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Abstract. We study geometric and combinatorial properties of the degener-
ate flag varieties of type A. These varieties are acted upon by the automorphism

group of a certain representation of a type A quiver, containing a maximal

torus T. Using the group action, we describe the moment graphs, encoding
the zero- and one-dimensional T-orbits. We also study the smooth and singu-

lar loci of the degenerate flag varieties. We show that the Euler characteristic

of the smooth locus is equal to the large Schröder number and the Poincaré
polynomial is given by a natural statistics counting the number of diagonal

steps in a Schröder path. As an application we obtain a new combinatorial

description of the large and small Schröder numbers and their q-analogues.

1. Introduction

For n ≥ 1, let Fan+1 be the degenerate flag variety attached to the Lie algebra
sln+1 (see [Fe1], [Fe2]). This is a flat degeneration of the classical flag variety, de-
fined using the PBW filtration on irreducible representations of sln+1 (see [FFoL]).
By construction, the Fan+1 is acted upon by the degenerate Lie group SLan+1, which

is the semi-direct product of the Borel subgroup B and the abelian group GNa , where
Ga is the additive group of the field. In particular, GNa acts on Fan+1 with an open
dense orbit. The degenerate flag varieties are singular normal projective algebraic
varieties, sharing many nice properties with their classical analogues. In particular,
they enjoy a description in terms of linear algebra as subvarieties inside a product
of Grassmann varieties.

It has been observed in [CFR] that the degenerate flag varieties can be identified
with certain quiver Grassmannians of the equioriented quiver of type An. More
precisely, Fan+1 is isomorphic to the quiver Grassmannian GrdimA(A⊕ A∗), where
A and A∗ are the path algebra of the equioriented An quiver, resp. its dual. This
observation was used in two different ways: first, to get a deeper understanding of
the geometry and combinatorics of the degenerate flag varieties, and, second, to
generalize the results and constructions to a wider class of quiver Grassmannians.
In this paper we continue the study of the varieties Fan+1 using the techniques from
the theory of quiver Grassmannians. More concretely, we achieve two things: first,
we describe the combinatorial structure of the moment graph of Fan+1. Second, we
describe explicitly the smooth and singular loci of the degenerate flag varieties. Let
us give a brief description of our results.

Recall that the notion of the moment graph attached to an algebraic variety X
acted upon by an algebraic torus was introduced in [GKM], [BM]. This combi-
natorial object captures the structure of zero- and one-dimensional orbits of T . It
turns out to be very useful for describing various geometric properties of X, such as
cohomology and intersection cohomology. Our first task is to describe the moment
graph Γ of Fan+1. We note that the automorphism group Aut(A ⊕ A∗) acts on
Fan+1. The maximal torus T of the automorphism group acts with a finite number
of fixed points (this number is equal to the normalized median Genocchi number,
see [CFR],[Fe2],[Fe3]). It is proved in [CFR] that there exists a codimension one
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subgroup A ⊂ Aut(A ⊕ A∗) containing the torus T such that A-orbits through
T -fixed points are affine cells that provide a cellular decomposition of Fan+1. We
describe A as a quotient of the Borel subgroup of SL2n. Using this description, we
prove the following theorem (for a more precise formulation see section 3):

Theorem 1.1. The number of one-dimensional T -orbits in Fan+1 is finite. The
edges of Γ correspond to the one-parameter subgroups of A.

We note that the structure of Γ has many common features with its classical
analogue (see [C], [GHZ], [T]).

Our next goal is to describe the smooth locus of the degenerate flag varieties.
Since Fan+1 has a cellular decomposition by A-orbits of T -fixed points, it suffices
to decide which T -fixed points are smooth. We recall that the T -fixed points are
labeled by collections S = (S1, . . . , Sn) of subsets of {1, . . . , n+1} such that #Si = i
and Si ⊂ Si+1 ∪ {i+ 1}. We denote the corresponding T -fixed point by pS.

Theorem 1.2. A point pS is smooth if and only if for all 1 ≤ j < i ≤ n, the
condition i ∈ Sj implies j + 1 ∈ Si. The number of smooth T -fixed points is given
by the large Schröder number rn.

We recall (see [St], [G]) that the large Schröder number rn is equal to the num-
ber of Schröder paths, i.e. subdiagonal lattice paths starting at (0, 0) and ending
at (n, n) with the following steps allowed: (1, 0), (0, 1) and (1, 1). In particular,
Theorem 1.2 implies that the Euler characteristic of the smooth locus of Fan+1 is
equal to rn. Moreover we prove the following theorem:

Theorem 1.3. The Poincaré polynomial of the smooth locus of Fan+1 is equal to the

(scaled) q-Schröder number qn(n−1)/2rn(q), where rn(q) is defined via the statistics
on Schröder paths, counting the number of (1, 1) steps in a path.

As an application, we obtain a new proof of the statement that rn(q) is divisible
by 1 + q. The ratio is known to give a q-analogue of the small Schröder numbers.

Let us mention two more results of the paper. First, we prove that, for a general
Dynkin type quiver Q and a projective Q-module P and an injective Q-module I,
the quiver Grassmannian GrdimP (P ⊕ I) is smooth in codimension 2. Second, we
prove that the smooth locus of Fan+1 can be described as the subvariety of points
where the desingularization map Rn+1 → Fan+1 (see [FF]) is one-to-one.

Finally, we note that all the results of the paper can be generalized to the case
of the degenerate partial (parabolic) flag varieties.

Our paper is organized as follows:
In Section 1 we introduce the main objects and recall the main definitions and
results needed in the rest of the paper.
In Section 2 we describe the moment graph of the degenerate flag varieties.
In Section 3 we prove a criterion for smoothness of a T -fixed point and compute
the Euler characteristics and Poincaré polynomials.
In Appendix A we prove the regularity in codimension 2 of certain quiver Grass-
mannians.
In Appendix B we describe the smooth locus in terms of the desingularization.
In Appendix C we compute the moment graph for the degenerate flag variety Fa4 .

2. Quiver Grassmannians and degenerate flag varieties

In this section we recall definitions and results on the degenerate flag varieties
and quiver Grassmannians to be used in the main body of the paper.
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2.1. Degenerate flag varieties. Let Fn+1 be the complete flag variety for the
group SLn+1, i.e. the quotient SLn+1/B by the Borel subgroup B. This vari-
ety has an explicit realization as the subvariety of the product of Grassmannians∏n
k=1 Grk(Cn+1) consisting of collections (V1, . . . , Vn) such that Vi ⊂ Vi+1 for all i.

In [Fe1],[Fe2] flat degenerations Fan+1 of the classical flag varieties were introduced.
The degenerate flag varieties Fan+1 are (typically singular) irreducible normal projec-
tive algebraic varieties, sharing many nice properties with their classical analogues.
In particular, they also have a very explicit description in linear algebra terms.
Namely, let W be an (n + 1)-dimensional vector space with a basis w1, . . . , wn+1.
Let prk : W →W be the projection operators defined by prkwk = 0 and prkwi = wi
if i 6= k. The following lemma is proved in [Fe2], Theorem 2.1.

Lemma 2.1. The degenerate flag variety Fan+1 is a subvariety of the product of
Grassmannians

∏n
k=1 Grk(W ), consisting of collections (Vk)nk=1 such that

prk+1Vk ⊂ Vk+1 for all k = 1, . . . , n− 1.

Another important property of the varieties Fan+1 is that they admit a cellular
decomposition into a disjoint union of complex cells. Moreover, there exists an
algebraic group A and a torus T ⊂ A acting on Fan+1 such that each cell contains
exactly one T -fixed point and the A-orbit through this point coincides with the
cell. Let us describe the combinatorics of the cells, postponing the description of
the group action to the next subsection. So let S = (S1, . . . , Sn) be a collection of
subsets of the set {1, . . . , n + 1} such that each Si contains i elements. Then the
cells in Fan+1 are labeled by the collections satisfying the following property

(2.1) Sk ⊂ Sk+1 ∪ {k + 1}, k = 1, . . . , n− 1.

We call such collections admissible. The number of admissible collections (and
hence the Euler characteristic of Fan+1) is equal to the normalized median Genocchi
number hn+1 (see [Fe2],[Fe3], [CFR]). We note that the correspondence between the
admissible collections and T -fixed points is very explicit. Namely, for a collection
S we denote by pS ∈ Fan+1 a point defined by

pS = (V1, . . . , Vn), Vk = span(wi, i ∈ Sk).

Clearly, such a point belongs to Fan+1 if and only if the collection S is admissible.

2.2. Quiver Grassmannians. The construction above can be reformulated in the
language of quiver Grassmannians (see e.g. [Sc], [CR]). Let Q be the equioriented
type An quiver with vertices labeled by numbers from 1 to n and arrows i→ i+ 1,
i = 1, . . . , n− 1:

Q : • → • → · · · → •
For a representation M of Q we denote by Mk the subspace of M attached to the
vertex k. For a pair 1 ≤ i ≤ j ≤ n let Ri,j be an indecomposable representation of
Q supported on the vertices i, . . . , j (i.e. (Ri,j)k = C for i ≤ k ≤ j and is trivial
otherwise). We have the following immediate lemma.

Lemma 2.2.

dim Hom(Ri,j , Rk,l) =

{
1, if k ≤ i ≤ l ≤ j,
0, otherwise

;

dim Ext1(Ri,j , Rk,l) =

{
1, if i+ 1 ≤ k ≤ j + 1 ≤ l,
0, otherwise

.
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We note that the representations R1,j are injective and the Ri,n are projective
(note that these are all indecomposable injective and projective representations of
Q). We set

Ik = R1,k, Pk = Rk,n, P =

n⊕
k=1

Pk, I =

n⊕
k=1

Ik.

Hence, P is isomorphic to the path algebra of Q and I is isomorphic to its linear
dual. For a dimension vector e = (e1, . . . , en) and a representation M of Q, we
denote by Gre(M) the quiver Grassmannian of e-dimensional subrepresentations
of M . Then by definition one gets

(2.2) Fan+1 ' GrdimP (P ⊕ I).

Remark 2.3. The representation P ⊕ I can be visualized by the following picture
(here n = 4). Each fat dot corresponds to a basis vector and two dots corresponding
to the vectors u and v are connected by an arrow u→ v if u is mapped to v. The
quiver obtained in this way is called the coefficient–quiver of P ⊕ I.

(2.3) • // • // • // •
• // • // • •
• // • • // •
• • // • // •
• // • // • // •

The isomorphism (2.2) has many important consequences. In particular the
automorphism group of the Q-module P ⊕I acts on Fan+1. The group Aut(P ⊕I) is

of the following form Aut(P⊕I) =

(
AutP Hom(I, P )

Hom(P, I) AutI

)
. The part Hom(I, P )

is one-dimensional (Hom(I, P ) = Hom(In, P1)). We denote by A ⊂ Aut(P ⊕ I) the
following subgroup

A =

(
AutP 0

Hom(P, I) AutI

)
.

The group A contains a torus T isomorphic to (C∗)2n, where each factor scales the
corresponding indecomposable summand in P ⊕ I. The importance of the group A
comes from the following lemma, proved in [CFR].

Lemma 2.4. The group A acts on Fan+1 with a finite number of orbits. Each orbit
is a complex affine cell, containing exactly one T -fixed point. The orbits are labeled
by admissible collections.

For an admissible collection S we denote by CS the cell containing the T -fixed
point pS.

Remark 2.5. We note that T contains a one-parameter subgroup which acts by the
identity automorphism on the degenerate flag variety. Hence one gets a (2n − 1)-
dimensional torus acting effectively on Fan+1, while the maximal torus T c acting on
the classical flag variety Fn+1 is n-dimensional. We note that there is a natural
embedding T c ⊂ T . In fact recall that any point of Fan+1 is of the form (Vk)nk=1,
Vk ⊂ W ' Cn+1. Hence any diagonal (in the basis wi) matrix in SL(W ) induces
an automorphism of the degenerate flag variety. Hence we obtain the embedding
T c ⊂ T .

Finally, we note that the torus T contains a one-dimensional subtorus T0 with
the following properties: the set of T -fixed points coincides with the set of the
T0-fixed points and the attracting set of a fixed point p coincides the the orbit Ap
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(which is an affine cell) [CFR, Theorem 5.1]. The action of the one-dimensional
torus can be illustrated as follows (n = 4, the scalar λ ∈ C∗ is the parameter of the
torus and the power of λ corresponds to the scaling factor of the T0 action):

(2.4) 1 •

λ • // •

λ2 • // • // •

λ3 • // • // • // •

λ4 • // • // • // •

λ5 • // • // •

λ6 • // •

λ7 •

This picture is obtained from the picture (2.3) by putting the P -part on top of the
I-part.

We conclude this section by describing the action of the torus T on the tangent
space at a T–fixed point pS. Recall that the tangent space at pS is isomorphic to
Hom(pS,M/pS) where M = P ⊕ I ([CFR, Lemma 2.3], [CR], [Sc]). Let θM be
the coefficient quiver of M (see Remark 2.3) and let π : θM → Q be the natural
projection onto the An quiver Q. The coefficient quiver of M/pS is θM \ S. The
vector space Hom(pS,M/pS) has a distinguished basis, denoted by B, parameterized
by triples (A, f,B) where A is a predecessor–closed connected sub quiver of S, B
is a successor–closed connected sub quiver of θM \ S and f : A → B is a quiver
isomorphism compatible with π (see [C–B]). For example, in the left–hand side of
the picture below

(2.5)

· // · // •
· // • ·

• • // • A
f��

· // · // • B

λ3 // λ3 // λ3

λ4 // λ4 1

λ5 λ1 // λ1

λ2 // λ2 // λ2

the fat dots highlight the coefficient–quiver S of a T–fixed point pS of Fa4 and the
frames highlight a distinguished basis vector of the tangent space at pS.

Proposition 2.6. Given a T–fixed point pS of Fan+1, the torus T acts on the tangent
space at pS diagonally in the basis B. Moreover the eigenvalues are (generically)
distinct.

Proof. Given λ ∈ T and f ∈ Hom(pS,M/pS), (λ.f)(v) = λ.f(λ−1.v). Now, by
definition of T , each connected component R of θM has a weight wt(R) and hence
a basis vector (A, f,B) receives the weight wt(B)/wt(A). �

To illustrate the previous proposition, let us consider Fa4 and the action of
T depicted in the right–hand side of (2.5). The tangent space at pS has di-
mension 7 and the torus acts in the standard basis B as the diagonal matrix
diag( 1

λ3
, λ3

λ4
, λ2

λ4
, λ3

λ1
, λ2

λ1
, 1
λ2
, λ4

λ5
). The one–dimensional torus T0 is given by putting

λi := λi. In particular its action on the tangent space at pS is given by the diagonal
matrix diag(λ−3, λ−1, λ−2, λ2, λ1, λ−2, λ−1). Notice that the eigenvalues of the T0
action are not distinct.
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Corollary 2.7. The T–fixed one–dimensional vector subspaces of Hom(pS,M/pS)
are precisely the coordinate ones, i.e. those generated by standard basis vectors.

2.3. Partial flag varieties. The whole picture described above has a straightfor-
ward generalization to the case of partial flag varieties. Namely, given a collection
d = (d1, . . . , dk), where 1 ≤ d1 < d2 < · · · < dk ≤ n, let Fd be the corre-
sponding partial flag variety for SLn+1 (Fd is a quotient of SLn+1 by a parabolic
subgroup). Explicitly, Fd consists of collections (Vd1 , . . . , Vdk) of subspaces of an
(n+ 1)-dimensional vector space W such that dimVm = m and Vdi ⊂ Vdi+1

. These
varieties can be degenerated in the same way as the complete flag variety (see
[Fe1],[Fe2]). As a result one gets a variety Fad, consisting of collections of subspaces
(Vd1 , . . . , Vdk) of W such that dimVm = m and

prdi+1 . . . prdi+1
Vdi ⊂ Vdi+1

, i = 1, . . . , k − 1.

These varieties are also certain quiver Grassmannians (see [CFR]). Namely, con-
sider the equioriented quiver of type Ak. Then the degenerate partial flag variety
Fad is isomorphic to

(2.6) Gr(d1,...,dk)(P
d1
1 ⊕P

d2−d1
2 ⊕· · ·⊕P dk−dk−1

k ⊕Id2−d11 ⊕· · ·⊕Idk−dk−1

k−1 ⊕In+1−dk
k ),

where Pi and Ij are projective and injective modules of the Ak quiver. There is a
natural surjection Fan+1 → Fad, sending (Vi)

n
i=1 to (Vdj )kj=1. The group A thus acts

on Fad; the orbits are affine cells containing exactly one T -fixed point. These T -fixed
points are parametrized by collections S = (Sd1 , . . . , Sdk) of subsets of {1, . . . , n+1}
subject to the conditions #Sdi = di and

(2.7) Sdi ⊂ Sdi+1
∪ {di + 1, . . . , di+1}, i = 1, . . . , k − 1.

We call such collections d-admissible. As for the complete flags, the corresponding
T -fixed point pS = (Vd1 , . . . , Vdk) is given by Vdi = span(wj , j ∈ Sdi).

3. The moment graph

In this section we study the combinatorics and geometry of the cellular decom-
position of the degenerate flag varieties.

3.1. The group action. Recall the group A acting on Fan+1. The following lemma
is simple, but important for us. Let B ⊂ GL2n be the Borel subgroup of lower-
triangular matrices and N ⊂ B be the subgroup of matrices (ai,j)i≥j such that
ai,i = 1 and ai,j = 0 unless i− j > n. For example, for n = 5 the froup N looks as
follows: 

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
∗ 0 0 0 0 0 1 0 0 0
∗ ∗ 0 0 0 0 0 1 0 0
∗ ∗ ∗ 0 0 0 0 0 1 0
∗ ∗ ∗ ∗ 0 0 0 0 0 1


.

Lemma 3.1. The group A is isomorphic to the quotient group B/N .

Proof. Consider the isomorphism Aut(P ⊕ I) ' Aut(
⊕n

i=1 Pi⊕
⊕n

k=1 Ik). We note
that for any pair of indecomposable summands of P⊕I the space of homomorphisms
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between them is either one-dimensional or trivial. More precisely, let us introduce
the following notation for the indecomposable summands of P ⊕ I:

(3.1) R1 = Pn, R2 = Pn−1, . . . , Rn = P1, Rn+1 = In, Rn+2 = In−1, . . . , R2n = I1.

Then for two indecomposable summands Ri and Rj one has dim Hom(Ri, Rj) = 1
if and only if i ≤ j and j− i ≤ n (see Lemma 2.2). Hence we obtain a surjection of
groups B → A and the kernel coincides with N . �

Remark 3.2. Let us fix a non zero element γi,j ∈ Hom(Ri, Rj) for each pair i, j
with i ≤ j, j − i ≤ n. Then any element g ∈ A can be uniquely written as a sum∑
gi,jγi,j , defining a matrix in B. This produces a section A→ B.

Remark 3.3. We note that the direct summands Ri in type A4 are visualized in
(2.4). Namely, R1 is represented by the only fat dot in the upper line, R2 is
represented by the two dots in the next to the upper line, and so on up to R8. In
general, if i ≤ n, then the dimension vector of Ri is (0, . . . , 0, 1, . . . , 1) with i units
and each non zero (Ri)k is spanned by wn+1−i. If i > n, then the dimension vector
of Ri is (1, . . . , 1, 0, . . . , 0) with 2n− i+ 1 units and each non-zero (Ri)k is spanned
by w2n−i+2.

Recall that the T fixed points in Fan+1 are labeled by the admissible collections.
For an admissible collection S let pS be the corresponding T -fixed point and CS

be the cell containing pS. We know that CS = ApS. Our goal now is to describe a
unipotent subgroup US ⊂ A such that the map US → CS is one-to-one. Let a be
the Lie algebra of the group A. Then

a = Hom(P, P )⊕Hom(I, I)⊕Hom(P, I).

The Lie algebra a is the quotient of the Borel subalgebra b ⊂ gl2n of lower triangular
matrices by the ideal n consisting of matrices (aj,i)j≥i such that ai,j = 0 unless
j − i > n (this is exactly the Lie algebra of N). In particular, the one-dimensional
hom-spaces Hom(Ri, Rj), i ≤ j, j − i ≤ n between two indecomposable summands
of P ⊕ I correspond to the root vectors of the form Ej,i ∈ b (Ej,i are matrix units).
We have

a = t⊕
⊕

1≤i<j≤2n
j−i≤n

ai,j ,

where t is the Lie algebra of the torus T and ai,j = Hom(Ri, Rj).
Consider a pair Ri, Rj of direct summands of P⊕I such that dim Hom(Ri, Rj) =

1 and fix a non-zero γ ∈ Hom(Ri, Rj).

Definition 3.4. A pair of indices (i, j) (a pair of representations Ri, Rj) is called
S-effective, if pS ∩Ri 6= 0 and γ(pS ∩Ri) does not sit inside pS.

Remark 3.5. S–effective pairs have the following geometric interpretation: they
are in bijection with standard basis vectors of the tangent space at pS on which
T0 acts with positive weight (see the end of subsection 2.2). Let us prove this
statement. In notation (3.1), we denote by Rk the coefficient–quiver of Rk. Given
an S–effective pair (i, j) a non–zero γ ∈ Hom(Ri, Rj) is determined (up to scalar
multiplication) by a (unique) triple (A, f,B). So A ⊂ Ri is predecessor–closed,
B ⊂ Rj is successor closed and f : A → B is a quiver isomorphism compatible
with π (see subsection 2.2). The sub representation γ(pS∩Ri) ⊂ Rj determines the
successor–closed sub quiver f(S∩A) of B. Since by definition γ(pS ∩Ri) does not
sit inside pS, f(S∩A) strictly contains S∩B and the difference f(S∩A) \ (S∩B)
is the coefficient quiver of the non trivial quotient γ(pS ∩ Ri)/(γ(pS ∩ Ri) ∩ pS).
The map

γ 7→ bγ := (S ∩A \ f−1(S ∩B), f |S∩A\f−1(S∩B), f(S ∩A) \ (S ∩B))
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gives a bijection between S–effective pairs and standard basis vectors of the tangent
space TpS(Fan+1) = Hom(pS,M/pS) on which T0 acts with a positive weight. To see
this we notice that S ∩ A is predecessor–closed in S and S ∩ B is successor closed
in B. Then f−1(S ∩B) is successor closed in S ∩A and hence S ∩A \ f−1(S ∩B)
is predecessor closed in S∩A and hence in S. We notice that S∩B coincides with
S∩Rj (otherwise S∩B would not be strictly contained in f(S∩A)). Since f(S∩A) is
successor closed in Rj and S∩B = S∩Rj , it follows that f(S∩A)\(S∩B) is successor
closed in Rj \(S∩Rj) and hence in θM \S. The quiver morphsim f |S∩A\f−1(S∩B) is

a quiver isomorphism between S∩A\f−1(S∩B) and f(S∩A)\ (S∩B) compatible
with π, since f is so. The image bγ of γ is hence a standard basis vector of
Hom(ps,M/pS). The action of T0 on bγ is given by λ.bγ = λj−ibγ . Since γ 6= 0,
then i ≤ j and hence bγ has positive weight. The map is hence well–defined and
injective. Let us show that it is surjective. Let b = (A′, f ′, B′) be a standard basis
vector of Hom(pS,M/pS) on which T0 acts with a positive weight. Then there are
indices i and j such that A′ is a predecessor–closed sub quiver of S∩Ri, and B′ is a
successor–closed sub quiver of Rj \ (Rj ∩S). The torus T0 acts on b as λ.b = λj−ib
and hence j > i. We claim that j − i ≤ n. Indeed if j − i > n then π(Rj)
and π(Ri) are disjoint in Q (otherwise Hom(Ri, Rj) 6= 0 against the hypothesis
j − i > n) and hence the quiver isomorphism f ′ : A′ → B′ could not exist. In
view of Lemma 2.2 and the proof of Lemma 3.1, it follows that there is a non–zero
standard basis vector γ ∈ Hom(Ri, Rj) defined by a triple (A, f,B). Notice that
π(A) = π(B) = π(Ri) ∩ π(Rj) ⊃ π(A′) = π(B′). It follows that A′ ⊂ A, B′ ⊂ B
and f ′ = f |A′ . From this we conclude that pS ∩Ri 6= 0 and γ(pS ∩Ri) does not sit
inside pS and hence (i, j) is an S–effective pair.

Let Ui,j ⊂ A be the one-parameter subgroup with the Lie algebra ai,j . The
importance of effective pairs is explained by the following lemma:

Lemma 3.6. If a pair (i, j) is not S-effective then Ui,jpS = pS. Otherwise, the
map Ui,j → Fan+1, g 7→ gpS is injective.

Proof. Assume that a pair Ri, Rj is not S-effective and take a non trivial γ ∈
Hom(Ri, Rj). By definition, γpS ⊂ pS and hence the exponent of the (scaled)
operator γ fixes pS. To prove the second claim we note that

exp(cγ)pS = (Id+ cγ)pS.

Hence, if γpS does not sit inside pS, then all the points exp(cγ)pS, c ∈ C are
different. �

For an admissible S let aS ⊂ a be the subspace defined as the direct sum of
one-dimensional spaces Hom(Ri, Rj) for all S-effective pairs Ri, Rj .

Lemma 3.7. The subspace aS is a Lie subalgebra of a.

Proof. Let γ1 ∈ ai,j and γ2 ∈ ak,l, i > j, k > l be two elements such that [γ1, γ2] 6=
0. Then either j = k or i = l. We work out the first case (the second is very
similar). We have [γ1, γ2] = γ1γ2 ∈ ai,l. Since γ2 is S-effective, we have

γ2(pS ∩Rl) ) pS ∩Rk.

Now, since

γ1(pS ∩Rj) ) pS ∩Ri
and j = k, we obtain that

γ1γ2(pS ∩Rl) ) pS ∩Ri
and hence γ1γ2 is S-effective. �
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Let US be the Lie group of aS, i.e. US is generated by all Ui,j with S-effective
(i, j). We note that US is invariant with respect to the torus T action by conjuga-
tion.

Theorem 3.8. The map US → CS, g 7→ gpS is bijective and T -equivariant.

Proof. First, we note that T -equivariance follows from TpS = pS. Now let us prove
that the map US → CS is surjective. Let us write an element g ∈ A as g = gSg1h,
where h ∈ T , gS ∈ US and g1 belongs to the subgroup of of A, generated by Ui,j
with non S-effective (i, j). Then gpS = gSpS and hence we are done. Finally, let
us prove the injectivity. Assume that there exists g ∈ US such that gpS = pS. We
identify g with the corresponding lower triangular matrix in GL2n with entries gi,j
satisfying gi,i = 1 and gi,j = 0 if i− j > n. Our goal is to prove that gi,j = 0 for all
i > j. Let p(S) = (V1, . . . , Vn) and assume that gi,j 6= 0 for i > j. Since g ∈ US, the
pair (i, j) is S-effective. Consider a non-zero element γ ∈ ai,j (so γ ∈ Hom(Ri, Rj)).
Let t = 1, . . . , n be a number such that Vt ∩ Ri 6= 0 and γVt ∩ Vt = 0. Choose a
non-zero vector w ∈ Vt ∩Ri. Then gw /∈ Vt and hence gpS 6= pS. �

Remark 3.9. We note that Theorem 3.8 is analogous to the corresponding theorem
for classical flag varieties, see e.g. [T], Lemma 3.2.

Proposition 3.10. The number of S-effective pairs (i, j) is equal to the sum
NPI(S) +NPP (S) +NII(S) of three numbers defined by:

• NPI(S) is the number of pairs 1 ≤ k < l ≤ n + 1 such that there exists t
with k ≤ t < l such that k ∈ St, l /∈ St.

• NPP (S) is the number of pairs 1 ≤ k < l ≤ n such that there exists t ≥ l
such that l ∈ St, k /∈ St.

• NII(S) is the number of pairs 2 ≤ k < l ≤ n + 1 such that there exists
t < k such that l ∈ St, k /∈ St.

Proof. We divide S-effective pairs into three parts Ri, Rj ⊂ P , Ri, Rj ⊂ I and
Ri ⊂ P,Rj ⊂ I. We claim that the number of S-effective pairs from the first
(second, third) part is equal to NPP (S) (NII(S), NPI(S)).

(i) The case Ri ⊂ P , Rj ⊂ I. Then 1 ≤ i ≤ n < j ≤ 2n. Since (i, j) is
S–effective, there exists an index t : n+ 1− i ≤ t ≤ 2n+ 1− j such that
n+1− i ∈ St and 2(n+1)− j /∈ St. Put k = n+1− i and l = 2(n+1)− j.

(ii) The case Ri, Rj ⊂ P . Since (i, j) is S–effective then 1 ≤ i < j ≤ n and
there is an index t : t ≥ n+ 1− i > n+ 1− j such that n+ 1− i ∈ St and
n+ 1− j /∈ St. Put l = n+ 1− i and k = n+ 1− j.

(iii) The case Ri, Rj ⊂ I. Since (i, j) is S–effective then n+1 ≤ i < j ≤ 2n and
there is an index t : t ≤ 2n+ 1− j < 2n+ 1− i such that 2(n+ 1)− i ∈ St
and 2(n+ 1)− j /∈ St. Put l = 2(n+ 1)− i and k = 2(n+ 1)− j.

�

Corollary 3.11. The dimension of CS is equal to the sum NPI(S) + NPP (S) +
NII(S).

Proof. Thanks to Theorem 3.8 the dimension of the cell CS is equal to the number
of S-effective pairs Ri, Rj . Now Proposition 3.10 implies the corollary. �

Corollary 3.12. The Poincaré polynomial of Fan+1 is equal to the sum of the terms

qNPI(S)+NPP (S)+NII(S), where the sum runs over the set of admissible collections.

Remark 3.13. In [CFR, Theorem 5.1] it is shown that although Fan+1 is not smooth,
the one–dimensional sub torus T0 of T still produces a Bia lynicki–Birula type cell
decomposition ([BB], [CG, Theorem 2.4.3]). In other words, the attracting set of
a T0–fixed point pS is a cell and it has dimension equal to the dimension of the
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positive part of the tangent space at pS (the positive part is the vector subspace
generated by vectors on which T0 acts with positive weight). In view of Remark 3.5,
this dimension is precisely the number of S–effective pairs. Theorem 3.8 provides
another and more explicit proof of this fact.

Remark 3.14. From the discussion above (see Corollary 3.11 and Remark 3.5), the
dimension of the cell with center pS can be easily read off from S, viewed inside
the coefficient quiver of P ⊕ I written in the form (2.4). Indeed in this diagram let
us color a vertex black if it belongs to S and white otherwise. In the i–th column
(counting from left to right) there are precisely i black vertices. Some of them are
sources of S. For every such source t ∈ Si let us count the number wt of white
vertices below it. Let ci be the sum of the wt’s. Then the dimension of the cell
with center pS equals the sum c1 + c2 + · · · + cn. For example let us consider the
following T–fixed point of Fa5 :

•
◦ // •

◦ // • // •
◦ // ◦ // • // •
◦ // ◦ // ◦ // ◦
• // • // •
◦ // •
◦

then c1 = 2, c2 = 0, c3 = 2 and c4 = 2. The cell has hence dimension 6.

3.2. Moment graph. We briefly recall the definition of a moment graph (see
[BM],[GKM]). Let X be a projective algebraic variety acted upon by a torus T =
(C∗)d with a fixed one-dimensional subtorus ı : C∗ ⊂ T . Assume that the T action
on X has finitely many fixed points and one-dimensional orbits and any C∗ fixed
point is T -fixed (XT = XC∗). Assume further that X has a decomposition as a
disjoint union of T -invariant affine cells in such a way that each cell C contains
exactly one C∗-fixed point p and C = {x ∈ X : limλ→0 ı(λ)x = p} (i.e. the cell
consists of all points attracted by p, see [BB]). We denote this cell by Cp. The
moment graph Γ has its set of vertices labeled by the T -fixed points. Two points
p1 and p2 are connected by an edge in Γ if there exists a one-dimensional T -orbit L
such that L̄ = Lt p1 t p2 (i.e. p1 and p2 are the T -fixed points in the closure of L).
Thus the edges of Γ are labeled by the one-dimensional T -orbits. We orient Γ by
the following rule: for two vertices p1 and p2 we say p1 ≥ p2 if Cp2 ⊂ C̄p1 . If there
is an edge connecting p1 and p2 in Γ then we put an arrow p1 → p2. Finally, one
defines a labeling αL of the edges L of Γ by the elements αL ∈ t∗, where t is the
Lie algebra of the torus T . Namely, for an edge L let Tx ⊂ T be the stabilizer of a
point x ∈ L (obviously, Tx is independent of x ∈ L). Then the Lie algebra tx ⊂ t is
a hyperplane. We define αL as a non-zero element in the annihilator of tx.

Example 3.15. Here we give an example of the moment graph for the classical flag
variety F3 = SL3/B. The torus T has 6 fixed points labeled by pairs (S1, S2) of
subsets of {1, 2, 3} such that #S1 = 1, #S2 = 2 and S1 ⊂ S2. The moment graph
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of F3 looks as follows:

(1, 12)

vvnnnnnnnnnnnn

$$IIIIIIIII

��

(2, 12)

�� ++VVVVVVVVVVVVVVVVVVVVVVVV (1, 13)

��sshhhhhhhhhhhhhhhhhhhhhhhh

(2, 23)

((PPPPPPPPPPPP (3, 13)

zzuuuuuuuuu

(3, 23)

We note that usually the arrows in the moment graph direct from bottom to top.
However for our purposes it is more convenient to draw the vertices from top to
bottom, since in the degenerate situation the dense cell corresponds to the point
(1, 12), see Example 3.17. This is not important in the classical situation due to
the Chevalley involution, but crucial in the degenerate case.

Our goal is to describe the moment graph of the degenerate flag varieties.

Remark 3.16. We note that the moment graphs turn out to be a powerful tool for
computing various cohomology groups of algebraic varieties (see [BM], [GKM], [T],
[Fi], [FW]). A crucial role is played by the notion of sheaves on moment graphs.
In this paper we do not discuss Γ-sheaves, but only describe the combinatorial
structure of the graphs. Computation of the (equivariant) cohomology as well
as the (equivariant) intersection cohomology of the degenerate flag varieties is an
interesting open problem.

Example 3.17. Here we give a picture of the moment graph for the degenerate flag
variety Fa3 . Recall that the T -fixed points are labeled by pairs (S1, S2) of subsets
of the set {1, 2, 3} such that #S1 = 1, #S2 = 2 and S1 ⊂ S2 ∪ {2}.

(1, 12)

zzuuuuuuuuu

$$IIIIIIIII

��

(2, 12)

��

��.
......................

(1, 13)

��

�������������������������

(3, 23)

$$IIIIIIIII

zzuuuuuuuuu

(2, 23)

$$IIIIIIIII
(3, 13)

zzuuuuuuuuu

(2, 13)

The moment graph for the degenerate flag variety Fa4 is computed in Appendix C.
We now give an explicit combinatorial description of the moment graph. We

identify the Lie algebra t of T with the diagonal traceless 2n × 2n matrices. For
a pair of indices i, j, 1 ≤ i < j ≤ 2n, we denote by αi,j ∈ t∗ the element
αi,j(diag(x1, . . . , x2n)) = xi − xj .
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Theorem 3.18. The number of one-dimensional T -orbits in Fan+1 is finite. The
orbits are of the form Ui,jpS \ pS, where S is admissible and (i, j) is S-effective.
The edge in the moment graph, which corresponds to Ui,jpS \ pS is labeled by αi,j.

Proof. Thanks to Theorem 3.8, we only need to describe the one-dimensional T -
orbits in US. It is easy to see that these are non-identity elements in Ui,j . �

Remark 3.19. Theorem 3.18 also follows from Corollary 2.7 and Remark 3.5. In-
deed in view of Corollary 2.7, the directions around pS of the one–dimensional
T–orbits containing pS are precisely the standard basis vectors of the tangent space
TpS(Fan+1) at pS. In particular the number of such T–orbits is bigger or equal than
dimFan+1 and it is equal if and only if pS is smooth. Any such curve ` consists
of three T–orbits ` = {pS} ∪ {`′} ∪ {pR}. The direction of ` is fixed also by the
one–dimensional torus T0. In particular this standard basis vector of TpS(Fan+1)
has either positive or negative T0 weight. If the weight is positive then {pS} ∪ {`′}
sits inside the attracting set of pS which is the cell ApS and hence pR (and its
attracting cell) is in the closure of this cell. It follows that in the moment graph
there is an arrow pS → pR. In particular the number of arrows starting from pS
in the moment graph, equals the number of standard basis vector of TpS(Fan+1) on
which T0 acts with positive weight. In view of Remark 3.5 this number equals the
number of S–effective pairs.

Corollary 3.20. The dimension of a cell CS is equal to the number of edges in the
moment graph which are directed outwards the vertex pS.

The following theorem generalizes the results as above to the case of the degen-
erate partial flag varieties.

Theorem 3.21. The number of one-dimensional T orbits on Fad is finite. Each
of these orbits is covered by a one-dimensional T -orbit in Fan+1 via the surjection
Fan+1 → Fad. All the orbits are of the form Ui,jp \ p for some i, j and a T -fixed
p ∈ Fad.

4. Smooth locus and the Schröder numbers

In this section we describe the smooth locus of the degenerate flag varieties Fan+1

and compute Euler characteristics and Poincaré polynomials.

4.1. Smooth cells. Take a point N ∈ GrdimP (P ⊕ I). Then N can be split as
N = NP ⊕ NI , where NP ⊂ P and NI ⊂ I, such that NI and P/NP are of the
same dimension vector (see [CFR, Theorem 1.3]).

Lemma 4.1. A point N in a quiver Grassmannian GrdimP (P ⊕ I) is smooth if
and only if Ext1(NI , P/NP ) = 0.

Proof. Let 〈·, ·〉 be the Euler form of the quiver Q, given on a pair of dimen-

sion vectors d, e by 〈d, e〉 =
∑n
i=1 diei −

∑n−1
i=1 diei+1. Then 〈dimX,dimY 〉 =

dim Hom(X,Y )− dim Ext1(X,Y ) for arbitrary representations X and Y of Q. By
[CFR, Theorem 1.1], we have

〈dimP,dimI〉 = dim GrdimP (P ⊕ I).

By the formula [CFR, Lemma 2.3] for the dimension of the tangent space TN to
the point N ∈ GrdimP (P ⊕ I), we then have

dimTN = dim Hom(NI ⊕NP , P/NP ⊕ I/NI) =

〈dimP,dimI〉 − dim Ext1(NI ⊕NP , P/NP ⊕ I/NI).
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Since NP is projective and N/NI is injective, we obtain

dim Ext1(NI ⊕NP , P/NP ⊕ I/NI) = dim Ext1(NI , P/NP ).

Hence, the dimension of the tangent space at a point N is equal to the dimension
of the Grassmannian if and only if Ext1(NI , P/NP ) vanishes. �

Recall that the quiver Grassmannian GrdimP (P ⊕ I) can be decomposed into
the disjoint union of A-orbits of the form ApS. Hence all the points of the orbit
are smooth or singular together with pS. So it suffices to understand what are the
conditions for an admissible collection S that guarantee the smoothness of pS. We
use Lemma 4.1 above.

Theorem 4.2. A point pS is smooth if and only if for all 1 ≤ j < i ≤ n, the
condition i ∈ Sj implies j + 1 ∈ Si.

Proof. Given an admissible collection S = (Si)
n
i=1, we introduce the following num-

bers for all i = 1, . . . , n+ 1:

ki = min{1 ≤ k < i : i ∈ Sk}, lj = min{j ≤ l ≤ n : j ∈ Sl}.
Recall the indecomposable representations Rk,l with the support on the interval
[k, l]. A representation pS is isomorphic to the direct sum NI ⊕NP , where NI ⊂ I
and NP ⊂ P . It is easy to see that

NI =
⊕
i

Rki,i−1, P/NP =
⊕
j

Rj,lj−1.

The extension groups between the indecomposables are given by Lemma 2.2. Thus
we obtain that 0 6= Ext1(NI , P/NP ) if and only if there exist indices i and j such
that ki + 1 ≤ j ≤ i ≤ lj − 1. This holds (writing out the three inequalities) if and
only if there exist indices j ≤ i such that

min{1 ≤ k < i : i ∈ Sk} < j, min{j ≤ l ≤ n : j ∈ Sl} > i.

This translates into the condition that there exist j ≤ i such that i ∈ Sj−1, but
j 6∈ Si. Conversely, this means that the orbit is smooth if and only if for all
1 ≤ j ≤ i ≤ n+ 1, if i ∈ Sj−1, then j ∈ Si. Note that this condition is void in case
j = 1 or i = n + 1, so that we can replace j by j − 1, and obtain the assertion of
theorem. �

In what follows we call an admissible collection S smooth iff pS is a smooth
point.

4.2. The large Schröder numbers. Let rn be the n-th large Schröder number,
defined as the number of Schröder paths, i.e. subdiagonal lattice paths from (0, 0)
to (n, n) consisting of the steps (0, 1), (1, 0) or (1, 1). The sequence r0, r1, r2, ...
starts with 1, 2, 6, 22, 90, 394. Here are the six Schröder paths for n = 2:

r r rr r rr r r r r rr r rr r r
� r r rr r rr r r

� r r rr r rr r r r r rr r rr r r
� r r rr r rr r r

�
�

We note that (see e.g. [BEK],[BSS],[St])

rn = rn−1 +

n−1∑
k=0

rkrn−1−k.

The small Schröder numbers sn are defined as halves of the large ones.
Recall that a collection S = (Sa)na=1 of subsets of the set {1, . . . , n+1} is smooth

if #Sa = a, Sa ⊂ Sa+1 and for all 1 ≤ a < b ≤ n the following condition holds (see
Theorem 4.2):

if b ∈ Sa, then a+ 1 ∈ Sb.
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Let LSn be the set of length n smooth collections and r̄n be the cardinality of LSn.

Proposition 4.3. The numbers r̄n satisfy the recursion

r̄n = r̄n−1 +

n−1∑
k=0

r̄kr̄n−1−k.

Proof. We divide all smooth collections according to the values of S1. So first, let
S1 = {1}. Let us show that the number of such smooth collections is equal to r̄n−1.
Note that all Sa contain 1. For a = 1, . . . , n− 1 we set

S′a = {i : i+ 1 ∈ Sa+1} ⊂ {1, . . . , n}.

We claim that the collection (S′a)n−1a=1 is smooth and all (length n − 1) smooth
collections arise in this way. First, obviously, #S′a = a and S′a ⊂ S′a+1. Now the
conditions (b ∈ Sa implies a + 1 ∈ Sb), 2 ≤ a < b ≤ n are equivalent to the
conditions (b ∈ S′a implies a+ 1 ∈ S′b), 1 ≤ a < b ≤ n− 1.

Let LSkn ⊂ LSn be the set of smooth collections satisfying S1 = {k}, 2 ≤ k ≤
n + 1. We want to show that the cardinality of LSkn is equal to r̄k−2r̄n+1−k. To
this end we construct a bijection F : LSkn → LSk−2 × LSn+1−k. For convenience,
we write F = (f, g), where

f : LSkn → LSk−2, g : LSkn → LSn+1−k.

First, since S1 ⊂ Sa for any a, we have k ∈ Sa, 2 ≤ a ≤ n. Now the conditions
k ∈ Sa for a = 1, . . . , k − 1 imply

{2, . . . , k} ⊂ Sa for all a ≥ k.

Given a collection S ∈ LSkn, we define

g(S) = (g(S)1, . . . , g(S)n+1−k)

as follows:

(4.1) g(S)a =

{
{i : 2 ≤ i ≤ n+ 1− k, i+ k − 1 ∈ Sa+k−1}, if 1 /∈ Sa+k−1,
{1} ∪ {i : 2 ≤ i ≤ n+ 1− k, i+ k − 1 ∈ Sa+k−1} otherwise.

We note that the image depends only on the sets Sa with a ≥ k.
Now, given a collection S ∈ LSkn, we need to define

f(S) = (f(S)1, . . . , f(S)k−2).

Let Sk = {2, . . . , k} ∪ {i} for some i = 1, k + 1, . . . , n + 1. We note that since
k ∈ Sa ⊂ Sk for a < k, each Sa \ k for 2 ≤ a ≤ k − 1 is an (a − 1)-element subset
of the fixed set of cardinality k− 1 (this set is {2, . . . , k− 1} ∪ {i}). We now define
the map f as follows:

(4.2) f(S)a =

{
{i : 1 ≤ i ≤ k − 2, i+ 1 ∈ Sa+1}, if Sa+1 ⊂ {2, . . . , k},
{i : 1 ≤ i ≤ k − 2, i+ 1 ∈ Sa+1} ∪ {k − 1}, otherwise.

We note (this is important) that f1(S) depends only on S2, . . . , Sk−1.
Our first goal is to show that f(S) ∈ LSk−2 and g(S) ∈ LSn−k+1 for any

S ∈ LSkn. By definition, g(S)a ⊂ g(S)a+1 for 1 ≤ a ≤ n− k and

g(S)a ∈ {1, . . . , n− k + 2}, #g(S)a = a for 1 ≤ a ≤ n− k + 1.

Let us show that for 1 ≤ a < b ≤ n − k + 1 the inclusion b ∈ g(S)a implies
a+1 ∈ g(S)b. Since b > 1, b ∈ g(S)a implies b+k−1 ∈ Sa+k−1. Since S is smooth,
we obtain a + k ∈ Sb+k−1, which gives a + 1 ∈ g(S)b and we are done. Similarly,
one proves that f(S) ∈ LSk−2.
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Finally, we have to prove that the map F = (f, g) : LSkn → LSk−2 ×LSn−k+1 is
one-to-one. Given an element (S′,S′′) ∈ LSk−2 × LSn−k+1, we use formulas (4.1)
and (4.1) to reconstruct S such that F (S) = (S′,S′′). �

Corollary 4.4. The Euler characteristic of the smooth locus of Fan+1 is equal to
the n-th Schröder number rn.

Finally, let us formulate the analogue of Theorem 4.2 for the degenerate partial
flag varieties. We omit the proof since it is very close to the proof of Theorem
4.2. Recall that the T -fixed points in Fad are labeled by d-admissible collections
S = (Sd1 , . . . , Sdk) (see (2.7)).

Theorem 4.5. A T -fixed point pS ∈ Fad is smooth if and only if the following con-
ditions hold: if b ∈ Sdi and dj+1 ≥ b > dj for some j ≥ i, then {di + 1, . . . , di+1} ⊂
Sdj+1 .

4.3. Poincaré polynomials. There are several ways to define q-analogues of the
Schröder numbers (see [BDPP], [BSS],[BEK]). We will need the simplest one (see
[BSS], page 37, polynomials dn(q)). They are called Narayana polynomials there,
but in other papers the same polynomials are also referred to as the Schröder
polynomials, see e.g. [G]). For a Schröder path P let diag(P ) be the number of
the diagonal steps in P . Define rn(q) as the sum of the terms qdiag(P ) over the set
of Schröder paths P . Here are the first several polynomials

r0(q) = 1, r1(q) = 1 + q, r2(q) = 2 + 3q + q2,

r3(q) = 5 + 10q + 6q2 + q3, r4(q) = 14 + 35q + 30q2 + 10q3 + q4.

Clearly, rn(0) is the n-th Catalan number. Let P smn (q) be the Poincaré polynomial
of the smooth locus of Fan+1. Our goal here is to prove the following theorem:

Theorem 4.6. P smn (q) = qn(n−1)/2rn(q).

Recall (see [BEK], [BSS]) that

(4.3) rn(q) = qrn−1(q) +

n−1∑
k=0

rk(q)rn−1−k(q).

Proposition 4.7. The Poincaré polynomials of the smooth locus satisfy the fol-
lowing recursion:

(4.4) P smn (q) = qnP smn−1(q) +

n−1∑
l=0

q(l+1)(n−l)−1P sml (q)P smn−1−l(q).

Proof. First, let us consider smooth collections (S1, . . . , Sn) with S1 = 1. Then
the cells labeling such collections are in one-to-one correspondence with smooth
collections S′ of length n− 1: S′i = Si+1 \ {1}. We claim that

(4.5) dimCS = dimCS′ + n.

We use Proposition 3.10. Clearly, the terms NPP and NII for pS and p(S′) do
coincide and the difference of the terms NPI is equal to n (since S1 = {1}, in the
definition of NPI we can take t = 1, i = 1, j = 2, . . . , n + 1). Now (4.5) produces
the first term of the right hand side of (4.4).

Recall the bijection F = (f, g) : LSkn → LSk−2 × LSn−k+1, k ≥ 2, from the set
of smooth collections with S1 = {k} to the product LSk−2×LSn−k+1. Our goal is
to prove that

(4.6) dimCS = dimCf(S) + dimCg(S) + (k − 1)(n+ 2− k)− 1
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(after the shift l = k − 2 one gets the corresponding term in (4.4)). Recall that
since k ∈ S1 we have

{2, . . . , k} ⊂ Sm for all m ≥ k.
In particular, Sk = {2, . . . , k} ∪ {r} for some number r = 1, k + 1, . . . , n + 1. We
claim that

NPI(S) +NPP (S) =

= NPI(f(S)) +NPI(g(S)) +NPP (f(S)) +NPP (g(S)) + (k − 1)(n+ 1− k),

and

NII(S) = NII(f(S)) +NII(g(S)) + k − 2.

First, let us prove the first formula. Assume that 1 = r = Sk \ {2, . . . , k}. Then

NPI(S) = NPI(f(S)) +NPI(g(S)) + (k − 1)(n+ 1− k),

NPP (S) = NPP (f(S)) +NPP (g(S)).

Here the term (k−1)(n+1−k) comes from the fact that in the definition of NPI(S)
one can take i = 2, . . . , k, j = k + 1, . . . , n + 1 and t = k. These possibilities are
not counted in NPI(f(S)) +NPI(g(S)). Now assume that r > k. Then one has

NPI(S) = NPI(f(S)) +NPI(g(S)) + (k − 1)(n− k),

NPP (S) = NPP (f(S)) +NPP (g(S)) + k − 1.

Here the term (k − 1)(n− k) comes from the fact that in the definition of NPI(S)
one can take i = 2, . . . , k, j ∈ {k+1, . . . , n+1}\r and t = k. The term k−1 in the
right hand side of the second equality comes from the fact that in the definition of
NPP (S) one can take i = 1, j = 2, . . . , k and t = k. All these possibilities are lost
when computing NPI(f(S)), NPI(g(S)), NPP (f(S)) and NPP (g(S)).

Now let us prove that

NII(S) = NII(f(S)) +NII(g(S)) + k − 2.

Here the argument is even simpler: the missing k − 2 comes from the following
possibilities for NII(S) missing in NII(f(S)) +NII(g(S)): i = 2, . . . , k − 1, j = k,
t = 1.

We thus obtain

dimCS = dimCf(S) + dimCg(S) + (k − 1)(n+ 1− k) + (k − 2),

which implies (4.6) as well as the proposition. �

Corollary 4.8. Theorem 4.6 holds.

Proof. We note that P sm1 (q) = 1 + q = r1(q). Now the induction procedure com-
bined with (4.3) and Proposition 4.7 gives the desired result. �

Remark 4.9. It is natural to define a q, t-version hn+1(q, t) of the normalized median
Genocchi numbers as the sum over admissible collections S of the terms

qdimCStdimTpS
Fa

n+1t−n(n+1)/2.

Then the value hn(1, 1) is exactly the normalized median Genocchi number and
hn+1(q, 0) = qn(n−1)/2rn(q) is the (scaled) n-th Schröder polynomial. Here are first
few q, t-Genocchi polynomials:

h2(q, t) = 1 + q, h3(q, t) = 2q + 3q2 + q3 + t,

h4(q, t) = q3(5 + 10q + 6q2 + q3) + tq(2q + 7q2 + 5q3) + t2(1 + q).
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4.4. Schröder numbers: from large to small. Recall the polynomials P smn (q),
which are equal to qn(n−1)/2rn(q), rn(q) being the q-Schröder polynomials. Recall
(see [G]) that the polynomials rn(q) are divisible by 1 + q. The ratios are denoted
by sn(q) (thus rn(q) = sn(q)(1 + q)). These are the small q-Schröder polynomials.
(In particular, sn(1) are the small Schröder numbers). Our goal here is to show
that the divisibility of rn(q) by 1 + q has a very simple and concrete explanation
within our approach. We give two proofs: one is due to the referee and uses the
result from Appendix B. The second proof is based on the existence of a certain
involution on the set of smooth cells.

Theorem 4.10. The polynomials P smn (q) and thus rn(q) are divisible by 1 + q.

Proof. According to Theorem 6.1 there exists an embedding of the smooth locus
of Fan into the desingularization Rn (see [FF] and Appendix B for more details).
Recall that a point of Rn is represented by a collection of subspaces Vi,j and the map
(Vi,j)1≤i≤j≤n−1 7→ V1,n−1 is a fibration Rn → P1 (recall that V1,n−1 is a subspace
of the two-dimensional space span(w1, wn)). We thus obtain a composition map ρ
from the smooth locus of Fan onto P1, which is SL2-equivariant, where the group
SL2 acts naturally on the two-dimensional space span(w1, wn). Therefore, the map
ρ is a cellular fibration and P smn (q) is divisible by the Poincaré polynomial of P1,
which equals to 1 + q. �

We now give the second proof of the theorem above.

Theorem 4.11. There exists a fixed-point free involution σ on the set of smooth
collections. For any smooth collection S and the corresponding cell CS one has

dimCS = dimCσS ± 1.

Proof. Consider the map w : {1, . . . , n+ 1} → {1, . . . , n+ 1}, which interchanges 1
and n+ 1 and stabilizes all other elements. Define a map σ by the formula

σ(S1, . . . , Sn) = (wS1, . . . , wSn).

First, we note that σ maps each smooth S to a smooth collection. Second, since w2

is the identity map, σ2 = Id. Third, let us show that σ is fixed-point free. In fact,
a smooth S is fixed by σ if and only if for all k = 1, . . . , n the set Sk either contains
both 1 and n+ 1 or does not contain any of these elements. We note that #Sn = n
and hence Sn contains at least one of the elements 1, n + 1. If σS = S, then
Sn ⊃ {1, n+ 1}. Now let 1 ≤ k < n be a number such that {1, n+ 1} is contained
in Sk+1 but not in Sk+1 (since #S1 = 1 such k does exist). If σS = S, then we
have 1, n+ 1 /∈ Sk. Since S is smooth, Sk ⊂ Sk+1 and therefore Sk+1 contains two
non-intersecting sets Sk and {1, n+ 1}. This contradicts with #Sk+1 = k + 1.

Now let S be a smooth collection. Let k be a number such that 1 ∈ Sk \ Sk−1
and, similarly, let l be a number such that n+ 1 ∈ Sl \ Sl−1. As we proved above,
k 6= l. Assume that k < l. We claim that

dimCS = dimCσS + 1.

Recall that dimCS is the sum of three numbers NPI(S) + NPP (S) + NII(S) (see
Proposition 3.10). First, we note that a pair i = 1, j = n+ 1 adds one to NPI(S),
but not to NPI(σS). Second, each pair i, j with 1 < i, j < n + 1, either shows up
for both S and σS in the dimension counting as in Proposition 3.10 or does not
show up for both cells. Now let us look at other pairs and compute the difference
between the dimensions of CS and that of CσS.

Takem satisfying k ≤ m < l and consider j such that j > m, j /∈ Sm. Then a pair
i = 1, j adds one to NPI(S), but not to NPI(σS) (since 1 ∈ Sm, but 1 /∈ (σS)m).
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However, let us look at a pair i = m, j = n+ 1. Since n+ 1 ∈ (σS)m \Sm, the pair
(m,n+ 1) adds one to NII(σS), but not to NII(S).

Now take m satisfying k ≤ m < l and consider i such that i ≤ m, i ∈ Sm. Then
a pair i, j = n+ 1 adds one to NPI(S), but not to NPI(σS) (since n+ 1 /∈ Sm, but
n+1 ∈ (σS)m). However, let us look at a pair i = 1, j = m. Since 1 ∈ Sm \ (σS)m,
the pair (1,m) adds one to NPP (σS), but not to NPP (S).

Summarizing, the difference

NPI(S) +NPP (S) +NII(S)−NPI(σS)−NPP (σS)−NII(σS)

is equal to one (coming from the pair i = 1, j = n + 1). This implies the second
statement of the theorem. �

Corollary 4.12. The polynomials P smn (q) and rn(q) are divisible by 1 + q. The
ratio P smn (q)/(1 + q) is equal to the sum of the terms qdimCS taken over smooth S
satisfying the following conditions for all m = 1, . . . , n: if 1 ∈ Sm then n+ 1 ∈ Sm.

Proof. The Theorem above states that P smn (q) is equal to the sum over the orbits of
the involution σ of the terms qd(1+q), where d is the minimum of the dimensions of
the cells corresponding to the collections in the orbit. But we know that dimCS =
dimCσS − 1 if there exists m such that n+ 1 ∈ Sm, but 1 /∈ Sm. This implies the
corollary. �

Let us relabel the smooth collections as follows. To a smooth collection S we
attach a permutation π ∈ Sn+1 by the formula π(m) = Sm\Sm−1. Then S is smooth
if and only if the corresponding permutation satisfies the following conditions for
all 1 ≤ a < b ≤ n:

if π−1(b) ≤ a then π−1(a+ 1) ≤ b.

Corollary 4.13. The number of permutations, corresponding to smooth collections,
is equal to the large Schröder number. The number of such permutations satisfying
π−1(n+ 1) < π−1(1) is equal to the small Schröder number.

5. Appendix A: Regularity in codimension 2.

We consider the Grassmannian GrdimP (P ⊕ I) for P a projective and I an
injective representation over a Dynkin quiver Q. Recall that a variety X is said to
be regular in codimension d if there exists a codimension d + 1 subvariety Y ⊂ X
such that all points of X \Y are smooth. For example, normal varieties are regular
in codimension one. In [CFR] it is proved that quiver Grassmannians GrdimP (P⊕I)
are normal. We now prove a stronger statement.

Theorem 5.1. GrdimP (P ⊕ I) is regular in codimension 2.

Proof. Recall that the group A ⊂ Aut(P ⊕ I) acts on GrdimP (P ⊕ I) with orbits
parametrized by pairs of representations NI , QP of the same dimension vector such
that NI is a subrepresentation of I and QP is a quotient of P . Assume that an
orbit, parametrized by a pair (NI , QP ) of dimension vector f , and admitting exact
sequences

0→ NI → I → QI → 0, 0→ Np → P → QP → 0,

is a singular codimension 2 stratum. Using the codimension formula of the proof
of [CFR, Theorem 4.5], this means that

〈f , f〉+ [NI , NI ]
1 + [QP , QP ]1 = 2 and [NI , QP ]1 6= 0

(we use the abbreviations [X,Y ] = dim Hom(X,Y ) and [X,Y ]1 = dim Ext1(X,Y )).
If 〈f , f〉 = 0, then f = 0, thus NI = 0 = QP , and all extension groups are zero, a
contradiction. If 〈f , f〉 = 2, then [NI , NI ]

1 = 0 = [QP , QP ]1, thus both NI and QP
are isomorphic to the unique exceptional representation G of dimension vector f .
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In particular, [NI , QP ]1 = [G,G]1 = 0, a contradiction. Thus we have 〈f , f〉 = 1
and (without loss of generality) [NI , NI ]

1 = 0 and [QP , QP ]1 = 1. Thus f is a root
and NI is the corresponding indecomposable. QP is a minimal degeneration of NI ,
thus by [B, Theorem 4.5]) there exists a non-split short exact sequence

0→ U → NI → V → 0

such that both U and V are indecomposable, and QP ' U ⊕ V . In particular,
[V,U ]1 6= 0, thus [U, V ]1 = 0 since Dynkin quivers are representation-directed. We
thus have 1 = [QP , QP ]1 = [U ⊕ V,U ⊕ V ]1 = [V,U ]1. From [NI , NI ]

1 = 0 it
follows that [NI , V ]1 = 0 using the above exact sequence, thus 0 6= [NI , QP ]1 =
[NI , U ⊕ V ]1 = [NI , U ]1. Applying Hom( , U) to the above sequence yields

Hom(U,U)→ Ext1(V,U)→ Ext1(NI , U)→ Ext1(U,U) = 0.

The first two terms in this sequence are both one-dimensional. The connecting map
is non-zero since the above exact sequence is non-split, thus it is invertible. This
implies that [NI , U ]1 = 0, a contradiction. �

6. Appendix B: desingularization and the smooth locus.

Let πn+1 : Rn+1 → Fan+1 be the desingularization of the degenerate flag variety
of type An of [FF]. Our goal here is to prove the following theorem.

Theorem 6.1. π−1n+1(x) is a single point iff x is a smooth point of Fan+1.

Recall that Rn+1 can be explicitly realized as follows. Let W be an (n + 1)-
dimensional space with a basis (w1, . . . , wn+1). For a pair 1 ≤ i ≤ j ≤ n, let
Wn+1
i,j = span(w1, . . . , wi, wj+1, . . . , wn+1). Then Rn is the variety of collections

(Vi,j)1≤i≤j≤n such that Vi,j ∈ Gri(W
n+1
i,j ) and Vi,j ⊂ Vi+1,j and prj+1Vi,j ⊂ Vi,j+1.

Lemma 6.2. Rn+1 can be embedded into Fan+1 × Rn in such a way that πn+1 is
simply the projection to the first factor.

Proof. We first note that the map πn+1 : Rn+1 → Fan+1 is explicitly given by
(Vi,j)i≤j 7→ (Vi,i)

n
i=1. Now consider the forgetful map

(Vi,j)1≤i≤j≤n → (Vi,j)1≤i<j≤n

(the diagonal terms Vi,i are omitted). We claim that the image is isomorphic to

Rn. Namely, for a pair 1 ≤ i < j ≤ n, we consider the ”shift” map shi,j : Wn+1
i,j →

Wn
i,j−1 given by

shi,jwk =

{
wk, if k ≤ i,
wk−1, if k > j.

Then for a point (Vi,j)i≤j ∈ Rn+1, the collection

(V ′i,j)1≤i≤j≤n−1 = (shi,j+1Vi,j+1)1≤i≤j≤n−1

belongs to Rn. We denote the map Rn+1 → Rn by ψn+1. Now the embedding
Rn+1 → Fan+1 ×Rn is given by the map A = (πn+1, ψn+1). �

Lemma 6.3. Let S be a length n smooth collection. Then

πnψn+1π
−1
n+1pS ⊂ Fan

is a single point. Moreover, it is a smooth torus fixed point.

Proof. Recall that

pS = ((pS)i)
n
i=1, (pS)i = span(wa : a ∈ Si).

Our first goal is to prove that there exists a unique way to define spaces (Vi,i+1)n−1i=1

such that there exists a point in Rn+1 with the diagonal components being (pS)i
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and the (i, i+ 1)-st components being Vi,i+1. In fact, fix some i with 1 ≤ i ≤ n− 1.
We need Vi,i+1 such that dimVi,i+1 = i and

pri+1(pS)i ⊂ Vi,i+1 ⊂Wn+1
i,i+1 ∩ (pS)i+1.

If i+ 1 /∈ Si, then dim pri+1(pS)i = i and hence Vi,i+1 = pri+1(pS)i. If i+ 1 ∈ Si,
then since S is smooth, we have i+ 1 ∈ Si+1. Therefore the intersection

Wn+1
i,i+1 ∩ (pS)i+1 = span(wa : a 6= i+ 1) ∩ span(wa : a ∈ Si+1)

is i-dimensional and hence Vi,i+1 is forced to coincide with this intersection. Note
that in both cases Vi,i+1 is the linear span of some basis vectors. We denote by
Si,i+1 ⊂ {1, . . . , i, i+ 2, . . . , n+ 1} the set of indices of these vectors, i.e.

Vi,i+1 = span(wa : a ∈ Si,i+1).

We note that Si,i+1 ⊂ Si+1 and Si ⊂ Si,i+1 ∪ {i+ 1}.
We identify the collection of subspaces (Vi,i+1)n−1i=1 constructed above with the

point (shi,i+1Vi,i+1)n−1i=1 ∈ Fan. As mentioned above, each component of this point is

a linear span of basis vectors and thus (shi,i+1Vi,i+1)n−1i=1 = p(S̄) for some collection
S̄ = (S̄1, . . . , S̄n−1). Explicitly,

S̄i = {a : a ∈ Si,i+1, a ≤ i} ∪ {a− 1 : a ∈ Si,i+1, a > i+ 1}.
Our goal is to prove that this collection is smooth. In fact, assume b ∈ S̄a for some
1 ≤ a < b ≤ n − 1. Then since b > a we have b + 1 ∈ Sa,a+1. We consider two
cases: b + 1 ∈ Sa and b + 1 /∈ Sa. If b + 1 ∈ Sa, then a + 1 ∈ Sb+1 (S is smooth).
Since Sa ⊂ Sb+1, we have b+ 1 ∈ Sb+1. Therefore, Sb,b+1 = Sb+1 \ {b+ 1} and, in
particular, a + 1 ∈ Sb,b+1. Since a + 1 ≤ b, this implies a + 1 ∈ S̄b. Now assume
b+ 1 /∈ Sa. Then Sa,a+1 6= Sa and hence a+ 1 ∈ Sa. This implies a+ 1 ∈ Sb and so
a+ 1 ∈ Sb,b+1 (because wa+1 = prb+1wa+1 ∈ Vb,b+1). We thus arrive at a+ 1 ∈ S̄b,
which means that S̄ is smooth. �

Corollary 6.4. The map πn+1 is one-to-one over the smooth locus of Fan+1.

Proof. We note that since the fibers over any two points of a given cell in Fan+1

are isomorphic, it suffices to prove that the fiber is a single point over a smooth
torus fixed point. Let S be a smooth collection and p(S̄) = πnψn+1π

−1
n+1. Since S̄

is smooth, our corollary follows by induction on n. �

To complete the proof of Theorem 6.1, we need to show that the fiber over a
non-smooth point has positive dimension. It suffices to prove that if a collection S
is not smooth, then the preimage of pS has positive dimension. We first prove the
following lemma.

Lemma 6.5. Assume that Sa is not a subset of Sa+1 for some a. Then the dimen-
sion of the fiber π−1n+1pS is positive.

Proof. Assume that pS is the image of (Vi,j)1≤i≤j≤n. Let us look at possible sets
Va,a+1. We know that

(6.1) pra+1(pS)a ⊂ Va,a+1 ⊂ (pS)a+1 ∩ span(wi : i 6= a+ 1).

Since Sa is not a subset of Sa+1 and Sa ⊂ Sa+1 ∪ {a + 1}, we obtain a + 1 ∈ Sa,
a+ 1 /∈ Sa+1. Therefore,

dim pra+1(pS)a = a− 1, dim(pS)a+1 ∩ span(wi : i 6= a+ 1) = a+ 1.

Thus the choice of Vi,i+1 as in (6.1) is equivalent to the choice of a point in P1.

Therefore the preimage π−1n+1pS is at least one-dimensional. �

Corollary 6.6. If S is not smooth, then the dimension of the fiber π−1n+1pS is
positive.
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Proof. Let k ≥ 1 be a minimal number such that there exists a number a, 1 ≤ a ≤
n− k such that a+ k ∈ Sa, but a+ 1 /∈ Sa+k. We prove our corollary by induction
on k. First, we note that the case k = 1 means that Sa /∈ Sa+1 and we are done by
the lemma above. Now let k > 1. Since k > 1 the sets Sa,a+1 satisfying

Sa ∪ {a+ 1} ⊂ Sa,a+1 ⊂ Sa+1

are defined uniquely. Now define a length n− 1 collection S̄ as above:

S̄i = {l : l ∈ Si,i+1, l ≤ i} ∪ {l − 1 : l ∈ Si,i+1, l > i+ 1}.
Since a+ k ∈ Sa and k > 1 we obtain a+ k − 1 ∈ S̄a. Also, since a+ 1 /∈ Sa+k, we
obtain a+1 /∈ S̄a+k and hence a+1 /∈ S̄a+k−1 (since k > 1 we have Sa+k−1 ⊂ Sa+k).
This proves that k becomes k−1 for S̄. By the inductive assumption we know that
the preimage π−1n p(S̄) is positive-dimensional. But π−1n+1pS = π−1n p(S̄) and we are
done. �

7. Appendix C

In this appendix we compute the moment graph of Fa4 . The T–fixed points of Fa4
are listed in figure 1. Recall that such points are parameterized by successor–closed
subquivers of the following quiver

(7.1) 3 ·
2 · // ·
1 · // · // ·
4 · // · // ·
3 · // ·
2 ·

having one vertex in the first column, two in the second and three vertices in the
third column.

Figure 2 shows the moment graph of the degenerate flag variety Fa4 (We used
Bernhard Keller’s quiver mutation applet to draw the picture [K]). The 22 smooth
torus fixed points are highlighted by a frame. These are the vertices adjacent to
precisely 6 = dimFa4 edges. An edge pS–pR of the moment graph corresponds to
a T–fixed curve between pS and pR in Fa4 whose direction around pS and pR is
given by a standard basis vector of the tangent space at them. The edge is oriented
pS → pR if and only if the direction around pS has positive T0–weight and it is
labelled by the corresponding S–effective pair (see theorem 3.18 and remark 3.5).

To illustrate, let us describe in detail the graph around vertex (22). There are
7 edges connected to this vertex as depicted in figure 3. In particular this T–fixed
point is not smooth.

The arrow (20)→ (22) corresponds to the following curve (in the basis (7.1))

(〈v1〉, 〈v1, v3〉, 〈v3 + λv2, v1, v4〉) λ ∈ P1

For λ = 0 one gets the starting point (20) of α, for λ = ∞ one gets the end point
(22) of α. Its direction around (22) has negative T0 weight while around (20) it
has positive weight. The corresponding (20)–effective pair is (1, 2). The remaining
labelings of figure 3 are obtained similarly.
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1 ·
· ·
· · ·
· · ·
· ·
·

2 ·
· ·
· · ·
· · ·
· ·
·

3 ·
· ·
· · ·
· · ·
· ·
·

4 ·
· ·
· · ·
· · ·
· ·
·

5 ·
· ·
· · ·
· · ·
· ·
·

6 ·
· ·
· · ·
· · ·
· ·
·

7 ·
· ·
· · ·
· · ·
· ·
·

8 ·
· ·
· · ·
· · ·
· ·
·

9 ·
· ·
· · ·
· · ·
· ·
·

10 ·
· ·
· · ·
· · ·
· ·
·

11 ·
· ·
· · ·
· · ·
· ·
·

12 ·
· ·
· · ·
· · ·
· ·
·

13 ·
· ·
· · ·
· · ·
· ·
·

14 ·
· ·
· · ·
· · ·
· ·
·

15 ·
· ·
· · ·
· · ·
· ·
·

16 ·
· ·
· · ·
· · ·
· ·
·

17 ·
· ·
· · ·
· · ·
· ·
·

18 ·
· ·
· · ·
· · ·
· ·
·

19 ·
· ·
· · ·
· · ·
· ·
·

20 ·
· ·
· · ·
· · ·
· ·
·

21 ·
· ·
· · ·
· · ·
· ·
·

22 ·
· ·
· · ·
· · ·
· ·
·

23 ·
· ·
· · ·
· · ·
· ·
·

24 ·
· ·
· · ·
· · ·
· ·
·

25 ·
· ·
· · ·
· · ·
· ·
·

26 ·
· ·
· · ·
· · ·
· ·
·

27 ·
· ·
· · ·
· · ·
· ·
·

28 ·
· ·
· · ·
· · ·
· ·
·

29 ·
· ·
· · ·
· · ·
· ·
·

30 ·
· ·
· · ·
· · ·
· ·
·

31 ·
· ·
· · ·
· · ·
· ·
·

32 ·
· ·
· · ·
· · ·
· ·
·

33 ·
· ·
· · ·
· · ·
· ·
·

34 ·
· ·
· · ·
· · ·
· ·
·

35 ·
· ·
· · ·
· · ·
· ·
·

36 ·
· ·
· · ·
· · ·
· ·
·

37 ·
· ·
· · ·
· · ·
· ·
·

38 ·
· ·
· · ·
· · ·
· ·
·

Figure 1. The T–fixed points of Fa4 .
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Figure 2. The moment graph of Fa4 . The vertices are labeled
according to figure 1. The highlighted vertices correspond to the
smooth T–fixed points.
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20 =

·
· ·
· · ·
· · ·
· ·
·

21 =

·
· ·
· · ·
· · ·
· ·
·

6 =

·
· ·
· · ·
· · ·
· ·
·

7 =

·
· ·
· · ·
· · ·
· ·
·

(1, 2) ↓ (4, 5) ↓ (1, 4) ↓ (2, 5) ↓

22 =

·
· ·
· · ·
· · ·
· ·
·

(3, 4) ↓ (3, 5) ↓ (3, 6) ↓

30 =

·
· ·
· · ·
· · ·
· ·
·

33 =

·
· ·
· · ·
· · ·
· ·
·

35 =

·
· ·
· · ·
· · ·
· ·
·

Figure 3. The moment graph around vertex (22)
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