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Abstract

We deal with a singularly perturbed optimal control problem with slow and fast variable depending 
on a parameter ε. We study the asymptotics, as ε goes to 0, of the corresponding value functions, and 
show convergence, in the sense of weak semilimits, to sub and supersolution of a suitable limit equation 
containing the effective Hamiltonian.

The novelty of our contribution is that no compactness condition is assumed on the fast variable. This 
generalization requires, in order to perform the asymptotic procedure, an accurate qualitative analysis of 
some auxiliary equations posed on the space of fast variable. The task is accomplished using some tools of 
Weak KAM theory, and in particular the notion of Aubry set.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

We study a singularly perturbed optimal control problem with a slow variable, say x, and a fast 
one, denoted by y, with dynamics depending on a parameter ε devoted to become infinitesimal. 
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We are interested in the asymptotics, as ε goes to 0, of the corresponding value functions V ε , 
depending on slow, fast variable and time, in view of proving convergence, in the sense of weak 
semilimits, to some functions independent of y, related to a limit control problem where y does 
not appear any more, at least as state variable.

More precisely, we exploit that the V ε are solutions, in the viscosity sense, to a time-dependent 
Hamilton–Jacobi–Bellman equation of the form

uε
t + H

(
x, y,Dxu

ε,
Dyu

ε

ε

)
= 0

and show that the upper/lower weak semilimit is sub/supersolution to a limit equation

ut + H(x,Du) = 0

containing the so-called effective Hamiltonian H , obtained via a canonical procedure we describe 
below from the Hamiltonian of the approximating equations. We also show that initial conditions, 
i.e. terminal costs, are transferred, with suitable adaptations, to the limit. See Theorems 4.3, 4.4, 
which are the main results of the paper.

We tackle the subject through a PDE approach first proposed in this context by Alvarez–Bardi, 
see [1,2] and the booklet [3], in turn inspired by techniques developed in the framework of 
homogenization of Hamilton–Jacobi equations by Lions–Papanicolau–Varadhan and Evans, see 
[18,12,13]. The singular perturbation can be actually viewed as a relative homogenization of slow 
with respect to fast variable. In the original formulation, homogenization was obtained assuming 
periodicity in the underlying space plus coercivity of the Hamiltonian in the momentum variable.

Alvarez–Bardi keep periodicity in y, but do without coercivity, and assume instead bounded 
time controllability in the fast variable. A condition of this kind is indeed unavoidable, otherwise 
it cannot be expected to get rid of y at the limit, or even to get any limit. Another noncoercive ho-
mogenization problem, arising from turbulent combustion models, has been recently investigated 
with similar techniques in [19].

The novelty of our contribution is that we remove any compactness condition on the fast 
variable, and this requires major adaptations in the perturbed test function method, which is the 
core of the asymptotic procedure. We further comment on it later on.

Following a more classical control-theoretic approach, namely directly working on the trajec-
tory of the dynamics, Arstein–Gaitsgory, see [7] and [5,6], have studied a similar model replacing 
in a sense periodicity by a coercivity condition in the cost, and allowing y to vary in the whole 
of RM , for some dimension M . Besides proving convergence, they also provide a thorough de-
scription of the limit control problem, in terms of occupational measures, see [6]. This is clearly 
a relevant aspect of the topic, but we do not treat it here.

Our aim is to recover their results adapting Alvarez–Bardi techniques. We assume, as in [7]
and [5], coercivity of running cost, see (H4), and a controllability condition, see (H3), stronger 
than the one used in [1–3] and implying, see Lemma 2.9, coercivity of the corresponding Hamil-
tonian, at least in the fast variable. We do believe that our methods can also work under bounded 
time controllability, and so without any coercivity on H , but this requires more work, and the 
details have still to be fully checked and written down.

The focus of our analysis is on the associate cell problem, namely the one-parameter family 
of stationary equations, posed in the space of fast variable, obtained by freezing in H slow 
variable and momentum, say at a value (x0, p0). Its role, at least in the periodic case, is twofold: 
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it provides a definition of the effective Hamiltonian H at (x0, p0) as the minimum value of the 
parameter for which there is a subsolution (then also supersolutions or solutions do exist), the 
corresponding equation will be called critical in what follows, and critical sub/supersolutions 
play the crucial role of correctors in the perturbed test function method.

The absence of compactness calls into questions the very status of the critical value H(x0, p0)

since, in contrast to what happens when periodicity is assumed, the existence of solutions does 
not characterize any more the critical equation, see Appendix A. Moreover critical sub/super-
solutions must enjoy suitable additional properties, as explained below, to be effective in the 
asymptotic procedure.

The two issues are intertwined. By performing a rather accurate qualitative analysis of the 
cell problems, we show that (sub/super)solutions usable as correctors can be obtained only for 
the critical equation. We make essentially use for that of tools issued from weak KAM theory, 
and in particular of the capital notion of Aubry set. As far as we know, it is the first time that this 
methodology finds a specific application in singular perturbation or homogenization problems.

The geometric counterpart of coercivity in the cost functional is that the critical equation has 
a nonempty compact Aubry set for every fixed (x0, p0), see Lemma 3.8, which in turn implies 
existence of coercive solutions possessing a simple representation formula in terms of a related 
intrinsic metric, and bounded subsolutions as well, see Propositions 3.7, 3.9. Coercive solutions, 
up to modification depending on ε (see Subsection 3.3), are used in the upper semilimit part of 
the asymptotics, which is the most demanding point of the analysis.

The paper is organized as follows. In Section 2 we give some preliminary material and stand-
ing assumptions, we then study some relevant property of controlled dynamics and how they 
affect value functions. Approximating Hamilton–Jacobi–Bellman equations and limit problem 
are also defined. Section 3 is about cell problems and construction of distinguished critical 
sub/supersolutions to be used as correctors. Section 4 contains the main results. The appendix 
is devoted to review some basic facts of metric approach and Weak KAM theory for general 
Hamilton–Jacobi equations.

2. Setting of the problem

2.1. Notations and terminology

Given an Euclidean space, say to fix ideas RN , for some N ∈ N, x ∈R
N and R > 0 we denote 

by B(x, R) the open ball centered at x with radius R. Given B ⊂ R
N , we indicate by B, intB , 

its closure and interior, respectively. Given subsets B , C, and a scalar λ, we set

B + C = {x + y | x ∈ B, y ∈ C}
λB = {λx | x ∈ B}.

We make precise that in all Hamilton–Jacobi equations we will consider throughout the paper 
the term (sub/super)solution must be understood in the viscosity sense.

Given an upper semicontinuous (resp. lower semicontinuous) u : RN → R, we say that a 
function ψ is supertangent (resp. subtangent) to a u at some point x0 if it is of class C1, u = v at 
x0 and

ψ ≥ u (resp. ψ ≤ u), locally at x0.
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If strict inequalities hold in the above formula then ψ will be called strict supertangent (resp. 
subtangent).

Given a sequence of locally equibounded functions un : RM → R, the upper weak semilimit 
(resp lower weak semilimit) is defined via the formula

(lim sup#un)(x) = sup{lim sup
n

un(xn) | xn → x}

(resp. (lim inf#un)(x) = inf{lim inf
n

un(xn) | xn → x}).

If u is a locally bounded function and we take in the above formula the sequence un constantly 
equal to u then we get through upper (resp. lower) weak semilimit the upper (resp. lower) semi-
continuous envelope of u, denoted by u# (resp. u#). It is minimal (resp. maximal) upper (resp. 
lower) semicontinuous function greater (resp. less) than or equal to u.

2.2. Assumptions

We assume that the slow variable, usually denoted by x, lives in RN and the fast variable y in 
R

M , for given positive integers N , M . We denote by A the control set, by f : RN ×R
M × A →

R
N , g : RN × R

M × A → R
M the controlled vector fields related to slow and fast dynamics, 

respectively. We also have a running cost � :RN ×R
M × A → R and a terminal cost u0 : RN ×

R
M → R. We call, as usual, control a measurable trajectory defined in [0, +∞) taking values in 

A. We require:

(H1) Control set: A is a compact subset of some Euclidean space;
(H2) Controlled dynamics: There is a constant L0 > 0 with

|f (x1, y1, a) − f (x2, y2, a)| ≤ L0 (|x1 − x2| + |y1 − y2|)
|g(x1, y1, a) − g(x2, y2, a)| ≤ L0 (|x1 − x2| + |y1 − y2|)

for any (xi, yi), i = 1, 2 in RN ×R
M and a ∈ A; we assume in addition that |f | is bounded 

with upper bound denoted by Q0;
(H3) Total controllability: For any compact set K ⊂ R

N × R
M there exists r = r(K) > 0 such 

that

B(0, r) ⊂ cog(x, y,A) for (x, y) ∈ K ,

where g(x, y, A) = {g(x, y, a) | a ∈ A};
(H4) Running cost: � is continuous in RN ×R

M × A, and for any compact set B ⊂ R
N

lim|y|→+∞ min
(x,a)∈B×A

�(x, y, a) = +∞; (1)

(H5) Terminal cost: u0 is continuous and bounded from below in RN ×R
M . To simplify nota-

tions, −Q0, see (H2), is also taken as lower bound of u0 in RN ×R
M .
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Taking into account Assumption (H5), we define

u0(x) = inf
y∈RM

u0(x, y) for any x ∈R
N . (2)

This function is apparently upper semicontinuous, and will play the role of initial condition 
in the limit equation we get in the asymptotic procedure.

Remark 2.1. Due to Relaxation Theorem plus Filippov Implicit Function Lemma, see for in-
stance [4,11], the integral trajectories of the differential inclusion

ζ̇ ∈ cog(x, ζ,A) for x fixed in R
N ,

are locally uniformly approximated in time by solutions to

η̇ = g(x, η,α) for some control α. (3)

By iteratively applying this property to a concatenation of a sequence of curves of (3) for in-
finitesimal times, we derive local bounded time controllability for fast dynamics, namely, given 
R1, R2 positive, there is T0 = T0(R1, R2) such that for any y1, y2 in B(0, R1), x ∈ B(0, R2), we 
can find a trajectory η of (3) joining y1 to y2 in a time T ≤ T0.

2.3. Controlled dynamics

For any ε > 0, any control α, the controlled dynamics is defined as{
ξ̇ (t) = ε f (ξ(t), η(t), α(t))

η̇(t) = g(ξ(t), η(t), α(t))
(CDε)

Notice that if ξ , η are solutions to (CDε) with initial data (x, y) then the trajectories

t 	→ ξ(t/ε), t 	→ η(t/ε)

are solutions to {
ξ̇0(t) = f (ξ0(t), η0(t), α(t/ε))

ε η̇0(t) = g(ξ0(t), η0(t), α(t/ε))
(CDε)

with the same initial data.
Given a trajectory ξ, η of (CDε) with initial data (x, y) and control α, for some ε > 0, and 

T > 0, we deduce from standing assumptions and Grönwall Lemma, the following basic esti-
mates:

|ξ(t) − x| ≤ Q0 T for t ∈ [0, T /ε]. (4)

If ζ satisfies

ζ̇ = g(x, ζ,α) ζ(0) = y,
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then

|η(T ) − ζ(T )| ≤
T∫

0

|g(ξ, η,α) − g(x, ζ,α)|ds (5)

≤ L0

T∫
0

(|ξ − x| + |η − ζ |)ds ≤ L0 ε Q0 T 2 eL0T .

Finally

|η(T ) − y| ≤
T∫

0

|g(ξ, η,α) − g(ξ, y,α)|ds +
T∫

0

|g(ξ, y,α)|ds (6)

≤ L0 R T eL0T ,

where R is an upper bound of |g| in B(x, ε T ) × {y} × A, and similarly

|η(T ) − y| ≤
T∫

0

|g(ξ, η,α) − g(ξ, η(T ),α)|ds +
T∫

0

|g(ξ, η(T ),α)|ds (7)

≤ L0 R′ T eL0T ,

where R′ is an upper bound of |g| in B(x, ε T ) × {η(T )} × A.
By using bounded time controllability condition, we further get:

Lemma 2.2. Given R1, R2 positive, x ∈ B(0, R1), y, z in B(0, R2), there is, for any ε, a trajec-
tory (ξε, ηε) of (CDε), starting at (x, y) and a time Tε with

T0(R1,R2) < Tε < 3T0(R1,R2) (8)

such that

|ηε(Tε) − z| = O(ε).

The quantity T0(·, ·) is as in Remark 2.1.

Proof. By controllability condition, see Remark 2.1, there is a control α and a trajectory ζ with

ζ̇ = g(x, ζ,α) for a suitable α (9)

starting at y and reaching z in a time Tε ≤ T0(R1, R2). Up to adding a cycle passing through 
z, and satisfying (9) for some control, we can assume Tε to satisfy (8). Note that such a cycle 
does exist again in force of the controllability condition. We then take, for any ε, the trajectories 
(ξε, ηε) of (CDε) starting at (x, y) corresponding to the same control α, and invoke (5) to get the 
assertion. �
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We derive:

Proposition 2.3. Given a bounded set B of RN ×R
M and S > 0, there exists a bounded subset 

B0 ⊃ B such that for any initial data in B and any ε, we can find a trajectory of (CDε) lying in 
B0 as t ∈ [0, S/ε].

Proof. We fix (x, y) ∈ B . By (4), we can find R1, R2 such that B ⊂ B(0, R1) × B(0, R2), and 
the first component ξ of any trajectory (ξ, η) of (CDε), for any ε, starting at (x, y) is contained in 
B(0, R1). We write T0 for T0(R1, R2). Clearly, it is enough to establish the assertion for ε small.

By applying Lemma 2.2 with ε suitably small and z = 0, we find a time Tε and a trajectory 
(ξε, ηε) of (CDε) such that (ξε(Tε), ηε(Tε)) ∈ B(0, R1) × B(0, R2). Taking into account that the 
time Tε is estimated from above and below by a positive quantity, see (8), we can iterate the 
procedure and get by concatenation of the curves so obtained, a trajectory (ξ0, η0) in [0, t0/ε], 
starting at (x, y), with the crucial property that there are times {ti}, i = 1, · · ·k, for some index k, 
in [0, S/ε] such that

for any t ∈ [0, S/ε], there is ti with |t − ti | ≤ 3 T0;
ηε(ti) ∈ B(0, R2) for any i.

We derive as t ∈ [
0, S

ε

]
|ξε(t) − x0| < Q0 S (10)

|ηε(t)| ≤ R2 + 3P T0 (11)

with constant P solely depending, see (6), upon R1, R2, T0(R1, R2). This proves the asser-
tion. �

The next result is a strengthened version of Lemma 2.2 stating that the approximation of a 
value of the fast variable by a trajectory of the fast dynamics can be realized in any predetermined 
suitably large time. To establish it, we need exploiting total controllability assumption (H3) in 
its full extent. The lemma will be used in the proof of Theorem 4.4.

Lemma 2.4. Given x ∈R
N , y, z in RM , and S > 0 suitably large, there is, for any ε, a trajectory 

(ξε, ηε) of (CDε), starting at (x, y) such that

|ηε(S) − z| = O(ε).

Proof. We fix R1, R2 such that x ∈ B(0, R1), and y, z are in B(0, R2). We take S with S >

3 T0(R1, R2). By applying Lemma 2.2, we find Tε < 3 T0(R1, R2) < S and, for any ε, a curve 
(ξε, ηε) of (CDε) starting at (x, y) with

|ηε(Tε) − z| = O(ε).

By iterating the procedure, if necessary, as in the proof of Lemma 2.2, we can extend it to an 
interval [0, Sε], with S − Sε < Tε , still getting

|ηε(Sε) − z| = O(ε). (12)
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By (H3) and Relaxation Theorem, see Remark 2.1, we find a control β and a trajectory ζε satis-
fying

ζ̇ε = g(ξε(Sε), ζε, β) ζε(0) = ηε(Sε)

with

|ζε(t) − ηε(Sε)| = O(ε) for t ∈ [0, S − Sε]. (13)

Owing to (5), the trajectory (ξ0
ε , η0

ε) of (CDε) starting at (ξε(Sε), ηε(Sε)), with control β satisfies

|η0
ε(S − Sε) − ζε(S − Sε)| = O(ε). (14)

By concatenation of ηε and η0
ε , we finally get, in force of (12), (13), (14), a trajectory satisfying 

the assertion. �
2.4. Minimization problems and value functions

We consider for any (x, y) ∈R
N ×R

M , t > 0, ε > 0, the optimization problems

inf
α

ε

t
ε∫

0

�
(
ξε, ηε,α

)
ds + u0

(
ξε

(
t

ε

)
, ηε

(
t

ε

))
(15)

with ξε , ηε are solutions to (CDε) in [0, +∞), issued from the initial datum (x, y). Or equiva-
lently with the change of variables r = ε s

inf
α

t∫
0

�
(
ξ0
ε , η0

ε , α
)

dr + u0(ξ
0
ε (t), η0

ε(t))) (16)

with ξ0
ε , η0

ε are solutions to (CDε) in [0, +∞), issued from (x, y). We denote by V ε the corre-
sponding value functions, namely the functions associating to any initial datum (x, y) and time 
t the infimum of the functional in (15)/ (16). They are apparently continuous with respect to all 
arguments.

Remark 2.5. Looking at the form of the above minimization problem, we understand that coer-
civity assumption (H4) plus (H5) plays the role of a compactness condition for the fast variable, 
inasmuch as it implies that the trajectories of the fast dynamics realizing the value function, up 
to some small constant, lie in a compact subset of RM . This fact will be crucial in the asymptotic 
analysis.

We derive from Proposition 2.3:

Proposition 2.6. The value functions V ε are locally equibounded.



T. Nguyen, A. Siconolfi / J. Differential Equations 261 (2016) 4593–4630 4601
Proof. Let C be a bounded set of RN ×R
M ×[0, +∞), and (x0, y0, t0) ∈ C. Thanks to Proposi-

tion 2.3, there are for any ε trajectories (ξ0, η0), we drop the dependence on ε to ease notations, 
of (CDε) starting at (x0, y0), and contained in a bounded set of RN ×R

M solely depending on C. 
By using the formulation (15) of the minimization problem, we get

V ε(x0, y0, t0) ≤ ε

t0
ε∫

0

�(ξ0(s), η0(s), α(s))ds + u0(ξ0(t0/ε), η0(t0/ε)).

Since the integrand in the above formula and u0 are bounded independently of ε, we obtain the 
equiboundedness from above of the V ε .

We now consider any trajectory (ξ, η) of (CDε) starting (x0, y0) and corresponding to a con-
trol β . By (4), ξ(t) lies in a compact subset K of RN , only depending on C, for t ∈ [0, t0/ε], and 
by coercivity assumption (H4), there is a constant P0 with

�(x, y, a) ≥ P0 for any (x, y, a) ∈ K ×R
M × A. (17)

Since −Q0 is a lower bound of u0 in RN ×R
M , see (H5), this implies

ε

t0
ε∫

0

�(ξ(s), η(s),β(s))ds + u0(ξ(t0/ε), η(t0/ε)) ≥ (18)

ε
t0

ε
P0 + u0(ξ(t0/ε), η(t0/ε)) ≥ P0 t0 − Q0.

Being (ξ, η) an arbitrary trajectory with initial point (x0, y0), the above inequality shows the 
claimed local equiboundedness from below of value functions. �

The previous result allows us to define lim sup#V ε , lim inf#V
ε , these functions will be denoted 

by V , V , respectively, in what follows. The next proposition shows that they only depend on time 
and slow variable, at least for positive times.

Proposition 2.7. We have

(lim inf#V
ε)(x0, y0, t0) = (lim inf#V

ε)(x0, z0, t0) =: V (x0, t0)

(lim sup#V ε)(x0, y0, t0) = (lim sup#V ε)(x0, z0, t0) =: V (x0, t0)

for any x0 ∈R
N , y0, z0 in RM and t0 > 0.

Proof. We start by

Claim. Given positive constants R1, R2, S we can determine P = P(R1, R2, S) > 0 such that 
for any ε > 0, x ∈ B(0, R1), y, z in B(0, R2), t ∈ [0, S] there exist x ′, x′′, z′, z′′, t ′, t ′′, depending 
on ε, with
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|x − x′| < ε P, |z − z′| < ε P, |t − t ′| < ε P,

|x − x′′| < ε P, |z − z′′| < ε P, |t − t ′′| < ε P

such that

V ε(x′, z′, t ′) < V ε(x, y, t) + ε P

V ε(x′′, z′′, t ′′) > V ε(x, y, t) − ε P .

We fix ε. By controllability assumption (see Remark 2.1) z and y can be joined in a time T
less than or equal to T0 = T0(R1, R2) by a curve ζ satisfying

ζ̇ = g(x, ζ,α) for a suitable control α.

We consider the trajectory (ξ, η) of (CDε) with the same control α satisfying

ξ(T ) = x and η(T ) = y,

and set

x′ = ξ(0) and z′ = η(0).

By (4), (5), we get

|x′ − x| < ε P0 (19)

|z′ − z| < ε P0 (20)

for a suitable P0 > 0. We select a trajectory (ξ0, η0) of (CDε) with initial datum (x, y), corre-
sponding to a control β , such that

V ε(x, y, t) ≥ ε

t
ε∫

0

�(ξ0, η0, β)ds + u0

(
ξ0

(
t

ε

)
, η0

(
t

ε

))
− ε. (21)

We set

t ′ = t + ε T , (22)

by concatenation of α and β , ξ and ξ0, η and η0, we get a control γ and trajectory (ξ, η) of (CDε)

starting at (x′, z′), defined in 
[
0, t ′

ε

]
. We consequently have

V ε(x′, z′, t ′) ≤

ε

t ′
ε∫
�(ξ, η, γ )ds + u0

(
ξ

(
t ′

ε

)
, η

(
t ′

ε

))
=

0
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ε

T∫
0

�(ξ, η,α)ds + ε

t ′
ε∫

T

�(ξ0(s − T ), η0(s − T ),β(s − T ))ds +

u0

(
ξ0

(
t ′

ε

)
, η0

(
t ′

ε

))
.

By taking into account (5) and (21), we derive

V ε(x′, z′, t ′) ≤ ε QT0 + V ε(x, y, t) + ε for a suitable Q > 0. (23)

The first part of the claim is therefore proved taking into account (19), (20), (22), (23), and 
defining

P = max{P0, T0,QT0 + 1}.

The estimates for x′′, y′′, z′′, t ′′ can be obtained slightly modifying the above argument. We 
sketch the proof for reader’s convenience. We denote by ζ ′ a curve joining y to z in a time 
T ′ ≤ T0 and satisfying

ζ̇ ′ = g(x, ζ ′, α) for a suitable control α′.

We consider the trajectory (ξ ′, η′) of (CDε) with the same control α′ satisfying

ξ ′(0) = x and η′(0) = y,

and set

x′′ = ξ ′(T ′) and z′′ = η′(T ′).

As in the first part of the proof we get

|x′′ − x| ≤ P0 ε

|z′′ − z| ≤ P0 ε,

for a suitable P0. We select a trajectory (ξ ′
0, η

′
0) of (CDε) with initial datum (x′′, z′′), correspond-

ing to a control β ′, which is optimal for V ε(x′′, z′′, t − ε T ′) up to ε, namely

V ε(x′′, z′′, t ′′) ≥ ε

t ′′
ε∫

0

�(ξ ′
0, η

′
0, β

′)ds + u0

(
ξ ′

0

(
t ′′

ε

)
, η′

0

(
t ′′

ε

))
− ε.

Here we are assuming ε so small that t ′′ := t − ε T ′ is positive, this does not entail any limitation 
to the argument since we are interested to ε infinitesimal. From this point we go on as in the 
previous part.
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We exploit the first part of the claim to show that for any pair of values y0, z0 of the fast 
variable, any x0 ∈R

N , t0 > 0

(lim inf#V
ε)(x0, z0, t0) ≤ (lim inf#V

ε)(x0, y0, t0), (24)

which in turn implies by the arbitrariness of y0, z0, that lim inf#V
ε independent of the fast vari-

able. We consider εn, xn, yn, tn converging to 0, x0, y0, t0, respectively, with

lim
n

V εn(xn, yn, tn) = (lim inf#V
ε)(x0, z0, t0).

Since all the xn, yn, and z0, tn are contained in compact subsets of RN , RM , [0, +∞), respec-
tively, we can apply, for any given n ∈N, the claim to ε = εn, x = xn, y = yn, z = z0, t = tn and 
get of x′

n, z′
n, t ′n with

|xn − x′
n| < εn P, |z0 − z′

n| < εn P, |tn − t ′n| < εn P

and

V εn(x′
n, z

′
n, t

′
n) < V εn(xn, yn, tn) + εn P

for a suitable P . Sending n to infinity we deduce

lim infV εn(x′
n, z

′
n, t

′
n) ≤ limV εn(xn, yn, tn) = (lim inf#V

ε)(x0, z0, t0),

which implies (24) since x′
n → x0, z′

n → z0 and t ′n → t0.
The assertion relative to lim sup#V ε is obtained using the second part of the claim and slightly 

adapting the above argument. �
As a consequence of coercivity of running cost assumed in (H4) we deduce:

Proposition 2.8. The value function V ε satisfy for any ε, any compact subset K of RN ×(0, +∞)

lim|y|→+∞ min
(x,t)∈K

V ε(x, y, t) = +∞.

Proof. We fix ε, we assume, without loosing any generality, that K is of the form K̃ × [S, T ], 
where K̃ is a compact subset of RN and S, T are positive times. Given any P > 0, we can 
determine by (H4) a constant R such that the ball B(0, R) of RM satisfies

�(x, y, a) > P for any (x, a) ∈ K̃ × A, y ∈ R
M \ B(0,R). (25)

Taking into account the estimate (7), we see that there exists R0 > R such that

η(t) /∈ B(0,R) for t ∈ [0, T ] (26)

for any trajectory of (CDε) starting in K0 × (
R

M \ B(0, R0)
)
. Given δ > 0, we find, for any
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(x, y, t) ∈ K0 × (
R

M \ B(0,R0)
) × [S,T ]

a trajectory (ξ0, η0) of (CDε), corresponding to a control α, starting at (x, y) with

V ε(x, y, t) ≥ ε

t
ε∫

0

�(ξ0, η0, α)ds + u0

(
ξ0

(
t

ε

)
, η0

(
t

ε

))
− δ.

We deduce by (25), (26), (H5)

V ε(x, y, t) ≥ P S − Q0 − δ,

which gives the assertion, since P can be chosen as large as desired, and δ as small as desired. �
2.5. HJB equations

We define the Hamiltonian

H(x,y,p, q) = max
a∈A

{−p · f (x, y, a) − q · g(x, y, a) − �(x, y, a)}

The main contribution of Assumption (H3) is the following coercivity property on H :

Lemma 2.9. For any given bounded set C ⊂R
N ×R

M ×R
N , we have

lim|q|→+∞ min
(x,y,p)∈C

H(x, y,p, q) = +∞.

Proof. We denote by r the positive constant provided by (H3) in correspondence to the pro-
jection of C on the state variables space RN × R

M . We consequently have for (x, y) in such 
projection and q ∈R

M

max{q · v | v ∈ g(x, y,A)} = max{q · v | v ∈ cog(x, y,A)} ≥ r |q|. (27)

We take (x, y, p) ∈ C, and denote by a0 an element in the control set such that g(x, y, a0) realizes 
the maximum in (27). We get from the very definition of H and (27)

H(x,y,p, q) ≥ −|p| |f (x, y, a0)| + r |q| − |�(x, y, a)| for any q.

When we send |q| to infinity, all the terms in the right hand-side of the above formula stay 
bounded except r |q|. This gives the assertion. �

Given a bounded set B in RN ×R
M , one can check by direct calculation that H satisfies

|H(x1, y1,p, q) − H(x2, y2,p, q)| ≤ (28)

L0 (|x1 − x2| + |y1 − y2|)(|p| + |q|) + ω(|x1 − x2| + |y1 − y2|)
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for any (x1, y1), (x2, y2) in B and (p, q) ∈R
N ×R

M , where ω is an uniform continuity modulus 
of � in B × A and L0 is as in (H2). We also have

|H(x,y,p1, q1) − H(x,y,p2, q2)| ≤ (29)

|f (x, y, a0)| |p1 − p2| + |g(x, y, a0)| |q1 − q2|
for any (x, y) ∈ R

N ×R
M , (p1, q1), (p2, q2) in RN ×R

M , a suitable a0 ∈ A.
We write, for any ε > 0, the family of Hamilton–Jacobi–Bellman problems{

uε
t + H

(
x, y,Dxu

ε,
Dyuε

ε

)
= 0

uε(x, y,0) = u0(x, y)
(HJε)

It is well known that the value functions V ε are solutions to (HJε), even if not necessarily 
unique in our setting. However, due to the estimate (28), we have the following local comparison 
result (see for instance [9,10]):

Proposition 2.10. Given a bounded open set B of RN × R
M and times t2 > t1, let u, v be 

continuous subsolution and supersolution, respectively, of the equation in (HJε). If u ≤ v in 
∂p

(
B × (t1, t2)

)
then u ≤ v in B × (t1, t2), where ∂p stands for the parabolic boundary.

We define the effective Hamiltonian

H(x,p) = inf{b ∈ R | H(x,y,p,Du) = b admits a subsolution in R
M } (30)

for any fixed (x, p) ∈ R
N × R

N , where the equation appearing in the formula is solely in the 
fast variable y with slow variable x and corresponding momentum p frozen, and accordingly 
with u(y) as unknown function. This quantity can be in principle infinite, however we will show 
in what follows that not only it is finite for any (x, p), but also that the infimum is actually a 
minimum.

We write the limit equation

ut + H(x,Du) = 0. (HJ)

3. Cell problems

The section is devoted to the analysis of the stationary Hamilton–Jacobi equations in RM ap-
pearing in the definition of effective Hamiltonian, namely with slow variable and corresponding 
momentum frozen.

3.1. Basic analysis

We fix (x0, p0) ∈ R
N ×R

N , and set to ease notations

H0(y, q) = H(x0, y,p0, q) for any (y, q) ∈R
M ×R

M

�0(y, a) = �(x0, y, a) + p0 · f (x0, y, a) for any (y, a) ∈R
M × A

g0(y, a) = g(x0, y, a) for any (y, a) ∈ R
M × A
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Given a control α(t), we consider the controlled differential equation in RM

η̇(t) = g0(η(t), α(t)). (31)

We directly derive from Lemma 2.9:

Lemma 3.1. We have

lim|q|→+∞ min
y∈K

H0(y, q) = +∞

for any compact subset K of RM .

This result implies, according to Lemma A.1, that all subsolutions are locally Lipschitz-
continuous, and allows adopting the metric method, see Appendix A, in the analysis of the cell 
equations. To ease notation, we set c0 = H(x0, p0), also called the critical value of H0, see (86). 
We will prove in Proposition 3.3 that c0 is finite. We denote by Z, σ , S the corresponding sub-
levels, support function and intrinsic distance, see Appendix A for the corresponding definitions. 
Same objects for a supercritical value b will be denoted by Zb, σb , Sb.

To compare the metric and control-theoretic viewpoint, we notice

Zb(y) = {q ∈R
M | q · (−g0(y, a)) ≤ �0(y, a) + b for any a ∈ A}

for any given supercritical b ∈ R, namely b ≥ c0, and y ∈ R
M . This implies that the support 

function σb(y, ·) is the maximal subadditive positively homogeneous function ρ :RM →R with

ρ(−g0(y, a)) ≤ �0(y, a) + b for any a ∈ A, (32)

which somehow justifies the next equivalences.

Proposition 3.2. Given a supercritical value b, the following conditions are equivalent:

(i) u is a subsolution to H0 = b;
(ii) u(y2) − u(y1) ≤ Sb(y1, y2) for any y1, y2;

(iii) u(y1) − u(y2) ≤
∫ T

0 (�0(η(t), α(t)) + b) dt for any y1, y2, time T , control α, any trajectory 
η of (31) with η(0) = y1, η(T ) = y2.

Proof. The equivalence (i) ⇐⇒ (ii) is given in Proposition A.3 (i), the equivalence (i) ⇐⇒ (iii)
is the usual characterization of subsolutions to Hamilton–Jacobi–Bellman equations in terms of 
suboptimality, see [8]. �

One advantage of the metric method is that any curve is endowed of a length, while integral 
cost functional is only defined on trajectories of the controlled dynamics. Also notice that there 
is a change of orientation between length and cost functional, that can be detected from (32) and 
comparison between items (ii) and (iii) in Proposition 3.2. This just depends on u0 being terminal 
cost and initial condition in (HJε), the discrepancy should be eliminated if (HJε) were posed in 
(−∞, 0) and u0 should consequently play the role of terminal condition and initial cost.
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Proposition 3.3. The critical value c0 is finite.

Proof. Owing to coercivity of � and boundedness of f

H0(y,0) = max
a∈A

{−�0(y, a)} → −∞ as |y| → +∞

and consequently

H0(y,0) < 0 outside some compact subset K of RM .

We set

b0 = max
{
0,max{H0(x,0) | x ∈ K}},

then the null function is subsolution to H0 = b0 in RM , and so c0 < +∞.
By controllability condition (H3), we find a cycle η defined in [0, T ], for a positive T , solution 

to (31) for some control α. We put

R =
T∫

0

�0(η,α)dt,

and for b < −R
T

we get

T∫
0

(�0(η,α) + b) dt < R − R

T
T = 0.

The above cycle, repeated infinite times, gives a trajectory of (31) in [0, +∞), still denoted by 
η, such that

∞∫
0

(�0(η,α) + b) dt = −∞. (33)

If there were a subsolution u to H0 = b then

u(η(0)) − u(η(t0)) ≤
t0∫

0

(�0(η(t), α(t)) + b)dt for any t0 > 0. (34)

But the support of η is equal to η([0, T ]) which is a compact subset of RM , so that the oscillation 
of u (which is locally Lipschitz continuous) on it is bounded. This shows that (33) and (34) are 
in contradiction. We then deduce that the equation H0 = b cannot have any subsolution, showing 
in the end that c0 > −∞. �
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We deduce from standing assumptions a sign and a coercivity condition on the critical dis-
tances. To do that, we start selecting a compact set C of RM with

H0(y,0) = −min
a∈A

�0(y, a) < c0 − Q0 for any y ∈R
M \ C, (35)

where Q0 is as in (H2). This is possible since �0 is coercive. Further we set

K0 =
{
y | d(y,C) ≤ max

C×C
|S|

}
. (36)

Proposition 3.4. The following properties hold true:

(i) lim|y|→+∞ infy0∈K S(y0, y) = +∞ for any compact set K ⊂R
M ;

(ii) Z(y) ⊃ B(0, 1) for any y outside the compact set K0 defined as in (36);
(iii) S(y1, y2) > 0 for any pair y1, y2 outside K0.

Proof. If q ∈R
M satisfies

H0(y, q) = c0 for some y in R
M \ C, (37)

where C is defined as in (35), then

c0 = H0(y, q) = max
a∈A

{−g0(y, a) · q − �0(y, a)} ≤ Q0 |q| − min
a∈A

�0(y, a)

and by the very definition of C

|q| ≥ c0 + mina∈A �0(y, a)

Q0
>

Q0

Q0
= 1. (38)

Since 0 is in the interior of Z(y) by (35), we derive a stronger version of item (ii), with C in 
place of K0, which in turn implies

v

|v| ∈ Z(y) for any y ∈R
M \ C, v ∈ R

M with v �= 0

and consequently

σ(y, v) ≥ v ·
(

v

|v|
)

= |v| for any y ∈R
M \ C, v ∈R

M with v �= 0. (39)

Next, we fix a compact set K and consider two points y1 ∈ K , y2 /∈ C and any curve ζ , defined 
in [0, 1], linking them. We distinguish two cases according on whether the intersection of ζ with 
C is nonempty or empty. In the first instance we set

t1 = min{t ∈ [0,1] | ζ(t) ∈ C} (40)

t2 = max{t ∈ [0,1] | ζ(t) ∈ C}. (41)
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We denote by R an upper bound of |S| in C × C and exploit (39) to get

1∫
0

σ(ζ, ζ̇ )dt =
t1∫

0

σ(ζ, ζ̇ )dt +
t2∫

t1

σ(ζ, ζ̇ )dt +
1∫

t2

σ(ζ, ζ̇ )dt (42)

≥ |y1 − ζ(t1)| + S(ζ(t1), ζ(t2)) + |y2 − ζ(t2)|
≥ −R + d(y1,C) + d(y2,C).

If instead the curve ζ entirely lies outside C, we have by (39)

1∫
0

σ(ζ, ζ̇ )dt ≥ |y1 − y2|. (43)

In both cases we get item (i) sending y2 to infinity and taking into account that y1 has been 
arbitrarily chosen in K .

We finally see, looking at (42), (43), and slightly adapting the above argument that K0, defined 
as in (36), satisfies item (iii). �
Remark 3.5. Given a compact set K ⊂ R

M , the same argument of Proposition 3.4 allows also 
proving

lim|y|→+∞ inf
y0∈K

S(y, y0) = +∞ (44)

Corollary 3.6. For any bounded open set B there exists R > 0 such that if y1, y2 belong to B
then all curves linking y1 to y2 with intrinsic length less than S(y1, y2) + 1 are contained in 
B(0, R).

Proof. We can assume without loosing generality that B ⊃ K0, where K0 is the set defined in 
(36). We set

P = sup
B×B

|S|.

By Proposition 3.4 (i) there is R such that

inf
y0∈B

S(y0, y) > 2P + 2 for y with |y| > R.

We claim that such an R satisfies the claim. In fact, assume by contradiction that there are y1, y2
in B and an 1-optimal curve ζ , defined in [0, 1], for S(y1, y2) not contained in B(0, R). Let t1
be a time in (0, 1) with ζ(t1) /∈ B(0, R) and set

t2 = min{t ∈ (t1,1) | ζ(t) ∈ K0 ⊂ B}

then, taking into account Proposition 3.4
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S(y1, y2) ≥
1∫

0

σ(ζ, ζ̇ )dt − 1

=
t1∫

0

σ(ζ, ζ̇ )dt +
t2∫

t1

σ(ζ, ζ̇ )dt +
1∫

t2

σ(ζ, ζ̇ )dt − 1

≥ S(y1, ζ(t1)) + S(ζ(t1), ζ(t2)) + S(ζ(t2), y2) − 1

≥ 2P + 2 − P − 1 = P + 1,

which is in contrast with the very definition of P . �
3.2. Existence of special subsolutions and solutions

Here we show the existence of bounded critical subsolutions, and of coercive critical solutions.

Proposition 3.7. There exists a bounded Lipschitz-continuous critical subsolution u, vanishing 
and strict outside the compact set K0 defined as in (36).

Proof. By Proposition 3.4, item (iii)

S(y1, y2) ≥ 0 for any y1, y2 in RM \ K0, (45)

and consequently the null function is an admissible trace for subsolutions to H0 = c0 on RM \ K0
in the sense that (45) is the same inequality as in Proposition A.3 (iii) with the null function in 
place of w and S in place of Sb, consequently

u(y) := inf{S(z, y) | z ∈ RM \ K0}

is a subsolution to H0 = c0 in RM vanishing on RM \ K0. In addition

H0(y,Du) = H0(y,0) < c0 − Q0 for y ∈R
M \ K0 ⊂R

M \ C

by the very definition of C in (35). Since u is locally Lipschitz-continuous by Lemma 3.1 and 
vanishes outside a compact set, it is actually globally Lipschitz-continuous in RM . This fully 
shows the assertion. �

We denote by A0 the Aubry set of H0, see Proposition A.5 for the definition. We have:

Lemma 3.8. The Aubry set A0 is nonempty and contained in K0, where K0 is defined as in (36).

Proof. We know from Proposition 3.7 that there is a critical subsolution which is strict outside 
K0, so that by Proposition A.5 (iii) A0 ⊂ K0. The point is then to show that the Aubry set is 
nonempty.
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We argue by contradiction using a covering argument. If A0 = ∅, then we can associate by 
Proposition A.5 (iii) to any point y ∈ K0 an open neighborhood By , a value dy < c0, and a critical 
subsolution wy with

H0(·,Dwy) ≤ dy < c0 in By .

We extract a finite subcovering {B1, · · · , Bm} corresponding to points y1, · · · , ym of K0, and set

wj = wyj

dj = dyj
for j = 1, · · · ,m.

Then

{B0,B1, · · · ,Bm},

where B0 = R
M \ K0, is an finite open cover of RM . We denote by u the critical subsolution 

constructed in Proposition 3.7 and set d0 = c0 − Q0, so that

H0(y,Du(y)) ≤ d0 < c0 for any y ∈ B0.

We define

w = λ0 u +
m∑

i=1

λj wj ,

where λ0, λ1, · · · , λm are positive coefficients summing to 1. We have by convexity of H0

H0(y,Dw(y)) ≤ λ0 H0(y,Du(y)) +
m∑

j=1

λj H0(y,Dwj (y)),

for a.e. y ∈ R
M , and we derive

H0(y,Dw(y)) ≤
∑
i �=j

λi c0 + λj dj = (1 − λj ) c0 + λj dj = c0 + λj (dj − c0)

for a.e. y ∈ Bj , j = 0, · · · , m. We set d̃ = maxj λj (dj − c0) < 0 and conclude

H0(y,Dw(y)) ≤ c0 + d̃ < c0 for a.e. y ∈ R
M ,

which is impossible by the very definition of c0. This gives by contradiction ∅ �= A0 ⊂ K0, as 
desired. �

From the previous lemma and Proposition 3.4, item (i) we get:

Proposition 3.9. All the functions y 	→ S(y0, y), for y0 ∈ A0, are coercive critical solutions.
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The previous line of reasoning can be somehow reversed. We proceed showing that the ex-
istence of coercive solutions, plus the coercivity of intrinsic distance, characterizes the critical 
equation and also directly implies that the Aubry set is nonempty, as made precise by the follow-
ing result:

Proposition 3.10. Assume that the equation

H0(y,Du) = b

admits a coercive solution in RM and limit relation (44) holds true with Sb in place of S, then 
b = c0 and the corresponding Aubry set is nonempty.

Proof. The argument is by contradiction. Let w be a coercive solution of the equation in object. 
If b �= c0 or A0 = ∅ then by Corollary A.6, Proposition A.7, there is, for any R > 0, an unique 
solution of the Dirichlet problem{

H0(y,Du) = b in B(0,R)

u = w on ∂B(0,R)

which therefore must coincide with w, and

w(0) = w(z) + Sb(z,0) for any R > 0, some z ∈ ∂B(0,R). (46)

Since we have assumed (44), with Sb in place of S, we have

lim|z|→+∞Sb(z,0) = +∞

and by assumption w is coercive. This shows that (46) is impossible, and concludes the 
proof. �

We derive:

Proposition 3.11. The effective Hamiltonian H : RN × R
N → R is continuous in both compo-

nents and convex in p.

Proof. It is easy to see using the continuity of H and the argument in the proof of Proposition 3.3
that H is locally bounded. We consider a sequence (xn, pn) converging to some (x, p), and 
assume that H(xn, pn) admits limit. We consider a sequence vn of solutions to

H(xn, y,pn,Du) = H(xn,pn)

of the form as in Proposition 3.9. By exploiting the continuity of H we see that the vn are locally 
equiLipschitz-continuous, locally equibounded and equicoercive. They are consequently locally 
uniformly convergent, up to a subsequence, by Ascoli Theorem, with limit function, say w, 
locally Lipschitz-continuous and coercive. In addition, by basic stability properties of viscosity 
solutions theory, w satisfies
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H(x,y,p,Dw) = lim
n

H(xn,pn),

which implies by Proposition 3.10 that limn H(xn, pn) = H(x, p). This shows the claimed con-
tinuity of H .

We see by the very definition of H that

H(x,y,λp1 + (1 − λ)p2, λq1 + (1 − λ)q2) ≤ λH(x, y,p1, q1) + (1 − λ)H(x, y,p2, q2).

We derive from this that if ui , i = 1, 2, satisfy H(x, y, pi, Dui) ≤ H(x, pi) in the viscosity 
sense, then

H(x,y,λp1 + (1 − λ)p2, λDu1 + (1 − λ)Du2) ≤ λH(x,p1) + (1 − λ)H(x,p2),

which in turn implies

H(x,λp1 + (1 − λ)p2) ≤ λH(x,p1) + (1 − λ)H(x,p2)

as desired. �
3.3. Construction of a supersolution

We still keep (x0, p0) fixed. Starting from Proposition 3.9, we construct a supersolution of 
the cell problem which will play the role of corrector in Theorem 4.3. We denote by K0 the 
set defined in (36). We fix y0 ∈ A0; by the coercivity of S(y0, ·), see Proposition 3.9, there is a 
constant d such that

d + S(y0, y) > 0 for any y ∈R
M . (47)

We select a constant R0 satisfying

B(0,R0 − 3) ⊃ K0 (48)

R0 − 3 satisfies Corollary 3.6 for a neighborhood of y0. (49)

We aim at proving:

Theorem 3.12. Let U : RM → R be a function bounded from above in B(0, R0) with

U ≤ 0 in B(0,R0 − 1), (50)

then there exists for any λ > 0, a locally Lipschitz-continuous supersolution wλ of H0 = c0 in 
R

M with

U ≤ λwλ in B(0,R0) (51)

wλ = d + S(y0, ·) in a neighborhood of y0. (52)



T. Nguyen, A. Siconolfi / J. Differential Equations 261 (2016) 4593–4630 4615
To construct the supersolutions wλ some preliminary steps are needed.
We define

M0 = max

{
sup

B(0,R0)

1

λ
U,1

}
.

We denote by hλ : [0, +∞) → [0, +∞) a nondecreasing continuous function with

hλ ≡ 1 in [0,R0 − 3] (53)

hλ ≡ M0 in [R0 − 2,+∞). (54)

We introduce the length functional

1∫
0

hλ(|ξ |) σ (ξ, ξ̇ ) ds

for any curve ξ defined in [0, 1], and denote by Sh the distance obtained by minimization of it 
among curves linking two given points, we drop dependence on λ to ease notations.

Lemma 3.13. The function Sh(y0, ·) is a locally Lipschitz-continuous supersolution to H0 = c0
in RM , and coincides with S(y0, ·) in a neighborhood of y0.

Proof. The function hλ, defined in (53), (54), satisfies hλ ≥ 1 and if hλ(|y|) > 1 then by (53)

y /∈ B(0,R0 − 3) ⊃ K0

so that by Proposition 3.4 (ii) H0(y, 0) < c0. We are thus in position to apply Proposition A.8, 
which directly gives the asserted supersolution property outside y0, as well as the Lipschitz 
continuity. We also know by (49) and hλ ≡ 1 in B(0, R0 − 3) that

Sh(y0, ·) = S(y0, ·) in a neighborhood of y0,

and Sh(y0, ·) is solution to H0 = c0 on the whole space, by Proposition 3.9. This concludes the 
proof. �

By the very definition of Sh, we have:

Sh ≥ S in R
M ×R

M . (55)

We define

wλ = d + Sh(y0, ·) (56)

where d , y0 are as in (47).
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Lemma 3.14. The following inequalities hold true:

wλ > 0 in R
M

wλ ≥ M0 in R
M \ B(0,R0 − 1).

Proof. From (55) and the definition of wλ we derive

wλ ≥ d + S(y0, ·)

and this in turn yields wλ > 0 in RM because of (47).
We fix y /∈ B(0, R0 − 1), and consider any curve ζ defined in [0, 1] linking y0 to y. We set

t1 = max{t ∈ [0,1] | ζ(t) ∈ B(0,R0 − 2)},

notice that

|ζ(t1) − y| > 1.

Owing to the above inequality, wλ > 0, Proposition 3.4 item (ii), the definition of hλ, we have

d +
1∫

0

hλ(|ζ |) σ (ζ, ζ̇ )dt = d +
t1∫

0

hλ(|ζ |) σ (ζ, ζ̇ )dt +
1∫

t1

hλ(|ζ |) σ (ζ, ζ̇ )dt

≥ wλ(ζ(t1)) +
1∫

t1

hλ(|ζ |) |ζ̇ |dt

≥ wλ(ζ(t1)) + M0 |y − ζ(t1)| > M0.

Taking into account the definition of wλ and the fact that the curve ζ joining y0 to y /∈
B(0, R0 − 1) is arbitrary, we deduce from the above computation the desired inequality. �
Proof of Theorem 3.12. In view of Lemma 3.13, it is just left to show (51). It indeed holds true 
in B(0, R0 −1) because of (50) and wλ > 0. If y ∈ B(0,R0)\B(0, R0 −1), then by Lemma 3.14, 
we have

wλ(y) ≥ M0 ≥ sup
B(0,R0)

1

λ
U ≥ 1

λ
U(y). �

4. Asymptotic analysis

We summarize the relevant output of the previous section in the following
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Theorem 4.1. We consider (x0, p0) ∈ R
N × R

N , a constant R0 satisfying (48), (49), a function 
U bounded from above in B(0, R0) and less than or equal to zero in B(0, R0 − 1), any positive 
constant λ. Then the equation

H(x0, y,p0,Du) = H(x0,p0) in R
M

admits a bounded Lipschitz-continuous subsolution and a locally Lipschitz-continuous superso-
lution, say wλ, satisfying (51), (52)

We recall the notations V = lim sup#V ε , V = lim inf#V
ε , where the V ε are the value functions 

of problems (15)/(16). We consider a point (x0, t0) ∈ R
N × (0, +∞), and set

Kδ = B(x0, δ) × (t0 − δ, t0 + δ) for δ < t0. (57)

We further consider a constant R0 > 0 satisfying (48), (49). The next lemma, based on Theo-
rem 3.12, will be of crucial importance. The entities y0 ∈ A0 and d appearing in the statement 
are defined as in (47):

Lemma 4.2. Let ψ be a strict supertangent to V at (x0, t0) such that (x0, t0) is the unique maxi-
mizer of V − ψ in Kδ0 , for some δ0 < t0. Then, given any infinitesimal sequence εj , and δ < δ0, 
we find a constant ρδ > 0 and a family wj of supersolutions to H(x0, y, Dψ(x0, t0), Du) =
H(x0, Dψ(x0, t0)) in RM satisfying for j suitably large

εj wj ≥ V εj − ψ + ρδ in ∂
(
Kδ × B(0,R0)

)
(58)

wj = d + S(y0, ·) in a neighborhood A0 of y0, (59)

where S is the intrinsic critical distance, see Subsection 3.1, related to (x0, Dψ(x0, t0)).

Proof. By supertangency properties of ψ at (x0, t0), we find, for any δ < δ0, a ρδ > 0 with

max
∂Kδ

(
V − ψ

)
< −3ρδ. (60)

We fix a δ and define

Uε(y) =
{

max(x,t)∈∂Kδ
{V ε(x, y, t) − ψ(x, t) + ρδ} for y ∈ B(0,R0 − 1/2)

max(x,t)∈Kδ
{V ε(x, y, t) − ψ(x, t) + ρδ} for y ∈ R

M \ B(0,R0 − 1/2).

Notice that the Uε are continuous for any ε and locally equibounded, since the V ε are locally 
equibounded in force of Proposition 2.6. To ease notations we set

Uj = Uεj .

Claim. There is j0 = j0(R0) such that

Uj ≤ −ρδ in B(0,R0 − 1), for j > j0.
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Were the claim false, there should be a subsequence yj contained in B(0, R0 − 1) with

Uj(yj ) > −ρδ.

The yj converge, up to further extracting a subsequence, to some y, and, being εj infinitesimal, 
we get

(lim sup#Uε)(y) ≥ −ρδ. (61)

Moreover, there exists an infinitesimal sequence εi and elements zi converging to y with

lim
i

Uεi (zi) = (lim sup#Uε)(y),

at least for i large zi ∈ B(0, R0 − 1/2), and by the very definition of Uε in B(0, R0 − 1/2), we 
get

Uεi (zi) = V εi (xi, zi , ti) − ψ(xi, ti) + ρδ for some (xi, ti ) ∈ ∂Kδ ,

up to extracting a subsequence, (xi, ti ) converges to some (x, t) ∈ ∂Kδ so that by (60)

(lim sup#Uε)(y) = limUεi (zi) = lim
[
V εi (xi, zi , ti) − ψ(xi, ti) + ρδ

]
≤ V (x, t) − ψ(x, t) + ρδ ≤ −2ρδ,

which is in contradiction with (61). This ends the proof of the claim.
We are then in the position to apply Theorem 3.12 to any Uj , and get a supersolution wj to 

H(x0, ·, Dψ(x0, t0), ·) = H(x0, Dψ(x0, t0)), which satisfies, for j > j0, the condition (59) and

εj wj ≥ Uj in B(0,R0).

Owing to the very definition of Uj , we derive from the latter inequality that

εj wj (y) ≥ V εj (x, y, t) − ψ(x, t) + ρδ

holds in

∂Kδ × B(0,R0) ∪ Kδ × ∂B(0,R0) = ∂
(
Kδ × B(0,R0)

)
.

This proves (58) and conclude the proof. �
We proceed establishing the asymptotic result for upper weak semilimit of the V ε . The first 

part of the proof is a version, adapted to our setting, of perturbed test function method. We are 
going to use as correctors, depending on ε, the special supersolutions to cell equations con-
structed in Subsection 3.3 in the frame of Lemma 4.2. The argument of the second half of the 
proof concerning the behavior of the limit function at t = 0 makes a direct use of the material of 
Subsections 2.3, 2.4.
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Theorem 4.3. The function V = lim sup#V ε is a subsolution to (HJ) satisfying

lim sup
(x,t)→(x0,0)

t>0

V (x, t) ≤ u0(x0) for any x0 ∈R
N . (62)

Proof. Let (x0, t0) be a point in RN × (0, +∞), and ψ a strict supertangent to V at (x0, t0) such 
that (x0, t0) is the unique maximizer of V −ψ in Kδ0 , for some δ0 > 0 (see (57) for the definition 
of Kδ).

By Proposition 2.7, we can find an infinitesimal sequence εj and (xj , yj , tj ) converging to 
(x0, y0, t0), where y0 is as in (47), with

lim
j

V εj (xj , yj , tj ) = V (x0, t0) = ψ(x0, t0). (63)

We assume by contradiction

ψt(x0, t0) + H(x0,Dψ(x0, t0)) > 2η (64)

for some positive η. We apply Lemma 2.9, about coercivity of H , to the bounded set

C := B(x0, δ0) × B(0,R0) × Dψ(Kδ0),

where R0 satisfies (48), (49), and exploit that H is locally bounded to find P > 0 with

H(x,y,p, q) > H(x,p) for (x, y,p) ∈ C, q with |q| ≥ P . (65)

Applying the estimates (28) to B(x0, δ0) × B(0, R0) and (29), we find

|H(x0, y,Dψ(x0, t0), q) − H(x,y,p, q)| ≤ (66)

L0 (|x − x0|)(|Dψ(x0, t0)| + |q|) +
ω(|x − x0|) + Q |Dψ(x0, t0) − p|

for any (x, y) ∈ B(x0, δ0) × B(0, R0) and (p, q) ∈ R
N ×R

M , where ω is an uniform continuity 
modulus of � in B(x0, δ0) × B(0, R0) × A, L0 is as in (H2) and Q is an upper bound of |f | in 
B(x0, δ0) × B(0, R0) × A.

Exploiting the continuity of Dψ , ψt , H , we can determine, δ0 > δ > 0 such that using (64), 
(66) with q ∈ B(0, P) and p of the form Dψ(x, t), we get

|H(x0, y,Dψ(x0, t0), q) − H(x,y,Dψ(x, t), q)| < η (67)

|Dψ(x, t) − Dψ(x0, t0)| < η (68)

ψt(x, t) + H(x,Dψ(x, t)) > 0 (69)

for (y, q) ∈ B(0, R0) × B(0, P), (x, t) ∈ Kδ . By applying Lemma 4.2 to such a δ, we find a 
constant ρδ > 0 and a family wj of supersolutions to
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H(x0, y,p0,Dψ(x0, t0),Du) = H(x0,Dψ(x0, t0)) in R
M

with

εj wj ≥ V εj − ψ + ρδ in ∂
(
Kδ × B(0,R0)

)
(70)

wj = d + S0(y0, ·) in a neighborhood A0 of y0, (71)

for j large enough, see (47) for the definition of d . We claim that the corrected test function 
ψ + wj satisfies

ψt(x, t) + H(x,y,Dψ(x, t),Dwj ) ≥ 0

in Kδ × B(0, R0) in the viscosity sense. In fact, let φ be a subtangent to ψ + wj at some point 
(x, y, t) ∈ Kδ × B(0, R0), then

φt (x, y, t) = ψt(x, t)

Dxφ(x, y, t) = Dψ(x, t)

and so, to prove the claim, we have to show the inequality

ψt(x, t) + H(x,y,Dψ(x, t),Dyφ(x, y, t)) ≥ 0.

We have that

z 	→ φ(x, z, t)

is supertangent to wj at y, which implies by the supersolution property of wj

H(x0, y,Dψ(x0, t0),Dyφ(x, y, t)) ≥ H(x0,Dψ(x0, t0))

If |Dyφ(x, y, t)| < P then by (64), (67) and (68)

ψt(x, t) + H(x,y,Dψ(x, t),Dyφ(x, y, t)) ≥
ψt(x0, t0) − η + H(x0, y,Dψ(x0, t0),Dyφ(x, y, t)) − η ≥

ψt(x0, t0) + H(x0,Dψ(x0, t0)) − 2η ≥ 0.

If instead |Dyφ(x, y, t)| ≥ P then by (65), (69)

ψt(x, t) + H(x,y,Dψ(x, t),Dyφ(x, y, t)) ≥
ψt(x, t) + H(x,Dψ(x, t)) ≥ 0.

The claim is then proved. For j large enough, the functions V εj , ψ + εj wj − ρδ are then subso-
lutions and supersolutions, respectively, to
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ut + H

(
x, y,Dxu,

Dyu

εj

)
= 0

in Kδ × B(0, R0), then taking into account the boundary inequality (70), we can apply the com-
parison principle of Proposition 2.10 to the above equation to deduce

V εj ≤ ψ + εj wj − ρδ in Kδ × B(0,R0). (72)

On the other side, let (xj , yj , tj ) be the sequence converging to (x0, y0, t0) introduced in (63), 
then for j large (xj , yj , tj ) ∈ Kδ × B(0, R0), and wj(yj ) = d + S(y0, yj ) by (71), so that

lim
j

εj wj (yj ) = 0.

We therefore get

lim
j

[
V εj (xj , yj , tj ) − ψ(xj , tj ) − εj wj (yj )

] = V (x0, t0) − ψ(x0, t0) = 0

which contradicts (72).
We proceed proving (62). We consider (xn, tn) converging to (x0, 0) such that V (xn, tn) admits 

limit. Our task is then to show

lim
n

V (xn, tn) ≤ u0(x0).

We find for any n an infinitesimal sequence εn
j and (xn

j , yn
j , tnj ) converging to (xn, 0, tn) with

lim
j

V
εn
j (xn

j , yn
j , tnj ) = V (xn, tn),

0 ∈ R
M is clearly an arbitrary choice, in view of Proposition 2.7. By applying a diagonal argu-

ment we find εn converging to 0 and (zn, yn, sn) converging to (x0, 0, 0) with

lim
n

V εn(zn, yn, sn) = lim
n

V (xn, tn) (73)

lim
n

sn

εn

= +∞. (74)

Given δ > 0, we denote by ỹ a δ-minimizer of y 	→ u0(x0, y) in RM , see assumption (H5). By 
applying Proposition 2.3, Lemma 2.4 and taking into account (74), we find for any n sufficiently 
large a trajectory (ξn, ηn) of (CDε), with ε = εn, corresponding to controls αn and starting at 
(zn, yn), such that

(ξn, ηn) is contained in a compact subset independent of n as t ∈ [0, sn/εn] (75)

|ηn(sn/εn) − ỹ| = O(εn) (76)

By using formulation (15) of minimization problem, we discover
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V εn(zn, yn, sn) ≤ εn

sn
εn∫

0

�(ξn(t), ηn(t), αn(t))dt + u0(ξn(sn/εn), ηn(sn/εn)),

where the integrand is estimated from above by a constant, say Q, independent of n, because of 
(75), therefore

V εn(xn, yn, sn) ≤ Qsn + u0(ξn(sn/εn), ηn(sn/εn))

Owing to (4), (76), (73), and the fact that sn is infinitesimal, we then get

lim
n

V (xn, tn) = lim
n

V εn(zn, yn, sn) ≤ u0(x0, ỹ) ≤ u0(x0) + δ.

This concludes the proof because δ is arbitrary. �
The second main result concerns lower weak semilimit. Here we essentially exploit the 

existence of bounded Lipschitz-continuous subsolutions to cell equations established in Propo-
sition 3.7 plus the coercivity of the V ε proved in Proposition 2.8. The part of the proof about 
behavior of limit function at t = 0 is direct and not based on a PDE approach. We recall that 
(u0)# stands for the lower semicontinuous envelope of u0, see Subsection 2.1 for definition.

Theorem 4.4. The function V = lim inf#V
ε is a supersolution to (HJ) satisfying

lim inf
(x,t)→(x0,0)

t>0

V (x, t) ≥ (u0)#(x0) for any x0 ∈ R
N . (77)

Proof. Let (x0, t0) be a point in RN × (0, +∞), and ϕ a strict subtangent to V at (x0, t0) such 
that (x0, t0) is the unique minimizer of V − ϕ in Kδ0 , for some δ0 > 0 (see (57) for the definition 
of Kδ). We assume by contradiction

ϕt (x0, t0) + H(x0,Dϕ(x0, t0)) < 0. (78)

Given ε > 0, we can find by Proposition 2.8 about coercivity of value functions, Rε > 1 satisfy-
ing

V ε(x, y, t) > sup
Kδ0

ϕ + 1 for (x, t) ∈ Kδ0 , y ∈ R
M \ B(0,Rε). (79)

We can also find, exploiting Proposition 3.7, a Lipschitz-continuous subsolution u to the cell 
problem

H(x0, y,Dϕ(x0, t0),Du) = H(x0,Dϕ(x0, t0)) in R
M (80)

with

u(y) < 0 for any y ∈R
M . (81)
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By using estimate (28) on H , Lipschitz continuity of u, continuity of H , Dϕ, ϕt and (78), (80)
we can determine 0 < δ < δ0 such that u + ϕ is subsolution to

wt + H(x,y,Dϕ(x, t),Dw) = 0 in Kδ ×R
M .

Owing to strict subtangency property of ϕ, there is 1 > ρ > 0 with

V − ϕ > 2ρ in ∂Kδ ,

and, taking into account that V is the lower semilimit of the V ε , we derive

V ε − ϕ > ρ in ∂Kδ × B(0,Rε)

for ε sufficiently small, which in turn implies by (81)

V ε − ϕ − u > ρ in ∂Kδ × B(0,Rε). (82)

Owing to (79), (81), we also have

V ε − ϕ − u > ρ in Kδ × ∂B(0,Rε). (83)

Since V ε , ϕ + ε u + ρ are supersolution and subsolution, respectively, to

wt + H

(
x, y,Dxw,

Dyw

ε

)
= 0

in Kδ × B(0, R0), the boundary conditions (82), (83) plus the comparison principle in Proposi-
tion 2.10 implies

V ε ≥ ϕ + ε u + ρ in Kδ × B(0,Rε), for ε small. (84)

On the other side, there is by Proposition 2.7 an infinitesimal sequence εj and a sequence 
(xj , yj , tj ) converging to (x0, 0, t0) with

lim
j

V εj (xj , yj , tj ) = V (x0, t0)

and consequently

lim
j

[
V εj (xj , yj , tj ) − ϕ(xj , tj ) − εj u(yj )

] = V (x0, t0) − ϕ(x0, t0) = 0.

Taking into account that Rε > 1 for any ε, and (xj , yj , tj ) are in Kδ × B(0, 1) for j large, the 
last limit relation contradicts (84).

We proceed proving (77). We consider (xn, tn) converging to (x0, 0) such that V (xn, tn) admits 
limit, with the aim of showing

limV (xn, tn) ≥ (u0)#(x0).

n
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Arguing as in the final part of Theorem 4.3, we find an infinitesimal sequence εn and (zn, yn, sn)
converging to (x0, ̃y, 0), for some ̃y ∈R

M , with

lim
n

V εn(zn, yn, sn) = lim
n

V (xn, tn).

We fix δ > 0. Arguing as in second half of Proposition 2.6, see estimate (18), we determine 
a constant P0 independent of n and trajectories (ξn, ηn) of the controlled dynamics starting at 
(zn, yn) with

V εn(zn, yn, sn) ≥ P0 sn + u0(ξn(sn/εn), ηn(sn/εn)) − δ ≥ P0 sn + u0(ξn(sn/εn)) − δ.

Since by the boundedness assumption on f

|ξn(sn/εn) − zn| ≤ Q0 sn,

we get at the limit

lim
n

V (xn, tn) = lim
n

V εn(zn, yn, sn) ≥ lim inf
n

u0(ξn(sn/εn)) − δ ≥ (u0)#(x0) − δ,

which gives the assertion since δ is arbitrary. �
If u0 is continuous then we deduce from (62), (77) that

lim sup
(x,t)→(x0,0)

t>0

V (x, t) ≤ lim inf
(x,t)→(x0,0)

t>0

V (x, t)

If, in addition, a comparison result holds for (HJ) we further obtain

V ≤ V in (0,+∞) ×R
N

and so equality between V and V , the converse inequality being obvious by the very definition 
of weak semilimits. In this case we thus have local uniform convergence of V ε to V = V in 
R

N ×R
M × (0, +∞).

Appendix A. Facts from weak KAM theory

In this section we provide a reference frame for the weak KAM results we have exploited in 
Section 3 for the analysis of the Hamiltonian H0. To comment on our approach, we recall that 
by freezing slow variables in H , we are able to define a new Hamiltonian H0 which fulfills the 
basic assumption of Weak KAM theory. We derive from this some relevant consequences and 
properties which do not depend any more on the specific form of H0, or its link with a control 
problem.

This is the reason why we transfer the above basic assumptions to an abstract Hamiltonian 
F(y, q), and present Weak KAM facts in a general way. Some other considerations about the 
relationship between PDE, metric and control theoretical viewpoint are contained in Remark A.4.

Starting from F , we consider defined in RM ×R
M and the family of equations
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F(y,Du) = b in R
M , for b ∈ R (85)

We assume F to satisfy

F is continuous in both variables;
F is convex in q;
lim|q|→+∞ miny∈K F(y, q) = +∞ for any compact subset K of RM .

We define the critical value of F as

c = inf{b | (85) has subsolutions in R
M }. (86)

Being the ambient space non-compact c can also be infinite. We assume in what follows

The critical value of F is finite.

We call supercritical a value b with b ≥ c. By stability properties of viscosity (sub)solutions, 
subsolutions for the critical equation do exist. We derive from coercivity of F :

Lemma A.1. Let b a supercritical value. The subsolutions to F = b are locally equiLipschitz-
continuous.

We adopt the so-called metric method which is based on the definition of an intrinsic distance 
starting from the sublevels of the Hamiltonian for any supercritical value, see [14,16,17,15]. 
More precisely, the distance is obtained via minimization of a certain length functional, and the 
distances from any given initial point make up a class of fundamental subsolutions to (85) which 
will play a crucial role.

For any b ≥ c we set

Zb(y) = {q | F(y, q) ≤ b} y ∈R
M .

Owing to continuity, convexity and coercivity of F , we have:

Lemma A.2. For any b ≥ c, the multifunction y 	→ Zb(y) takes convex compact values, it is in 
addition Hausdorff-continuous at any point y0 where intZb(y0) �= ∅ and upper semicontinuous 
elsewhere.

We further set

σb(y, v) = max{q · v | q ∈ Zb(y)} for any y, v in R
M,

namely the support function of Zb(y) at q , and define for any curve ξ defined in [0, 1] the 
associated intrinsic length via

1∫
σb(ξ, ξ̇ )ds.
0
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Notice that the above integral is invariant for orientation-preserving change of parameter, being 
the support function positively homogeneous and subadditive, as a length functional should be. 
Also notice that because of this invariance the choice of the interval [0, 1] is not restrictive. For 
any pair y1, y2 we define the intrinsic distance as

Sb(y1, y2) = inf

⎧⎨⎩
1∫

0

σb(ξ, ξ̇ )ds | ξ with ξ(0) = y1, ξ(1) = y2

⎫⎬⎭ . (87)

The intrinsic distance is finite for any supercritical value b.

Proposition A.3. Given b ≥ c, we have

(i) a function u is a subsolution to F = b if and only if

u(y2) − u(y1) ≤ Sb(y1, y2) for any y1, y2;

(ii) for any fixed y0, the function y 	→ Sb(y0, y) is subsolution to F = b in RM and solution in 
R

M \ {y0};
(iii) Let C, w be a closed set of RM and a function defined in C satisfying

w(y2) − w(y1) ≤ Sb(y1, y2) for any y1, y2 in C

then the function

y 	→ inf{w(z) + Sb(z, y) | z ∈ C}

is subsolution to F = b in RM , solution in RM \ C and equal to w in C.

Remark A.4. In the main body of the paper we have followed a dynamic programming approach 
to the control models in object. That is, we have associated to a family of minimization problems 
defined on the trajectories of a controlled dynamics the corresponding Hamilton–Jacobi–Bellman 
equation. The procedure outlined in the appendix is somehow the inverse. For a given abstract 
Hamiltonian F and a value b, some minimization problems, see (87), are introduced to represent 
(sub)solutions of the stationary Hamilton–Jacobi equation F = b.

It is natural to wonder on whether the circle can be closed. Namely, if we start from (87), is 
it possible to interpret F = b as the corresponding Hamilton–Jacobi–Bellman equations ? The 
answer is straightly positive for b > c; if b is instead equal to the critical value the picture is more 
involved since one should take into account the Aubry set.

Indeed, if b > c, then the equation H = b admits a strict subsolution, say ϕ, which can be 
made smooth via local mollification plus partition of unity, see [17]. Up to passing from F(x, p)

to F(x, p) − Dϕ(x), we can therefore assume, without loss of generality, that

F(x,0) < b for any x ∈ R
M .

This implies that
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σb(x,p) > 0 for any x, p �= 0

so that

Z∗
b(x) = {q | σb(x) ≤ 1}

is a convex compact valued continuous set valued function. In addition any p �= 0 belongs to 
Z∗

b(x), up to multiplication of a suitable positive constant. We introduce the differential inclusion

ξ̇ ∈ −Z∗
b(x) (88)

and deduce, using the positive homogeneity of the support function, that the definition of intrinsic 
distance can be rephrased as

Sb(y1, y2) = inf {T | ∃ ξ with ξ(T − ·) solution of (88) such that ξ(0) = y1, ξ(T ) = y2} .

We therefore see that the class of fundamental subsolutions (and solution in RM \ {y}) Sb(y, ·), 
for y ∈R

N , are the minimum time functions with dynamics (88) and target {y}. The correspond-
ing Bellman Hamiltonian is

F̃ (x,p) = max
q∈Z∗

b (x)
{p · q − 1}

It is a standard result of convex analysis that the 1-sublevels of F̃ and the b-sublevels of F
coincide. Therefore the two equations F̃ = 1, which is the Hamilton–Jacobi–Bellman equation 
of the above minimum time problem, and F = b are equivalent, in the sense that they have the 
same solutions and subsolutions.

In contrast to what happens when the ambient space is compact, namely F = b admits solu-
tions in the whole space if and only if b = c, in the noncompact case instead there are solutions 
for any supercritical equation. It is in fact enough that the intrinsic length is finite, as always is 
the case for supercritical values, to get a solution.

The construction of such a solution is in fact quite simple. One considers a sequence yn with 
|yn| diverging and the functions

un = Sb(yn, ·) − Sb(yn,0).

By Lemma A.1 and Proposition A.3 the un are solutions except at yn, are locally equiLipschitz-
continuous, and also equibounded, since they vanish at 0. They therefore converge, up to a 
subsequence, by Ascoli Theorem. Having swept away the bad (in the sense of Proposition A.3
(ii)) points yn to infinity, but kept the solution property by stability properties of viscosity solu-
tions under uniform convergence, we see that the limit function is indeed the sought solution of 
F = b.

We say that a function u is a strict subsolution to F = b in some open set B if

F(x,Du) ≤ b − δ for some δ > 0, in the viscosity sense in B.
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The points satisfying the equivalent properties stated in the following proposition, make up 
the so-called Aubry set, denoted by A, see [17].

Proposition A.5. Given y0 ∈R
M , the following three properties are equivalent:

(i) there exists a sequence of cycles ξn passing through y0 and defined in [0, 1] with

inf
n

1∫
0

σc(ξn, ξ̇n)ds = 0 and inf
n

1∫
0

|ξ̇n|ds > 0;

(ii) y 	→ Sc(y0, y) is solution to F = c in the whole of RM ;
(iii) if a function u is a strict critical subsolution in a neighborhood of y0, then u cannot be 

subsolution to F = c in RM .

Notice that, in contrast with the compact case, even if the critical value is finite, the Aubry 
set can be empty for Hamiltonian defined in RM × R

M . We derive from Proposition A.5 (iii)
adapting the same argument of Lemma 3.8:

Corollary A.6. Assume that the Aubry set is empty, then for any bounded open set B of RM , 
there is a critical subsolution which is strict in B .

We record for later use:

Proposition A.7. Let B , b be an open bounded set of RM , and a critical value, respectively. 
Assume that the equation F = b admits a strict subsolution in B , and denote by w a subsolution 
of F = b in RM . Then the Dirichlet problem{

F(y,Du) = b in B

u = w on ∂B

admits an unique solution u given by the formula

u(y) = inf{w(z) + Sb(z, y) | z ∈ ∂B}.

We now consider a supercritical value b and a function h :RM → R with

h ≥ 1 in R
M and h(y) > 1 ⇒ F(y,0) ≤ b . (89)

We define for any curve ξ in [0, 1] the length functional

1∫
0

h(ξ)σb(ξ, ξ̇ ) ds

and denote by Sh
b the corresponding distance obtained as the infimum of lengths of curves joining 

two given points of RM . We have
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Proposition A.8. Let b, h be a supercritical value for F and a function satisfying (89), respec-
tively, then Sh

b (z0, ·) is a locally Lipschitz-continuous supersolution to (85) in RM \ {z0}, for any 
z0 ∈R

M .

Proof. We fix z0. For any (y, v) ∈ R
M × R

M , h(y) σb(y, v) is the support function of the 
b-sublevel of the Hamiltonian

(y, q) 	→ F

(
y,

q

h(y)

)
(90)

and Sh
b is the corresponding intrinsic distance. According to Proposition A.3 (ii), w := Sh

b (z0, ·)
is subsolution to (85) in RM , and supersolution in RM \{z0}, with F replaced by the Hamiltonian 
in (90). Since the Hamiltonian in (90) keeps the coercivity property of F , this implies that w is 
locally Lipschitz-continuous in force of Lemma A.1.

Taking into account the supersolution information on w, we consider a subtangent ψ to w at 
a point y. If h(y) = 1 then

F(y,Dψ(y)) = F

(
y,

Dψ(y)

h(y)

)
≥ b. (91)

If instead h(y) > 1 then by (89) and convex character of F

F

(
y,

Dψ(y)

h(y)

)
= F

(
y,

(
1 − 1

h(y)

)
0 + Dψ(y)

h(y)

)
≤ 1

h(y)
F (y,Dψ(y)) +

(
1 − 1

h(y)

)
b

and consequently

1

h(y)
F (y,Dψ(y)) ≥ b −

(
1 − 1

h(y)

)
b = 1

h(y)
b. (92)

Formulas (91), (92) provide the assertion. �
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