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HIGHLIGHTS 

 

 WDR79/TCAB1 is required for locomotion in both D. melanogaster and C. 

elegans. 

 The Smn transcript and protein product are downregulated in WDR79 

mutant flies. 

 Smn overexpression rescues the WDR79 loss-of-function phenotype in 

flies. 

 WDR79 overexpression rescues the fly and worm phenotypes induced by 

Smn depletion. 

 

ABSTRACT 

 

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular 

atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive 

paralysis and death. Although SMN is required in every cell for proper RNA 

metabolism, the reason why its loss is especially critical in the motor system is still 

unclear. SMA genetic models have been employed to identify several modifiers that 

can ameliorate the deficits induced by SMN depletion. Here we focus on 

WDR79/TCAB1, a protein important for the biogenesis of several RNA species that 

has been shown to physically interact with SMN in human cells. We show that 

WDR79 depletion results in locomotion defects in both Drosophila and 

Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with 

this observation, we find that SMN overexpression rescues the WDR79 loss-of-

function phenotype in flies. Most importantly, we also found that WDR79 

overexpression ameliorates the locomotion defects induced by SMN depletion in both 

flies and worms. Our results collectively suggest that WDR79 and SMN play 

evolutionarily conserved cooperative functions in the nervous system and suggest 

that WDR79/TCAB1 may have the potential to modify SMA pathogenesis. 

. 
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INTRODUCTION 

 

Survival Motor Neuron protein (SMN), is an evolutionarily conserved protein 

required for proper locomotion behavior.  Reduced SMN dosage in humans 

causes Spinal Muscular Atrophy (SMA), a recessive neurodegenerative disorder 

characterized by motor neuron loss, muscle atrophy, progressive paralysis and 

death. The human genome harbors two SMN genes, SMN1 and SMN2. SMN2 

produces only a limited amount of full length SMN, which is not sufficient to 

compensate for homozygous SMN1 mutations found in SMA patients. The SMN 

dosage in patients accounts for the severity of the neuromuscular defects and the 

onset age of SMA (BUTCHBACH 2016). 

 

Although the exact mechanisms through which SMN deficiency disrupts motor 

function have not been fully elucidated, there is abundant evidence for a role of SMN 

in RNA metabolism (LI et al. 2014). SMN is the main component of the SMN 

complex, which is essential for the biogenesis of small nuclear ribonucleoproteins 

(snRNP), which are essential for mRNA splicing. Consistent with this notion, snRNP 

assembly is impaired in SMA patients, who exhibit particularly reduced snRNP levels 

in motor neurons (RUGGIU et al. 2012). In addition, SMN deficiency has been shown 

to induce defects in splicing in both tissue culture cells and animal models (ZHANG et 

al. 2008; LOTTI et al. 2012; GARCIA et al. 2016). However, it is currently unclear 

whether SMA is primarily due to splicing aberrations. It has been suggested that 

SMN could play splicing-independent neuronal functions (FALLINI et al. 2012; 

PRAVEEN et al. 2012; LI et al. 2014), such as axonal RNA transport (MCWHORTER et 

al. 2003), organization of the neuromuscular junction (KARIYA et al. 2014 ), and the 

control of proper muscle architecture (WALKER et al. 2008). SMN also prevents 

accumulation of RNA–DNA hybrids, which is thought to result in DNA damage and 

apoptosis (ANDERTON et al. 2013; ZHAO et al. 2016), and is required for maintenance 

of embryonic stem cells and neuronal differentiation (EBERT et al. 2009; CHANG et al. 

2015). However, direct evidence linking defects in these processes to SMA is 

currently lacking.   

 

Studies on SMA patients and vertebrate model systems have shown that 

overexpression of the actin-binding Plastin3 (PLS3) protein can suppress the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 
 

axon growth defects induced by SMN1 mutations and improve the symptoms of 

the disease (ACKERMANN et al. 2013). Another potential SMA modifier is Zinc 

Finger Protein 1 (ZPR1), which is required for snRNP targeting to the nucleus 

and for SMN localization to the Cajal bodies (AHMAD et al. 2012).  

 

Additional genetic modifiers of the SMN-dependent phenotypes have been 

identified using Drosophila models of SMA (CHANG et al. 2008; DIMITRIADI et al. 

2010; SEN et al. 2011; LOTTI et al. 2012). Loss-of-function mutations in the 

Drosophila Smn gene result in defects in the sensory-motor neuronal network, 

reduced muscle growth, defective locomotion and larval lethality (IMLACH et al. 

2012). Drosophila Smn mutants have reduced levels of snRNAs and defects in 

the splicing of a subset of U12 intron-containing RNAs, perturbing the expression 

of genes such as Stasimon, which is required for motor circuit function in both 

Drosophila and vertebrates (LOTTI et al. 2012). In addition, the combined use of 

Drosophila and C. elegans identified several genetic modifiers of the SMN-

dependent phenotype (DIMITRIADI et al. 2010). For example, Plastin3 was shown 

to act as an Smn loss-of-function modifier in both animal models (DIMITRIADI et al. 

2010; GALLOTTA et al. 2016).   

 

Both mammalian and Drosophila SMN proteins accumulate in the Cajal bodies 

(CBs), and cells from SMA patients are defective in CB structure and abundance 

(COOVERT et al. 1997; LEFEBVRE et al. 1997; LIU et al. 2009). In humans, SMN 

recruitment to the CB is dependent on its interaction with 

WRAP53/WDR79/TCAB1 (henceforth WDR79) (MAHMOUDI et al. 2010), an 

evolutionarily conserved protein that contains repeated WD motifs rich in 

Tryptophan and Aspartate residues. WDR79 binds to several classes of RNAs, 

including small Cajal body RNAs (scaRNAs), guiding the 2’-O-methylation and 

pseudouridylation of snRNAs within the CB (TYCOWSKI et al. 2009). Here we have 

investigated the neuronal functions of WDR79 in both Drosophila and C. elegans. 

We find that WDR79 is required for normal locomotion in both animals. 

Furthermore, we demonstrate that increased WDR79 expression ameliorates the 

Smn loss-of-function phenotype, suggesting a possible role of WDR79 as a SMA 

modifier.  
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MATERIALS AND METHODS  

 

Drosophila strains  

The WDR79MB19832 mutant allele (w1118; Mi{ET1}WDR79MB10832) and the SmnRNAi 

stock  [P{TRiP.HMC03832}attP40 (UAS-SmnRNAi)] were obtained from the 

Bloomington Stock Center; The WDR79 RNAi stock [P{KK108453}(UAS-

WDR79RNAi] was obtained from the Vienna Drosophila RNAi center.  The construct 

expressing an unrelated protein used as a control (UAS CTRL) is ppGW-GFP-Mst, 

(PALUMBO et al. 2015). Silencing was achieved by combining a single copy of UAS-

RNAi transgene with a single copy of the appropriate driver. A complete list of the 

genotypes of the strains used is reported in table S1. Either the Oregon-R or the ywf 

strain was used as a wild type control. All flies were reared according to standard 

procedures at 25°C. The genetic markers and special chromosomes are described in 

detail in FlyBase (http://www.flybase.org).  

 

Drosophila transgenic strains  

The inducible WDR79 strain (carrying a pUAST-ATTB-WDR79 element, here 

abbreviated as UAS-WDR79) was generated by cloning the full-length WDR79 gene 

(PCR-amplified from genomic DNA and flanked by XbaI sites) into the pUAST-ATTB 

vector (BISCHOF et al. 2007). The plasmid was injected into y1 M{vas-int.Dm}ZH-2A 

w*; M{3xP3-RFP.attP'}ZH-86Fb embryos (Bloomington #24789). To generate the 

plasmids for constitutive expression of WDR79-GFP or Smn-GFP, the EGFP CDS 

fused in-frame with the 3′ end of the WDR79 or the Smn CDS were cloned into the 

pJZ4 vector (a derivative of pCASPER4) under the control of a tubulin promoter, as 

described previously in (RAFFA et al. 2009). The RNAi resistant Smn gene carries 

synonymous substitutions in each residue of the region recognized by UAS-

SmnRNAi and was synthesized by Genewiz (SIGMA-ALDRICH).  The plasmid for 

constitutive expression of RNAi resistant Smn-FLAG (abbreviated with Smn-FLAG-

res) was generated by cloning the 3XFLAG epitope CDS fused in-frame with the 3′ 

end of the RNAi resistant Smn CDS, into the pJZ4 vector. The WDR79-GFP, Smn-

GFP or Smn-FLAG-res plasmids were injected in w1118 embryos; germline 

transformation was performed by Bestgene Inc (Chino Hills, California) using 

standard procedures. 
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Drosophila Locomotion Analyses and statistical analyses 

Larval locomotor activity was measured by counting the number of peristaltic 

contractions of third instar larvae performed within one minute on the surface of a 1% 

agarose gel in a Petri dish; measurements were repeated ten times. To obtain 

unbiased measurement of locomotion parameters, larvae were blind-tested by three 

experimenters (alternatively, two of them scoring phenotypes and the third collecting 

and analyzing the data). At least 15 third instar larvae (with retracted anterior 

spiracles) per genotype were assayed. The Shapiro-Wilk Test was used to assess 

the Normal distribution of every group of different genotype (P<0.001), and the KS 

test was used to assess whether the H0 hypothesis could be accepted. The 

significance of multiple comparisons was evaluated with One Way Analysis of 

Variance. The Tukey’s test was performed as Post-Hoc Test to determine the 

significance between every single group (P<0.01 was considered significant). 

 

RNA extraction, reverse transcription and qRT PCR 

Total RNA was extracted from Drosophila larvae, with the Qiagen RNeasy Plus Mini 

including an on column treatment with DNAse as recommended by manufacturer. 

The integrity of RNA samples was evaluated by gel electrophoresis. 1 µg of intact 

RNA (with a 28S:18S rRNA ratio = 2:1) was subjected to a second treatment with 

DNase (Invitrogen) as suggested by manufacturer, and reverse transcribed with the 

Invitrogen kit SuperScript III First-Strand Synthesis System for RT-PCR, following  

manufacturer’s instructions. Real-time PCR reactions were performed with the 

QuantiTect SYBR® Green PCR Kit, with 7300 Real Time PCR System (Applied 

Biosystems) under the following thermal cycling conditions: an initial step of 2 

minutes at 50°C, 10 min at 95°C, followed by 40 cycles of 15 s at 95°C, 1 min at 

60°C and a final dissociation step. The relative quantification in gene expression was 

determined using the 2- ΔΔCt method (LIVAK AND SCHMITTGEN 2001). The fold changes 

in gene expression were normalized to the RP49 gene (the amplification efficiencies 

were not significantly different for target and reference among all samples). A total of 

3 experiments were performed for three biological replicates and significance was 

assessed by unpaired 2-tailed Student’s t tests (P<0.05 was considered significant). 

Primer pairs used in qRTPCR analyses:  smnqF: CCAGTATCCTTCAAAGTAGGCG; 

smnqR: TTCTCATAGCCCAAATAGCGG; WDR79q1F: 
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ACGTTTTTGCGACGATTACC; WDR79q1R ACACCGCAAGTCAAAGTGC; 

rp49qF:CCGCTTCAAGGGACAGTATCT; rp49qR: ATCTCGCCGCAGTAAACGC 

 

Western Blotting 

Protein extracts were derived from 15 brains from third instar larvae, lysed in sample 

buffer, fractionated by SDS-PAGE and transferred to nitrocellulose membrane. 

Primary antibodies were:  anti-Smn mouse 1:2000 (Imlach et al., 2012); mouse anti-

tubulin (1:20000; Sigma-Aldrich). As secondary antibody we used HRP-conjugated 

anti-Mouse 1:5000 (GE Health Care). Detection was performed with the 

SuperSignal™ West Pico Chemiluminescent Substrate (Thermo); images were 

acquired with Chemidoc (Biorad) and quantified using the QuantityOne image 

analysis software (Biorad). 

 

C. elegans strains  

Nematodes were grown and handled following standard procedures, under 

uncrowded conditions, at 20°C, on NGM (Nematode Growth Medium) agar plates 

seeded with Escherichia coli strain OP50 (BRENNER 1974). Wild-type animals used in 

this work were C. elegans variety Bristol, strain N2; mutant alleles and transgenic 

strains used were: rrf-3(pk1426) II and vsIs48[punc-17::GFP] provided by the 

Caenorhabditis Genetics Center (CGC), funded by NIH Office of Research 

Infrastructure Programs (P40 OD010440); Is[punc-47::RFP] kindly provided by K. 

Shen (Stanford University, USA). A complete list of the genotypes of the strains used 

is reported in table S1. The transgenes generated for this work are: gbEx575 

[GBF328 pceWDR79::gfp] and gbEx587 [GBF336 punc-119::ceWDR79; pelt-2::rfp].  

 

The construct GBF328 [pceWDR79::gfp] for analyzing the expression of ceWDR79 

was created by PCR-fusion (HOBERT 2002) of two fragments: the promoter of 

ceWDR79 gene and the GFP sequence. The ceWDR79 putative regulatory region 

corresponding to a fragment of 400 bp was generated by PCR using as template wild 

type genomic DNA. The GFP, followed by the 3’UTR of the unc-54 gene to increase 

the stability of the construct, was amplified from plasmid pPD95.75, kindly provided 

by A. Fire (Stanford University, USA). The rescue construct GBF336 [punc-119:: 

ceWDR79] for pan-neuronal expression of ceWDR79 was created by PCR fusion of 

two fragments: the promoter of the unc-119 gene and the ceWDR79 gene.  The unc-
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119 promoter has been previously used for neuronal-directed rescue of smn-1 

(BRIESE et al. 2009) and is considered a strong transcriptional inducer (MADURO AND 

PILGRIM 1995).  The ceWDR79 gene was amplified from C. elegans genomic DNA. 

All primers sequences are available on request. Germ line transformation was 

accomplished as described (MELLO AND FIRE 1995) by injecting, into the gonad of 

adult animals a DNA mixture containing a transgenic construct, obtained by PCR 

fusion, together with a phenotypic marker for selection of transgenic progeny. The 

GBF328 construct was microinjected alone at the concentration of 50 ng/µL in 

vsIs48[punc-17::GFP] animals. The GBF336 construct was microinjected at the 

concentration of 20 ng/µL in wildtype animals with the co-injection marker pJM371 

[pelt-2::NLS::RFP] at 30 ng/µL, which drives RFP expression in the intestinal nuclei 

(kindly provided by J. McGhee, University of Calgary, Canada). At least three 

transgenic lines were examined in each experiment and the mean of the lines has 

been reported in the figures. 

C. elegans RNA-interference  

C. elegans animals were RNA-interfered by feeding (TIMMONS AND FIRE 1998) using 

HT115(DE3) bacterial strains harboring the ceSmn1 and ceWDR79 constructs from 

J. Ahringer Library (HGMP, Cambridge) (KAMATH et al. 2003). Larvae were deposited 

onto NGM plates containing 100 mg/ml ampicillin, 1 mM IPTG, and IPTG-induced 

bacteria and allowed to lay eggs. F1 individuals were assayed for phenotype. Control 

worms were grown on bacteria transformed with the plasmid pPD129.36(L4440) 

without insert. rrf-3(pk1426) mutants, which are more sensitive to neuronal RNAi, 

were used in some of the experiments to enhance the knock-down effects. 

 

C. elegans behavioral assays 

Well-fed, young adult animals were used for thrashing assay to blindly test motor 

neuron functionality.  For thrashing assays, animals were age-synchronized using 

sodium hypochlorite and when adult they were picked to individual wells containing 

100 µl M9 buffer and left for 10 min. Every other thrash was counted for 20 s and 

then multiplied by six to obtain an estimate of total thrashes per minute. A single 

thrash was defined as a complete change in the direction of the body down the 

midline. Animals that lingered on well side or were motionless for ≥10 s were 

discarded from the analysis. The Mann-Whitney-Wilcoxon test was used for 
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statistical analysis. 

 

C. elegans microscopy analysis and analysis of cholinergic motor neurons 

Animals were immobilized in 0.01% tetramisole hydrochloride (Sigma-Aldrich) on 4% 

agar pads and visualized using Zeiss Axioskop microscope and Leica TCS SP2 

AOBS laser scanning confocal microscope for colocalization experiments. All 

microscopes were equipped with epifluorescence and DIC Nomarski optics and 

images were collected with an Axiocam digital camera and with Leica digital cameras 

DFC 480 and 420 RGB.  To assess the number of visible motor neurons, a subset of 

Acetylcholine releasing neurons was scored in vsIs48 [punc-17::GFP] transgenic 

strain, treated and not treated with RNA-interference. In particular 41 ACh motor 

neurons in the ventral cord, which span from VA2 to AS11 (WHITE et al. 1986) were 

clearly distinguishable and easily recognizable in all conditions; neurons of the DB 

class were not scored. 

 

RESULTS  

WDR79 is required for proper locomotion behavior in both Drosophila and 

C. elegans.  

To explore the role of WDR79 in Drosophila, we exploited Mi{ET1}WDR79MB10832, 

a transposon insertion downstream of the WDR79 transcription start site 

(henceforth designated as WDR79MB). WDR79MB/WDR79MB homozygotes are 

viable and fertile (DERYUSHEVA AND GALL 2013). RT-PCR of RNA extracted from 

WDR79MB/WDR79MB larvae revealed that they produce an aberrant transcript in 

which the WDR79 coding region is fused with sequences of the Minos 

transposon (Figure S1); this transcript is predicted to produce a truncated version 

of WDR79.   

 

We first tested the locomotion ability of both WDR79 mutant larvae and adults. A 

measure of larval muscle wall peristalses revealed that homozygous 

(WDR79MB/WDR79MB) and hemizygous (WDR79MB/Df(2L)ED385; henceforth 

designated as WDR79MB/Df) larvae exhibit a 34% (P = 1E-09) and 36% (P = 7E-

11) reduction in peristalses compared to heterozygous controls, respectively 

(Figure 1A). Ubiquitous tubulin-GAL4- driven (abbreviated as Ub>WDR79) or 

nsyb-GAL4- driven pan-neuronal expression (abbreviated with neur>WDR79) of 
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a transgenic UAS-WDR79 construct fully rescued locomotion defects of WDR79 

mutants (Figure 1A), confirming that these defects are due to WDR79 depletion. 

We also examined adult homozygous WDR79MB mutants for climbing ability, 

which was reduced by 75% compared to heterozygous controls (Figure S2A). 

Finally, consistent with previous work (SINGER AND GALL 2011), we found that 

larval brain cells of WDR79 mutants are devoid of coilin-enriched Cajal bodies. 

This defect was also rescued by transgenic expression of WDR79-GFP (Figure 

S2B).  

 

To determine whether WDR79 plays an evolutionarily conserved role in 

locomotion in an additional model organism, we used RNA-interference to 

ubiquitously silence tcab-1(Y105E8A.8), the C. elegans WDR79 homologue 

(henceforth designed as ceWDR79). To assay C. elegans locomotion we scored 

the thrashing behavior, which measures the lateral swimming movements. 

ceWDR79(RNAi) animals showed 20% reduction (P = 7,5E-06) in locomotion 

compared to controls (Figure 1B). RNAi against the C. elegans homolog of SMN, 

smn-1 (henceforth designed as ceSmn1), also led to locomotion defects (Figure 

1B), as previously reported (BURT et al. 2006; GALLOTTA et al. 2016).  

 

Thrashing behavior is mainly controlled by cholinergic motor neurons (PIERCE-

SHIMOMURA et al. 2008). Using a genetic reporter approach, we found that 

ceWDR79 is expressed in both cholinergic and GABAergic motor neurons 

(Figure 2A), confirming previous genome-wide microarray results (FOX et al. 

2005). We therefore examined the morphology and viability of these neurons in 

ceWDR79 and ceSmn1 RNAi animals, using a transgenic strain that specifically 

expresses GFP in cholinergic motor neurons (CHASE et al. 2004) (Figure 2B). By 

counting the number of a subgroup of cholinergic motor neurons in the ventral 

cord, we identified on average 41 cholinergic neurons in control animals (see 

methods). In ceWDR79(RNAi) expressing animals there was a significant 

reduction of these neurons, which were on average 36 (P< 0.0001) (Figure 2B). 

Similarly, ceSmn1(RNAi) expressing animals also showed reduced numbers of 

cholinergic neurons that were on average 37 (P< 0.0001) (Figure 2B). These 

results reveal that in addition to the locomotion defects, ceWDR79(RNAi) and 
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ceSmn1(RNAi) animals, exhibit motor neuron loss. Thus, loss of WDR79 results 

in defective locomotion in both C. elegans and Drosophila.  

 

Smn overexpression rescues the WDR79 loss-of-function phenotype in 

flies.  

The finding that WDR79 and Smn mutants have similar locomotion defects in 

both worms and flies prompted us to investigate the levels of Smn in Drosophila 

WDR79 mutants. We found that both the Smn transcript and protein product are 

downregulated in WDR79 mutant flies (Figure 3A-B). In WDR79MB/Df larvae, the 

Smn transcript levels were reduced by 50% (P = 0.004) compared to 

heterozygous siblings (Figure 3A), and this reduction was fully rescued by a 

WDR79-GFP transgene (P = 0.003) (Figure 3A). Consistent with the reduction of 

the Smn transcript, the Smn protein was also reduced in WDR79MB/WDR79MB 

larval brains (Figure 3B lane 2). We also observed reduced Smn levels in flies 

expressing an inducible UAS-WDR79 RNAi construct (P{KK108453}VIE-260B 

under control of an ubiquitous actin-Gal4 driver (Figures 3B and S3A-C). 

However, larvae carrying two copies of the WRD79 gene and overexpressing 

WDR79 did not exhibit an increase of the Smn transcript or protein product 

(Figures S4A-B). 

 

Building on these results, we next asked if Smn overexpression could rescue the 

WDR79-dependent phenotype. We thus constructed flies carrying a Smn-GFP 

transgene under the control of the tubulin promoter (henceforth designated as 

Smn-GFP). This transgene was capable of rescuing Smn mutant phenotype 

(data not shown). We found that expression of Smn-GFP in WDR79MB/WDR79MB 

animals substantially improves locomotion behavior. WDR79MB/WDR79MB; Smn-

GFP/+ larvae showed 36% (P = 7,4E-06) more contractions per minute than 

WDR79MB/WDR79MB larvae (Figure 3C). Similarly in WDR79MB/WDR79MB adult 

flies the climbing rate was improved by 73% in the presence of Smn-GFP 

transgene (P = 0.034) (Figure S2A). Collectively these results suggest that the 

motility defects observed in WDR79-deficient flies are at least in part a 

consequence of Smn depletion.  

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

12 
 

WDR79 overexpression ameliorates the larval locomotion defects induced 

by Smn depletion  

Previous studies have shown that RNAi-mediated depletion of Smn in flies 

provides a convenient hypomorphic background for functional analyses, and 

allows development until late larval stages (CHANG et al. 2008; DIMITRIADI et al. 

2010; SEN et al. 2011). We thus decided to use an RNAi-based approach to 

investigate possible WDR79-Smn genetic interactions in fly locomotor behavior. 

To inhibit Smn we used an Sh RNAi strain from the TRiP collection (PERKINS et 

al. 2015), (p{TRiP.HMC03832}attp40; abbreviated with UAS-SmnRNAi). 

Ubiquitous expression of this UAS-SmnRNAi construct using an actin-GAL4 

transgene resulted in a 60% reduction (P < 0.001) of the Smn transcript in third 

instar larvae compared to controls (Figure 4A); RNAi larvae also showed a 

substantial reduction of the Smn protein in brains (Figure 4A). Ubiquitous actin-

GAL4-induced expression of the same UAS-SmnRNAi construct in flies 

heterozygous for the Smnx7 null allele resulted in severe locomotion defects; we 

observed 33% decrease (P=1,2 E-16) in the rate of peristalses in third instar 

larvae compared to controls (Figure 4B). We next examined the effects of 

WDR79 overexpression in Smn-depleted flies. We generated SmnX7 

heterozygous larvae carrying a constitutively expressed WRD79-GFP construct 

(under control of the tubulin promoter), the UAS-SmnRNAi construct, and the 

ubiquitous actin-GAL4 driver. These larvae showed 12% increase (P=0.002) in 

locomotion activity compared to UAS-SmnRNAi/actin-GAL4 larvae devoid of the 

WDR79-GFP transgene (Figure 4B, box 4).  

 

WDR79 overexpression ameliorates the post-eclosion defects induced by 

Smn depletion  

To analyze the interaction between WDR79 and Smn in adult flies we expressed the 

UAS-SmnRNAi construct only in neurons using the pan-neuronal nsyb-GAL4 driver. 

Consistent with previous work, flies with a pan neuronal downregulation of Smn were 

viable (CHANG et al. 2008). However, 15% of these flies (n = 5540) displayed a 

phenotype that was not described in previous studies; they showed unexpanded 

wings and unretracted ptilinum, a sac-like structure in the fly head associated with 

temporary muscles (Figures 5A and 5B). The ptilinum extrudes from the fly head to 

break the anterior end of the puparium during eclosion. In wild type flies, after 
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eclosion is complete, the ptilinum is permanently retracted. The unretracted ptilinum 

phenotype was observed in nearly all Smn RNAi flies with unexpanded wings and 

was absent in their sibs with normal wings. The unexpanded wing/unretracted 

ptilinum phenotypes were never observed in controls bearing either the nsyb-GAL4 

driver (n = 5000) or the UAS-SmnRNAi construct (n = 5000). The penetrance of the 

wing expansion/ptilinum phenotype correlates to the Smn dosage, as the percentage 

of flies with unexpanded wings increased to 52% (P = 4.9 E-09 ) when the SmnRNAi 

transgene was expressed in neurons of SmnX7/+ flies (Figure 5B). The coordination 

of the post-eclosion events is finely tuned by secretion of the bursicon neuropeptide 

in a well-defined set of neurons (LUAN et al. 2006a; LOVEALL AND DEITCHER 2010), 

suggesting that success in post-eclosion performance could be the readout for 

proper functioning of the underlying neural circuit.  

 

To confirm that the wing expansion/ptilinum defects are a specific consequence of 

Smn depletion, we generated flies bearing an Smn FLAG-res transgene resistant to 

the SmnRNAi construct (expressed under control of a tubulin promoter). This 

transgene contains appropriate synonymous substitutions in the Smn coding 

sequence that render it resistant to the dsRNA generated by the SmnRNAi construct 

(see Materials and Methods for details). Similar to the Smn-GFP transgene described 

above, the Smn FLAG-res rescues the lethality of SmnX7 homozygous flies; SmnX7 

homozygotes without the rescue construct die at the larval stage. We then 

constructed flies bearing two normal copies of the Smn gene, the Smn FLAG-res 

gene, the nsyb-GAL4 driver and the SmnRNAi construct, as well as flies carrying the 

same transgenes but heterozygous for the SmnX7 mutant allele. Flies of both 

genotypes (more than 1,000 flies counted per each genotype) showed less than 1% 

individuals with unexpanded wings and unretracted ptilinum (Figure 5B), indicating 

that this phenotype is indeed due to Smn depletion. 

 

We next asked whether the pan-neuronal expression of a UAS-WDR79 

transgene rescues the wing/ptilinum phenotype of flies with reduced Smn 

expression in neuronal cells. We thus examined Smn+/Smn+ and SmnX7/Smn+ 

flies carrying the nsyb-GAL4 driver and the SmnRNAi construct and either a UAS-

WDR79 or a UAS-control transgene (UAS-CTRL, expressing the unrelated Mst 

protein). In Smn+/Smn+ and SmnX7/Smn+ flies, the presence of the UAS-WDR79 
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transgene reduced by 52% (P = 0,0006) and 32% (P = 0,0001) the frequency of 

individuals with the wing/ptilinum phenotype compared to controls, respectively 

(Figure 5B). Thus, our analyses of both Drosophila larvae and adults indicate that 

WDR79 overexpression ameliorates the neurological phenotypes generated by 

pan-neuronal Smn silencing.  

The genetic interaction between Smn and WDR79 genes prompted us to ask 

whether their protein products physically interact as occurs for their human 

homologues (MAHMOUDI et al. 2010). We therefore generated larvae expressing 

WDR79-GFP and Smn-FLAG and used an anti GFP antibody for co-

immunoprecipitation. We performed three independent experiments and in none 

of them an anti FLAG antibody revealed a detectable band in precipitates (data 

not shown). Thus, at least under the experimental conditions used here, the 

Drosophila Smn and WDR79 proteins do not appear to interact. 

 

ceWDR79 overexpression restores the locomotor defects induced by 

ceSmn1 depletion  

To test whether ceWDR79 genetically interacts with ceSmn1 in C. elegans, we 

ubiquitously silenced ceSmn1 in animals overexpressing ceWDR79 in all 

neurons. Compared to ceSmn1(RNAi) alone, locomotor thrashing was 

completely restored to control levels when ceWDR79 was overexpressed (Figure 

6). In addition, ceWDR79 overexpression increased larval survival of 

ceSmn1(RNAi) animals from 84% to 100% (data not shown). These results 

collectively suggest that WDR79 plays a conserved role in the SMN pathway, 

and that WDR79 can modify the Smn loss-of-function phenotypes in two 

invertebrate models for SMA.   

 

Discussion  

 

Previous work has shown that Drosophila WDR79 localizes to the Cajal body (CB) 

and associates with several small CB-specific (sca) RNAs, which are known to 

modify snRNAs (Deryusheva and Gall, 2013). Work in human cells has shown the 

human WDR79 physically interacts with SMN and favors its localization in the CB 

(MAHMOUDI et al. 2010). In addition, it has been shown that human WDR79/TCAB1 

has a RNA-binding activity (TYCOWSKI et al. 2009) (VENTEICHER AND ARTANDI 2009) 
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(JADY et al. 2012) and controls biogenesis of the telomerase RNA component 

(TERC) within the CB (VENTEICHER et al. 2009; STERN et al. 2012). Human SMN co-

precipitates with telomerase but it is currently unknown whether SMN is required for 

telomerase assembly in the CB (BACHAND et al. 2002) and whether telomerase 

activity is relevant for SMA pathogenesis. Finally, several studies implicated both 

SMN and WDR79/TCAB1 in the maintenance of genome stability. It has been 

suggested that SMN prevents accumulation of DNA/RNA hybrids (Zhao et al, 2016), 

which have been shown to be important intermediates in DNA repair (OHLE et al. 

2016); WDR79/TCAB1 was shown to be involved in repair of DNA double strand 

breaks (COUCORAVAS et al. 2016) (HENRIKSSON et al. 2014). Thus, many data suggest 

a strong functional link between SMN and WDR79/TCAB1 (see (HENRIKSSON et al. 

2014) for review.  

 

In this study, we have provided additional support to the functional connection 

between WDR79 and SMN. Although we were not able to show that the two proteins 

physically interact in Drosophila, we found that WDR79 deficiency lowers the SMN 

expression at both the RNA and protein level. We also showed that loss of WDR79 in 

flies results in severe locomotion defects comparable to those caused by SMN 

depletion, and that these defects are rescued by Smn overexpression. Importantly, 

this effect was reciprocal as WDR79 overexpression rescued the phenotypic defects 

caused by Smn depletion.  We also showed WDR79 depletion in worms causes 

locomotion defects and loss of motor neurons similar to those elicited by Smn 

knockdown, and that these defects are rescued by WDR79 overexpression. Thus, 

our results suggest that WDR79 and Smn cooperate in subsets of neuron types to 

ensure correct locomotion behavior in both flies and worms, and that WDR79 plays a 

conserved function within the neuronal SMN pathway. Furthermore, since WDR79 

binds scaRNAs within the CB, our data additionally suggest that WDR79/TCAB1 and 

Smn might share common RNA targets within the CB.  

 

These results raise the question of the molecular basis of the genetic interaction 

between WDR79 and Smn.  

The motility defects observed in WDR79-depleted flies are likely to be the 

consequence of an Smn deficiency, as these flies exhibit a reduction in the Smn 

transcript/protein and their defects are corrected by Smn overexpression. 
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Hypothesizing how WDR79 overexpression ameliorates the Smn loss-of-function 

phenotype is more difficult. Because WDR79 is an RNA-binding protein, our current 

results can only suggest that it might affect the stability, the translation, or the 

transport/compartmentalization of the Smn transcript.   

 

However, the precise functional relationships between WDR79 and Smn are 

currently unclear. Specifically, we have only a few data on the effects of 

simultaneous impairment of WDR79 and Smn functions. We found that the WDR79 

loss of function phenotype is not exacerbated by the absence of a copy of the Smn 

gene (our unpublished results). In addition, WDR79 deficiency failed to enhance the 

wing expansion defects in flies with reduced neuronal expression of Smn (our 

unpublished results). Thus, it would appear that the simultaneous reduction of both 

WDR79 and Smn does not result in additive or synergistic phenotypic effects. 

However, this conclusion has a very little experimental support and should be 

substantiated by extensive additional work. 

We have shown that RNAi-mediated ubiquitous or pan-neuronal depletion of Smn 

provides a hypomorph Smn mutant background, which allows locomotion analyses to 

be easily performed in Drosophila third instar larvae. Since Smn RNAi larvae are 

viable and die only after pupariation, phenotypic analyses performed in these larvae 

are not complicated by pleiotropic effects due to developmental arrest caused by null 

Smn mutations (GARCIA et al. 2013). We have shown that in a wild type background 

neuron-targeted RNAi against Smn results in 15% flies with unexpanded wings and 

unretracted ptilinum, and that frequency of flies with these phenotypic traits was 23% 

when RNAi was performed in SmnX7/+ background. This wing/ptilinum phenotype 

was suppressed by the expression of an RNAi-resistant transgene, confirming that 

Smn has an important role in the control of the post-eclosion program. Post-eclosion 

events are regulated by a well-defined set of neurons secreting the neuropeptide 

bursicon (LUAN et al. 2006a). Interestingly, the survival of these neurons requires the 

wild-type function of TDP-43, one of the factors responsible for Amyotrophic Lateral 

Sclerosis ALS (VANDEN BROECK et al. 2013), another neurodegenerative disease with 

correspondences to SMA (YAMAZAKI et al. 2012). Moreover, a subset of bursicon-

secreting neurons lies within the expression domain of the Cha-GAL4 driver, specific 

for cholinergic neurons (LUAN et al. 2006b), in which  Smn expression is necessary 

for the control of the sensory-motor circuit (IMLACH et al. 2012).   
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The finding that Smn depletion in neurons causes an unexpanded wing phenotype 

raises the possibility of exploiting this easily scorable defect in screens for chemical 

and genetic modifiers of this Smn-dependent phenotype. Here we have shown that 

WDR79 overexpression ameliorates the post-eclosion developmental defects caused 

by Smn deficiency in neurons. It will be of interest to test whether known modifiers of 

other SMN-related phenotypes will also affect the unexpanded wing/unretracted 

ptilinum phenotype.  

 

In conclusion, we have clearly shown that WDR79 plays a conserved role in neurons 

that control locomotion in flies and worms. We have also demonstrated that WDR79 

interacts genetically with Smn in both systems. Thus, given that WDR79/TCAB1 

interacts with SMN in humans, our data support the hypothesis of possible 

involvement of WDR79/TCAB1 in SMA pathogenesis.  
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FIGURE LEGENDS 

 

Figure 1. WDR79 deficiency results in locomotion defects in both 

Drosophila and C. elegans 

 

(A) WDR79 mutant flies exhibit locomotion defects, which are ameliorated by 

ubiquitous or pan-neuronal WDR79 overexpression. Box plot representation of 

the distribution of peristaltic contraction rates in Drosophila larvae of the indicated 

genotypes; from left to right, 16, 26, 18, 15 and 15 larvae were analyzed. The line 

inside the box indicates the median for each genotype and box boundaries 

represent the first and third quartiles; whiskers are 1.5 interquartile range (***, 

P<0.001, 1-way ANOVA with post-hoc Tukey test). Df, is a deficiency that 

uncovers WDR79; WDR79MB denotes WDR79MB homozygotes; Ub>WDR79, 

ubiquitous UAS-WDR79 expression under control of a tubulin-GAL4 driver; 

neur>WDR79, neuronal-specific expression of UAS-WDR79 under control of the 

nsyb-GAL4 driver. 

 

(B) RNAi mediated depletion of ceSmn1 and ceWDR79 causes locomotion 

defects in C. elegans. ceWDR79(RNAi)  and ceSmn1(RNAi) worms exhibit 

alterations in thrashing behavior; from left to right, 60, 60 and 13 worms were 

analyzed. ***, P<0.001, Mann-Whitney-Wilcoxon test. 

 

 

Figure 2. ceWDR79 is expressed in both GABAergic an cholinergic motor 

neurons and prevents neuron loss.  

(A) ceWDR79 is expressed in ventral cord motor neurons. Analysis of the expression 

pattern of ceWDR79 using a GFP-reporter approach, shows colocalization of the 

GFP expressed under control of the ceWDR79 promoter (pceWDR79::GFP) with 

RFP-labeled GABA motor neurons (pGABA::RFP) (white asterisks). The GFP signals 

not coincident with RFP signals are likely to label cholinergic neurons, as they are the 

only other motor neuron population present in the ventral cord (WHITE et al. 1986). 

(B) ceWDR79 RNAi  and ceSmn1 RNAi  worms exhibit significant reductions in the 

number of cholinergic motor neurons (Ach-Mns) expressing GFP (arrows indicate 
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missing neurons; see methods); 40 individuals were analyzed per genotype. ***, 

P<0.001, Welch's t-test. 

 

 

Figure 3. The locomotion defects of WDR79 mutants are ameliorated by 

Smn overexpression.  

(A) Relative levels of the Smn transcript in WDR79 depleted larvae of the 

indicated genotype. The Smn transcript levels have been determined by 

qRTPCR in 3 independent experiments, and are relative to the Rp49 transcript 

(**, P<0.01, Student’s t-test).  

(B) Top panel: Representative Western blots showing the Smn protein 

abundance in larval brains of the indicated genotype (LC: loading control). 

Bottom panel: quantification of the Smn protein level relative to the loading 

control. Data are representative of 3 independent experiments, 15 brains per 

sample (*, P <0.05,  **, P <0.01, Student’s t-test).  

(C) Distribution of peristaltic contraction rates in larvae of the indicated 

genotypes. From left to right, 16, 26 and 21 flies were analyzed. The lines inside 

the boxes indicate the median and box boundaries represent the first and third 

quartiles; whiskers are 1.5 interquartile range. No significant difference was 

observed between WDR79MB/+ and WDR79/Df flies (P = 0.3). ***, P<0.001 (1-

way ANOVA with post-hoc Tukey test). WDR79MB,denotes WDR79MB 

homozygotes; WDR79-GFP ubiquitously expresses the fusion protein under the 

control of a tubulin-GAL4 driver; CTRL Ub-GAL4, is a strain bearing only the 

actin-GAL4 driver; Ub>WDR79 RNAi, expresses the WDR79RNAi construct under 

the control of an actin-GAL4 driver; Smn-GFP, expresses the fusion protein 

under the control of a tubulin promoter.  

 

 

Figure 4. WDR79 overexpression ameliorates the larval locomotion defects 

induced by Smn depletion in Drosophila.  

(A) Relative levels of the Smn transcript in larvae of the indicated genotype. The Smn 

transcript levels have been determined by qRTPCR in 3 independent experiments, 

and are relative to the Rp49 transcript (***, P<0.001, Student’s t-test). Bottom panel: 
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Western blotting showing the Smn abundance in larval brains of the indicated 

genotype (tubulin was used as loading control). 

 

(B) Distribution of peristaltic contraction rates in larvae of the indicated genotypes. 

From left to right, 12, 19, 46, 25 larvae were analyzed (**, P<0.01;  ***, P<0.001, 1-

way ANOVA with post-hoc Tukey test).  The lines inside the boxes indicate the 

median. CTRL SmnRNAi, a UAS-SmnRNAi bearing strain with no driver; CTRL Ub-

GAL4, a strain bearing only the actin-GAL4 driver; Ub>SmnRNAi, carries both the 

actin-GAL4 driver and the SmnRNAi construct; WDR79-GFP, expresses WDR79-GFP 

under the control of a tubulin promoter. All strains are heterozygous for the SmnX7 

mutant allele, which lacks most of the Smn coding sequence. 

 

 

Figure 5. WDR79 overexpression ameliorates the post-eclosion defects 

induced by neuronal Smn depletion in Drosophila.  

(A) Pan-neuronal expression of UAS-SmnRNAi using the nsyb-GAL4 driver 

(neur>SmnRNAi) induces defects in wing-expansion (black arrow) and abdominal 

clefts (white arrows), causes failures in ptilinum retraction (black arrow, right panel).  

(B) Quantification of the wing expansion defects in flies expressing the UAS-SmnRNAi 

(SmnRNAi) and other indicated constructs under the control of the pan-neuronal nsyb-

GAL4 driver (neur>). UAS WDR79 that expresses an untagged WDR79 gene;  UAS 

CTRL is a control construct expressing the Mst protein (see text); Smn FLAG-res is 

an Smn-FLAG transgene resistant to UAS-Smn-induced RNAi and expressed under 

control of the ubiquitous tubulin promoter; Smn is an SmnX7 mutant allele lacking 

most of the Smn coding sequence (***, P<0.001,  1-way ANOVA with post-hoc Tukey 

test; n.s., non significant, P>0.05) 

 

 

Figure 6. Pan-neuronal overexpression of ceWDR79 rescues the 

phenotypes induced by ceSmn1 depletion in C. elegans. ceWDR79 

overexpression in neurons under control of the unc-119 promoter (abbreviated 

with neur, grey bars) rescues the thrashing locomotion defects of ceSmn1(RNAi) 
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animals; 60 worms per genotype were analyzed (***, P<0.001, Mann-Whitney-

Wilcoxon test). 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

25 
 

 

 

 

 

 

Fig. 1 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

26 
 

 

 

 

Fig. 2 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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