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Abstract: We investigate the topological properties of Nf = 2 + 1 QCD with physical
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fermions and explore a range of lattice spacings a ∼ 0.05−0.12 fm. At zero temperature we

estimate both finite size and finite cut-off effects, comparing our continuum extrapolated

results for the topological susceptibility χ with predictions from chiral perturbation theory.

At finite temperature, we explore a region going from Tc up to around 4Tc, where we

provide continuum extrapolated results for the topological susceptibility and for the fourth

moment of the topological charge distribution. While the latter converges to the dilute

instanton gas prediction the former differs strongly both in the size and in the temperature

dependence. This results in a shift of the axion dark matter window of almost one order

of magnitude with respect to the instanton computation.
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1 Introduction

Axions are among the most interesting candidates for physics beyond the Standard Model.

Their existence has been advocated long ago [1–4] as a solution to the so-called strong-CP

problem through the Peccei-Quinn (PQ) mechanism. It was soon realized that they could

also explain the observed dark matter abundance of the visible Universe [5–7]. However,

a reliable computation of the axion relic density requires a quantitative estimate of the

parameters entering the effective potential of the axion field, in particular its mass and

self-couplings as a function of the temperature T of the thermal bath.

The purpose of this study is to obtain predictions from the numerical simulations of

Quantum Chromodynamics (QCD) on a lattice. Our results, which are summarized at the

end of this section, suggest a possible shift of the axion dark matter window by almost one

order of magnitude with respect to instanton computations. This shift is a consequence

of the much slower decrease of the axion mass with the temperature in comparison to the

dilute instanton gas prediction. Our present simulations are however limited to a range of

temperatures not exceeding 600 MeV: the main obstruction is represented by the freezing

of the topological modes on fine lattices, which afflicts present lattice QCD algorithms. For

a more complete understanding of axion dynamics at finite T , in the future a major effort

must be undertaken to reach higher temperatures.
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1.1 General framework

Given the strong bounds on its couplings, the axion field can be safely treated as a non-

dynamical external field. Its potential is completely determined by the dependence of the

QCD partition function on the θ-angle, which enters the pure gauge part of the QCD

Euclidean Lagrangian as

Lθ =
1

4
F a
µν(x)F

a
µν(x)− iθq(x), (1.1)

where

q(x) =
g2

64π2
ǫµνρσF

a
µν(x)F

a
ρσ(x) (1.2)

is the topological charge density. The θ-dependent part of the free energy density can be

parametrized as follows

F(θ, T ) ≡ F (θ, T )− F (0, T ) =
1

2
χ(T )θ2s(θ, T ) (1.3)

where χ(T ) is the topological susceptibility at θ = 0,

χ =

∫

d4x〈q(x)q(0)〉θ=0 =
〈Q2〉θ=0

V
(1.4)

(Q =
∫

d4x q(x) is the global topological charge and V = V/T ), while s(θ, T ) is a di-

mensionless even function of θ such that s(0, T ) = 1. The quadratic term in θ, χ(T ), is

proportional to the axion mass, while non-linear corrections in θ2, contained in s(θ, T ),

provide information about axion interactions. In particular, assuming analyticity around

θ = 0, s(θ, T ) can be expanded as follows [8]

s(θ, T ) = 1 + b2(T )θ
2 + b4(T )θ

4 + · · · , (1.5)

where the coefficients bn are proportional to the cumulants of the topological charge distri-

bution. For instance b2, which is related to quartic interactions terms in the axion potential,

can be expressed as

b2 = −
〈Q4〉θ=0 − 3〈Q2〉2θ=0

12〈Q2〉θ=0
. (1.6)

The function F(θ, T ), related to the topological properties of QCD, is of non-perturbative

nature and hence not easy to predict reliably with analytic methods. This is possible only

in some specific regimes: chiral perturbation theory (ChPT) represents a valid approach

only in the low temperature phase; at high-T , instead, a possible analytic approach is the

Dilute Instanton Gas Approximation (DIGA). DIGA predictions can in fact be classified

in two groups: those that make only use of the DIGA hypothesis itself (i.e. that just

relies on the existence of weakly interacting objects of topological charge one), and those

that exploit also perturbation theory, the latter being expected to hold only at asymptot-

ically high values of T . Using only the dilute gas approximation one can show that the

θ-dependence of the free energy is of the form (see e.g. [9, 10])

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) , (1.7)
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and thus bDIGA
2 = −1/12, bDIGA

4 = 1/360 and so on. Using also perturbation theory it is

possible to obtain an explicit form for the dependence of the topological susceptibility on

the temperature. To leading order, for N
(l)
f light quark flavors of mass ml, one obtains (see

e.g. [9, 10])

χ(T ) ∼ T 4−β0

(ml

T

)N
(l)
f

, (1.8)

where β0 = 11Nc/3 − 2Nf/3. Only part of the NLO corrections to this expression are

known (see [11] or [12] for a summary, [13] for the Nf = 0 case).

As an alternative, a fully non-perturbative approach, which is based completely on the

first principles of the theory, is represented by lattice QCD simulations. In fact, extensive

studies have been carried out regarding the θ-dependence of pure gauge theories. It was

shown in Ref. [14], and later confirmed in Refs. [13, 15, 16], that the form of the free energy

in Eq. (1.7) describes with high precision the physics of the system for T & 1.15 Tc, while

for T . Tc everything is basically independent of the temperature, thus strengthening

the conclusion χ(T < Tc) ≈ χ(T = 0) obtained in previous studies [17–21]. In Refs. [13,

22] it was also shown that the temperature dependence of the topological susceptibility

is correctly reproduced by Eq. (1.8) for temperatures just above Tc, even if the overall

normalization is about a factor ten larger than the perturbative prediction.

A realistic study of θ-dependence aimed at being relevant to axion phenomenology

requires the numerical simulation of lattice QCD including dynamical quarks with physical

masses. Apart from the usual computational burden involved in the numerical simulation

of light quarks, that represents a challenge from at least two different but interrelated

points of view.

Because of the strict connection, in the presence of light fermions, between the topolog-

ical content of gauge configurations and the spectrum of the fermion matrix (in particular

regarding the presence of zero modes), a reliable study of topological quantities requires a

discretization of the theory in which the chiral properties of fermions fields are correctly

implemented. For standard discretizations, such properties are recovered only for small

enough lattice spacings, so that a careful investigation of the continuum limit becomes

essential. Indeed only recently it was possible to measure the dependence of the topolog-

ical susceptibility on the quark masses to a sufficient accuracy to be compared with the

prediction of chiral perturbation theory [23–27].

On the other hand, it is well known that, as the continuum limit is approached, it

becomes increasingly difficult to correctly sample the topological charge distribution, be-

cause of the large energy barriers developing between configurations belonging to different

homotopy classes, i.e. to different topological sectors, which can be hardly crossed by stan-

dard algorithms [28–32]. That causes a loss of ergodicity which, in principle, can spoil any

effort to approach the continuum limit itself.

Combining these two problems together, the fact that a proper window exists, in which

the continuum limit can be taken and still topological modes can be correctly sampled by

current state-of-the-art algorithms, is highly non-trivial. In a finite temperature study,

since the equilibrium temperature is related to the inverse temporal extent of the lattice

by T = 1/(Nta), the fact that one cannot explore arbitrarily small values of the lattice
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spacing a, because of the above mentioned sampling problem, limits the range of explorable

temperatures from above.

In the present study we show that, making use of current state-of-the-art algorithms,

one can obtain continuum extrapolated results for the θ-dependence of QCD at the physical

point, in a range of temperatures going up to about 4 Tc, where Tc ∼ 155 MeV is the pseudo-

critical temperature at which chiral symmetry restoration takes place. Then we discuss

the consequences of such results to axion phenomenology in a cosmological context.

Our investigation is based on the numerical simulation of Nf = 2 + 1 QCD, adopting

a stout staggered fermions discretization with physical values of the quark masses and

the tree level improved Symanzik gauge action. First, we consider simulations at zero

temperature and various different values of the lattice spacing, in a range ∼ 0.05 − 0.12

fm and staying on a line of constant physics, in order to identify a proper scaling window

where the continuum limit can be taken without incurring in severe problems with the

freezing of topological modes. Results are then successfully compared to the predictions

of chiral perturbation theory. We also show that, for lattice spacings smaller than those

explored by us, the freezing problem becomes severe, making the standard Rational Hybrid

Monte-Carlo (RHMC) algorithm useless.

For a restricted set of lattice spacings, belonging to the scaling window mentioned

above, we perform finite temperature simulations, obtaining continuum extrapolated results

for χ and b2 in a range of T going up to around 600 MeV. These results are then taken

as an input to fix the parameters of the axion potential in the same range of temperatures

and perform a phenomenological analysis.

1.2 Summary of main results and paper organization

Our main results are the following. Up to Tc the topological susceptibility is almost con-

stant, and compatible with the prediction from ChPT. Above Tc the value of b2 rapidly

converges to what predicted by DIGA computations; on the contrary the dependence of

the topological susceptibility on T shows significant deviations from DIGA. This has a sig-

nificant impact on axion phenomenology, in particular it results in a shift of the axion dark

matter window by almost one order of magnitude with respect to the instanton computa-

tion. Since the T -dependence is much milder than expected from instanton calculations,

it becomes crucial, for future studies, to investigate the system for higher values of T ,

something which also claims for the inclusion of dynamical charm quarks and for improved

algorithms, capable to defeat or at least alleviate the problem of the freezing of topological

modes.

The paper is organized as follows. In Section 2, we discuss the setup of our numeri-

cal simulations, in particular the lattice discretization adopted and the technique used to

extract the topological content of gauge configurations. In Section 3 we present our nu-

merical analysis and continuum extrapolated result for the θ-dependence of the free energy

density, both at zero and finite temperature. Section 4 is dedicated to the analysis of the

consequences of our results in the context of axion cosmology. Finally, in Section 5, we

draw our conclusions and discuss future perspectives.

– 4 –



β a [fm] ams

3.750 0.1249 5.03 × 10−2

3.850 0.0989 3.94 × 10−2

3.938 0.0824 3.30 × 10−2

4.020 0.0707 2.81 × 10−2

4.140 0.0572 2.24 × 10−2

Table 1. Bare parameters used in this work, from [36, 37] or spline interpolation of data thereof.

The systematic uncertainty on the lattice spacing determination is 2−3% and the light quark mass

is fixed by using ms/ml = 28.15.

2 Numerical setup

2.1 Discretization adopted

The action of Nf = 2 + 1 QCD is discretized by using the tree level improved Symanzik

gauge action [33, 34] and the stout improved staggered Dirac operator. Explicitly, the

Euclidean partition function is written as

Z =

∫

DU e−SYM

∏

f=u, d, s

det
(

Mf
st[U ]

)1/4
, (2.1)

SYM = −
β

3

∑

i,µ6=ν

(

5

6
W 1×1

i;µν −
1

12
W 1×2

i;µν

)

, (2.2)

(Mf
st)i, j = amfδi, j+

+

4
∑

ν=1

ηi; ν
2

[

U
(2)
i; ν δi,j−ν̂ − U

(2)†
i−ν̂; νδi,j+ν̂

]

. (2.3)

The symbol W n×m
i; µν denotes the trace of the n×m Wilson loop built using the gauge links

departing from the site in position i along the positive µ, ν directions. The gauge matrices

U
(2)
i,µ , used in the definition of the staggered Dirac operator, are related to the gauge links

Ui; µ (used in SYM ) by two levels of stout-smearing [35] with isotropic smearing parameter

ρ = 0.15.

The bare parameters β, ms and ml ≡ mu = md were chosen in such a way to have

physical pion mass mπ ≈ 135MeV and physical ms/ml ratio. The values of the bare

parameters used in this study to move along this line of constant physics are reported in

Tab. 1. Most of them were determined in [36, 37], the remaining have been extrapolated

by using a cubic spline interpolation. The lattice spacings reported in Tab. 1 have a 2−3%

of systematic uncertainty, as discussed in [36, 37] (see also [38]).

2.2 Determination of the topological content

In order to expose the topological content of the gauge configurations, we adopt a gluonic

definition of the topological charge density, measured after a proper smoothing procedure,

which has been shown to provide results equivalent to definitions based on fermionic op-

erators [39–43]. The basic underlying idea is that, close enough to the continuum limit,
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the topological content of gauge configurations becomes effectively stable under a local

minimization of the gauge action, while ultraviolet fluctuations are smoothed off.

A number of smoothing algorithms has been devised along the time. A well known pro-

cedure is cooling [44]: an elementary cooling step consists in the substitution of each link

variable Ui; µ with the SU(3) matrix that minimizes the Wilson action, in order to reduce

the UV noise. While for the case of the SU(2) group this minimization can be performed an-

alytically, in the SU(3) case the minimization is usually performed à la Cabibbo-Marinari,

i.e. by iteratively minimizing on the SU(2) subgroups. When this elementary cooling step

is subsequently applied to all the lattice links we obtain a cooling step.

Possible alternatives may consist in choosing a different action to be minimized during

the smoothing procedure, or in performing a continuous integration of the minimization

equations. The latter procedure is known as the gradient flow [45, 46] and has been

shown to provide results equivalent to cooling regarding topology [47–50]. Because of its

computational simplicity in this work we will thus use cooling, however it will be interesting

to consider in future studies also the gradient flow, especially as an independent way to fix

the physical scale [46, 51, 52].

Since the topological charge will be measured on smoothed configurations, we can use

the simplest discretization of the topological charge density with definite parity [53]

qL(x) = −
1

29π2

±4
∑

µνρσ=±1

ǫ̃µνρσTr (Ux;µνUx; ρσ) , (2.4)

where Ux;µν is the plaquette located in x and directed along the µ, ν directions. The

tensor ǫ̃ is the completely antisymmetric tensor which coincides with the usual Levi-Civita

tensor ǫµνρσ for positive indices and is defined by ǫ̃µνρσ = −ǫ̃(−µ)νρσ and antisymmetry for

negative indices.

The lattice topological charge QL =
∑

x qL(x) is not in general an integer, although

its distribution gets more and more peaked around integer values as the continuum limit is

approached. In order to assign to a given configuration an integer value of the topological

charge we will follow the prescription introduced in [29]: the topological charge is defined

as Q = round(αQL), where ‘round’ denotes the rounding to the closest integer and α is

fixed by the minimization of
〈

(αQL − round [αQL])
2
〉

, (2.5)

i.e. in such a way that αQL is ‘as integer’ as possible. Actually, one could take the non-

rounded definition Q = QL as well, the only difference being a different convergence of

results to the common continuum limit (see Ref. [54] for a more detailed discussion on this

point). The topological susceptibility is then defined by

a4χ =
〈Q2〉

V4
, (2.6)

where V4 = NtN
3
s is the four-dimensional volume of the lattice, and the coefficient b2 has

been introduced in Eq. (1.6).
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We measured the topological charge every 20 cooling steps up to a maximum of 120

steps and verified the stability of the topological quantities under smoothing. Results that

will be presented in the following have been obtained by using 100 cooling steps, a number

large enough to clearly identify the different topological sectors but for which no significant

signals of tunneling to the trivial sector are distinguishable in mean values.

For all data reported in the following we verified that the corresponding time histories

were long enough to correctly sample the topological charge. In particular we checked

that 〈Q〉 is compatible with zero and that the topological charge is not frozen. Indeed

it is well known that, while approaching the continuum limit, the autocorrelation time of

the topological charge increases very steeply until no tunneling events between different

sectors happen anymore [28–32]. An example of this behavior can be observed in Fig. 1,

where some time-histories for zero temperature runs are showed, for three different lattice

spacings. While the general features of this phenomenon are common to all the lattice

actions, the critical value of the lattice spacing at which the charge gets stuck may depend

on the specific discretization adopted. In our case we were able to obtain reasonable

sampling for lattice spacings down to a = 0.0572 fm, while finer lattices (in particular, with

a . 0.04 fm) showed severe freezing over thousands of trajectories and had to be discarded.

3 Numerical Results

The main purpose of our numerical study is to provide results for the θ-dependence of QCD

at finite temperature, in particular above the pseudo-critical temperature, in order to take

them as an input for axion phenomenology. However, in order to make sure that our lattice

discretization is accurate enough to reproduce the chiral properties of light fermions, we

have also performed numerical simulations at zero or low temperature, where results can

be compared to reliable analytic predictions.

Indeed, at zero temperature, the full θ dependence of the QCD partition function, can

be estimated reliably using chiral Lagrangians [4, 55, 56]. In particular, at leading order

in the expansion, χ and b2 can be written just in terms of mπ, fπ and z = mu/md as

χLO =
z

(1 + z)2
m2

πf
2
π , bLO2 = −

1

12

1 + z3

(1 + z)3
. (3.1)

NLO corrections have been computed in [57–59] and are of the order of percent for physical

values of the light quark masses. Using the estimate in [59] we have χ1/4 = 75.5(5) MeV

and b2 = −0.029(2) for z = 0.48(3), while χ1/4 = 77.8(4) MeV and b2 = −0.022(1) for z = 1

used here. Note that for pure SU(3) Yang-Mills these numbers become χ
1/4
Nf=0 ≈ 180 MeV

[17, 29, 60–64] and1 b2,Nf=0 = −0.0216(15) [54] (see also Refs. [29, 64–67] for previous

determinations in the literature).

1It is interesting to note the striking agreement between the ChPT prediction for b2 in the case of

degenerate light flavors and the numerical results obtained for it in the quenched theory [54]. That seems

to suggest a similar form of θ-dependence in the low temperature phases of the full and of the quenched

theory. At this stage we have no particular explanation for this agreement, which might be considered as

a coincidence.
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Figure 1. Check for the correct sampling of the topological charge. (Upper left) Topological charge

time history and histogram for a = 0.0824 fm on a 324 lattice. (Upper right) Topological charge time

history and histogram for a = 0.0572 fm on a 484 lattice. (Lower) Topological charge time history

for a = 0.0397 fm on a 404 lattice; in this case the run was stopped earlier because of the visible

freezing of the topological charge. Note that the upper histories correspond to approximately the

same physical volume: hence the visible shrink in the topological charge distribution is the actual

effect of the approach to the continuum limit (see the discussion in Sec. 3).

ChPT provides a prediction at finite temperature as well. In particular we have

χChPT(T ) = χ(0)

(

1−
3

2

T 2

f2
π

J1

[

T 2

m2
π

])

,

bChPT
2 (T ) = b2(0)

(

1 +
9

2

m2
π

f2
π

z(1 + z)

1 + z3
J2

[

T 2

m2
π

])

,

(3.2)

where the functions Jn are defined in Ref. [59]. However, at temperatures around and above

Tc, the chiral condensate drops and chiral Lagrangians break down, so that the finite T

predictions in Eq. (3.2) are expected to fail. In this regime non-perturbative computations

based on first principle QCD are mandatory.

3.1 Zero Temperature

In Tab. 2 we report our determinations of the topological susceptibility on N4
s lattices for

several values of Ns and different lattice spacings. The results on the three smallest lattice

spacings are also plotted in Fig. 2.
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e-1e-1.5e-2 e-2.5 e-2.5

exp[-a Ns / (1 fm) ]

1e-06

1e-05

χ 
a4

a = 0.0824 fm
a = 0.0707 fm
a = 0.0572 fm

Figure 2. Volume dependence of the topological susceptibility for different lattice spacings. The

lattice extent is reported in physical units, while χ in lattice spacing units. Bands represent best

fits to Eq. (3.3) for the infinite volume limit extrapolation.

In order to extract the infinite volume limit of χ at fixed lattice spacing, one can either

consider only results obtained on the largest available lattices and fit them to a constant,

or try to model the behavior of χ with the lattice size using all available data. We have

followed both procedures in order to better estimate possible systematics.

The topological susceptibility can be written as the integral of the two point function

of the topological charge density; since the η′ is the lightest intermediate state that signif-

icantly contributes to this two point function (three pions states are OZI suppressed), one

expects the leading asymptotic behavior to be

χNs ∼ χ∞ +Ce−aNsmη′ , (3.3)

where C is an unknown constant. This form nicely fits data in the whole available range

of aNs (see Fig. 2), both when mη′ is fixed to its physical value and when it is left as

a fit parameter. The results obtained using this last procedure (which gives the most

conservative estimates) are reported in Tab. 2 and correspond to the entries denoted by

Ns = ∞. On the other hand, a fit to a constant value works well when using only data

coming from lattices with aNs > 1.5 fm, and provides consistent results within errors. This

analysis makes also us confident that results obtained on the lattices with a ≃ 0.1249 fm

and a ≃ 0.0989 fm, where a single spatial volume is available with aNs > 3 fm, are not

affected by significant finite size effects.

In Fig. 3 we plot χ1/4, extrapolated to infinite volume, against the square of the lattice

spacing, together with the ChPT prediction. Finite cut-off effects are significant, especially

for a & 0.1 fm, meaning that we are not close enough to the continuum limit to reproduce

the correct chiral properties of light quarks. In the case of staggered quarks, such lattice

artifacts originate mostly from the fact that the full chiral symmetry group is reproduced

only in the continuum limit, so that the pion spectrum is composed of a light pseudo-

Goldstone boson and other massive states which become degenerate only as a → 0. The

– 9 –
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M
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]

ChPT
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Figure 3. Continuum limit of the topological susceptibility: our final result is χ1/4 = 73(9)MeV.

Also shown is the value expected from chiral perturbation theory, denoted by the horizontal dashed

line, together with the quenched value. Square points correspond to the combination χ
1/4
tc (a) defined

in Eq. (3.6).

physical signal vanishes in the chiral limit whereas this is not the case for its discretization

effects. This means that it is necessary to work on very fine lattice spacings in order to keep

these effects under control, a task which is particularly challenging with present algorithms,

because of the freezing of the topological charge.

Despite the large cut-off effects, we can perform the continuum extrapolation of our

data. If one considers only the three finest lattice spacings, the finite cut-off effects for this

quantity can be parametrized as simple O(a2) corrections

χ1/4(a) = χ1/4 +Ba2 (3.4)

and a best fit yields χ1/4 = 73(9) MeV, while in order to describe the whole range of

available data one must take into account O(a4) corrections as well, i.e.

χ1/4(a) = χ1/4 +Ba2 + Ca4 , (3.5)

obtaining χ1/4 = 69(9) MeV. Both best fits are reported in Fig. 3. Therefore we conclude

that the continuum extrapolation is already under control with the available lattice data,

and is in satisfactory agreement with the predictions of chiral perturbation theory.

In order to further inquire about the reliability of our continuum extrapolation and

the importance of the partial breaking of chiral symmetry in the staggered discretization,

we studied the combination

χ
1/4
tc (a) = aχ1/4(a)

mphys
π

amngb(a)
. (3.6)

Here mngb(a) is the mass of one of the non-Goldstone pions, i.e. of a state that becomes

massless in the chiral limit only if the continuum limit is performed; since in the continuum

– 10 –



Ns a [fm] χa4

32 0.1249 8.55(32) × 10−5

32 0.0989 2.22(10) × 10−5

12 0.0824 4.14(20) × 10−6

16 0.0824 6.60(45) × 10−6

20 0.0824 7.17(36) × 10−6

24 0.0824 8.21(70) × 10−6

32 0.0824 7.32(39) × 10−6

∞ 0.0824 7.50(40) × 10−6

16 0.0707 1.57(16) × 10−6

20 0.0707 2.06(15) × 10−6

24 0.0707 2.42(16) × 10−6

32 0.0707 2.41(19) × 10−6

40 0.0707 3.29(56) × 10−6

∞ 0.0707 2.60(36) × 10−6

20 0.0572 4.34(90) × 10−7

24 0.0572 5.40(76) × 10−7

32 0.0572 4.7(1.2) × 10−7

40 0.0572 6.61(96) × 10−7

48 0.0572 6.88(87) × 10−7

∞ 0.0572 6.60(82) × 10−7

Table 2. Topological susceptibility in lattice units, measured on several N4

s lattices for different

values of the lattice spacing. Values denoted by Ns = ∞ correspond to the thermodynamical

extrapolation and they are obtained by a fit to exponential without fixing mη′ to its physical value,

see Eq. (3.3).

mngb(a) → mphys
π , this ratio converges to χ1/4 as a → 0. The state with taste structure

γiγµ was used, whose mass is close to the root mean square value of all the taste states (see

Ref. [37] Fig. 2) and the values of χ
1/4
tc (a) are shown in Fig. 3 as square points. It is clear

that the combination χ
1/4
tc (a) strongly reduces lattice artefacts with respect to χ1/4(a),

moreover a linear fit in a2 well describes data for all available lattice spacings, giving the

result χ1/4 = 77(3). Although a complete study of the systematics affecting χ
1/4
tc (a) was

not performed (e.g. the dependence of mngb(a) on the lattice size was not studied, just

the largest size was used), this is a strong indication that the dominant source of lattice

artefacts in χ1/4(a) is the chiral symmetry breaking present at finite lattice spacing in the

staggered discretization.

3.2 Finite Temperature

Finite temperature simulations can in principle be affected by lattice artifacts comparable

to those present at T = 0. For that reason, we have limited our finite T simulations to the

three smallest lattice spacings explored at T = 0, i.e. those in the scaling window adopted
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Nt a [fm] T/Tc χ(T, a)a4 χ(T,a)
χ(0,a) b2

16 0.0824 0.964 6.12(48) · 10−6 0.817(75) -0.23(33)

14 0.0824 1.102 5.25(47) · 10−6 0.701(70) -0.191(95)

12 0.0824 1.285 4.04(11) · 10−6 0.539(29) -0.003(25)

10 0.0824 1.542 2.87(12) · 10−6 0.383(23) -0.083(29)

8 0.0824 1.928 1.296(97) · 10−6 0.173(15) -0.065(25)

24 0.0707 0.749 2.82(36) · 10−6 1.08(18) -0.11(12)

16 0.0707 1.124 1.53(15) · 10−6 0.589(84) -0.057(43)

14 0.0707 1.284 1.385(79) · 10−6 0.532(62) -0.019(30)

12 0.0707 1.498 1.05(11) · 10−6 0.403(60) -0.101(21)

10 0.0707 1.798 7.87(87) · 10−7 0.302(46) -0.096(26)

8 0.0707 2.247 3.41(31) · 10−7 0.131(18) -0.077(18)

6 0.0707 2.996 1.22(21) · 10−7 0.0469(94) -0.076(10)

16 0.0572 1.389 2.92(41) · 10−7 0.41(16) -0.049(17)

14 0.0572 1.587 2.04(32) · 10−7 0.29(11) -0.058(16)

12 0.0572 1.852 1.43(19) · 10−7 0.202(79) -0.0626(90)

10 0.0572 2.222 8.3(1.4) · 10−8 0.118(48) -0.0705(74)

8 0.0572 2.777 4.85(86) · 10−8 0.068(27) -0.091(11)

6 0.0572 3.703 2.51(72) · 10−8 0.035(16) -0.0792(12)

Table 3. Finite temperature results; in all cases Ns = 48 was used.

Tcut/Tc A0 (MeV) A1(fm
−2) A2

1.2 76.0(5.1) 103(17) -0.671(40)

1.4 80.2(6.9) 100(20) -0.728(57)

1.6 86(10) 85(24) -0.750(80)

2.0 83(18) 97(53) -0.718(14)

Table 4. Best fit values for the coefficients in (3.7) obtained by fitting only data corresponding to

temperatures T > Tcut.

for the extrapolation to the continuum limit with only O(a2) corrections. At fixed lattice

spacing the temperature has been varied by changing the temporal extent Nt of the lattice

and, in all cases, we have fixed Ns = 48. This gives a spatial extent equal or larger than

those explored at T = 0 and an aspect ratio Ns/Nt ≥ 3 for all explored values of Nt.

The absence of significant finite volume effects has also been verified directly by comparing

results with those obtained on Nt × 403 lattices. In Tab. 3 we report the numerical values

obtained for the topological susceptibility, for the ratio χ(T, a)/χ(T = 0, a) (where for

χ(T = 0, a) the infinite volume extrapolation has been taken) and for the cumulant ratio

b2.

Results for χ1/4 as a function of T/Tc, where Tc = 155 MeV, are reported in Fig. 4 for

the three different lattice spacings. The dependence on a is quite strong, as expected from

– 12 –



Tcut/Tc D0 D1(fm
−2) D2

1.2 1.17(24) -2(28) -2.71(15)

1.4 1.56(39) -12(30) -3.02(23)

1.6 1.81(76) -33(32) -2.99(39)

2.0 1.8(1.5) 2(22)×103 -2.90(65)

Table 5. Best fit values for the coefficients in (3.8) obtained by fitting only data corresponding to

temperatures T > Tcut.

the T = 0 case. Inspired by the instanton gas prediction, Eq. (1.8), we have performed a

fit with the following ansatz

χ1/4(a, T ) = A0(1 +A1a
2)

(

T

Tc

)A2

, (3.7)

which also takes into account the dependence on a and nicely describes all data in the range

T > 1.2Tc with χ2/dof ≃ 0.7. In Tab. 4 we report the best fit values obtained performing

the fit in the region T > Tcut for some Tcut values; best fit curves are reported in Fig. 4 as

well, together with a band corresponding to the continuum extrapolation.

1 1.5 2 2.5 3 3.5 4
T/Tc

40

60

80

100

χ(
T

)1/
4  [

M
eV

]

a = 0.0824 fm
a = 0.0707 fm
a = 0.0572 fm
Continuum ext.

Figure 4. Continuum extrapolation of the fourth root topological susceptibility, using the function

χ1/4(a, T ) = A0(1 + A1a
2)(T/Tc)

A2 . Only data corresponding to T & 1.2Tc have been used in the

fit.

It is remarkable that most of the lattice artifacts disappear when one considers, in

place of χ itself, the ratio χ(T, a)/χ(T = 0, a), whose dependence on the lattice spacing is

indeed quite mild. That is clearly visible in Fig. 5. Also in this case we have adopted a fit

ansatz similar to Eq. (3.7)

χ(a, T )

χ(a, T = 0)
= D0(1 +D1a

2)

(

T

Tc

)D2

, (3.8)

which well fits all data in the range T > 1.2Tc with a χ2/dof ≃ 1. The best fit curves

and the continuum extrapolation are shown in Fig. 5. The best fit parameters, again for
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1 1.5 2 2.5 3 3.5 40.7
T/Tc

0.01

0.1

1

χ(
T

)/
χ(

T
=

0)
Continuum ext.
DIGA
ChPT
a = 0.0572 fm
a = 0.0707 fm
a = 0.0824 fm

Figure 5. Ratio of the topological susceptibilities χ(T )/χ(T = 0), evaluated at fixed lattice spacing.

The horizontal solid line describes trivial scaling χ(T ) = χ(T = 0), while the dashed line is the

prediction from finite temperature ChPT and the dashed-dotted line shows the slope predicted

by DIGA computation. The band corresponds to the continuum extrapolation using the function

χ(a, T )/χ(a, T = 0) = D0(1 + D1a
2)(T/Tc)

D2 , only data corresponding to T & 1.2Tc have been

used in the fit.

1.2 1.4 1.6 1.8 2
Tcut

-4

-3.5

-3

-2.5

-2

pr
ov

a

4A2
D2

Figure 6. Plot of the exponent of the power-law behavior of χ(T ), extracted from fit to Eqs. (3.7)

and (3.8) for T > Tcut (see Tabs. 4-5). The value predicted by the dilute instanton gas approxima-

tion and perturbation theory is 4A2, D2 ∼ −8.

different Tcut values, are reported in Tab. 5. It is important to note, in order to assess

the reliability of our continuum limit, that the two different extrapolations, Eqs. (3.7) and

(3.8), provide perfectly consistent results: that can be appreciated both from Fig. 6, where

we compare the two coefficients D2 and 4A2, and from Fig. 7, where we directly compare

the two continuum extrapolations. As a further check, we have also verified that by fitting

[χ(a, T )/χ(a, T = 0)]1/4 we obtain results in perfect agreement with the ones obtained by
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1 1.5 2 2.5 3 3.5 4
T/Tc

20

30

40

50

60

70

80

χ(
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4
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Figure 7. Comparison of the two continuum extrapolations for χ(T )1/4. Continuum extrapolated

results for χ(T )/χ(0) have been multiplied by the ChPT prediction for χ(0).

1 1.5 2 2.5 3 3.5
T/Tc

20

40

60

80

100

χ(
T

)1/
4  [

M
eV

]

TM a = 0.064(1) fm
TM a = 0.082(1) fm
TM a = 0.094(1) fm

Figure 8. Comparison of our continuum extrapolated χ1/4(T ) (band) with results from Ref. [69].

Data for χ(T ) obtained at unphysical quark masses have been rescaled according to the DIGA

relation χ(T ) ∼ m2

q ∼ m4

π.

fitting χ(a, T )/χ(a, T = 0). As an example, using in the fit the values corresponding to

T > 1.2Tc one obtains for the exponent the value −0.674(38), to be compared with D2/4

from the first line of Tab. 5 and A2 from the first line of Tab. 4. However in the following

analysis we will refer to results obtained through the ratio χ(T )/χ(0), which is the quantity

showing smaller finite cut-off corrections.

Let us now comment on our results for the topological susceptibility. For temperatures

below or around Tc, the temperature dependence is quite mild and, for temperatures up

to T ≃ 1.2Tc, even compatible with the prediction from ChPT, which is reported in Fig. 5

for comparison. Then, for higher values of T , a sharp power law drop starts. However,

it is remarkable that the power law exponent is smaller, by more than a factor two, with
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T/Tc

-0.14
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-0.1

-0.08

-0.06

-0.04
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0

0.02

b 2

a = 0.0824 fm
a = 0.0707 fm
a = 0.0572 fm
ChPTb2(T=0)

b2
DIGA

Figure 9. b2 evaluated at three lattice spacing. The horizontal solid lines correspond to the value

of b2 at T = 0 predicted by ChPT (which is about −0.022) and to the instanton-gas expected value

bDIGA
2 = −1/12. The dotted-dashed line is the prediction of finite temperature ChPT, while the

light blue band is the result of a fit to the smallest lattice spacing data using Eq. (3.12) with d2
independent of T .

respect to the instanton gas computation, Eq. (1.8), which predicts D2 ≃ −8 in the case of

three light flavors (the dependence on the number of flavor is however quite mild). DIGA

is expected to provide the correct result in a region of asymptotically large temperatures,

which however seems to be quite far from the range explored in the present study, which

goes up to T ≃ 4Tc.

This is in sharp contrast with the quenched theory, where the DIGA power law behavior

sets in at lower temperatures [13, 22]. In order to allow for a direct comparison, we have

reported the DIGA prediction in Fig. 5, after fixing it by imposing χ(Tc) = χ(0) as an

overall normalization. As we discuss in the following section, the much milder drop of χ

as a function of T has important consequences for axion cosmology.

A determination of the topological susceptibility has been presented in Ref. [68], based

on the Domain Wall discretization, in the range T/Tc ∼ 0.9 - 1.2. Since the data have been

produced with different lattice spacings at different temperatures, it is however difficult to

compare their results with ours. An extended range of T has been explored in Ref. [69]

in the presence of twisted mass Wilson fermions, reporting a behavior similar to that ob-

served in this study, although with larger values of the quark masses (corresponding to a

pion mass mπ ∼ 370 MeV). The comparison is performed in Fig. 8, and shows a reasonable

agreement if results from Ref. [69] are rescaled according to the mass dependence expected

from DIGA2, i.e. χ(T ) ∼ m2
q ∼ m4

π.

2One might wonder why DIGA should work for the mass dependence of χ and not for its dependence on T .

A possible explanation is that, while the temperature dependence stems from a perturbative computation,

the mass dependence comes from the existence of isolated zero modes in the Dirac operator, i.e. from

the very hypothesis of the existence of a dilute gas of instantons, which seems to be verified already at

moderately low values of T , see the following discussion on b2, but not at T ∼ Tc.
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Let us now turn to a discussion of our results for the coefficient b2 (defined in Eq. (1.5)),

which is related to the non-gaussianity of the topological charge distribution and gives

information about the shape of the θ-dependent part of the free energy density. Data

for b2 are reported in Fig. 9. For T < Tc this observable is too noisy to give sensible

results but a reasonable guess, motivated by what happens in the quenched case and by

the ChPT prediction, is that b2 is almost temperature independent for T . Tc, like the

topological susceptibility. In the high temperature region b2 can instead be measured with

reasonable accuracy and, due to the peculiar dependence of the noise on this observable on

χV, data on the smaller lattice spacing turned out to be significantly more precise than the

others (see the discussion in Ref. [54]). While data clearly approach the dilute instanton

gas prediction bDIGA
2 = −1/12 at high temperature, deviations from this value are clearly

visible on all the lattice spacings for T ≃ 1.3 Tc and, for the smallest lattice spacing, also

up to T ∼ 2.5 Tc.

This is in striking contrast to what is observed in pure gauge theory, where deviations

from −1/12 are practically absent for T & 1.15 Tc, with a precision higher than 10% [13–

16]. As discussed in the introduction deviations from bDIGA
2 cannot be simply ascribed

to a failure of perturbation theory (like e.g. for the behavior of χ(T )) but are instead

unambiguous indications of interaction between instantons. Another difference with respect

to the quenched case is that in the pure gauge theory (with both gauge groups SU(N) and

G2, see [14, 15]) the asymptotic value is approached from below, while in the present case it

is approached from above. These peculiar features can be related to a different interaction

between instantons mediated by light quarks, as it is clear from the following discussion.

To describe deviations from the instanton gas behavior it is convenient to use the

parametrization of F(θ, T ) introduced in Ref. [14]:

F(θ, T ) =
∑

n>0

c2(n−1)(T ) sin
2n(θ/2) . (3.9)

Indeed it is not difficult to show that every even function of θ of period 2π can be written in

this form, and the main advantage of this form is that the value of coefficient c2n influences

only b2j with j ≥ n: in particular

χ(T ) = c0(T )/2; b2(T ) = −
1

12
+

c2(T )

8χ(T )
;

b4(T ) =
1

360
−

c2(T )

48χ(T )
+

c4(T )

32χ(T )
.

(3.10)

Since the coefficients c2n parametrize deviations from the instanton gas that manifest them-

selves only in higher-cumulants of the topological charge, it is natural to interpret Eq. (3.9)

as a virial expansion, in which the role of the “density” is played by the first coefficient

(i.e. the topological susceptibility χ), and to introduce the dimensionless coefficients d2n
by

c2(n−1)(T ) = d2(n−1)(T )
χ(T )n

χ(T = 0)n−1
, (3.11)

where χ(T = 0) was used just as a dimensional normalization and one expects a mild

dependence of d2(n−1)(T ) on the temperature, since the strongly dependent component
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χ(T )n have been factorized. To lowest order we thus have

b2(T ) = −
1

12
+

d2
8

χ(T )

χ(T = 0)
, (3.12)

which nicely describes the b2 data for the smallest lattice spacing using d2 = 0.80(16), see

Fig. 9, where the expression χ(T )/χ(T = 0) ≃ (Tc/T )
2.7 was used.

In the spirit of a virial expansion interpretation of Eq. (3.9), the coefficient d2 can

be considered as the lowest order interaction term between instantons. In particular, a

positive value of d2 corresponds to an attractive potential, which is in sharp contrast with

the pure gauge case, where a repulsive, negative value of d2 is observed. This peculiar

difference can be surely interpreted in terms of effective instanton interactions mediated

by light quarks, which are likely also responsible for the much slower convergence, with

respect to the quenched case, to the DIGA prediction.

4 Implications for Axion Phenomenology

The big departure of the results for the topological susceptibility at finite temperature from

the DIGA prediction has a strong impact on the computation of the axion relic abundance.

In particular the model independent contribution from the misalignment mechanism is

determined to be [59]

Ωmis
a =

86

33

Ωγ

Tγ

n⋆
a

s⋆
ma , (4.1)

where Ωγ and Tγ are the present abundance and temperature of photons while n⋆
a/s

⋆ is

the ratio between the comoving number density na = 〈maa
2〉 and the entropy density s

computed at a late time t⋆ such that the ratio na/s became constant. The number density

na can be extracted by solving the axion equation of motion

ä+ 3Hȧ+ V ′(a) = 0 , (4.2)

The temperature (and time) dependence of the Hubble parameter H is determined by

the Friedmann equations and the QCD equation of state. The biggest uncertainties come

therefore from the temperature dependence of the axion potential V (a). At high tempera-

tures the Hubble friction dominates over the vanishing potential and the field is frozen to

its initial value a0. As the Universe cools the pull from the potential starts winning over

the friction (this happens when T ≈ Tosc, defined as ma(Tosc) ≈ 3H(Tosc)) and the axion

starts oscillating around the minimum. Shortly after H becomes negligible and the mass

term is the leading scale in Eq. (4.2). In this regime the approximate WKB solution has

the form

a(t) ∼ A(t) cos

(
∫ t

t0

dt′ma(t
′)

)

=

= a(t0)

(

ma(t0)R
3(t0)

ma(t)R3(t)

)1/2

cos

(
∫ t

t0

dt′ma(t
′)

)

,

(4.3)

where R(t) is the cosmic scale factor. Since the energy density is given by ρa ∼ m2
aA

2/2,

the solution (4.3) implies that what is conserved in the comoving volume is not the energy
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density but Na = ρaR
3/ma, which can be interpreted as the number of axions [5–7].

Through the conservation of the comoving entropy S, it follows that n⋆
a/s

⋆ becomes an

adiabatic invariant. Hence, it is enough to integrate the equation of motion (4.2) in the

small window around the time when T ≈ Tosc. We integrated numerically Eq. (4.2) in the

interval between the time when ma = H/10 to that corresponding to ma = 2400H and

extract the ratio n⋆
a/s

⋆ when ma ∼ 300H, namely a factor a hundred since the oscillation

regime begins. The value for Tosc varies from Tc to several GeV depending on the axion

decay parameter fa and the temperature dependence of the axion potential. More details

about this standard computation can be found for example in [59, 70]. In order to estimate

the uncertainty in the results given below we varied the fitting parameters of the topological

susceptibility D2, D0 and those relative to the QCD equation of state [37] within the quoted

statistical and systematic errors.

Given that b2(T ) converges relatively fast to the value predicted by a single cosine

potential, we can assume V (a) = −χ(T ) cos(a/fa) for T & Tc. Using the most conservative

results for the fit of χ(T ), i.e. χ(T )/χ(0) = (1.8 ± 1.5)(Tc/T )
2.90±0.65, in Fig. 10 we plot

the prediction for the parameter fa as a function of the initial value of the axion field

θ0 = a0/fa assuming that the misalignment axion contribution make up for the whole

observed dark matter abundance, ΩDM = 0.259(4) [71]. We also plot the case where the

axion misalignment contribution accounts only for part (10% for definiteness) of the dark

matter abundance.

Figure 10. Values of the axion decay constant fa as a function of the initial field value θ0 = a0/fa
such that the axion misalignment contribution matches the full or a tenth of the observed dark

matter abundance (red band or dotted green line respectively). When the PQ symmetry is broken

only after inflation the axion abundance is reproduced by choosing θ0 ≈ 2.2, i.e. the vertical blue

dashed line.

In some cases the axion field acquires all possible values within the visible horizon,

therefore the initial condition to the Eq. (4.2) needs to be integrated over. This happens

if the PQ symmetry is broken only after inflation or if the PQ symmetric phase is tem-

porarily restored after inflation (e.g. if the Hubble scale during inflation or the maximum
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temperature at reheating are at or above the PQ scale fa). Numerically it corresponds to

choosing θ0 ≈ 2.2 and the value of the PQ scale in this case is fixed to:

fa(θ0) = (1.00+0.40
−0.26

+0.07
−0.18 ± 0.06) · 1012 GeV , (4.4)

where the errors correspond respectively to the uncertainties on the fit parameters D2,

D0, and to the error in the QCD equation of state. Note that, in this case, also other

contributions from topological defects are expected to contribute. In case their effects are

not negligible, or if axions are not responsible for the whole dark matter abundance, the

value above should just be read as an upper bound to the PQ scale.

The value in Eq. (4.4) is almost one order of magnitude bigger than the one computed

with instantons techniques (fa . 0.2 · 1012 GeV), which in fact corresponds to the value

we instead get for one tenth of the dark matter abundance.

Some few remarks are in order. While the uncertainties on the axion mass fit we used

are not small, the final axion abundance is rather insensitive to them and the prediction for

fa has therefore a good precision. The results above, however, rely on the extrapolation of

the axion mass fit formula up to few GeV, where no lattice data is available. In particular for

the value of fa in Eq. (4.4) the axion field starts oscillating around Tosc = 4.3 GeV. An even

longer extrapolation is required for fa = 1.67 ·1011 GeV, corresponding to Ωmis
a = 0.1ΩDM,

where the axion starts oscillating around Tosc = 7.2 GeV.

Given the stability of the fit in the accessible window of temperatures (see Fig. 6)

big changes in the axion mass behavior are not expected. Still, extending the analysis to

even higher temperatures would be extremely useful to control better the extrapolation

systematics.

Larger values of fa corresponds instead to smaller Tosc, for example for fa = 1013 GeV,

Tosc = 2.2 GeV while for fa = 1014 GeV, Tosc = 1.1 GeV. Above these values no extrapola-

tion is required and the corresponding results are free from the extrapolation uncertainties.

5 Conclusions

We studied the topological properties and the θ-dependence for Nf = 2 + 1 QCD along a

line of constant physics, corresponding to physical quarks masses, and for temperatures up

to 4Tc, where Tc = 155 MeV is the pseudo-critical temperature at which chiral symmetry

restoration takes place. We explored several lattice spacings, in a range 0.05 − 0.12 fm,

in order to perform a continuum extrapolation of our results. Our investigation at even

smaller lattice spacings has been hindered by a severe slowing down in the decorrelation of

the topological charge.

At zero temperature we observe large cut-off effects for the topological susceptibility.

Nevertheless we are able to perform a continuum extrapolation, obtaining from the three

finest lattice spacings χ1/4 = 73(9) MeV, in reasonable agreement with the ChPT prediction

in the case of degenerate light flavors, χ
1/4
ChPT = 77.8(4) MeV.

At finite temperature we observe that cut-off effects are drastically reduced when one

considers the ratio χ(T )/χ(T = 0), which turns out to be the most convenient quantity to

perform a continuum extrapolation. The agreement with ChPT persists up to around Tc.
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At higher temperatures the topological susceptibility presents the power-law dependence

χ(T )/χ(0) = D0(T/Tc)
D2 , with D2 ∼ −3. The exponent of the power-law behavior is

however substantially smaller than the DIGA prediction, D2 ∼ −8.

Regarding the shape of the θ-dependent part of the free energy density, and in partic-

ular the lowest order coefficient b2, a visible convergence to the instanton gas prediction is

observed in the explored range. With respect to the pure gauge case, the convergence of b2
to DIGA is slower and the deviation is opposite in sign [14, 15]. This suggests a different

interaction between instantons right above Tc, namely repulsive in the quenched case and

attractive in full QCD [72].

The deviations from the dilute instanton gas predictions that we found in the present

study have a significant impact on axions, resulting in particular in a shift of the axion dark

matter window by almost one order of magnitude with respect to estimates based on DIGA.

The softer temperature dependence of the topological susceptibility also changes the onset

of the axion oscillations, which would now start at a higher temperatures (T ∼ 4 GeV).

An important point is that this seems an effect directly related to the presence of light

fermionic degrees of freedom: indeed, pure gauge computations [13, 22] observe a power-law

behavior in good agreement with DIGA in a range of temperatures comparable to those

explored in the present study.

One might wonder whether a different power law behavior might set in at temperatures

higher than 1 GeV. That claims for future studies extending the range explored by us. The

main obstruction to this extension is represented by the freezing of the topological modes

at smaller lattice spacings which would be necessary to investigate such temperatures

(a < 0.05 fm). Such an obstruction could be overcome by the development of new Monte-

Carlo algorithms. Proposals in this respect have been made in the past [73, 74] and some

new strategies have been put forward quite recently [75, 76]. In view of the exploration of

higher temperatures, one should also consider the inclusion of dynamical charm quarks.
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