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Abstract 

Capacity of adult muscle to regenerate in response to injury stimuli represents an important 
homeostatic process. Regeneration is a highly coordinated program that partially recapitulates 
the embryonic developmental program. However, muscle regeneration is severely 
compromised in several pathological conditions. It is likely that the restricted tissue repair 
program under pathological conditions is due to either progressive loss of stem cell populations 
or to missing signals that limit the damaged tissues to efficiently activate a regenerative 
program. It is therefore plausible that loss of control over these cell fates might lead to a 
pathological cell transdifferentiation, limiting the ability of a pathological muscle to sustain an 
efficient regenerative process. The critical role of microenvironment on stem cells activity and 
muscle regeneration is discussed. 
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 Muscle regeneration is a coordinated process in which 
several factors are sequentially activated to maintain 
and preserve muscle structure and function upon injured 
stimuli. Although adult skeletal muscle is composed of 
fully differentiated fibers, it retains the capacity to 
regenerate in response to injury and to modify its 
contractile and metabolic properties in response to 
changing demand.1 Regeneration is an important 
homeostatic process, which guarantees the maintenance 
of muscle integrity and plasticity. Muscle regeneration 
and repair occur in four interrelated and time-dependent 
phases: degeneration, inflammation, regeneration, and 
remodelling/maturation (Figure 1A).1,2 Injury of 
myofibers results in the rapid necrosis, which activates a 
defined inflammatory response (Figure 1), characterized 
by the recruitment of specific myeloid cell populations 
within the injured area.3 Specifically, neutrophils 
represent the first inflammatory myeloid cells that 
invade the site of muscle injury; the number of 
neutrophils usually drops 24 hours after damage and 
they are normally no longer detectable after 36–48 
hours post injury (Figures 1).4,5 The production of 
soluble interleukin-6 receptor (sIL-6R) by neutrophils 
regulates the change from a neutrophilic to 
macrophages infiltration. Macrophages rapidly increase 
within 24 hours after injury (Figure 1) and they are the 

predominant inflammatory cell type within the injured 
area. M1 and M2 nomenclature is usually used to refer 
to the two extremes of a spectrum of possible forms of 
macrophage activation. 6,7 In particular, it has been 
proposed that macrophages develop into either type 1 
inflammatory (M1) or type 2 anti-inflammatory (M2) 
subsets and that macrophages sequentially change their 
functional phenotype in response to changes in micro-
environmental influences.6-8. M1 macrophages remove 
tissue debris, whereas M2 macrophages modulate the 
immune responses and activate stem cell populations.7,8 
Thus, the inflammatory response is a coordinate process 
that must be finely regulated to obtain an efficient 
regenerative process. The inflammatory response is 
followed by regenerative phase (Figure 1A), 
characterized by satellite cells activation and by the 
presence of regenerating fibers, which can be 
morphologically distinguishable by the presence of 
characteristic central nuclei and by the expression of the 
embryonic/neonatal isoform of myosin heavy chain 
(MyHC).9,10 The final phase is a period during which 
the maturation of the regenerated myofibers, the 
contraction and reorganization of the scar tissue 
(remodelling of extracellular matrix) (Figure 1A), and 
the recovery of the functional performance of injured 
muscle occur.11 
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The role of satellite cells and non-muscle stem 
cells on muscle regeneration 
The dominant role in muscle homeostasis and 
regeneration is played by satellite cells,12 which reside 
between the basal lamina and sarcolemma of myofibers. 
Satellite cells can be activated in response to both 
physiological stimuli, such as exercise, and under 
pathological conditions, such as injury and degenerative 
diseases, to generate a committed population of 
myoblasts that are capable of fusion and 
differentiation.13 Satellite cells are able to fuse with 
existing myofibers, repairing damaged muscle fibers, or 
alternatively fuse to each other to form new myofibers1. 
RT-PCR analysis, gene targeting strategies, and 
molecular imaging revealed that satellite cells present a 
heterogeneous profile of gene expression depending on 
the functional stage of the myogenic program. It has 
been reported that quiescent satellite cells express 
several relevant markers such as c-Met, M-cadherin, 
FoxK, Pax-7, NCAM, syndecan 3 and 4, CD34, 
caveolin-1, Sox 8, Sox 15, and VCAM-1 (Figure 1B).1 
Pax3, the paralog (pair of genes that derive from the 
same ancestral gene) of Pax7, is also expressed in 

quiescent muscle satellite cells in a subset of muscles 
and it plays an important role in regulating the entry of 
satellite cells into the myogenic programme.14,15 Once 
activated, satellite cells up-regulate c-Met, Pax-7, and 
M-cadherin and activate the expression factors involved 
in the specification of the myogenic program such as 
myf-5 and MyoD (Figure 1B). The activated satellite 
cells proliferate as indicated by the expression of factors 
involved in cell cycle progression (Figure 1B) 1 and by 
incorporation of BrDU and [3H] thimidine. Ultimately 
the committed satellite cells fuse each other, or to the 
existing fibers, to form new muscle fibers, which are 
characterized by small size and by the expression of the 
embryonic/neonatal isoform of MyHC (Figure 1B). 
More recently, it has been suggested that other “non-
muscle” stem cell populations can participate to muscle 
regeneration, contributing to maintain the pool of 
satellite cells. These stem cell populations could either 
reside within muscle, or recruited via circulation in 
response to homing signals secreted by injured skeletal 
muscle. These populations include endothelial-
associated cells,1-6 interstitial cells,17-19 and bone 
marrow-derived cells.20,21 At first sight the origin of non 

 
 

Fig. 1 Model of stem cell-mediated muscle regeneration. (A) Schematic representation of the four interrelated and 

time-dependent phases underlying muscle regeneration. The relevant biological responses, activated after 

cardiotoxin (CTX) injection, are indicated. (B) Schematic model outlining the relevant markers expressed by 

satellite cells during the different stages of regeneration. (h: hours; d: days). 
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muscle-derived stem cells appears to be mainly 
restricted to the hemo-vascular system (hematopoietic, 
endothelial, pericytes). A question relevant to muscle 
regeneration is whether there is any lineage relationship 
between one or more types of mesoderm stem cells and 
muscle satellite cells. Although there is not a conclusive 
answer to this question, it is possible that any of these 
cells may leave the vessel wall, enter the interstitial 
space and produce factors that stimulate the activity of 
satellite cells. 

The role of tissue niche on muscle regeneration 
One of the critical points that remain to be addressed is 
the following: if skeletal muscle possesses a stem cell 
compartment, it is not clear why skeletal muscle fails to 
regenerate under pathological conditions. Either the 
resident muscle stem cells drastically decrease during 
aging and in several degenerative diseases or perhaps 
the pathological muscle is a prohibitive environment for 
stem cells activation and function. Although we lack 
definitive answers, several evidences suggested that 
with age or under pathological conditions, the systemic 
environment impinges the activity of satellite cells and 
stimulates fibrotic accumulation. In particular, recent 
reports described the identification of muscle-derived 
interstitial cells, referred to as fibro-adipocyte 
progenitors (FAPs).22 Under physiologic regenerative 
stimuli, FAPs secrete factors that promote satellite cell-
mediated regeneration.23 In contrast, in degenerating 
muscles, such as muscular dystrophy, these cells turn 
into fibro-adipocytes, which mediate fat deposition and 
fibrosis.24 
The environmental niche that nurtures and maintains the 
stem cells at different anatomical sites and influences 
stem cell proliferation and differentiation represents a 
critical component of muscle regeneration. Indeed, 
heterochronic experiments demonstrated that old muscle 
successfully regenerates when transplanted in a young 
animal,25 whereas the regeneration of young muscle 
transplanted in an old host was impaired. This 
hypothesis has been clearly validated by parabiotic 
experiments, the union of two organisms that share the 
circulatory system, demonstrating the rejuvenation of 
aged progenitor cells by exposure to a young systemic 
environment.26 
Similarly, we also demonstrated that human satellite 
cells fail to differentiate when cultured in isochronic 
conditions.27 Immunofluorescence analysis for the 
expression of MyHC revealed that aged satellite cells 
did not display major defect in the propensity to fuse 
when differentiated under standard conditions, namely 
in DMEM supplemented with 5% horse serum. Of note, 
we observed that autologous serum (isochronic culture 
conditions) dramatically reduced muscle differentiation, 
which was partially rescued when aged satellite cells 
were differentiated in heterologous/ heterochronic 
serum (from young donors) .27 These data suggest that 
with age, the systemic environment is less effective in 

maintaining the myogenic fate of muscle stem cells and, 
instead, facilitates conversion to a fibrogenic fate. The 
modifications with aging in the secretome of the 
different cell types present at different phases of 
regeneration is probably then crucial, as is expression of 
relevant cell surface receptors, which can also change 
with age. Among potential factors, Notch, Wnt, and 
Insulin-like growth factor-1 (IGF-1) may modulate the 
pathological niche. Notch signaling is one of the major 
pathway that regulates the activation and expansion of 
the satellite cell lineage during embryogenesis,28 and in 
the adult.29 The decline of Notch signaling with age is 
thought to be one of the causes of the decreased 
regenerative potential of aged satellite cells.26 Indeed 
forced activation of Notch signaling in injured muscle 
of aged mice restores regenerative potential to that 
tissue.30 In addition, the temporal balance between 
Notch and Wnt signaling orchestrates the precise 
progression of muscle precursor cells along the 
myogenic lineage pathway, during postnatal 
myogenesis.31 Nevertheless, the Wnt signal must be 
finely modulated, since a persistence of Wnt signal, as, 
for example, observed in aged mice, can be associated 
with an increase in tissue fibrosis.32-34 Conversely, the 
myogenic-to-fibrogenic conversion has been abrogated 
by Wnt inhibitors.33 
Among growth factors, insulin-like growth factor-1 
(IGF-1) has been implicated in many anabolic pathways 
in skeletal muscle and it plays a central role during 
muscle regeneration.35-37 Unlike other growth factors, 
the local isoform of IGF-1 (mIGF-1) also stimulates 
myogenic differentiation, generates a pronounced 
muscle hypertrophy,38-41 modulates the inflammatory 
response, and accelerates the functional rescue of 
injured skeletal muscle.36,42,43 
In addition, we observed that forced expression of 
mIGF-1 improves muscle mass and strength, decreases 
myonecrosis, and reduces fibrosis in dystrophic mice.44 
This is of particular relevance to the human dystrophic 
condition where virtually all skeletal muscles succumb 
to fibrosis. In addition we recently demonstrated that 
muscle-specific expression of mIGF-1 can counter 
aspects of the muscular dystrophy associated with the 
loss of dystrophin, modulating relevant molecules of the 
genetic and epigenetic circuitries in the mdx dystrophic 
mouse model.45 Our work is consistent with a model in 
which overexpression of mIGF-1 confers robustness to 
dystrophic muscle, impedes the activation of a chronic 
inflammatory response, activates the circuitry of muscle 
differentiation and maturation. This results in a 
functional homeostatic maintenance of dystrophic 
muscle.45 Another study also demonstrated that co-
injection of the rAAV-microdystrophin and rAAV-
mIGF-1 vectors resulted in increased muscle mass and 
strength, reduced myofiber degeneration, and increased 
protection against contraction-induced injury.46 These 
results suggest that a combination of promoting muscle 
regenerative capacity and preventing muscle necrosis 
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could be an effective treatment for the secondary 
symptoms caused by the primary loss of dystrophin. 
In addition, localized expression of mIGF-1 delays the 
onset and progression of disease in amyotrophic lateral 
sclerosis (ALS) mice,47-50 ameliorates muscle pathology 
and reduces motor neuron loss in a mouse model of 
spinal and bulbar muscular atrophy (SBMA) ,51 and 
improves muscle mass and extends the survival of 
severe spinal muscular atrophy (SMA) mice. 52 
Interestingly, we recently demonstrated that IGF-1 
isoforms are also up-regulated in senior patients treated 
with electrical stimulation (ES),53 promoting satellite 
cells activation, reduction in the expression of muscle-
specific atrophy-related ubiquitin ligase genes, and 
promoting the remodeling of extracellular matrix.54 
Another potential factor that, similarly to IGF-1,55 plays 
important physiological roles in skeletal muscle 
development and homeostasis is the neurohypophyseal 
hormone vasopressin (AVP). In a recent study,56 we 
demonstrated that muscle-specific stimulation of AVP 
induces acceleration of satellite cell activation and 
earlier stimulation of specific pathways involved in 
muscle regeneration. 

Conclusions 
These findings demonstrate that while stem cells 
represent an important determinant for tissue 
regeneration, a “qualified” environment is necessary to 
guarantee and achieve functional results. 
Thus, in several muscle pathologies the systemic 
environment is less effective in maintaining the 
myogenic fate of muscle stem cells and, instead, 
facilitates conversion to a fibrogenic fate. In this 
context, therapeutic applications of adult stem cells to 
aged or pathological tissue repair, in the context of 
regenerative medicine,57-63 will require an increased 
understanding of stem-cell biology, environment of 
pathological tissue and interaction between the two. 
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