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Previous studies have shown abnormal power and functional connectivity of resting

state electroencephalographic (EEG) rhythms in groups of Alzheimer’s disease (AD)

compared to healthy elderly (Nold) subjects. Here we tested the best classification

rate of 120 AD patients and 100 matched Nold subjects using EEG markers based

on cortical sources of power and functional connectivity of these rhythms. EEG

data were recorded during resting state eyes-closed condition. Exact low-resolution

brain electromagnetic tomography (eLORETA) estimated the power and functional

connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and

limbic regions. Delta (2–4Hz), theta (4–8Hz), alpha 1 (8–10.5Hz), alpha 2 (10.5–13Hz),

beta 1 (13–20Hz), beta 2 (20–30Hz), and gamma (30–40Hz) were the frequency

bands of interest. The classification rates of interest were those with an area under

the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold

for a moderate classification rate (i.e., 70%). Results showed that the following

EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and

limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic

delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital

delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right
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and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-

hemispherical connectivity. Occipital delta/alpha 1 current density showed the best

classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and

AUROC of 82%). These results suggest that EEG source markers can classify Nold and

AD individuals with a moderate classification rate higher than 80%.

Keywords: Alzheimer’s disease (AD), electroencephalography (EEG), exact low-resolution brain electromagnetic

tomography (eLORETA), spectral coherence, lagged linear connectivity, area under the receiver operating

characteristic curve (AUROC), delta rhythms, alpha rhythms

INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent brain
neurodegenerative disorder progressing to severe cognitive
impairment and loss of autonomy (i.e., dementia) in older people
(Braak and Braak, 1995; Jelic et al., 1998; Price, 2000; Leite et al.,
2004; Glodzik-Sobanska et al., 2005; Kang et al., 2015).

Criteria for clinical diagnosis of AD were proposed in 1984
(McKhann et al., 1984) by the National Institute of Neurological
and Communicative Disorders and Stroke (NINCDS) and by
the Alzheimer’s Disease and Related Disorders Association
(ADRDA). According to these criteria, the final diagnosis
of definite AD needed histopathologic confirmation (i.e.,
microscopic examination of brain tissue) in autopsy or biopsy.

In the past years, the International Working Group (IWG)
and the US National Institute on Aging–Alzheimer’s Association
(NIA-AA) have proposed an algorithm for the diagnosis of AD
at the preclinical (before any objective clinical manifestation),
prodromal (with objective mild cognitive impairment [MCI]
but with autonomy substantially preserved), and overt dementia
stages, based on in vivo fluid and neuroimaging biomarkers as
well as clinical phenotypes of the disease (Förstl and Kurz, 1999;
Dubois et al., 2014). The neuroimaging biomarkers included
brain hypometabolism, as revealed by fluorodeoxyglucose
positron emission tomography (FDG-PET), brain amyloid load,
as measured by ligand PET, and maps of brain atrophy and
abnormalities of structural brain connectivity, as revealed by
magnetic resonance imaging (MRI).

The mentioned PET and MRI methodologies capture
several processes of AD, but cannot be always used due to
the limited availability of the instrumental resources, costs,
invasiveness, or radiation exposure (e.g., PET). These limitations
are problematic especially for serial recordings over time. In
contrast, electroencephalographic (EEG) recordings in awake
resting state condition represent an ideal low-cost and non-
invasive methodology for clinical applications. Indeed, EEG
recording has a high temporal resolution (milliseconds) that
provides an optimal investigational tool for the emerging features
of brain physiology, namely its oscillatory nature (Schroeter
et al., 2009; Babiloni et al., 2013a). Indeed, EEG rhythms
are the most important features of the collective behavior of
brain neural populations and are very relevant for human
cognition. Furthermore, EEG procedures are widely available
in any country. They are well-tolerated by patients and are
not affected by the task difficulty. Moreover, they can be
repeated over time without habituation effects. As an important

methodological limitation, recorded EEG data require an expert
manual verification of the EEG epochs free from artifacts,
and commercial pieces of software do not provide immediate
statistical indexes of abnormalities of EEG markers with respect
to a normative database.

Previous studies in AD patients and elderly subjects with
amnesic MCI have shown that resting state eyes-closed EEG
rhythms may be promising markers for a neurophysiological
evaluation of disease status. Noteworthy, these markers do not
have a diagnostic value, as EEG rhythms do not directly reflect the
pathophysiological markers of AD. Rather, they may be part of
the “topographical markers” of AD according to the definition by
Dubois et al. (2014). These topographic markers are not specific
for AD but can provide an index of the extent to which AD
subjects show the abnormal structure and/or function of the
brain across time. In this framework of topographic markers,
the resting state EEG rhythms may reveal abnormalities of
basic neurophysiological mechanisms underlying vigilance and
cognition in AD subjects. When compared to groups of normal
elderly (Nold) subjects, AD groups are characterized by high
power of widespread delta (<4Hz) and theta (4–7Hz) rhythms,
as well as by low power of posterior alpha (8–12Hz) and/or
beta (13–20Hz) rhythms (Dierks et al., 1993, 2000; Huang et al.,
2000; Ponomareva et al., 2003; Jeong, 2004). Similarly, MCI
subjects display increased theta power (Grunwald et al., 2001)
as well as decreased alpha power (Jelic et al., 1998, 2000; Huang
et al., 2000; Grunwald et al., 2001). In line with the “transition”
hypothesis, power of resting state EEG alpha rhythms is high
in Nold subjects, intermediate in MCI subjects, and low in AD
patients at the group level (Elmstáhl and Rosén, 1997; Huang
et al., 2000; Jelic et al., 2000; Jeong, 2004).

Markers of resting state eyes-closed EEG rhythms have
unveiled abnormalities of neurophysiological mechanisms in AD
patients not only at the group but also at the individual level. A
correct classification of up to 90% of success between Nold and
AD individuals by using EEG markers as an input to artificial
neural network (ANN) classifiers with the leave-one-out cross-
validation method has been previously reported (Anderer et al.,
1994; Pritchard et al., 1994). Similar results were obtained in the
correct classification not only between AD and Nold subjects
but also between Nold and MCI subjects (Adler et al., 2003;
Brassen et al., 2004). Unfortunately, those results suffered from
the use of a small number of subjects. Furthermore, Lehmann
et al. (2007) used EEG markers as an input to random forest
procedures and obtained a correct classification between AD and
Nold individuals of about 82%. This classification rate improved
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to about 89% using ANN (Lehmann et al., 2007). Buscema and
colleagues reached about 92% of success in the classification of
AD andMCI individuals using EEGmarkers as an input to ANNs
(Buscema et al., 2007), while Dauwels and colleagues reached
classification rates of 83 and 88% for pre-dementia and mild AD,
respectively (Dauwels et al., 2009). The same research group has
also performed a recent study (Dauwels et al., 2010) comparing
the classification rate between Nold and MCI individuals based
on a large number of EEG markers, such as partial directed
coherence, directed transfer function (DTF), full frequency DTF
(ffDTF), different types of entropy measures, state space-based
estimators, information-theoretic measures including Mutual
Information (a measure closely related to Synchronization
Likelihood), and different types of divergence and stochastic
event synchrony (SES). Results revealed that most of these EEG
markers globally indicated decreased functional and less effective
brain connectivity in MCI patients with respect to Nold subjects.
However, only two EEG markers yielded significant results in
the classification of Nold and MCI individuals, namely SES and
ffDTF, with a correct classification of about 83% using linear
and quadratic discriminant analysis with leave-one-out cross-
validation (Dauwels et al., 2010).

Previous studies have shown interesting results on markers
of AD based on magnetoencephalographic (MEG) counterpart
of resting state EEG rhythms. Specifically, Gómez et al. (2009)
analyzed the resting state MEG rhythms in 20 AD patients and
21 Nold subjects to test the ability of the dimensional complexity
of MEG signals (as measured by Higuchi’s fractal dimension)
to classify those individuals correctly. Results showed that MEG
signals had lower complexity values in AD patients than in Nold
subjects. Furthermore, the accuracy of 87.8% (80% sensitivity;
95.2% specificity) in the classification of Nold and AD subjects
was obtained by computation of receiver operating characteristic
(ROC) curves. Moreover, Fernández et al. (2013) demonstrated
that source current density values of MEG delta rhythms
in posterior parietal, occipital, pre-rolandic, and precuneus
cortices distinguished reliably betweenMCI patients, AD patients
with different severity scores, and Nold subjects. Based on
these results, the Authors proposed MEG delta markers as a
promising candidate for the detection of AD patients in clinical
practice.

The present research group has been investigating markers
of resting state eyes-closed EEG rhythms in MCI, AD, and
control subjects in the framework of the “BRAINON” program
(www.brainon.eu). In previous studies of this program, cortical
sources of resting state eyes-closed EEG rhythms were estimated
and compared between groups of MCI, AD, and control subjects,
in order to enhance spatial information content of scalp-recorded
EEG data and to unveil topography of EEG abnormalities
associated with AD from prodromal to overt clinical stages
(Babiloni et al., 2004a, 2008, 2011a,b,c, 2013a,b,c). For this
purpose, low-resolution brain electromagnetic tomography
(LORETA) was used (Pascual-Marqui et al., 1994). Overall, it
was found that occipital, parietal, and temporal cortical sources
of delta and alpha rhythms showed abnormal activity in groups
of AD subjects when compared to control groups. Furthermore,
this abnormal activity was related to markers of hippocampus

atrophy, cortical atrophy, and vascular lesions of white matter.
In the same line, when compared to control groups, groups of
AD subjects showed abnormal functional coupling of these EEG
rhythms as revealed by spectral coherence and other techniques
of functional connectivity (Babiloni et al., 2004b, 2006b, 2008,
2009a, 2010).

As a new milestone of the “BRAINON” program, the
current study tested several resting state EEG markers as
ability to classify correctly AD individuals with dementia and
Nold individuals. These EEG markers were obtained by the
estimation of activity and functional connectivity of the cortical
sources of resting state eyes-closed EEG rhythms by the use of
exact LORETA (eLORETA; Pascual-Marqui, 2007a). The EEG
markers of interest were used as discriminant variables for the
computation of the rate of classification between single Nold and
AD individuals.

MATERIALS AND METHODS

Subjects and Diagnostic Criteria
This study involved 120 AD and 100 Nold individuals, carefully
matched for age, gender, and years of education. They were
selected blindly to the features of EEG data, to avoid any logical
circularity or bias in the results.

Committees of local institutional ethics approved the
recording and analysis of EEG data for scientific purposes.
All experiments were performed with the informed consent
of each participant or caregiver, in line with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). The inclusion criteria for AD individuals comprised
the diagnosis of mild to moderate AD according to NINCDS-
ADRDA (McKhann et al., 1984) and DSM-IV guidelines.
Furthermore, these individuals had to have received medical,
neurological, neuropsychological, and psychiatric assessments
including MMSE (Folstein et al., 1975), Clinical Dementia
Rating (CDR; Hughes et al., 1982), geriatric depression scale
(GDS; Yesavage et al., 1982), and Instrumental Activities of
Daily Living scale (IADL; Lawton and Brody, 1969). Exclusion
criteria included scores in the MMSE lower than 27 in
the Nold subjects and higher than 24 in the AD subjects
according to Alzheimer‘s Disease Neuroimaging Initiative, ADNI
(http://adni.loni.usc.edu). Besides, exclusion criteria comprised
any kind of evidence of other forms or causes of dementia
such as frontotemporal dementia (The LundManchester Groups,
1994), vascular dementia, (NINDS-AIREN criteria; Román et al.,
1993), Parkinson disease, Lewy body dementia (McKeith et al.,
2005), metabolic syndrome, nutritional deficits, tumors, etc.
The Nold subjects had no history of neurological or major
psychiatric disorders. They underwentmedical, neurological, and
psychiatric assessments including MMSE and GDS, to exclude
actual neurocognitive disorders and major psychiatric symptoms
(including abuse of substances).

Table 1 reports information about personal and clinical
characteristics of the Nold and AD subjects of the present study.
An independent t-test evaluated the presence or absence of
statistically significant differences (p < 0.05, one-tailed) between
the two groups (i.e., Nold andADpatients) for the age, education,
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TABLE 1 | Demographic and clinical data of normal elderly (Nold) subjects

and Alzheimer’s disease (AD) patients.

Gender Age Education MMSE

(Female/Male) (years) (years) (score)

Nold (n = 100) 62/38 69 ± 0.9 SE 9.7 ± 0.4 SE 28.8 ± 0.1 SE

AD (n = 120) 78/42 69.8 ± 0.7 SE 9.2 ± 0.4 SE 19 ± 0.3 SE

MMSE, Mini Mental State Evaluation.

individual alpha frequency (IAF; see below for a description
of this index), and MMSE score. As expected, a statistically
significant difference was found for the MMSE score (p< 0.0001;
higher MMSE score in the Nold than in the AD group) and for
the IAF (p < 0.0001; higher IAF in the Nold than in the AD
group). On the contrary, no statistically significant difference was
found for age, gender, and education (p > 0.05).

EEG Recordings
All subjects were kindly asked to stay relaxed at eyes closed
and not to move or talk. EEG data were recorded (bandpass:
0.01–100Hz; EB-Neuro Be-light©, Firenze, Italy) during resting
state eyes-closed condition from 19 scalp electrodes positioned
over the whole head according to the 10–20 System (i.e., Fp1,
Fp2, F7, F3, Fz,F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1, O2; Figure 1). Linked earlobe reference electrode was
appreciated but not mandatory to respect the methodological
facilities and standard internal protocols of the clinical recording
units. A ground electrode was located between the AFz
and Fz electrodes. Electrode impedance was kept below 5
Kohm. All recorded artifact-free EEG data were off-line re-
referenced to common average to harmonize the EEG data
collected with different reference electrodes. The horizontal
and vertical electro-oculographic activities (0.3–70Hz bandpass)
were simultaneously recorded to monitor eye movements. All
data were digitalized in continuous recording mode (about 5 min
of EEG; 128–256Hz sampling rate set to avoid aliasing).

Preliminary EEG Data Analysis
The EEG data were segmented in consecutive epochs of 2 s
and were analyzed off-line. The epochs affected by any artifacts
(ocular, muscular, instrumental) were preliminarily identified
by an automatic computerized procedure. Two independent
experimenters manually confirmed the artifact-free EEG epochs
that were accepted for further analysis. Particular attention was
paid to exclude EEG epochs with signs of drowsiness or pre-sleep
stages.

Spectral Analysis of EEG Rhythms
The power spectral density of the EEG rhythms was computed
using an FFT analysis (Welch method, Hanning windowing
function, no phase shift) with 0.5Hz of frequency resolution. The
following standard frequency bands of interest were considered,
in line with previous relevant EEG studies (Besthorn et al., 1997;
Chiaramonti et al., 1997; Babiloni et al., 2005, 2006b, 2011b,
2013c): delta (2–4Hz), theta (4–8Hz), alpha 1 (8–10.5Hz), alpha
2 (10.5–13Hz), beta 1 (13–20Hz), beta 2 (20–30Hz), and gamma

FIGURE 1 | Diagram showing the placement of the 19 scalp electrodes

used for the present electroencephalographic (EEG) recordings. These

electrodes are positioned according to the International 10–20 System (i.e.,

Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and

O2). In the figure, A1 and A2 indicate the position of linked earlobe reference

electrodes.

(30–40Hz). These frequency bands were computed sharing the
frequency bin by two contiguous bands, as a widely accepted
procedure (Jelic et al., 1996; Besthorn et al., 1997) that fits the
theoretical consideration that near EEG rhythms may overlap at
their frequency borders (Klimesch et al., 1996; Klimesch, 1999;
Babiloni et al., 2005, 2010). Individual alpha frequency (IAF)
peak was defined as the frequency associated with the strongest
EEG power at the extended alpha range of 7–14Hz (Klimesch,
1999).

Cortical Source of EEG Rhythms as
Computed by eLORETA
As mentioned above, eLORETA estimated the activity of the
cortical sources of EEG rhythms (Pascual-Marqui, 2007a).
eLORETA is an improvement over previous well-known
techniques called LORETA (Pascual-Marqui et al., 1994) and
the standardized LORETA (sLORETA; Pascual-Marqui, 2002).
In simulation studies, both sLORETA and eLORETA showed
low spatial resolution but zero localization error in the presence
of measurement and biological noise (Pascual-Marqui, 2002,
2007a). Furthermore, it was reported a better source location by
eLORETA than sLORETA (Canuet et al., 2011).

eLORETA uses a realistic head model (Fuchs et al., 2002)
using the MNI152 template (Mazziotta et al., 2001), with a three-
dimensional solution space restricted to cortical gray matter and
electrode coordinates provided by Jurcak (Jurcak et al., 2007).
The intracerebral volume is partitioned in 6239 voxels with 5 mm
spatial resolution. Thus, eLORETA images obtained from resting
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TABLE 2 | Regions of interest (ROIs) for the estimation of the cortical

sources of resting state eyes-closed electroencephalographic (EEG)

rhythms by exact low-resolution brain electromagnetic tomography

(eLORETA) software.

Brodmann areas into the regions of interest (ROIs)

Frontal 8, 9, 10, 11, 44, 45, 46, 47

Central 1, 2, 3, 4, 6

Parietal 5, 7, 30, 39, 40, 43

Temporal 20, 21, 22, 37, 38, 41, 42

Occipital 17, 18, 19

Limbic 31, 32, 33, 34, 35, 36

Any ROI is defined by some Brodmann areas within the cortical source space of the

eLORETA software.

state EEG data represent the electrical activity at each voxel in the
neuroanatomic Montreal Neurological Institute (MNI) space as
the exact magnitude of the estimate current density. Anatomical
labels as Brodmann areas are also reported usingMNI space, with
adaptation to Talairach space (Brett et al., 2002).

eLORETA cortical source solutions did estimate current
density values at x, y, and z vectors of any brain voxel able
to predict EEG spectral power density at all scalp electrodes.
Among the infinite solutions to the EEG inverse problem,
a regularization procedure selected the maximally smoothed
solution at the cortical source level of the eLORETA head model.
Afterwards, this solution was normalized by the computation of
the eLORETA current density at each voxel (as the mean of the
x, y, and z vectors) with current density value averaged across all
frequencies (0.5–45Hz) and 6239 voxels of the brain volume. For
this reason, normalized eLORETA solutions are reported by an
arbitrary unit scale in which “1” means equal to the average value
of eLORETA current density computed across all frequencies and
voxels. The general procedure typical fits EEG power density
in a Gaussian distribution and reduces inter-subject variability
(Leuchter et al., 1993).

In line with the general low spatial resolution of the present
EEG methodological approach (i.e., 19 scalp electrodes), the
eLORETA solutions were averaged across all voxels in a given
cortical macro region of interest (ROI). Frontal, central, parietal,
occipital, temporal, and limbic ROIs were considered. Table 2
reports the Brodmann areas (BAs) included in these ROIs. The
eLORETA cortical sources at these ROIs and all frequency bands
of interest were used as a first set of EEG markers for the present
classification purposes.

EEG Lagged Linear Connectivity by
eLORETA
Functional connectivity between two regions has previously been
defined as the non-linear and linear dependence, as for example,
lagged non-linear and linear coherence of intra-cortical EEG-
source estimates (Pascual-Marqui, 2007b). When computed in
the cortical source space, the inherent low spatial resolution of
the EEG tomography enters high phase synchronization and
zero-lag coherence (Pascual-Marqui, 2007b). Activity at any
cortical area is observed instantaneously (zero-lag) by all scalp

electrodes. Instantaneous coherence between two cortical sources
might also be found when a third source has an impact on two
other brain sources even whether the two paired sources do not
influence each other or as there is activity at reference electrode
in coherence analysis. For this reason, only the lagged coherence
contribution of these measures should be considered for more
save neurophysiological considerations. In this line, Pascual-
Marqui (2007b) proposed the solution to remove the zero-
lag instantaneous interactions and to compute coherence using
the residual, corrected time series. Furthermore, the proposed
solution included measures of dependence among multivariate
EEG time series (Pascual-Marqui, 2007c). This procedure of
functional connectivity was called lagged linear connectivity
(LLC) and was implemented to make it available a freeware
in the eLORETA package (Pascual-Marqui et al., 2011). In the
present study, we used that freeware (Pascual-Marqui et al.,
2011) to test the classification accuracy of EEG markers of
functional connectivity among EEG cortical sources in Nold and
AD individuals.

For each subject and frequency band of interest (i.e., delta,
theta, alpha 1, alpha 2, beta 1, beta 2, and gamma), the LLC was
computed for six ROIs (i.e., frontal, central, parietal, occipital,
temporal, and limbic). For the inter-hemispherical analysis,
the LLC estimates were calculated between all voxels of the
mentioned ROIs of each hemisphere with the corresponding ones
of the other hemisphere. The LLC solutions for all voxels of a
given pair of ROIs were averaged. For the intra-hemispherical
analysis, the LLC estimates were computed for all voxels of
a particular ROI with all voxels of another ROI of the same
hemisphere. The LLC solutions for all voxels of a given pair of
ROIs were averaged. This operation was repeated for the left/and
the right hemisphere.

Statistical Analysis of the eLORETA
Computations
To test the working hypotheses related to EEG power activity
and functional connectivity as revealed by eLORETA solutions,
two statistical sessions were performed by the commercial tool
STATISTICA 10 (StatSoft Inc., www.statsoft.com).

The first statistical session tested the hypothesis that mean
current density in the ROIs would differ between the Nold and
AD groups. To this aim, a Three-way ANOVA was computed
using regional normalized eLORETA solutions (normalized
current density at all voxels of a given ROI) as a dependent
variable (p < 0.05). The ANOVA factors were Group (Nold,
AD), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, and
gamma), and ROI (frontal, central, parietal, occipital, temporal,
and limbic). Subjects’ age, education, IAF, and gender were used
as covariates. Mauchly’s test evaluated the sphericity assumption.
The degrees of freedom were corrected by Greenhouse-Geisser
procedure when appropriate. Duncan test was used for post-
hoc comparisons (p < 0.05, one-tailed). Of note, the present
study was not focused on the differences of EEG cortical sources
between the Nold and the AD group. That focus would have
required a conservative post-hoc test using a correction for
multiple univariate comparisons at p < 0.05. Rather, this study
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tested the ability of EEG source markers to classify Nold and AD
individuals. In this line, ANOVA and post-hoc tests were used
merely to reduce the amount of EEG markers to be used for the
calculation of that ability. For this reason, we used the liberal one-
tailed analysis rather than a conservative correction for multiple
univariate statistical comparisons.

The second statistical session tested the hypothesis that
the mean functional connectivity among ROIs would differ
between the Nold and AD groups. Different Three-way ANOVAs
were performed using the LLC calculated with eLORETA as
a dependent variable (p < 0.05). The first ANOVA tested the
mean differences of inter-hemispherical LLC between the two
groups. The ANOVA factors were Group (Nold, AD), Band
(delta, theta, alpha 1, alpha 2, beta 1, beta 2, and gamma), and
ROI pairs (frontal left-frontal right, central left-central right,
parietal left-parietal right, occipital left-occipital right, temporal
left-temporal right, and limbic left-limbic right). The second
ANOVA tested the mean differences of left intra-hemispherical
LLC between the two groups. The ANOVA factors were Group
(Nold, AD), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, and
gamma), and ROI pairs (frontal-central, frontal-parietal, frontal-
occipital, frontal-temporal, frontal-limbic, central-parietal,
central-occipital, central, temporal, central-limbic, parietal-
occipital, parietal-temporal, parietal-limbic, occipital-temporal,
occipital-limbic, and temporal-limbic). The third ANOVA
had the same design for the right hemisphere. In the three
ANOVAs, subjects’ age, education, IAF, and gender were used as
covariates. Mauchly’s test evaluated the sphericity assumption.
The degrees of freedom were corrected by Greenhouse-Geisser
procedure when appropriate. Duncan test was used for post-hoc
comparisons (p < 0.05, one-tailed).

Accuracy of the EEG Markers in the
Discrimination between Nold and AD
Individuals
The third statistical session tested the ability of the EEG markers
(i.e., source current density and LLC) to classify single Nold
and AD individuals. To this aim, the EEG markers showing
statistical differences between the Nold and the AD group in
those two statistical sessions were used as input variables for
the third statistical session. The classification rate was computed
by the analysis of the receiver operating characteristic curve
(ROC; DeLong et al., 1988). This analysis was performed by
Matlab 2010b software (Mathworks Inc., Natick, MA, USA). The
following indexes measured the classification rate of the above
binary classification (i.e., Nold vs. AD):

1) Sensitivity defined as the rate of the AD subjects correctly
classified as AD (i.e., true positive rate);

2) Specificity defined as the rate of the Nold (control) subjects
correctly classified as Nold (i.e., true negative rate);

3) Accuracy defined as the mean between the sensitivity and
specificity;

4) The area under the ROC curve (AUROC) expressed as a
percentage. Noteworthy, the EEG markers of interest were
those showing an AUROC higher than an arbitrary threshold

of 70% (i.e., the threshold of the so-called “moderate”
classification rate, DeLong et al., 1988).

Evaluation of the Relationship between the
EEG Markers and Relevant Variables of AD
Based on the values of the EEG markers, we defined AD
individuals with the EEG marker “positive” (i.e., AD+) as
those having marker values equal or higher than the mean
plus one standard deviation (SD) of the marker value in the
Nold reference population. This AD+ condition is expected to
indicate abnormal values of the EEGmarker in AD individuals as
compared to the Nold group. In this line, the AD individuals with
the EEGmarker “negative” (i.e., AD−) were those having marker
values within the mean plus one SD of the marker value in the
Nold reference population. To test the hypothesis that the AD+
condition is related to relevant disease variables in AD patients,
the MMSE score was compared between the AD+ subgroup and
the AD− subgroup by independent t-test (p < 0.05, one tailed).

In the same line, we also hypothesized that the AD+ condition
is related to more abnormal brain structure in AD patients. To
test this hypothesis, cortical gray matter (GM), subcortical white
matter (WM), and cerebrospinal fluid (CSF) normalized volumes
were estimated in 39 of the 120 AD patients (those having
T1- and T2-weigthed structural magnetic resonance imaging-
MRI available). These MRIs had been acquired following
standard research settings mostly by 1.5 T scanners. The
MRI scans were visually inspected to verify the absence of
structural abnormalities or technical artifacts. Centralized MRI
data analysis was performed by MATLAB 7.1 (MathWorks,
Natick,MA) and SPM8 (WellcomeDept. Cogn. Neurol., London;
http://www.fil.ion.ucl.ac.uk/spm).

Specifically, the processing of the MRI data was as follows:
the native MRI data of each patient were partitioned into GM,
WM, and CSF compartments and spatially normalized to fit a
standard labeled template, obtaining the transformation matrix
(Ashburner and Friston, 1997). This labeled template was based
on averaged high-resolution MRIs acquired from 24 subjects,
comprising anatomic channels (T1, T2, and proton density
weighted), tissue channels (CSF probability, GM probability,
WM probability, and tissue labels), and the LPBA40 cortical
parcellation map, based on the LONI Probabilistic Brain Atlas
of 40 subjects (Shattuck et al., 2008) and identifying 56 brain
structures. Second, the inverse of the transformation matrix was
used to map the 56 atlas brain structures to the partitioned GM
compartment, enabling volume quantification of each structure.
Thirdly, a homemade MATLAB script was used to calculate the
volume of cortical GM, and of the entire (cortical and subcortical)
GM, WM, and CSF compartments. The normalized volumes of
cortical GM, and WM and CSF compartments were obtained
dividing the volume of each compartment by the total (GM,
WM, and CSF) volume. Of note, the above procedure seemed
to be more appropriate than voxel-based morphometry (Good
et al., 2001) for the analysis of the relationship between low-
resolution (LORETA) EEG source estimates and MRI markers.
Indeed, voxel-based morphometry is based on an intrinsically
high-resolution voxel-by-voxel approach.
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FIGURE 2 | Diagram showing the grand average of regional normalized exact low-resolution brain electromagnetic tomography (eLORETA) solutions

(i.e., source activity) relative to a statistically significant ANOVA interaction [F(30, 6540) = 18.727, p < 0.0001] among the factors Group (AD, Nold), Band

(delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (central, frontal, parietal, occipital, temporal, limbic). Subjects’ age, education, IAF, and

gender were used as covariates. Legend: the rectangles indicate the cortical regions and frequency bands in which source activity presented the statistically

significant LORETA pattern of source activity Nold 6= AD (Duncan test, p < 0.05).

TABLE 3 | P-values (Duncan post-hoc) of the ANOVA related to the comparisons of source activity showing a statistically significant interaction

[F(30, 6540) = 18.727, p < 0.0001] among the factors Group (AD, Nold), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (central,

frontal, parietal, occipital, temporal, limbic) and p-values of the t-tests for each composite EEG marker.

p-values of the ANOVA and t-test

Frontal Central Parietal Occipital Temporal Limbic

Delta 0.00001 0.001 0.000002 0.000002 0.000005 0.001

Theta 0.0004 n.s. n.s. n.s. n.s. n.s.

Alpha1 0.002 0.000001 0.000002 0.000005 0.000002 0.000001

Alpha2 n.s. 0.03 0.000001 0.000001 0.02 0.01

Delta/Alpha1 0.00004 0.000004 0.0000001 0.0000001 0.0000001 0.000001

Theta/Alpha1 0.0000001 – – – – –

Delta/Alpha2 – 0.00007 0.0000001 0.0000001 0.0000001 0.0000001

The comparison of the GM, WM, and CSF normalized
volumes in the AD+ subgroup and in the AD− subgroup was
performed by a Two-way ANOVA using the normalized volume
as a dependent variable (p < 0.05). The ANOVA factors were
Group (AD+, AD−) and Brain volume (GM, WM, and CSF).
Mauchly’s test evaluated the sphericity assumption. Correction
of the degrees of freedom was made with Greenhouse-Geisser
procedure when appropriate. The Duncan test was used for
post-hoc comparisons (p < 0.05, one tailed).

All the analysis performed to test the relationship between
the EEG markers and relevant variables of AD (MMSE scores,
GM, WM, and CSF normalized volumes) constituted the fourth
statistical session.

RESULTS

Results of the First Statistical Session:
Source Current Density of EEG Rhythms
Figure 2 shows the grand average across subjects of the activity of
regional EEG cortical sources relative to a statistically significant
ANOVA interaction [F(30, 6540) = 18.727, p < 0.0001] among
the factors Group (Nold, AD), ROI (frontal, central, parietal,
occipital, temporal, and limbic), and Band (delta, theta, alpha
1, alpha 2, beta 1, beta 2, gamma). Subjects’ age, education,
IAF, and gender were used as covariates. Planned post-hoc
testing unveiled the following statistically significant results (see
Table 3). Compared to the Nold group, the AD group showed a
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FIGURE 3 | Diagram showing the grand average of the EEG inter-hemispherical lagged linear connectivity computed between left and right

hemispheres in the six regions of interest (ROI). These values refer a statistically significant ANOVA interaction [F (30, 6540) = 4.8771, p < 0.0001] among the

factors Group (Nold, and MCI), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI pairs (frontal left-frontal right, central left-central right, parietal

left-parietal right, occipital left-occipital right, temporal left-temporal right, and limbic left-limbic right). Subjects’ age, education, IAF, and gender were used as

covariates. Legend: the rectangles indicate the ROIs and frequency bands in which connectivity values presented the pattern Nold 6= AD (Duncan test, p < 0.05).

TABLE 4 | p-values (Duncan post-hoc) of the ANOVA related to the comparisons of inter-hemispherical lagged linear connectivity showing a statistically

significant interaction [F(30, 6540) = 4.8771, p < 0.0001] among the factors Group (AD, Nold), ROI pairs (frontal left-frontal right, central left-central right,

parietal left-parietal right, occipital left-occipital right, temporal left-temporal right, limbic left-limbic right), and Band (delta, theta, alpha 1, alpha 2, beta

1, beta 2, gamma) and p-values of the t-tests for each composite EEG marker.

p-values of the ANOVA and t-test

Frontal Central Parietal Occipital Temporal Limbic

Delta n.s. n.s. n.s. 0.0007 n.s. n.s.

Theta n.s. n.s. n.s. n.s. n.s. n.s.

Alpha1 0.00003 0.01 0.000003 0.00001 0.008 0.000001

Alpha2 n.s. n.s. n.s. 0.01 n.s. 0.001

Delta/Alpha1 – – – 0.03 – –

Delta/Alpha2 – – – n.s. – –

higher delta current density in frontal, central, parietal, occipital,
temporal, and limbic regions, as well as a higher theta current
density in the frontal region. The AD group also showed
a lower alpha 1 current density in frontal, central, parietal,
occipital, temporal, and limbic regions, as well as a lower alpha 2
current density in central, parietal, occipital, temporal, and limbic
regions.

Results of the Second Statistical Session:
Lagged Linear Connectivity (LLC)
Figure 3 shows the grand average across subjects of the inter-
hemispherical LLC values relative to a statistically significant
ANOVA interaction [F(30, 6540) = 4.8771, p< 0.0001] among the

factors Group (AD, Nold), ROI pairs (frontal left-frontal right,
central left-central right, parietal left-parietal right, occipital left-
occipital right, temporal left-temporal right, limbic left-limbic
right), and Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2,
gamma). Subjects’ age, education, IAF, and gender were used
as covariates. Planned post-hoc testing exhibited the following
results (see Table 4). Compared to the Nold group, the AD group
showed higher delta inter-hemispherical LLC at occipital region,
lower alpha 1 inter-hemispherical LLC at frontal, central, parietal,
occipital, temporal, and limbic regions, as well as a lower alpha 2
inter-hemispherical LLC at occipital and limbic regions.

Figure 4 shows the grand average across subjects of the
left intra-hemispherical LLC values relative to a statistically
significant ANOVA interaction [F(84, 18312) = 8.5942, p <
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FIGURE 4 | Diagram showing the grand average of the EEG intra-hemispherical lagged linear connectivity computed between each pair of regions of

interest (ROI) in the left hemisphere. These values refer a statistically significant ANOVA interaction [F (84, 18312) = 8.5942, p < 0.0001] among the factors Group

(AD, Nold), ROI pairs (frontal-central, frontal-parietal, frontal-occipital, frontal-temporal, frontal-limbic, central-parietal, central-occipital, central, temporal,

central-limbic, parietal-occipital, parietal-temporal, parietal-limbic, occipital-temporal, occipital-limbic, and temporal-limbic), and Band (delta, theta, alpha 1, alpha 2,

beta 1, beta 2, gamma). Subjects’ age, education, IAF, and gender were used as covariates. Legend: the rectangles indicate the ROI pairs and frequency bands in

which connectivity values presented the pattern Nold 6= AD (Duncan test, p < 0.05).

0.0001] among the factors Group (AD, Nold), ROI pairs (frontal-
central, frontal-parietal, frontal-occipital, frontal-temporal,
frontal-limbic, central-parietal, central-occipital, central-
temporal, central-limbic, parietal-occipital, parietal-temporal,

parietal-limbic, occipital-temporal, occipital-limbic, and
temporal-limbic), and Band (delta, theta, alpha 1, alpha 2,
beta 1, beta 2, gamma). Subjects’ age, education, IAF, and
gender were used as covariates. Planned post-hoc testing
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TABLE 5 | p-values (Duncan post-hoc) of the ANOVA related to the comparisons of left intra-hemispherical lagged linear connectivity showing a

statistically significant interaction [F(84, 18312) = 8.5942, p < 0.0001] among the factors Group (AD, Nold), ROI pairs (frontal-central, frontal-parietal,

frontal-occipital, frontal-temporal, frontal-limbic, central-parietal, central-occipital, central-temporal, central-limbic, parietal-occipital, parietal-temporal,

parietal-limbic, occipital-temporal, occipital-limbic, and temporal-limbic), and Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma) and p-values of

the t-tests for each composite EEG marker.

p-values of the ANOVA and t-test

Delta Theta Alpha1 Alpha2 Delta/Alpha1

Frontal-central n.s. n.s. 0.02 n.s. –

Frontal-parietal n.s. n.s. n.s. n.s. –

Frontal-occipital n.s. n.s. 0.00008 n.s. –

Frontal-temporal n.s. n.s. 0.000001 n.s. –

Frontal-limbic n.s. n.s. n.s. n.s. –

Central–parietal n.s. n.s. 0.000002 0.03 –

Central-occipital n.s. n.s. 0.000002 n.s. –

Central-temporal n.s. n.s. 0.000002 n.s. –

Central-limbic n.s. n.s. 0.000002 0.03 –

Parietal-occipital 0.01 n.s. 0.000005 0.000006 0.02

Parietal-temporal n.s. n.s. 0.000002 0.03 –

Parietal-limbic n.s. n.s. 0.000002 0.000001 –

Occipital-temporal 0.01 0.002 0.000001 n.s. 0.02

Occipital-limbic n.s. n.s. 0.000001 0.000002 –

Temporal-limbic n.s. n.s. 0.000002 0.002 –

exhibited the following results (see Table 5). Compared to
the Nold group, the AD group showed higher delta left intra-
hemispherical LLC at parietal-occipital and occipital-temporal
pairs as well as higher theta left intra-hemispherical LLC
at occipital-temporal pair. Besides, the AD group showed
lower alpha 1 left intra-hemispherical LLC at frontal-
central, frontal-occipital, frontal-temporal, central-parietal,
central-occipital, central-temporal, central-limbic, parietal-
occipital, parietal-temporal, parietal-limbic, occipital-temporal,
occipital-limbic, and temporal-limbic pairs as well as a lower
alpha 2 left intra-hemispherical LLC at central-parietal,
central-occipital, central-limbic, parietal-occipital, parietal-
temporal, parietal-limbic, occipital-limbic, and temporal-limbic
pairs.

Figure 5 shows the grand average across subjects of the
right intra-hemispherical LLC values relative to a statistically
significant ANOVA interaction [F(84, 18312) = 4.6296, p <

0.0001] among the factors Group (AD, Nold), ROI pairs
(frontal-central, frontal-parietal, frontal-occipital, frontal-
temporal, frontal-limbic, central-parietal, central-occipital,
central-temporal, central-limbic, parietal-occipital, parietal-
temporal, parietal-limbic, occipital-temporal, occipital-limbic,
and temporal-limbic), and Band (delta, theta, alpha 1, alpha 2,
beta 1, beta 2, gamma). Subjects’ age, education, IAF, and gender
were used as covariates. Planned post-hoc testing exhibited the
following results (see Table 6). Compared to the Nold group,
the AD group showed higher theta right intra-hemispherical
LLC at occipital-temporal pair. Besides, the AD group showed
lower alpha 1 right intra-hemispherical LLC at all the ROI
pairs, as well as a lower alpha 2 right intra-hemispherical
LLC at central-occipital, central-limbic, parietal-occipital,

parietal-limbic, occipital-temporal, occipital-limbic, and
temporal-limbic pairs.

Results of the Third Statistical Session:
Accuracy of the EEG Markers
The results of the first statistical session showed that compared
to the Nold group, the AD group was characterized by higher
delta source activity and lower alpha 1 source activity in
several cortical regions, as well as higher theta activity in
frontal region. Therefore, we decided to use composite EEG
markers of source activity besides the simple EEG markers.
This decision allowed an integration of the information
content conveyed by the EEG markers of current density.
Specifically, the composite EEG markers were obtained by
computing the ratio between the source activities of the
different EEG ryhthms when these activities were statistically
abnormal in the same cortical region of interest. In addition,
an independent t-test analysis were performed for each
composite EEG marker (see Table 3), in order to ensure that
the statistical differences continued being significant for the
composite markers. Those composite EEG markers which not
showed significant differences between the groups were not
included as discriminant variables for the analysis of the ROC
curves.

In total, the following composite EEG markers of current
density were formed: (1) delta/alpha 1 current density in
frontal region; (2) delta/alpha 1 current density in central
region; (3) delta/alpha 1 current density in parietal region;
(4) delta/alpha 1 current density in occipital region;
(5) delta/alpha 1 current density in temporal region; (6)
delta/alpha 1 current density in limbic region; (7) theta/alpha
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FIGURE 5 | Diagram showing the grand average of the EEG intra-hemispherical lagged linear connectivity computed between each pair of regions of

interest (ROI) in the right hemisphere. These values refer a statistically significant ANOVA interaction [F (84, 18312) = 4.6296, p < 0.0001] among the factors Group

(AD, Nold), ROI pairs (frontal-central, frontal-parietal, frontal-occipital, frontal-temporal, frontal-limbic, central-parietal, central-occipital, central-temporal, central-limbic,

parietal-occipital, parietal-temporal, parietal-limbic, occipital-temporal, occipital-limbic, and temporal-limbic), and Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2,

gamma). Subjects’ age, education, IAF, and gender were used as covariates. Legend: the rectangles indicate the ROI pairs and frequency bands in which connectivity

values presented the pattern Nold 6= AD (Duncan test, p < 0.05).

1 current density in frontal region; (8) delta/alpha 2 current
density in central region; (9) delta/alpha 2 current density
in parietal region; (10) delta/alpha 2 current density in
occipital region; (11) delta/alpha 2 current density in

temporal region; (12) delta/alpha 2 current density in limbic
region

The results of the second statistical session also showed that
compared to the Nold group, the AD group was characterized by
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TABLE 6 | p-values (Duncan post-hoc) of the ANOVA related to the comparisons of right intra-hemispherical lagged linear connectivity showing a

statistically significant interaction interaction [F(84, 18312) = 4.6296, p < 0.0001] among the factors Group (AD, Nold), ROI pairs (frontal-central,

frontal-parietal, frontal-occipital, frontal-temporal, frontal-limbic, central-parietal, central-occipital, central-temporal, central-limbic, parietal-occipital,

parietal-temporal, parietal-limbic, occipital-temporal, occipital-limbic, and temporal-limbic), and Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2,

gamma) and p-values of the t-tests for each composite EEG marker.

p-values of the ANOVA and t-test

Delta Theta Alpha1 Alpha2 Theta/Alpha1 Theta/Alpha2

Frontal-central n.s. n.s. 0.0004 n.s – –

Frontal-parietal n.s. n.s. 0.04 n.s. – –

Frontal-occipital n.s. n.s. 0.006 n.s. – –

Frontal-temporal n.s. n.s. 0.000002 n.s. – –

Frontal-limbic n.s. n.s. 0.02 n.s. – –

Central-parietal n.s. n.s. 0.000001 n.s. – –

Central-occipital n.s. n.s. 0.000001 0.007 – –

Central-temporal n.s. n.s. 0.000001 n.s. – –

Central-limbic n.s. n.s. 0.000001 0.03 – –

Parietal-occipital n.s. n.s. 0.000002 0.000001 – –

Parietal-temporal n.s. n.s. 0.000002 n.s. – –

Parietal-limbic n.s. n.s. 0.000002 0.00003 – –

Occipital-temporal n.s. n.s. 0.000002 0.007 0.00001 0.02

Occipital–limbic n.s. n.s. 0.000002 0.000008 – –

Temporal–limbic n.s. n.s. 0.000002 0.0007 – –

abnormal inter- and intra-hemispherical LLC in several cortical
regions. Therefore, the same procedure was followed to form
composite EEG markers of connectivity (see p-values for the t-
tests in Tables 4–6). The following composite EEG markers of
LLC were formed: (1) delta/alpha 1 inter-hemispherical LLC in
occipital region; (2) delta/alpha 1 left intra-hemispherical LLC in
parietal-occipital pair; (3) delta/alpha 1 left intra-hemispherical
LLC in occipital-temporal pair; (4) theta/alpha 1 left intra-
hemispherical LLC in occipital-temporal pair; (5) theta/alpha
1 right intra-hemispherical LLC in occipital-temporal pair; (6)
theta/alpha 2 right intra-hemispherical LLC in occipital-temporal
pair.

The following 15 EEG markers overcome the threshold of
70% stablished as “moderate” classification rate (see Table 7): (1)
Delta/alpha 1 current density in central region; (2) Delta/alpha
1 current density in parietal region; (3) Delta/alpha 1 current
density in occipital region; (4) Delta/alpha 1 current density
in temporal region; (5) Delta/alpha 1 current density in limbic
region; (6) Theta/alpha 1 current density in frontal region; (7)
Delta/alpha 2 current density in central region; (8) Delta/alpha
2 current density in parietal region; (9) Delta/alpha 2 current
density in occipital region; (10) Delta/alpha 2 current density
in temporal region; (11) Delta/alpha 2 current density in
limbic region; (12) Delta/alpha 1 inter-hemispherical LLC in
occipital region; (13) Theta/alpha 1 left intra-hemispherical
LLC in occipital-temporal pair; (14) Alpha 1 right intra-
hemispherical LLC in parietal-limbic pair; (15) Theta/alpha
1 right intra-hemispherical LLC in occipital-temporal
pair.

Among these EEG markers, delta/alpha 1 current density in
occipital region reached the following best classification rate:

the specificity of 78%, the sensitivity of 73.3%, the accuracy of
75.5%, and AUROC of 82%. Regarding the EEG markers of LLC,
theta/alpha 1 right intra-hemispherical LLC in occipital-temporal
pair reached the best classification rate: the specificity of 72%, the
sensitivity of 70.8%, the accuracy of 71.4%, and AUROC of 74%.
Figure 6 shows the ROC curves for these both composite EEG
markers.

Results of the Fourth Statistical Session:
Relationship between the EEG Markers
and Relevant Variables of AD
The MMSE score as an index of global cognition was on average
19.9 (± 0.5 SD) in the AD-subgroup (n= 53) and 18.2 (± 0.4 SD)
in the AD+ subgroup (n= 67). Independent t-test indicated that
the difference of the MMSE score between the two AD subgroups
was statistically significant (p < 0.001), in line with the working
hypothesis.

Table 8 reports information about personal and clinical
characteristics of the AD− and AD+ individuals of 39
AD patients having MRI associated with EEG recordings.
Concerning the MRI markers of structural brain integrity, the
GM, WM, and CSF normalized volumes of the AD− subgroup
(n= 12) were on average 0.55 (±0.003 Standard Error—SE), 0.44
(±0.009 SE), and 0.35 (±0.005 SE), respectively. Furthermore,
they were 0.54 (±0.004 SE), 0.43 (±0.006 SE), and 0.37 (±0.005
SE), respectively, in the AD+ subgroup (N = 27). The ANOVA
design showed a statistically significant interaction [F(2, 74) =

3.3761, p < 0.05] between the factors Group (AD− subgroup,
AD+ subgroup; independent variable) and Volume (GM, WM,
CSF). Duncan post-hoc testing indicated that the GM normalized
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TABLE 7 | Results of the classification between single AD and Nold subjects based on EEG markers of source activity and lagged linear connectivity.

LORETA sources Sensitivity (%) Specificity (%) Accuracy (%) AUROC

Central delta/alpha 1 71.7 71 71.4 0.73

Parietal delta/alpha 1 74.2 73 73.6 0.79

Occipital delta/alpha 1 73.3 78 75.5 0.82

Temporal delta/alpha 1 78.3 70 74.5 0.78

Limbic delta/alpha 1 75.8 72 74. 0.77

Frontal theta/alpha 1 0 72 70.9 0.76

Central delta/alpha 2 65.8 70 67.7 0.71

Parietal delta/alpha 2 68.3 76 71.8 0.77

Occipital delta/alpha 2 71.7 75 73.2 0.79

Temporal delta/alpha 2 63.3 78 70 0.76

Limbic delta/alpha 2 66.7 74 70 0.73

Occipital delta/alpha 2 inter-hemispherical LLC 65.8 66 65.9 0.70

Occipital-temporal theta/alpha 1 left intra-hemispherical LLC 66.7 65 65.6 0.70

Parietal-limbic alpha 1 right intra-hemispherical LLC 65 68 66.4 0.70

Occipital-temporal theta/alpha 1 right intra-hemispherical LLC 70.8 72 71.4 0.74

The classification rate is computed by the analysis of area under the receiver operating characteristic curve (AUROC). The table reports the classification indexes for all the EEG markers

having an AUROC higher than 0.70 (i.e., 70%).

volume was lower in the AD+ subgroup compared to the AD−
subgroup (p < 0.05), while the CSF normalized volume was
higher in the AD+ subgroup compared to the AD− subgroup
(p < 0.001; see Figure 7). Instead, the between-groups difference
in the WM volume did not reach the statistical significance
(p > 0.05).

DISCUSSION

Our “BRAINON” research program has been testing markers
of resting state eyes-closed EEG rhythms to characterize
neurophysiological correlates of AD at group level (Babiloni et al.,
2004a,b, 2008, 2009a, 2010, 2011a,b,c, 2013a,b,c). These markers
were extracted by LORETA/eLORETA, popular software aimed
at estimating power and connectivity of cortical sources of EEG
rhythms (Pascual-Marqui et al., 1994, 2007a). Results at group
level showed abnormalities of these EEG markers especially
at delta and alpha frequency bands (Babiloni et al., 2004a,b,
2008, 2009a, 2010, 2011a,b,c, 2013a,b,c). In the present study,
we moved from group to the individual level. We tested the
ability of some of these spectral EEG markers to classify single
Nold subjects and AD patients with dementia, as a preliminary
step toward their use for a neurophysiological assessment of AD
patients.

A preliminary control analysis of the present study confirmed
previous evidence of our research group (Babiloni et al., 2004a,b,
2008, 2009a, 2010, 2011a,b,c, 2013a,b,c). Concerning the cortical
sources of the EEG power, main results showed a higher activity
of the posterior delta sources together with lower activity of
the alpha sources in the AD group compared to the Nold
group. To integrate this information content, we produced
composite EEG markers by computing the ratio between the
activity of posterior delta and alpha sources in relevant cortical
regions.

Concerning the functional connectivity of the EEG
sources, the present results displayed a lower intra- and
inter-hemispherical connectivity at alpha rhythms in the
AD group compared to the Nold group. Of note, the use of
eLORETA allowed overcoming the methodological limitations
due to the use of standard FFT to compute the bivariate
spectral coherence between electrode pairs. With respect to
multivariate estimators like eLORETA, bivariate measures
of EEG functional interrelatedness may produce spurious
connections due to the common feeding effect (i.e., false
coupling between sources B and C due to the common
influence from a source A) and head volume conduction effects
(Blinowska and Kaminski, 2013; Kaminski and Blinowska,
2014).

As a novelty, the present ROC curve analysis indicated
that some EEG markers of intra- and inter-hemispherical
source connectivity at low-frequency alpha had an AUROC
higher than 70%, which is the threshold of a moderate
classification rate (DeLong et al., 1988). Among them, the best
classification rate was reached by the functional connectivity
between right occipital and temporal sources in the ratio
between low-frequency alpha and theta: the sensitivity of 70.8%,
the specificity of 72%, the accuracy of 71.4%, and AUROC
of 74%.

In the same line, the ROC curve analysis showed that some
EEG markers of cortical sources of EEG power had an AUROC
higher than 70%. They mainly comprised the ratio between low-
frequency alpha and delta source activity in posterior cortical
regions. Among them, the best classification rate was reached
by the ratio between occipital low-frequency alpha and delta
source activity: the sensitivity of 73.3%, the specificity of 78%, the
accuracy of 75.5%, and AUROC of 82%.

Overall, these present results pointed to a moderate
classification rate of EEG markers of source power and
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FIGURE 6 | Diagram showing the ROC (receiver operating

characteristic) curves that illustrate the performance of the EEG

markers with the best classification rate of single Nold and AD

individuals. The upper panel shows the best EEG marker for source activity

and the bottom panel the best EEG maker for functional connectivity. These

EEG markers had an area under the ROC curve (AUROC) higher than 0.70

(i.e., 70%), which is the threshold of a moderate classification performance.

functional connectivity for the detection of single AD individuals.
In precedence, several studies tested various spectral EEG
markers for the classification of the Nold and AD individuals.
They reported classification rates between 82 and 90% using
advanced mathematical classifiers including the ANNs (Anderer
et al., 1994; Pritchard et al., 1994; Adler et al., 2003;
Brassen et al., 2004; Lehmann et al., 2007; Dauwels et al.,
2009).

Clinical Significance of the EEG
Topographic Markers of AD
What is the potential clinical significance of the present EEG
markers? According to the new guidelines of 2014 (Dubois et al.,
2014), these EEG markers should not be used to formulate

TABLE 8 | Demographic and clinical data of the subgroups of AD patients

(AD− and AD+) in the subpopulation of 39 AD patients having MRI data

associated to EEG recordings.

Gender Age Education MMSE

(Female/Male) (years) (years) (score)

AD− (n = 12) 10/2 73.4 ± 1.7 SE 7.8 ± 1.7 SE 19.8 ± 1.3 SE

AD+ (n = 27) 16/11 66.9 ± 1.5 SE 8.5 ± 1.0 SE 17 ± 0.6 SE

MMSE, Mini Mental State Evaluation.

a diagnosis of AD. Indeed, they do not directly reflect the
pathophysiological markers of AD such as Aβ1-42 and tau in the
cerebrospinal fluid or brain. Rather, they should be considered
as candidate EEG topographic markers for the assessment of
the neurophysiological mechanisms underlying the fluctuation of
cortical arousal and vigilance in the relaxed wakefulness. Indeed,
these neurophysiological mechanisms generate cortical delta and
alpha rhythms in healthy humans, which derange in AD patients
(Babiloni et al., 2015).

The present results suggest that EEG markers of source
power and functional connectivity in relaxed wakefulness may
enrich the neurophysiological assessment of AD patients with
dementia, although the best EEG marker for the classification
between Nold and AD individuals was the occipital sources
of delta/low frequency alpha. This best EEG marker may be
useful to differentiate the status of brain function in AD patients
with similar values in MMSE, autonomy in the daily life, and
cognitive reserve as indexed by education years and intellectual
occupations across lifespan (Snowdon, 2003; Riley et al., 2005;
Tyas et al., 2007). Cognition, daily life abilities, and cognitive
reserve status being equal, an AD patient with an abnormality
of the EEG marker (e.g., one standard deviation beyond the
mean value of a reference Nold population) may reflect more
neurophysiological “frailty” and less brain reserve than an AD
patient negative for this EEG marker. In this example, the
AD patient with neurophysiological “frailty” should receive
more therapeutic resources and clinical attention. This clinical
perspective is supported by the present evidence showing that
compared to the AD patients with normal EEG marker, those
with an abnormal EEG marker (e.g., one standard deviation
beyond the mean value of a reference Nold population) did
exhibit lowerMMSE score, lower normalized cortical gray matter
density, and greater normalized cerebrospinal fluid, as signs of
an impairment of global cognition and brain structural integrity,
respectively.

Methodological Remarks
Compared to the mentioned classification rates of the previous
studies, the moderate classification rate of this study was
reasonably due to some intrinsic methodological limitations.
First, our large clinical and EEG dataset (i.e., 120 AD vs. 100
Nold) was acquired by several clinical units, thus increasing
the variance of the data due to a possible slightly different
local implementation of clinical exclusion/inclusion criteria and
EEG procedures. Second, no AD patient with severe dementia
was enrolled in the present study (they typically show highly
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FIGURE 7 | Mean and SD-values of cortical gray matter (GM),

subcortical white matter (WM), and cerebrospinal fluid (CSF)

normalized volumes as indexes of brain structural integrity extracted

by magnetic resonance imaging (MRI) in a subpopulation of 39 AD

patients having MRI data associated to EEG recordings. The values are

reported in the AD subgroup negative to the EEG marker (AD−; n = 12) and in

the AD subgroup positive to the EEG marker (AD+; n = 27). These values refer

to an ANOVA design showing a statistically significant interaction [F (2, 74) =

3.3761, p < 0.05] between the factors Group (AD−, AD+) and Volume (GM,

WM, CSF). Asterisks indicate the p level of the statistical differences between

the two AD subgroups obtained by Duncan post-hoc testing.

abnormal delta and alpha rhythms, which inflate classification
rate). Third, all enrolled AD patients were under treatment by
standard long-term Acetylcholinesterase inhibitors, which are
expected to preserve alpha rhythms and reduce the difference
between Nold and AD subjects in this respect (Brassen and
Adler, 2003; Geldmacher, 2003; Onofrj et al., 2003; Babiloni
et al., 2006d). Fourth, some of the enrolled Nold subjects (chosen
among AD relatives or caregivers) might indeed suffer from
a preclinical stage of AD, thus confounding the classification
task. In fact, they were diagnosed based on traditional clinical
criteria (e.g., NINCDS-ADRDA,McKhann et al., 1984; DSM-IV),
without an assessment of the pathophysiological markers of AD
(Dubois et al., 2014). Of note, we mitigated this risk including
only Nold subjects having 27 or higher score of MMSE.

CONCLUSIONS

In our previous studies, spectral EEG markers of relaxed
wakefulness were found to be abnormal in groups of AD patients
with dementia (Babiloni et al., 2004a, 2006a, 2009b, 2011a,b,

2013b). Can these EEG markers be used for the classification
of single Nold and AD individuals, as a premise for future
clinical applications? The results of the present study showed
that 15 spectral EEG markers of source power and functional
connectivity had a classification rate higher than 70%, computed
by the analysis of ROC curves. Most of them were based on the
ratio between alpha and delta source power in posterior cortical
regions. The best classification rate was reached by the ratio
between occipital low-frequency alpha and delta source activity.
It exhibited the following performance: the sensitivity of 73.3%,
the specificity of 78%, the accuracy of 75.5%, and AUROC of 82%.
These results pointed to a moderate classification rate of several
EEG markers of source power and functional connectivity for
the detection of single AD individuals. Future studies will have
to test the classification rate of these relevant EEG markers as
a multivariate input to advanced mathematical classifiers such
as the ANNs.
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