO A COMMON PARENT RESULTS IN ZERO CAUSAL INFLUENCE

We study the particular case of the system of Eq. (18) without influence of the x on the y, i.e., with γ = 0. We calculate here
all the information measures needed to show that the causal influence Cx→y(τ ) is 0. We start from those quantities which are
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found also in the BLRM. The conditional expectation values and the standard deviations for the couples zx and zy are symmetric
so we write them just once:

〈z(t − τ + t ′)z(t − τ + t ′ + t ′′)|z(t)〉 =
∫ +∞

−∞
P (z(t − τ + t ′ + t ′′) = ξ |z(t))ξ 〈z(t − τ + t ′)|z(t − τ + t ′ + t ′′) = ξ〉 dξ

= e
− t ′′

trel
(
z2(t)e− 2(τ−t ′−t ′′)

trel + σ 2
z

(
1 − e

− 2(τ−t ′−t ′′ )
trel

))
, (A1)

〈z(t − τ + t ′)x(t − τ + t ′)|z(t)〉 =
∫ +∞

−∞
P (z(t − τ + t ′) = ξ |z(t))ξ 〈x(t − τ + t ′)|z(t − τ + t ′) = ξ 〉 dξ

= αxtrel

βxtrel + 1
(z2(t)e− 2(τ−t ′)

trel + σ 2
z (1 − e

− 2(τ−t ′)
trel )), (A2)

〈z(t − τ + t ′)x(t)|z(t)〉 = 〈z(t − τ + t ′)x(t − τ + t ′)|z(t)〉 e−βx (τ−t ′)

+αx

∫ τ−t ′

0
〈z(t − τ + t ′)z(t − τ + t ′ + t ′′)|z(t)〉 e−βx (τ−t ′−t ′′)dt ′′

= σ 2
z

2αxtrel

β2
x t

2
rel − 1

(e− τ−t ′
trel − e−βx (τ−t ′)) + z2(t)

αxtrel

βxtrel + 1
e
− τ−t ′

trel , (A3)

σ 2
y = σ 2

z

α2
ytrel

βy(1 + βytrel)
+ Dy

2βy

, (A4)

σ 2
y(t+τ )|z(t) = σ 2

y −
(

σzαytrel

βytrel − 1

)2(
e
− τ

trel − 2e−βyτ

βytrel + 1

)2

, (A5)

σ 2
y(t+τ )|x(t),y(t),z(t) = σ 2

y(t+τ )|y(t),z(t) = σ 2
z α2

y

βy(βy + 1/trel)(βy − 1/trel)2
[(1 − βytrel)

2 − e−2βyτ (1 + βytrel)

+ e
−(βy+ 1

trel
)τ 4βytrel − e

− 2τ
trel βytrel(1 + βytrel)] + Dy

2βy

(1 − e−2βyτ ), (A6)

〈y(t − τ )x(t)|z(t)〉 = 〈y(t)x(t)|z(t)〉 eβyτ − αy

∫ τ

0
〈z(t − τ + t ′)x(t)|z(t)〉 eβy t

′
dt ′. (A7)

〈y(t − τ )x(t)|z(t)〉 → 0 for τ → ∞ because the knowledge of x(t) gives asymptotically no information on the distant past of y

[even with the condition z(t)]; then

〈y(t)x(t)|z(t)〉 = αxαyt
2
rel

(βxtrel + 1)(βytrel + 1)

(
z2(t) + 2σ 2

z

trel(βx + βy)

)
. (A8)

Since 〈z(t + t ′)x(t)|z(t)〉 = 〈z(t + t ′)|z(t)〉 〈x(t)|z(t)〉, whose quantities we know from Eqs. (6) and (7), we can now calculate
〈y(t + τ )x(t)|z(t)〉 = 〈y(t)x(t)|z(t)〉 e−βyτ + αy

∫ τ

0 〈z(t + t ′)x(t)|z(t)〉 e−βy (τ−t ′)dt ′ and then

〈y(t + τ )x(t)|z(t)〉 − 〈y(t + τ )|z(t)〉 〈x(t)|z(t)〉 = σ 2
z

2αxαytrele
−βyτ

(βxtrel + 1)(βytrel + 1)(βx + βy)
, (A9)

which is independent of the condition z(t), as is typically the case for linear systems. The information measures are easily
calculated in the Gaussian case:

Itot = ln

(
σ 2

y(t+τ )|z(t)

σ 2
y(t+τ )|x(t),y(t),z(t)

)
, (A10)

C(x(t),y(t + τ )|z(t)) = 〈y(t + τ )x(t)|z(t)〉 − 〈y(t + τ )|z(t)〉 〈x(t)|z(t)〉
σy(t+τ )|z(t)σx(t)|z(t)

, (A11)

I (x(t),y(t + τ )|z(t)) = −1

2
ln[1 − C2(x(t),y(t + τ )|z(t))]. (A12)

Using the definition of redundancy [Eq. (2)], R(τ ) = 1
2 ln ( e2(Ixy+Itot)

e2Ixy +e2Itot −1
), with Ixy = − 1

2 ln(1 − C2(x(t),y(t)|z(t))), we obtain the
expected result:

Cx→y(τ ) = I (x(t),y(t + τ )|z(t)) − R(x(t),y(t); y(t + τ )|z(t)) = 0. (A13)
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