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Visual Abstract

Significance Statement

The statistics of corticocortical connectivity between the parietal and frontal lobes, as well as that of intrinsic parietal
connectivity of macaque monkeys, have been studied through a hierarchical cluster analysis. In both parietal and
frontal cortex, we identified different clusters of interconnected areas. The analysis of their functional properties led to
identification of five functional domains spanning posterior parietal, anterior parietal, cingulate, frontal, and prefrontal
cortex. The scrutiny of interdomain connectivity revealed the existence of different information processing streams,
related to the representation of action space, reaching, grasping, oculomotor intention and visual attention, action
recognition, and selection of behavioral goals and strategies. They were all embedded within a distributed eye–hand
matrix from which they can be selected by task demands.
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The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through
hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters,
including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity
tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were
targeted through connections that in most instances were reciprocal and often of different strength. These
connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to
five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the
posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing
streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and
its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention
and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these
streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger
eye–hand coordination network, from which they can be selectively set in motion by task demands.

Key words: cluster analysis; cognitive-motor behavior; cortico-cortical connectivity; frontal lobe; macaque
monkey; parietal lobe

Introduction
Elucidating the logic of cortical connectivity is relevant

for understanding brain function and disease. This task
has been boosted by the wealth of anatomic studies
generated by the introduction of the axoplasmic transport
of tracers (Kristensson and Olsson, 1971) that in monkeys
have provided a description of brain connectivity at a
meso- and micro-scale level. At macro-scale resolution,
functional connectivity (Friston, 2011) and diffusion trac-
tography have extended this study to humans, creating a
large database that forms the core of the connectome
project (Sporns et al., 2005; Van Essen 2013; Sporns,
2013).

From a theoretical perspective, cortical networks have
been modeled through graph analysis (Bullmore and
Sporns, 2009), which defines cortical areas as nodes and
their interconnections as edges. Essential features of
brain topology include highly clustered areas that are
linked by dense local connections, as in small-world net-
works (Watts and Strogatz, 1998), long oligosynaptic
pathways between distant areas, and central hubs linking
local modules. This architecture would minimize commu-
nication distances, delays and costs. Novel studies have
reconsidered this organization (Markov et al., 2011, 2014)
by questioning the existence of small-world connectivity
and modeling cortical architecture in terms of bow-tie
representations (Markov et al., 2013).

In recent years, the structural organization of the pre-
frontal (Averbeck and Seo, 2008) and parieto-frontal net-
works (Averbeck et al., 2009) have been analyzed in
macaque monkeys. In both studies, the combined evalu-
ation of structure and function has revealed the existence
of different information processing streams that have
been helpful in characterizing intrinsic frontal and distrib-
uted parieto-frontal functions beyond those commonly
assumed. Since then, a significant number of new ana-
tomic studies have extended the analysis of parietal con-
nectivity, such that the data now includes additional
prefrontal areas. Therefore, updating available knowledge
on the statistical structure of parieto-frontal connectivity is
essential and timely.

The outflow of intraparietal operations is conveyed to
frontal cortex through parieto-frontal connections. Pari-
etal mechanisms are influenced by the intrinsic connec-
tivity between the areas of the superior (SPL; Brodmann
area 5) and inferior (IPL; Brodmann area 7) parietal lob-
ules. This connectivity has never been reported in detail.
The original Brodmann parcellation of parietal cortex in
macaque (1909) has been long abandoned in favor of
more refined subdivisions combining cortical connectivity
and functional properties of neurons. Therefore, the con-
nectivity between SPL and IPL requires a full redefinition
in terms of constituent areas, a theoretical reassess-
ment, and a discussion in terms of functional relevance,
also taking into consideration that this part of the ce-
rebral cortex has expanded significantly during evolu-
tion (Caminiti et al., 2015).

To address these issues, we undertook a quantitative
study of both long-range parieto-frontal and local intra-
parietal connections between SPL and IPL in macaque
monkeys. For this, a hierarchical cluster analysis was
used. The database consisted of virtually all published
studies available from retrograde axoplasmic transport of
tracers. Furthermore, the results have been evaluated in
light of current knowledge on the functional organization
of these areas, so as to provide a comprehensive picture
of these networks at a mesoscale resolution. The under-
lying assumption is that there is a correspondence be-
tween structural and functional organization and that this
and similar analyses can offer new tools for the study of
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brain disorders, most of which have been considered
disconnection syndromes (Geschwind, 1965; Catani and
Fftiche, 2005; Catani and Mesulam, 2008; Silasi and Mur-
phy, 2014) and could potentially be reinterpreted from the
perspective offered by brain network analysis (Carrera
and Tononi, 2014).

Methods
Classification of cortical areas

The cluster analysis of parieto-frontal connectivity is
based on a matrix of the cortical connectivity of all parietal
and frontal areas so far characterized using architectonic
or connectional and functional data. For the analysis of
the intrinsic connectivity between the SPL and IPL, a
subset of the larger matrix was used that contained only
connections between the SPL and IPL. Connectional
studies based on injections of retrograde neural tracers in
parietal, frontal, or cingulate areas (listed in Table 1) have
been examined throughout. Data from tracer injections
that could be attributed unequivocally to any parietal,
frontal, or cingulate area of the subdivision adopted in the
present study were then considered for the generation of
the matrix. Based on this analysis, inputs to each area
from any other cortical area were indicated as strong
(100), medium (67), moderate (33), weak (16), or absent. In
most cases, this assessment has been based on quanti-
tative data reported in the considered studies and, in a
few cases, on evaluation of the description of the data. It
must be stressed, however, that rigorous quantification of
anatomic data remains problematic, because of method-
ological considerations concerning across-study differ-
ences in the type and amount of tracer used, its spread at
the injection site, the status of the brain during survival

Table 1. Connectional studies used for the generation of the
connectivity matrix and areal attribution of the selected ret-
rograde tracer injections

Study Area
Frontal areas

Barbas, 1988 11l, 32
Barbas, 1993 13l/13m
Barbas and Mesulam, 1985 46vc, 46vr
Barbas and Pandya, 1987 F2cd
Barbas and Pandya, 1989 10
Barbas et al., 1999 9m, 9l
Borra et al., 2011 12r
Caminiti et al., 1999 F2cd, F2vr, F7
Carmichael and Price, 1995a 11l,12o/12m, 13l/13m, 14
Carmichael and Price, 1995b 11l,12o/12m, 13l/13m, 14
Carmichael and Price, 1996 11l,12o/12m, 13l/13m, 14
Eradath et al., 2015 8B, 9m
Gerbella et al., 2010 8Ad, 8Av, 12r, 45A, 45B
Gerbella et al., 2011 F5a, F5c, F5p
Gerbella et al., 2013 46vc, 46vr
Gerbella et al., 2016 GrFO
Gharbawie et al., 2011 MI (F1)
Ghosh and Gattera, 1995 F2cd, F5p
Gregoriou et al., 2006 F2vr, F5p, F7
Hatanaka et al., 2001 F1
Huerta and Kaas, 1990 SEF
Huerta et al., 1987 8Ad, 8Av
Johnson et al., 1996 F2cd, F2vr, F7
Kurata, 1991 F2cd, F5p
Luppino et al.,

1993
F3, F6

Luppino et al., 1999 F4, F5p
Luppino et al., 2001 F2vr, F6, SEF
Luppino et al., 2003 F2cd, F2vr, F7, SEF
Marconi et al., 2001 F2cd, F2vr, F7
Matelli et al., 1986 F1, F5p
Matelli et al., 1998 F2cd, F2vr, F7, SEF
Morecraft and Van Hoesen, 1993 F3, F6
Morecraft et al., 2012 F2cd, F3, F6, F7
Petrides and Pandya, 1999 46dc, 8B, 9l
Petrides and Pandya, 2002 45A,46vc, 46vr
Petrides and Pandya, 2007 10, 32
Saleem et al., 2008 12o/12m, 13l/13m, 11l
Saleem et al., 2014 8B, 9m, 9l, 10,45A, 46dc,

46dr
Schall et al., 1993 SEF
Schall et al., 1995 8Ad, 8Av
Stanton et al., 1993 8Ad, 8Av
Stanton et al., 1995 8Ad, 8Av
Takada et al., 2004 F6
Tanne-Gariépy et al., 2002 F2cd, F2vr
Vogt and Pandya, 1987 32
Wang et al., 2005 F6, SEF

Parietal areas
Bakola et al., 2010 PEc
Bakola et al., 2013 PE
Blatt et al., 1990 LIP,MIP
Borra et al., 2008 AIP
Boussaoud et al., 1990 MST
Caminiti et al., 1985 PEc
Caminiti et al., 1999 PEc,V6A
Cavada and Goldman-Rakic,

1989a
LIP, Opt,PGm

(Continued)

Table 1. Connectional studies used for the generation of the
connectivity matrix and areal attribution of the selected ret-
rograde tracer injections

Study Area
Cavada and Goldman-Rakic,

1989b
LIP, Opt,PGm

Cerkevich et al., 2014 SI
Cipolloni and Pandya, 1999 SI, SII
Gamberini et al., 2009 V6A
Gharbawie et al., 2011 SI
Hihara et al., 2006 PEa
Leichnetz, 2001 PGm
Lewis and Van Essen, 2000 VIP
Maioli et al., 1998; MST
Marconi et al., 2001 F2cd, F2vr, F7
Morecraft et al., 2004 PEci, SI, 31
Passarelli et al., 2011 V6A
Pons and Kaas, 1986 SI, PEa
Rozzi et al., 2006 PF, PFG, PG, Opt
Shipp et al., 1998 V6A

Cingulate areas
Arikuni et al., 1994 24a, 24b
Hatanaka et al., 2003 24c
Morecraft and Van Hoesen, 1993 23c, 24c
Morecraft and Van Hoesen, 1998 24c, 23c
Morecraft et al., 2004 23c
Morecraft et al., 2012 24a, 24b, 24c
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periods (hence the efficacy of axonal transport), quality of
tissue perfusion and histologic processing, etc. Despite
this, we believe that a semiquantitative analysis of data
using a gradation of strength values, such as those ad-
opted in this study, is more informative that an all-or-none
approach based on presence or absence of connections.

The subdivision of the parietal and frontal cortex ad-
opted for the connectivity matrix is shown in Fig. 1. Spe-
cifically, for the parietal cortex, the subdivision and
nomenclature proposed by Pandya and Seltzer (1982) has
been primarily used. However, we also took into account
data from later studies providing evidence for visual area
6 in the anterior bank of the parieto-occipital sulcus (V6A)
medial intraparietal area (MIP; Colby and Duhamel, 1991;
Galletti et al., 1996; Johnson et al., 1996; Luppino et al.,
2005) in the caudal part of the SPL, ventral intraparietal
area (VIP) along the fundus of the intraparietal sulcus (IPS;
Colby and Duhamel, 1991; Lewis and Van Essen, 2000),
lateral intraparietal (LIP) and anterior intraparietal (AIP;
Blatt et al., 1990; Taira et al., 1990; Borra et al., 2008)

areas in the lateral bank of the IPS. The connections of the
various architectonic subdivisions (3a, 3b, 1, 2) of the
anterior parietal cortex of the macaque are similar, al-
though a detailed analysis of them will require further work
(Darian-Smith et al. 1993; Burton and Fabri 1995; Huerta
and Pons, 1990). Therefore, for the purposes of the pres-
ent study, these cortical subdivisions have been consid-
ered as forming a single area, classically referred to as the
primary somatosensory cortex (SI), although there is a
general consensus that only area 3b is homologous to SI
of other mammals.

The second somatosensory area (SII), in the parietal
operculum, has been considered as a single entity. Be-
cause of the difficulties in finding connectional data spe-
cific to one or several of its possible subdivisions, it has
been mostly considered as a whole.

As for the caudal part of the frontal lobe, corresponding
to the agranular frontal cortex, the subdivision and no-
menclature proposed by Matelli et al. (1985, 1991) has
been adopted. This subdivision has been modified as to

Fig. 1. Brain figurine showing the location of the cortical areas on the mesial, lateral, and orbitofrontal aspects of the macaque cerebral
cortex. The cingulate (Cg), superior arcuate (SA), inferior arcuate (IA), intra-parietal and lateral (L) sulci are opened to better display
the location of cortical areas buried in their banks. PO and Ca on the mesial aspect of the hemisphere indicate parieto-occipital sulcus
and calcarine fissure, respectively. Lu, P and ST in the lateral view of the hemisphere indicate lunate, principal and superior temporal
sulcus. LO and MO in the orbitofrontal cortex indicate lateral and medial orbital sulci, respectively. Cortical areas are defined on the
basis of both architectonic and connectional criteria (see text).

New Research 4 of 35

January/February 2017, 4(1) e0306-16.2017 eNeuro.org

rich3/enu-enu/enu-enu/enu00117/enu2246d17z xppws S�4 2/23/17 9:49 MS: Ini:

F1



incorporate data on a distinct oculomotor field—the sup-
plementary eye field (SEF)—in the dorsorostral part of
area F7 (Schlag and Schlag-Rey, 1987), a subdivision of
area F2 into a ventrorostral and a dorsal “precentral dim-
ple” sector (Matelli et al., 1998), and the subdivision of
area F5 into three subareas (Belmalih et al., 2009). The
dysgranular area 44, originally shown by Petrides and
Pandya (1994, 2002) and located along the fundus of the
inferior arcuate sulcus, has been considered together with
area F5a, as these two areas appear to share several
connectional features, and their possible functional differ-
ences still remain to be fully assessed.

The subdivision adopted for the lateral prefrontal cortex
is very similar to that used by Saleem et al. (2014), which
was based on the descriptions by Walker (1940), Preuss
and Goldman-Rakic (1991), and Petrides and Pandya
(1999). Based on connectional evidence (Petrides and
Pandya, 1999; Gerbella et al., 2013; Saleem et al., 2014),
both the dorsal (46d) and the ventral (46v) parts of area 46
have been further subdivided into a rostral and a caudal
sector, as also done for caudal area 46v (46vc). Further-
more, area 12r was subdivided into caudal, intermediate,
and rostral sectors based on differences in connectivity
(Borra et al., 2011). As in Saleem et al. (2014), the pre-
arcuate convexity cortex has been combined with the
anterior bank of the arcuate sulcus, where the frontal eye
fields (FEFs) are located (Stanton et al., 1989), into a single
subdivision designated as area 8A. In most cases, tracer
injections in this sector [which is in any case part of the
frontal oculomotor system (e.g., Lynch and Tian, 2006)]
have involved also the crown or the anterior bank of the
arcuate sulcus. Area 8A was then subdivided into a dorsal
and a ventral part to distinguish between the dorsal and
the ventral part of the FEF, where large-amplitude and
small-amplitude saccades, respectively, are represented
(Bruce et al., 1985). The subdivision adopted for the me-
dial prefrontal and orbitofrontal cortex was based on the
descriptions of Carmichael and Price (1994). However,
because of the paucity or the incompleteness of informa-
tion on the connectivity of some areas, and based on
certain similarities in connectivity patterns, areas 12o and
12m were considered together, as were areas 13l and
13m. Furthermore, areas 13a and 13b were considered
together with the subdivisions of area 14. Finally, areas 25
and 11m have not been considered, as no complete
descriptions of their connectivity appear to be available.

The cingulate cortex has been subdivided according to
Brodmann (1909) into a caudal granular cingulate area 23
and a rostral agranular cingulate area 24. Both these
areas were subdivided according to Vogt et al. (1987) into
a gyral sector (23a and 23b; 24a and 24b) and a sulcal
sector (23c and 24c). Area 24c, as defined in the present
study, includes 24d (Matelli et al., 1991; Vogt et al., 2005)
and largely corresponds to the rostral cingulate motor
area (CMAr; Dum and Strick, 1991), whereas area 23c
largely corresponds to the dorsal (CMAd) and ventral
(CMAv) cingulate motor areas (Dum and Strick, 1991),
which are also collectively referred to as caudal cingulate
motor area (CMAc). In the posterior cingulate cortex, area
31 was defined according to Morecraft et al. (2004).

Finally, the areal attribution of the temporal and insular
connectivity of the parietal and frontal areas has been
conducted according to Seltzer and Pandya (1978), Bous-
saoud et al. (1990), and Mesulam and Mufson (1982).

Hierarchical cluster analysis
We fitted hierarchical trees to the connectivity data.

There is no algorithm available for finding the best tree for
a dataset, because the tree-fitting algorithms get stuck in
local minima and therefore are not guaranteed to find the
global minimum, where the latter would correspond to the
best fitting tree. Local minima occur because the function
which fits the trees is iterative and reduces the lack of fit
by a small amount on each iteration. However, it can end
up in situations where any small changes to the tree
would result in a tree that does not fit as well, i.e. a local
minimum, without having settled into a global minimum.
This happens because the fit of the tree has many local
minima, but only one global minimum. Therefore, to im-
prove our chances of finding very good trees, we fitted
trees to bootstrap samples of the original dataset. The
bootstrapping procedure in this case is not meant to
destroy the structure in the dataset; rather, it is meant to
generate datasets with areas similar to those of the orig-
inal unsampled dataset, but that contain some variability
around the original data. In this way, when trees are fitted
to the bootstrap data, they are similar to (but variations
on) the tree fitted to the original data. Often one of the
trees found with this approach is superior to the tree
found by the algorithm applied to the original data. There-
fore, we generated 10,000 bootstrap datasets. The origi-
nal data are a matrix, with columns indicating the inputs to
each area, and the rows indicating areas that send inputs
to each area. The clustering algorithm operates on a
distance matrix found by taking the Euclidean distances
between the vectors defined by each column. Therefore,
each bootstrap dataset was formed by sampling with
replacement from the rows of the connectivity table,
where the rows define the inputs to each area from the
other areas. This created datasets with random combina-
tions of the inputs to each of the areas. For example the
input from area PG to area 46 might be represented twice
in a bootstrap table, whereas the input from area PE to
area 46 might be absent. Entire rows were always kept
from the table when a row was sampled.

We used an agglomerative tree-fitting algorithm from
Matlab to generate a tree structure for each bootstrap
dataset and the original, unsampled dataset. Thus, we
fitted 10,001 candidate trees. The tree defined only the
areas that were clustered together, not the distances of
the clusters from each other, which are given by the
length of each branch. Next, we used a maximum-
likelihood (ML) tree-fitting algorithm to optimize the fit of
each tree (i.e., the length of each branch, using the branch
structure generated by the agglomerative tree-fitting al-
gorithm) to the original, unsampled dataset (Felsenstein,
1973). In this way, we generated a fit statistic for each
tree, based on the log-likelihood of the data, given the
tree. The value of the ML algorithm is that it gives us an
objective estimate of how well the tree fits the data and
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allows one to test hypotheses to confirm that we are
describing significant structure in the data. We then
sorted through the 10,001 trees and found the 100 trees
that fit the original data best, in terms of the likelihood. It
is important to point out that trees that were found by the
agglomerative algorithm on bootstrapped tables were
tested against the original, unsampled table. The boot-
strap procedure was used only to identify candidate trees.
In an additional analysis, we used an algorithm developed
for phylogenetic trees (Margush and McMorris, 1981) to fit
a consensus tree to the 100 best trees. The consensus
tree contained the clusters that occurred most often in the
100 best (i.e., highest likelihood) trees. Thus, it defines the
most frequent clusters in the best trees, as opposed to
the ML tree, which defines just the “best” tree of the trees
we searched.

To quantify the strength of the inputs that each cluster
received by any other cluster, we considered the mean
input value (0–100) across the areas belonging to the
receiving and the projecting cluster. Finally, to estimate
whether clusters received an equal number of projections
from all other clusters or received all their inputs from a
few clusters, we computed the entropy (in nats; see Aver-
beck et al., 2009) of the distribution of the inputs, as
reported in the spider plots of Figs. 4, 5, and 7. Maximum
entropy will occur when the distribution of inputs is uni-
form, whereas minimum entropy will characterize a distri-
bution in which all inputs stem from one other cluster.
Entropy is given by

H � � �i��input areas� pilnpi,

where pi is the probability of the input or the fraction of
inputs coming from each area.

Results
The connections of 37 frontal and 18 parietal areas

have been used for the analysis of the parieto-frontal
system; for the intrinsic parietal connectivity, we have
studied the same 18 parietal areas, 9 in the SPL and 9 in
the IPL.

Parieto-frontal connections: clusters of parietal and
frontal areas

The basic assumption of cluster analysis is that areas
sharing inputs cluster together to form hierarchical trees.
Therefore, the second step of our analysis consisted of
identifying the hierarchical clustering of the areas included
in the connectivity matrix. The clustering algorithm ad-
opted for this analysis used a log-likelihood metric of fit
(see Materials and Methods), so that different trees could
be statistically compared to determine how well the data
were fitted by each tree. The best-fitting ML tree obtained
by clustering the parietal areas is shown in Fig. 2A, where
all parietal clusters are shown. However, this analysis
does not provide information on the degree to which each
constituent cluster is supported by the data—in other
words, how robust the ML clusters are. To determine how
often individual clusters occurred, we analyzed the best
100 ML trees and fitted a consensus tree (CT) that con-

tained all the clusters most common in the ML tree and
identified how frequently each cluster occurred. The CT
for the parietal clusters is shown in Fig. 2B.The compar-
ison of the ML and CT of parietal cortex shows a perfect
correspondence between the two. Therefore, the ML tree
is well supported by the data.

Parietal clusters
In the parietal cortex, we have identified five clusters

(Fig. 2B). In the caudal and medial part of the SPL, areas
V6A, PGm (or 7m), and 31 formed a postero-medial clus-
ter (pmSPL). It extended from V6A to the mesial aspect of
SPL (PGm) and adjacent posterior part of the cingulate
gyrus, below the caudal sector of the cingulate sulcus
(area 31).

A second cluster was located just more rostrally in the
SPL and included areas PEci, in the caudalmost part of
the cingulate sulcus, area PEc, extending from the crown
of the parieto-occipital sulcus to the exposed part of SPL,
area MIP, in the posterior part of the medial bank of the
IPS, and area PEa, buried at a more rostral location within
this same bank. Therefore, this SPL aggregate was la-
beled as mediodorsal superior parietal cluster (mdSPL).

Areas PE and SI formed a cluster spanning the anterior
sector of SPL, as well as the entire extent of the postcen-
tral gyrus (aSPL cluster).

In the best 100 trees, mdSPL and pmSPL occurred 48
and 37 times, respectively, and aSPL occurred 99 times,
which suggests that the distinction between SI and PE
could be a moot point, at least if drawn solely on the basis
of cortical inputs. In the parietal cortex, the hierarchical
level represented by SPL areas consisted of a higher-
order cluster formed by pmSPL, mdSPL, and aSPL, which
occurred 89 times in the best 100 trees.

In the IPL, we identified two main clusters. The first
included area Opt at the parieto-occipital junction, area
medial superior temporal (MST) in the medial bank of the
superior temporal sulcus, LIP in the posterior part of the
lateral bank of the IPS, and VIP, along the fundus of
the IPS. This ensemble of areas in the posterior part of IPL
was therefore labeled pIPL cluster, which occurred 81
times in the best 100 trees.

In a more anterior location, we identified a second
cluster (aIPL) formed by the areas occupying the cortex of
IPL convexity, including PF, PFG, PG, the adjacent lateral
bank of the anterior part of IPS, containing AIP, and SII in
the upper bank of the Sylvian fissure. This cluster was
also very robust, since it occurred 71 times in the best 100
trees. More impressive was the association between SII
and PF, which occurred 100 times (therefore in all the best
trees).

Frontal clusters
As for the parietal areas, there was also an excellent

correspondence between ML and CT in the frontal cortex.
Therefore, we only show the latter, which was character-
ized by a very complex hierarchical structure, formed by
at least six distinct clusters (Fig. 3).

The first cluster extended from the medial wall of the
hemisphere to the lateral frontal cortex and included
the medial premotor areas F6 (pre-SMA), and F3 (SMA),
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the dorsal premotor (PMd) areas F7 and F2, and the
primary motor cortex (MI, F1). This family of areas was
therefore labeled as MI-dmPM cluster, representing the
motor output of dorsal frontal cortex. Within this cluster,
further structure can be seen at a lower hierarchical level,
distinguishing the premotor areas projecting to MI and spinal
cord (F3, F2), from those lacking such projections (F7, F6),
which instead connect with F3, F2, and prefrontal areas.

A second precentral cluster (vPM) was located in ven-
tral premotor cortex and extended from the posterior
bank of the inferior arcuate sulcus to the cortical convex-
ity, so as to include areas F4 caudally, the F5 subdivi-
sions, and area 44 rostrally.

Clusters MI-dmPM and vPM occurred 55 times and 80
times, respectively, in the best 100 trees. The higher-order
cluster to which they both belong occurred 47 times.

Figure 2. Trees fit of the data. A, ML parietal tree generated from bootstrap analysis. Colors indicate the clusters we have identified
for further analysis, labeled with different acronyms on the basis of their anatomic location. B, Parietal tree generated from the 100
ML trees in frontal cortex. Numbers at each branch node indicate the number of times a cluster occurred in the 100 ML trees. pIPL,
aIPL, aSPL, mdSPL, and pmSPL indicate posterior IPL, anterior IPL, anterior SPL, mediodorsal SPL, and postero-medial SPL
clusters. C, Location and topography of clusters in parietal cortex. Red, pmSPL; light blue, mdSPL; magenta, aSPL; green, pIPL;
orange, aIPL.
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On the medial aspect of the hemisphere, a third cluster
included two cingulate areas: specifically, the more rostral
area 24c, corresponding to the rostral cingulate motor

area (CMAr), and the more caudal area 23c, correspond-
ing to the caudal cingulate motor area (CMAc), as well as
areas 24a and 24b in the cingulate gyrus. This aggregate

Figure 3. Trees fit of the data. A, Consensus tree generated from the 100 ML trees in frontal cortex. Clusters are labeled based on
their anatomic location: MI-dmPM, primary motor/dorsal premotor; vPM, ventral premotor; CING, cingulate; pPFC, posterior
prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; voPFC, ventro-orbitofrontal cortex. B, Location and topography of clusters
in frontal cortex. The three prefrontal clusters (voPFC, dmPF, pPFC) are indicated with different green shades; red, CING; orange,
vPM; light blue, MI-dmPM. Conventions as in Fig. 2.
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of areas was labeled as cingulate cluster (CING), which
occurred 63 times in the best 100 trees.

Moving to the prefrontal cortex (PFC), a fourth cluster
occupied the anterior bank of the arcuate sulcus, extend-
ing rostrally onto the caudal part of both ventrolateral
(VLPF) and dorsolateral (DLPF) prefrontal cortex, exclud-
ing area 45A. This cluster also included the sector of F7
corresponding to the supplementary eye field (F7-SEF),
up to the medial aspect of area 8B. For its location, we
labeled this assembly as posterior prefrontal cluster
(pPFC), which occurred 29 times in the best 100 trees. It
was subdivided in two clusters of areas, one formed by
8B, F7-SEF, 8Ad (including the lFEF), and 46dc; the other
by the caudal part of area 12r, 45B, 46vc-caudal, and 8Av
(including the sFEF). These two clusters occurred 43 and
44 times, respectively, in the best 100 trees.

The fifth cluster was formed by areas mostly located in
the dorsolateral and medial prefrontal cortex in front of the
genu of the corpus callosum; therefore, it was labeled as
dmPFC. It was formed by the polar frontal area 10, the
medial areas 9m, 32, and 14, and the dorsolateral areas
46dr and 9l. This cluster also included the VLPF area 45A,
which was commonly associated with area 46dr. This
cluster was detected 86 times in the best 100 trees.

The sixth cluster occupied most of the orbitofrontal
cortex, extending on the cortex of the lateral convexity in
the frontal operculum and in the VLPF, in front of the areas
of the pPFC cluster. This ventral orbitofrontal cluster
(voPFC) included areas 11 and 13, most of the subdivi-
sions of area 12, 46vc-rostral and 46vr, and GrFO. It
occurred 65 times in the best 100 trees.

Inputs and functional properties of clusters
Once the hierarchical relationships among families of

areas were determined, we defined the dominant input to
each cluster—that is, to hierarchically related sets of ar-
eas, from within and outside the parietal and frontal net-
work (Figs. 4 and 5). Because the data set consisted of
connections obtained through retrograde transport of
tracers, these inputs originated not only from areas that
were leaves of the trees used to fit the data, but also from
external architectonic areas that were not leaves in the
cluster analysis.

Inputs and functional properties of parietal clusters:
identification of parietal domains

As a general rule, each parietal cluster (Fig. 4) received
the main input from areas belonging to the same cluster,
and to a lesser extent from other areas as well, confirming
that connectivity tends to be strong locally. In the follow-
ing sections, we describe and focus on the relative con-
tribution of the different external inputs from the various
parietal and frontal clusters to the overall connectivity of
each cluster. Because the interpretation of anatomy both
informs and benefits from functional studies, in this same
section we also provide a brief description of the physio-
logic properties of cortical areas, in an attempt to identify
general domains that could emerge by confronting the
statistics of the connectivity and the physiologic proper-
ties of the areas in each cluster.

pmSPL cluster
This parieto-occipital cluster receives a large set of

inputs that we have ordered on the basis of their strength.
These stem from the (i) visuomotor areas of mdSPL (50);
(ii) premotor areas of the cingulate cortex (CING; 31.4); (iii)
pIPL (24.8), consisting of a set of areas related to visual
attention, motor intention, decision-making, eye–hand
coordination, and heading perception; (iv) the motor and
dorsal premotor areas of the frontal lobe (MI-dmPM; 23);
(v) oculomotor and attention-related areas of the pPFC
(8.3); (vi) aIPL(6.6); and (vii) dmPFC (6.3).

Known functional properties of the areas of the pmSPL
cluster concern the role of area V6A in early coding of
reaching (Galletti et al., 1997; Battaglia-Mayer et al., 2000,
2001; Marconi et al., 2001) and eye–hand coordination
(Battaglia-Mayer et al., 2000, 2001; Marconi et al., 2001),
a function to which also PGm contributes (Ferraina et al.,
1997a, b). This cluster provides to the frontal lobe part of
the visual input necessary for eye–hand coordination dur-
ing reaching (Johnson et al., 1996; Marconi et al., 2001),
and its areas are influenced by hand position and in-
tended movement direction (Battaglia-Mayer et al., 2000).
In V6A, neurons combine depth and arm movement di-
rection information (Hadjidimitakis et al., 2014). Grasping-
related activity has also been described in this area
(Fattori et al., 2010), suggesting early integration of reach
and grasp information. It has been suggested (Pitzalis
et al., 2015) that area V6A, thanks to the visual input from
V6, can compute object location even in dynamic condi-
tions, such as those created by self-motion. In a medial
parietal region including PGm, Sato et al. (2006) have
described neurons that combine local and virtual ego-
motion and whose neural activity was related to naviga-
tion in a virtual environment.

Area 31 is part of the posterior cingulate cortex. It has
been reported as involved in visuomotor processing,
since its neurons respond to visual signals (Dean et al.,
2004) and contraversive gaze shifts (Olson et al., 1996;
Dean et al., 2004) and monitor eye position and move-
ment (Olson et al., 1996), although some of these prop-
erties seem to also belong to area 23, where many
neurons were recorded in the above studies. Their prop-
erties suggest a relationships to salience of objects or
locations, preferentially in allocentric coordinates (Dean
and Platt, 2006). Therefore, area 31 might serve as an
intermediate node in the transformation from visuo-spatial
egocentric frames in the parietal cortex to allocentric
frames in the hippocampus (Vogt et al., 1992), although this
transformation seems to be incomplete at this node, be-
cause of the coexistence of neuronal populations encoding
visual events in retinocentric and egocentric coordinates
(Dean and Platt, 2006).

mdSPL cluster
The inputs to this cluster stem from the (i) aSPL (45.8);

(ii) parieto-occipital pmSPL cluster (44.3); (iii) MI-dmPM
cluster (29); (iv) CING cluster (22); (v) aIPL cluster (15.8);
and (vi) pIPL cluster (5.1). In functional terms, this cluster
is at the core of coordinate transformation for reaching.

This cluster encodes motor plans for reaches (John-
son et al., 1996; Snyder et al., 1997; Andersen and Cui,
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2009; Archambault et al., 2009; Caminiti et al., 2010)
and their online correction (Archambault et al., 2009)
and suppression (Mirabella et al., 2011) by combining
visual and somatic information (Mountcastle et al.,
1975; Kalaska et al., 1983; Georgopoulos et al., 1984;
Kalaska et al., 1990; Caminiti et al., 1996; Johnson
et al., 1996; Battaglia-Mayer et al., 2000, 2001; Pesaran
et al., 2006; Bakola et al., 2010), as well by using

nonvisual signals (Gregoriou and Savaki, 2003; Bosco
et al., 2010; McGuire and Sabes, 2011).

In area MIP, neurons at different locations within the IPS
display different activity types. Deep within the sulcus,
cells are mostly visual; in the central part of the IPS, they
are activated by hand reaching; and dorsally, they re-
spond to passive somatosensory stimulation. Many cells
respond to somatosensory and visual stimuli and are

Figure 4. Inputs to the parietal clusters. Spider plots displaying the mean values (scale: 0–100) of frontal and parietal (gray shading)
inputs to any given parietal cluster (top). The cluster entropy is also reported.
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active during reaching (Colby and Duhamel, 1991). Quan-
titative analysis of activity types during reaching (Johnson
et al., 1996) in behaving monkeys has shown an orderly
progression of cells related to visual target presentation
and hand reach planning and execution, as one moves
from posterior to anterior in MIP, that is, from the fundus
of IPL to its crown. Consistent with this organization,
McGuire and Sabes (2011) have provided evidence for the
existence of hybrid, rather than pure, reference frame
representations for reaching (Battaglia-Mayer et al., 2003;
McGuire and Sabes, 2009) in MIP, as well as in area PE.
In a comparative study of the mechanisms leading to the
formation of motor intentions of reaches versus saccades
in MIP and LIP (de Lafuente et al., 2015) it has been shown
that the gradual accumulation of information about deci-
sion variables in the activity of reaching-related neurons in
MIP leads to the formation of a motor intention for a hand
movement, but also significantly influences neural activity
in LIP. When an eye movement was the outcome of the
decision processes, activity was attenuated in MIP and
remained well modulated in LIP. Therefore, during
decision-making for reaches, there seems to exist a par-
allel flow of information to both MIP and LIP, whose
outflow is directed, among others, to the hand and eye
output domain, respectively, of the frontal cortex.

Area PEc is a visuomotor area where neural activity is
tuned to hand position and reach direction (Battaglia-
Mayer et al., 2001), and individual neurons display visual
(Battaglia-Mayer et al., 2001; Raffi et al., 2002; Breveglieri
et al., 2008) and somatosensory properties, often com-
bining them (Battaglia-Mayer et al., 2001; Breveglieri
et al., 2008). In this area, neurons are sensitive to optic
flow (Battaglia-Mayer et al., 2001; Raffi et al., 2002), with
specificity for the focus of expansion. Area PEc is con-
sidered an important node for visually guided reaching
(Battaglia-Mayer et al., 2003); moreover, the visual prop-
erties of neurons suggest a role in navigation (Raffi et al.,
2002; Breveglieri et al., 2008). Area PEci, in the medial wall
of posterior parietal cortex, contains a somatosensory
map of the periphery (Murray and Coulter, 1981). It has
never been studied in alert monkeys, and its anatomic
connections suggest a role in the somatosensory control
of movement.

Together with the dorsal premotor and motor areas of
the frontal lobe, this cluster participates in the distributed
encoding of movement parameters, although at a higher
hierarchical level. In fact, the integration of multijoint sen-
sory and motor signals by individual neurons in area PEa,
together with area PE in the aSPL cluster (see below), is at
the core of an emerging abstract representation of hand
position and movement direction occurring within a coor-
dinate system that specifies the azimuth, elevation, and
distance of the hand in space (Lacquaniti et al., 1995). In
these areas, reach distance is encoded by combining
inputs about retinal disparity and vergence (Bhattacha-
ryya et al., 2009), and the latter with hand position infor-
mation (Ferraina et al., 2009a, 2009b), a mechanism
crucial for the computation of motor error. Beyond reach-
ing, in PEa neural activity encodes information relevant to
the subjective body image and its extension through tool

use (Iriki et al., 1996; Obayashi et al., 2000; Iriki and
Taoka, 2012).

aSPL cluster
This somatosensory cluster receives its main input from

the (i) visuomotor mdSPL cluster (33.4); (ii) CING cluster
(16.5); (iii) motor MI-dmPMd areas (12.4); and (iii) areas of
the parietal grasping and mirror system (aIPL cluster; 6.7).

Beyond the classic studies on somatosensory discrim-
ination (Mountcastle, 2005), area PE in this cluster partic-
ipates in the control of reaches by encoding kinematic
signals about hand position and movement direction
(Mountcastle and Powell, 1959; Kalaska et al., 1983;
Georgopoulos et al., 1984; Prud’homme and Kalaska,
1994; Ashe and Georgopoulos, 1994; Lacquaniti et al.,
1995), probably as corollary discharge of motor com-
mands from motor cortex. PE is a source of somatic
information for motor cortex. Therefore, it can contribute
to the somatosensory control of arm movements.

Area 3a, at the transition between SI and MI, encodes
information from muscle spindles, related not only to the
limb (Oscarsson and Rosen, 1963), but also to the eye,
since eye position influences its neural activity (Wang
et al., 2007).

aIPL cluster
This cluster is connected to the (i) ventral premotor

grasping and mirror areas of vPM (44.2); (ii) aSPL (24.8);
(iii) pIPL(22.5); (iv) mdSPL (20.6); (v) CING (14.2); (vi)
voPFC (9.6); (vii) MI-dmPMd (7.1); and (viii) pmSPL(5.5).

This cluster includes areas involved in large-scale cor-
tical networks for selecting and controlling purposeful
reaching, hand and mouth actions, and action under-
standing.

The anterior intraparietal area (AIP) is a hand-related
area playing a crucial role in visuomotor transformations
for grasping. This area hosts motor, visuomotor, and vi-
sual neurons modulated by grip type and tuned to the
geometrical properties and orientation of objects (Sakata
et al., 1995; Murata et al., 2000). Early preparatory activity
in AIP predicts both object and grip type. This differs from
motor cortex that displays better encoding of object fea-
tures during movement execution (Schaffelhofer et al.,
2015). In the IPL convexity, Hyvärinen (1981) observed a
rostro-caudal gradient from regions related to mouth and
hand movement to reaching representations. This gradi-
ent was recently confirmed and correlated with architec-
tonic subdivisions by Rozzi et al. (2008).

Areas PF and PFG are mostly involved in sensorimotor
transformations for controlling hand and mouth move-
ments. PFG is composed of neurons active during the
execution of object-oriented hand actions (Gardner et al.,
2007; Rozzi et al., 2008), often showing selectivity for grip
type (Bonini et al., 2012). Concerning hand dynamics,
neural activity in PFG encodes instantaneous force vari-
ation and retains memory of force signals for guiding hand
action (Ferrari-Toniolo et al., 2015). These data suggest an
involvement of this area in the cortical network for fine
control of object grasping and manipulation. Many PFG
grasping neurons are differentially active depending on
the goal of the action (e.g., grasp-to-eat or grasp-to-
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place) in which the coded act is embedded (Fogassi et al.,
2005; Bonini et al., 2010, 2011, 2012), likely reflecting
sequential action organization according to goal or motor
intention (Fogassi et al., 2005; Bonini et al., 2010, 2011,
2012). Finally, as many PFG neurons also display mirror
properties (Rozzi et al., 2008; Bonini et al., 2010), this area
has been considered the main parietal node of the mirror
system (Rizzolatti and Craighero, 2004; Rizzolatti et al.,
2014).

Area PG participates in the visuomotor control of reaching
(Mountcastle et al., 1975; Hyvärinen, 1981; Battaglia-Mayer
et al., 2005, 2007) and in the organization and control of
reaching with the arm and the eye at the limit between
peri- and extrapersonal space, probably by using several
sources of visual information about the position, motion,
and behavioral values of targets (Rozzi et al., 2008). Fur-
thermore, neural activity in PG reflects the higher-order
visuo-spatial analysis underlying the identification of
maze path exit (Crowe et al., 2004, 2005), as well as that
concerning object structure in construction tasks (Chafee
et al., 2005, 2007).

The aIPL cluster also includes the SII region involved in
higher-order aspects of somatosensory processing (e.g.,
Robinson and Burton, 1980; Murray and Mishkin, 1984;
Hsiao et al., 1993; Romo et al., 2002; Hsiao, 2008; Pei
et al., 2008). This region hosts somatosensory neurons
preferentially active during the execution of object-
oriented hand or mouth actions (Fitzgerald et al., 2004;
Ishida et al., 2013; Taoka et al., 2013; Hihara et al., 2015).
These properties suggest a role in haptic processing of
object shape and somatomotor transformations for
object-oriented hand actions. SII might provide somato-
sensory feedback information used for the timing of ma-
nipulation sequences and for monitoring and updating
hand motor programs.

pIPL cluster
The main projections to this cluster originate from (i)

pmSPL (36.2); (ii) aIPL (23.3); (iii) pPFC (17.6); (iv) CING
(8.3); (v) aSPL (8.3); (vi) vPM (8.3); and (vii) mdSPL (7.3).

This cluster is involved in visual attention (area 7a/PG;
Lynch et al., 1977; Bushnell et al., 1981) and reorienting
(LIP; Steinmetz and Constantidinis, 1995), including mirror
reorienting (Shepherd et al., 2009), saliency (LIP; Gottlieb
et al., 1998; Colby and Goldberg, 1999; Bisley and Gold-
berg, 2010; Suzuki and Gottlieb, 2013; Qi et al., 2015),
and novelty (LIP; Foley et al., 2014). The locus of attention
in area 7a/PG is represented by patches of activation
�800 �m wide (Raffi and Siegel, 2005), embedded within
pre- and postsaccadic signals (LIP/7a; Barash et al.,
1991). The role of LIP in motor intention for eye movement
control (Gnadt and Andersen, 1988; Snyder et al., 1997,
1998; Andersen and Cui, 2009) is another important func-
tion of LIP. Dorsal LIP (LIPd) is mostly involved in oculo-
motor planning; ventral LIP (LIPv) contributes to both
attention and oculomotor mechanisms (Liu et al., 2010).
Some studies (Dean et al., 2012) have proposed a role for
LIP in eye–hand coordination, whereas others (Yttri et al.,
2013) have denied such a possibility. Concerning the
analysis of visual space, LIP participates in encoding the
structure of visual objects (Gnadt and Mays, 1995;

Shikata et al., 1996; Sereno et al., 2002; Vanduffel et al.,
2002; Orban, 2011). Finally, LIP activity relates to
decision-making (Gold and Shadlen, 2007; Gottlieb et al.,
2014; Kable and Glimcher, 2009) by varying firing fre-
quency as a function of evidence in favor of or against
each of the possible choices (Shadlen and Newsome,
2001; Roitman and Shadlen, 2002; Churchland et al.,
2008), and of reward probability as well (Platt and Glim-
cher, 1999; Kiani and Shadlen, 2009). It has also been
proposed that LIP decision-related activity is the result of
integrative mechanisms encoding action value (Louie and
Glimcher, 2010) in relation to alternative options (Louie
et al., 2011, 2014). Interestingly, during accumulation of
decision variables, neural activity in LIP is modulated
when the decision outcome is not only a saccade, but
also a reaching movement (de Lafuente et al., 2015). In the
same vein, LIP neurons accumulate context-dependent
sensory information to decide in a flexible way where to
make a saccade in a task-switching condition (Kumano
et al., 2016).

Areas VIP and MST are important parietal nodes of the
distributed system for heading perception (Britten, 2008).
In VIP (Colby et al., 1993), neurons are influenced by
approaching visual stimuli and display visual and somato-
sensory receptive fields closely aligned (Duhamel et al.,
1998). They also respond to vestibular and auditory sig-
nals (Schlack et al., 2002, 2005), smooth pursuit eye
movement (Schlack et al., 2003), and 3D shape (Durand
et al., 2009) of visual objects. Therefore, VIP has a crucial
role in encoding heading signals derived from optic flow
and vestibular information from ego-motion (Bremmer
et al., 2002a, b; Bremmer 2005; Schlack et al., 2002,
2005; Chen et al., 2011, 2013). The general properties of
MST are similar to those of VIP, although they suggest an
involvement in large-scale image motion analysis. Con-
cerning optic flow, the overrepresentation of expansion in
this area suggests a role in locomotion, and its physio-
logic properties indicate a causal relation with heading
perception. In MST, visual motion processing undergoes
early attentional modulation (Treue and Maunsell, 1996).
VIP is also part of the distributed system for numerosity
(Nieder and Miller, 2004a, b; Nieder, 2016), which also
includes LIP (Roitman et al., 2007) and prefrontal cortex
(Diester and Nieder, 2007).

In Opt/PG, neurons overrepresent the contralateral di-
rectional continuum (Battaglia-Mayer et al., 2005) for in-
tended eye–hand movement. This representation might
provide a positive image of the directional motor disorder
of neglect typical of parietal patients with directional hy-
pokinesia (Mattingley et al., 1992; Heilman et al., 2000;
Caminiti et al., 2010), supporting a role of parietal cortex in
encoding motor intention. Neural activity in these areas is
also related to manual interception of moving targets
(Merchant et al., 2001, 2004).

Inputs and functional properties of frontal clusters:
identification of frontal domains

The inputs to the frontal clusters (Fig. 5) were organized
in a way that resembled those of parietal ones.

New Research 12 of 35

January/February 2017, 4(1) e0306-16.2017 eNeuro.org

rich3/enu-enu/enu-enu/enu00117/enu2246d17z xppws S�4 2/23/17 9:49 MS: Ini:

AQ: 8

AQ: 9

AQ: 10

AQ: 11



Figure 5. Inputs to the frontal clusters. Spider plots displaying the mean values (scale: 0–100) of frontal (gray shading) and parietal
inputs to any given parietal cluster (top). The cluster entropy is also reported.
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MI-dmPM cluster
The strongest input to this cluster originates from the (i)

cingulate premotor areas (CING; 43.4); (ii) visuomotor ar-
eas of the mdSPL cluster (32.6); (iii) ventral premotor
areas (vPM; 30.5); (iv) reaching-related areas of the
parieto-occipital junction (pmSPL; 23.1); (v) somatosen-
sory and reaching-related areas of aSPL (18); (vi) oculo-
motor and attention-related areas of prefrontal cortex
(pPFC; 8.7); and (vii) somato- and visuo-motor areas of
aIPL (7.1).

This cluster can be considered as the main premotor-
motor module of the frontal lobe, since it includes areas
serving as the interface between prefrontal and premotor
cortex (F7 and F6), all the dorsomedial premotor areas,
with motor cortex as the main output stage. Within this
cluster, the two rostral premotor areas F7 and F6 (pre-
SMA) tend to cluster separately from the dorso-caudal
premotor areas and are commonly regarded as an inter-
face between prefrontal cortex and this motor module of
the frontal lobe.

Area F7 contains a dorsomedial oculomotor field com-
monly referred to as the supplementary eye field, which,
however, belongs to another cluster (see below). Apart
from this, there exists only scant information on the func-
tional properties of this region. It is known that neural
activity relates to both eye and limb movement (Johnson
et al., 1996; Fujii et al., 2000). A subpopulation of F7
neurons is modulated by visual stimuli when these are
also the target of a reaching movement (Vaadia et al.,
1986). In this area, visual and eye-related signals predom-
inate over coexisting hand information within a trend that
is reversed as one moves caudally toward PMd and motor
cortex.

Area F6 is a visually responsive, mostly arm-related
area (Rizzolatti et al., 1990; Luppino et al., 1991, Matsu-
zaka et al., 1992) involved in several higher-order aspects
of motor control. F6 neurons activate during preparation
for movement (Matsuzaka et al., 1992) and can code the
reprogramming of an arm movement to a direction oppo-
site to the one previously rewarded (shift-related activity,
Matsuzaka and Tanji, 1996). F6 is also involved in target
localization and effector selection for movement (Hoshi
and Tanji, 2000, 2004). Furthermore, this area participates
in the acquisition of procedural learning (Hikosaka et al.,
1999). It has been proposed that F6 could play a key role
in the neural mechanisms underlying action selection and
motor inhibition and in performance monitoring (Nachev
et al., 2008; Ridderinkhof and Wijnen, 2011).

Area F2 hosts a representation of leg and arm move-
ments located dorsal and ventral to the precentral dimple,
respectively. Within the arm representation, hand and
wrist movements tend to be mostly represented in the
ventro-rostral part close to the arcuate sulcus (F2vr). Neu-
ral activity in this part of dorsal premotor cortex encodes
non-standard, or arbitrary, sensorimotor associations
(Wise et al., 1997) and combines reach signals about hand
position and movement direction within a shoulder-
centered coordinate system (Caminiti et al., 1991; Burnod
et al., 1992). PMd activity integrates hand, eye, and target
information during reach plans (Pesaran et al., 2006), as in

many areas of the parieto-frontal system. PMd plays a
pivotal role in the formation (Caminiti et al., 1991; Mattia
et al., 2013), suppression (Mirabella et al., 2011), and
modification (Archambault et al., 2011; Battaglia-Mayer
et al., 2014) of reach plans and in disconnecting the
natural coupling in eye–hand coordination (Gail et al.,
2009). This area can encode two potential targets for hand
movement (Cisek and Kalaska, 2002, 2010), reaching de-
cisions (Cisek and Kalaska, 2005), and switch of motor
plans (Pastor-Bernier et al., 2012). These results provide
an explanation from a neurophysiological perspective of
the consequence of dorsal premotor cortex lesions in
monkeys (Petrides, 1985; Passingham, 1988; Kurata and
Hoffman, 1994; Wise et al., 1997). A recent study com-
bining neural recording and reversible silencing (Oh-
bayashi et al., 2016) in behaving monkeys emphasizes the
role of the PMd in sequential movements guided by inter-
nal instructions, but not by visual signals, thus enriching
the functional repertoire of this area.

Area F3 (SMA) is electrically excitable with low-intensity
currents and contains a complete body movement repre-
sentation (Mitz and Wise, 1987; Luppino et al., 1991).
Evoked movements mainly involve proximal and axial
muscles and, typically, a combination of different joints.
Distal movements, when evoked, are often observed in
combination with the proximal ones. F3 neurons exhibit
somatosensory responses time-locked to the movement
onset (movement-related activity). This area hosts neu-
rons coding specific sequences of movements (Tanji and
Shima, 1996) and appears to contribute to initial stages of
learning of motor sequences, by improving their perfor-
mance (Hikosaka et al., 1999). Furthermore, in SMA/pre-
SMA (Tanji and Shima, 1994; Shima and Tanji, 2000) and
MI (Carpenter et al., 1999), neural activity is modulated by
the ordinal position of hand or eye movements and, to-
gether with prefrontal, anterior cingulate cortex (ACC),
and FEF, participates in the ordinal categorization of eye
and hand movement (Nieder and Dehaene, 2009) and to
the specification of movement sequences (Shima and
Tanji, 2000).

Motor cortex (MI) encodes information related to both
the abstract representation of movement parameters and
higher-order motor processing. Among the first are arm/
limb movement, position (Mountcastle and Powel, 1959;
Georgopoulos et al., 1984; Caminiti et al., 1990;
Prud’homme and Kalaska, 1994; Lacquaniti et al., 1995),
direction (Georgopoulos et al., 1981; Caminiti et al., 1990;
Lacquaniti et al., 1995), amplitude (Fu et al., 1993), veloc-
ity (Ashe and Georgopoulos, 1994; Moran and Schwartz,
1999; Averbeck et al., 2005; Archambault et al., 2009,
2011), acceleration (Ashe and Georgopoulos, 1994), force
(Hepp-Reymond et al., 1978; Cheney and Fetz, 1980;
Georgopoulos et al., 1992; Maier et al., 1993; Kakei et al.,
1999; Sergio et al., 2005), and hand grip type (Muir and
Lemon, 1983; Schaffelhofer et al., 2015). In MI, the activity
of individual cells encodes many movement parameters at
the same time (Ashe and Georgopoulos, 1994), and their
graded utilization is used in different functions, such as
direct reaches and changes of hand trajectory (Archam-
bault et al., 2011). Concerning higher-order processing,
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MI activity is influenced by context-recall tasks (Pellizzer
et al., 1995), mental rotation of intended movement direc-
tions (Georgopoulos et al., 1989), ordinal position of
reaches (Carpenter et al., 1999), hand drawing (Schwartz,
1994), and update of motor intention (Georgopoulos et al.,
1983b; Archambault et al., 2011). Most important, encod-
ing of reaching parameters depends on population codes
and dynamics (Georgopoulos et al., 1983a; Caminiti et al.,
1991; Churchland et al., 2012). Finally, mirror activity has
been reported in PMd (Tkach et al., 2007) and MI (Tkach
et al., 2007; Dushanova and Donoghue, 2010; Vigneswaran
et al., 2013), suggesting a role in action recognition and
movement suppression during action observation.

vPM cluster
This ventral premotor cluster receives selected inputs

from (i) aIPL (45.1); (ii) the motor complex (MI-dmPM; 27);
(iii) ventro-orbital areas (voPFC; 11.1); (iv) mdSPL (7.3); (v)
aSPL (12.5); and (vi) CING areas (10.9).

The areas of this cluster play an important role in sen-
sorimotor transformations for guiding face/mouth and
arm movements within peripersonal space and for select-
ing and controlling purposeful hand actions.

The caudal PMv area F4 contains a representation of
arm, neck, face, and mouth movements (Godschalk et al.,
1981; Gentilucci et al., 1988; Fogassi et al., 1996). Elec-
trical stimulation with long train durations elicits complex
protective movements similar to those observed when
monkeys are presented with actual threat (Graziano,
2006). Most F4 neurons activate during the execution of
purposeful arm movements, such as reaching or bringing
food to the mouth (Gentilucci et al., 1988). Most of these
neurons have tactile or tactile plus visual receptive fields
organized in register. The visual receptive fields are inde-
pendent of eye position, likely reflecting coding of perip-
ersonal space based on a body part–centered frame of
reference (Graziano et al., 1994; Fogassi et al., 1996).
These responses could represent the activation of motor
programs related to potential motor acts within the perip-
ersonal space.

The rostral PMv area F5 hosts a motor representation of
the hand, more dorsally, and the mouth, more ventrally,
which overlap to a considerable extent. Neurons in this
area typically encode specific goal-directed motor acts,
such as grasping, many of them selectively coding spe-
cific grip types (Rizzolatti et al., 1988). A significant pro-
portion of F5 neurons also display visual responses of two
different types. The first type of visuomotor neurons acti-
vate also when graspable objects are simply observed
(Murata et al., 1997; Raos et al., 2006; Umiltà et al., 2007;
Fluet et al., 2010; Vargas-Irwin et al., 2015), likely reflect-
ing extraction of object affordances. A second type of
visuomotor neurons, designated as mirror neurons, fire
during the execution of hand motor acts, as well as during
the observation of similar acts done by others (Gallese
et al., 1996; Rizzolatti et al., 1996). This neural activity
likely reflects the involvement of this area in an
observation-execution matching system (mirror system),
which is at the basis of the ability to understand others’
goal-directed motor acts (Rizzolatti and Craighero, 2004;
Rizzolatti et al., 2014).

CING cluster
The cingulate areas of this cluster receive inputs from

many other parietal and frontal clusters, such as (i)
dmPFC (34); (ii) voPFC (24.5); (iii) MI-dmPM (28.4); (iv)
pPFC (19.3); (v) pmSPL (33.1); (vi) mdSPL (20.7); (vii) aIPL
(14.3); and (viii) aSPL (24.8).

Neural activity in both rostral (CMAr; 24c) and caudal
(CMAc; 23c) cingulate motor areas is modulated by arm-
hand movement (Shima et al., 1991; Cadoret and Smith,
1997; Russo et al., 2002), although Picard and Strick
(2003) have reported weak 2-deoxyglucose (2-DG) acti-
vation in these areas during reaching. These areas differ in
their stimulation threshold (Luppino et al., 1991) and
motor-related activity (Shima et al., 1991). Self-paced and
sensory-triggered reaches modulate the activity of �40%
of neurons similarly in both areas. Long-lead activity re-
lated to self-paced movement dominates in CMAr,
whereas signal-triggered movement activity prevails at
more caudal locations. In the dorsal part of CMAc (CMAd
of Dum and Strick, 1991), activation studies have shown
strong 2-DG uptake associated with remembered se-
quences of reaches (Picard and Strick, 1996, 1997). In
CMAr, neural activity is related to serial order of motor
sequences (Procyk et al., 2000). Furthermore, in this area,
neural activity encodes multiple decision variables, such
as payoff, success probability, and cost (Kennerley et al.,
2009), which assigns to it a role in addressing information
about decision value to the motor complex of the frontal
lobe. Cai and Padoa-Schioppa (2012) have reported sig-
nificant differences in cell properties in the dorsal and
ventral bank of the anterior cingulate sulcus. In the dorsal
bank, cells were directionally selective and active during a
delay period before eye movement onset, whereas in the
ventral bank, cells were not spatially selective and fired
after juice delivery. More relevant, in both areas, neurons
encoded subjective value as distinguished from reward
properties. The authors concluded that dorsal anterior
cingulate cortex is a substrate through which signals from
choice outcome and subjective value, in other words from
the choice system, are addressed to the motor system. In
this same area, Michelet et al. (2016) have reported neural
activity compatible with a general monitoring function of
movement outcome and with focal attentional control.
CMAr has also been involved in the process of social error
detection (Yoshida et al., 2012).

pPFC cluster
The main inputs to this cluster stem from (i) voPFC

(14.8); (ii) dmPFC (13.4); (iii) pIPL(20.7); (iv) CING (20.6); (v)
MI-dmPM (7.6); and (vi) pmSPL (15.3).

The areas of this cluster occupy the caudal part of the
prefrontal cortex, including the FEF and a set of neigh-
boring areas affiliated with the frontal oculomotor system.
FEF (8Ad, 8Av) corresponds to an architectonically dis-
tinct area (Stanton et al., 1989; Gerbella et al., 2007) from
which intracortical microstimulation with low current in-
tensities evokes saccades (Bruce et al., 1985). Larger-
and smaller-amplitude saccades are represented more
dorsally and more ventrally, respectively (Bruce et al.,
1985). Neurons in this area fire before the initiation of
saccadic eye movements and display motor, visual, or
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visuomotor properties (Moschovakis and Highstein, 1994;
Schall and Thompson, 1999; Lynch and Tian, 2006). Fur-
thermore, the FEFs are involved in visual attention (Moore
et al., 2003; Moore and Fallah, 2004), including covert
attention (Thompson et al., 2005) and salience (Kastner
and Ungerleider, 2000; Thompson and Bichot, 2005; Cor-
betta and Shulman, 2011; Petersen and Posner, 2012).
Neurons in FEF also encode the amount of reward
(Roesch and Olson, 2003).

The SEF (Schlag and Schlag-Rey, 1987) is a sector of
F7 where intracortical microstimulation evokes saccades
and neurons are modulated by both visual stimuli, sac-
cades and pursuit eye movements. The SEF contains a
congruent representation of contralateral saccades and
visual space, thought to participate in the visuomotor
transformation for saccade generation. Neural activity in
this area also predicts antisaccades (Schlag-Rey et al.,
1997) and relates more to conditional oculomotor learning
than to standard visuomotor control (Chen and Wise,
1995a, 1995b). SEF neurons also fire differentially as a
function of the location on an object to which an eye
movement is directed, suggesting an object-centered
representation of visual space (Olson and Gettner, 1996).
Conflict monitoring is another function proposed for this
region (Stuphorn et al., 2000; Emeric et al., 2010; see,
however, Nakamura et al., 2005), together with error and
reward signaling (Emeric et al., 2010).

In area 8B, intracortical stimulation evokes eye and ear
movements (Mitz and Godschalk, 1989; Bon and Luc-
chetti, 1994; Schall et al., 1995a). Neurons in this area are
modulated by eye movement, regardless of the presence
of a visual target (Mitz and Godschalk, 1989; Schlag et al.,
1992), and respond to visual or acoustic stimuli (Ito, 1982;
Azuma and Suzuki, 1984; Vaadia et al., 1986), suggesting
their involvement in visual and acoustic processing for the
control of orienting movements in space. A sector of this
area also hosts neurons encoding different auditory envi-
ronmental stimuli (Lucchetti et al., 2008; Lanzilotto et al.,
2013). When an auditory stimulus is presented while the
animal fixates on a visual one, the activity of some audi-
tory and auditory-motor neurons is suppressed (Lucchetti
et al., 2008).

The cortical sector rostral to the FEF and including the
caudalmost part of both dorsal and ventral area 46 is
involved in the generation and control of visually-guided
and memory-guided saccades (Funahashi et al., 1993;
Takeda and Funahashi, 2002; Watanabe et al., 2006;
Kuwajima and Sawaguchi, 2007), as well as in controlling
eye vergence and accommodation (Gamlin and Yoon,
2000). Indeed, this cortical sector has already been in-
cluded in the oculomotor cortical network and is consid-
ered part of the so-called prefrontal eye field (Lynch and
Tian, 2006). The caudal part of area 46 should correspond
to a posterior region of PFC where neural activity in
monkeys relates to hierarchical representation of task
events (Sigala et al., 2008). This region, together with area
13, participates in the transformation of the outcome of
economic decisions into motor plans (Cai and Padoa-
Schioppa, 2014).

The functional properties of area 45B remain to be fully
elucidated. Functional MRI (fMRI; Premereur et al., 2015)
and 2-deoxyglucose (Moschovakis et al., 2004) data have
shown activation during the execution of saccades, fitting
well with the proposed affiliation of this area to the ocul-
omotor frontal system, as indicated by its connectivity
pattern. A significant proportion of neurons in this zone
display visual shape selectivity, and fMRI data have re-
vealed activation for the observation of objects and faces
(Denys et al., 2004; Peng et al., 2008; Tsao et al., 2008). It
has been proposed that area 45B is a “pre-oculomotor”
area involved in guiding the exploration of visual scenes
for the perception of objects, actions, and faces (Gerbella
et al., 2010). Consistent with this view, a recent study
(Bichot et al., 2015) shows that neurons in the ventral
pre-arcuate region encode features-based attention and
are the source of this information for the FEF. Finally, there
is evidence that area 45, together with areas 9, 46, and
47/12l, is part of a lateral prefrontal network related to
representation of decision values, since its neurons en-
codes one, over multiple, decision variables (Kennerley
et al., 2009).

dmPFC cluster
This cluster is primarily connected with the (i) CING (27);

(ii) ventral orbitofrontal areas (voPFC, 19.0); and (iii) ocu-
lomotor and attention-related areas of the frontal lobe
(pPFC,11.9) and has scant parietal connections.

This cluster mostly includes dorsomedial prefrontal ar-
eas putatively involved in self-referential functions, such
as monitoring previous behavior to guide subsequent
choices (Petrides et al., 2002; Petrides, 2005), and rostral
prefrontal areas involved in higher-order aspects of exec-
utive control of behavior, such as episodic control
(Koechlin and Summerfield, 2007).

Neurophysiological data have shown that area 9 is
involved in the selection of abstract response strategies
for cognitive problems (Genovesio et al., 2005), as well as
in the representation and memory of previous and future
goals (Genovesio et al., 2006), functions shared with area
46d. Area 9 is also involved in the selection of response
tactics (Matsuzaka et al., 2012) and the transformation of
tactics into action (Matsuzaka et al., 2016). Based on
intracortical microstimulation data, it has been recently
proposed that lateral area 9 and the adjacent part of
dorsal area 46 (46dr) could be involved in the control of
goal-directed orienting behaviors and gaze shift control
(Lanzilotto et al., 2015).

To our knowledge, there are no functional studies in
which neural activity has been unequivocally recorded
from area 46dr. However, a recent electrophysiological
study of area 46, in which recording sites involved the
rostral part of both dorsal and ventral 46, reported neural
activity related to the use of abstract response strategies
for guiding motor behavior (Tsujimoto et al., 2011).

Area 10, also referred to as fronto-polar cortex, in hu-
mans has properties similar to those reported for area 9 in
human social cognition (Amodio and Frith, 2006; Gilbert
et al., 2006; Yoshida et al., 2012). A different view holds
that this region is important when in uncertain conditions
subjects select their action on the basis of a flexible use of
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exploratory and exploitative strategies (Daw et al., 2006).
Several authors have discussed the possibility that this
region is unique to humans (Sallet et al., 2013); therefore,
a discussion of data from human lesion and fMRI studies
in the frame of current knowledge on area 10 in monkeys
would be problematic. The only available cell recording
study of area 10 (Tsujimoto et al., 2010) in behaving
monkeys shows that neural activity is modulated by the
evaluation of decision outcomes. In fact, rather than rep-
resenting task events or strategies, as in more posterior
parts of prefrontal cortex, cell modulation appears at the
time of reward delivery. Consistent with this interpretation
are the consequences of lesions in monkeys (Mansouri
et al., 2015) trained in an analog of the Wisconsin Card
Sorting Test. The results of that study suggest a role of
area 10 in redistributing executive control resources from
present to alternative tasks, so as to exploit new reward
opportunities. In the hypothesis of Mansouri et al. (2015),
area 10’s role would differ from that of more posterior
prefrontal areas, which seem to be more related to the
optimization of the current task performance.

Area 32 in monkeys has recently been redefined by
Vogt et al. (2013). Neural activity in this area is modulated
by both positive and negative subjective values, and its
microstimulation biases this representation toward nega-
tive decision-making, a behavior that is modulated by
anti-anxiety drugs (Amemori and Graybel, 2012). Lesions
in area 32 and in the anterior part of area 24 (Rudebeck
et al., 2006) result in a reduced interest in other individuals
and in the social signals coming from other monkeys,
suggesting that this region is also important for social
valuation.

Area 14 is a ventromedial orbitofrontal area located in a
region traditionally associated with object choices based
on value comparisons. In its anterior part (a14), neural
activity is modulated by reward magnitude and probability
(Strait et al., 2014), which is in line with previous studies
showing the relevance of value encoding (Padoa-
Schioppa, 2011). Interestingly, area 14 neurons display
anticorrelated tuning between offer values, suggesting
that these populations are involved in decision-making for
choice. Furthermore, neural activity in area 14 (Bouret and
Richmond, 2010) encodes the perceived value of task
events related to internal factors, such as reward size. A
lesion in area 14 in monkeys tested during different
reward-based tasks (Rudebeck and Murray, 2011a) im-
pairs learning to inhibit responses to a previously re-
warded object, whereas a lesion in area 11 and 13 impairs
rapid updating of object value related to selective satia-
tion. Thus, different subregions of orbitofrontal cortex
would encode different aspects of reward-based behavior
(for perspective from lesion studies see Rudebeck and
Murray, 2011b). Overall, these results are consistent with
theoretical models (Hunt et al., 2012) of value-based
decision-making and previous studies of brain activation
in humans (Rushworth et al., 2011; Levy and Glimcher,
2012).

The dmPFC cluster also includes area 45A, located in
the caudal VLPF cortex. Functional data show that this
sector is involved in multisensory processing of commu-

nication stimuli (Romanski and Averbeck, 2009) and acti-
vates during action and face observation (Nelissen et al.,
2005; Tsao et al., 2008; Kuraoka et al., 2015), suggesting
a role in communication behavior. Moreover, this region is
activated during eye movement (Premereur et al., 2015).
Based on these properties and on connectional data (Ger-
bella et al., 2010, Saleem et al., 2014), it is possible that
this area represents the neural substrate for gaze direc-
tion in communication behavior, an important communi-
cative signal for social interactions (e.g., Emery, 2000;
Ghazanfar et al., 2006).

voPFC cluster
This orbitofrontal cluster receives its main inputs from

the areas of (i) CING (17.8); (ii) pPFC (12.4); (iii) dmPFC
(9.2); (iv) aIPL (10.7); and (v) vPM (10.6).

This cluster occupies a large prefrontal territory includ-
ing VLPF areas mostly involved in executive control of
skeletomotor behavior, as well as orbitofrontal areas.
These seem to encode the significance of stimuli within
emotional contexts, identities of goods (in an economic
sense), and subjective value (Barbas, 2007; Grabenhorst
and Rolls, 2011; Padoa-Schioppa and Cai, 2011). Some
of the areas included in this cluster, such as 46vr, rostral
12r, 12l, and GrFO, so far defined based on architectonic
and/or connectional data, still lack a characterization in
terms of functional properties.

Functional studies have shown that in area 46vc, cells
are active during tasks requiring oculomotor responses
(e.g., Boch and Goldberg, 1989; Averbeck et al., 2006;
Ichihara-Takeda and Funahashi, 2007), whereas arm and
hand movement activity (e.g., Requin et al., 1990; Hoshi
et al., 1998, 2000) tended to be located more caudally and
more rostrally, respectively. These two distinct fields of
area 46vc take part in different clusters. Indeed, in rostral
area 46vc, executive functions appear to be finalized for
the control of hand, arm and, possibly, mouth movements
(Bruni et al., 2015; Simone et al., 2015). Area 46v appears
to encode context-related information for learning and
behavioral rules for action selection (e.g., Hoshi et al.,
1998; White and Wise, 1999; Hoshi et al., 2000; Murray
et al., 2000; Wallis et al., 2001). Specifically, 46vc-rostral
and the intermediate part of area 12r include neurons
coding contextual information used for selecting and
guiding object-oriented hand actions (Bruni et al., 2015).
Area 46v also appears to play a role in the organization of
sequential motor behavior (Saito et al., 2005) and in rep-
resenting multiple phases of behavioral events, providing
the basis for the temporal regulation of behavior (Saga
et al., 2011).

Area 12r contains visual neurons tuned to the identity or
features of objects (Wilson et al., 1993; Asaad et al., 1998)
and is critically involved in functions related to object
identity (Passingham, 1975; Mishkin and Manning, 1978;
Wang et al., 2000). Accordingly, this area has been con-
sidered to play a role in working memory for objects and
shapes (Wilson et al., 1993), in conditional learning based
on object identity (Passingham, 1993; Passingham et al.,
2000), and in encoding category membership (Freedman
et al., 2002; Miller et al., 2002). The intermediate area 12r
hosts neurons with hand-related activity (Simone et al.,
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2015; Bruni et al., 2015). These data, as well as connec-
tivity studies (Borra et al., 2011), suggest a role in retrieval,
retention, and manipulation of information on objects or
hand–object interactions for controlling object-oriented
hand actions.

Areas 11 and 13 are treated together, since they show
similar, although complementary, functional properties. In
these areas, as well as in area 14, neural activity encodes
reward predicting signals, reward expectation, and re-
ceipt (Tremblay and Schultz, 1999). Therefore, these ar-
eas have been considered as crucial nodes in the
distributed system involved in encoding the motivational
value of rewarding consequences of actions. In an orbito-
frontal region that probably includes this area, neural
activity is related to reward value (Roesch and Olson,
2004), expected time of delivery (Roesch and Olson,
2005), and risk (O’Neill and Schultz, 2010; Schultz, 2015,
2016 and references therein). Neurons in this region also
encode economic value, since their activity relates to the
offered value and chosen goods (Padoa-Schioppa and
Assad, 2006), rather than the chosen action. Cai and
Padoa-Schioppa (2014) have studied neural activity in
area 13 and dorsal and ventral prefrontal cortex, most
probably in areas 46dc and 46vc. In both regions, before
target presentation, neurons encoded the choice out-
come in goods space; after target presentation, they pro-
gressively encoded target location and motor plan. This
suggests that a transformation of information from choice
outcome into plans for action occurs, thanks to which
signals from areas 46v and 46d are addressed to the
frontal premotor cortex (for underlying connectivity, see
Takada et al., 2004; Petrides and Pandya, 2006; Takahara
et al., 2012; Gerbella et al., 2013; Saleem et al., 2014).
Furthermore, neurons in area 13m encode the same
value-related computations across different economic
decisions (Xie and Padoa-Schioppa, 2016). In area 13,
information about rewarding and aversive stimuli are
combined, suggesting that both types of stimuli are pro-
cessed by the same neuronal population (Morrison and
Salzman, 2009). Finally, neural activity in areas 11/13
(Bouret and Richmond, 2010) is modulated by the per-
ceived value of task events provided by external stimuli.

The analysis of the cluster’s functional composition and
inputs described above indicates that in both parietal and
frontal cortex, whereas some clusters receive projections
from many sources, others are connected with only a few
other clusters in a rather selective fashion. As an example,
in frontal cortex, the cluster with more inputs (no. 11) is the
CING one; those with the least inputs (no. 7) were dmPFC
and voPFC. The parietal clusters with the most inputs (no.
11) was the aIPL; the one with the least inputs (no. 5) was
the aSPL. As an index of the probability of connections,
for each cluster we computed the entropy, which esti-
mates whether clusters received their inputs from a small
set of other clusters or an equal number of inputs from all
other clusters (Figs. 4 and 5). Therefore, a broad distribu-
tion of inputs will have maximum entropy, and a situation
in which all the inputs stem from just another cluster will
have minimum or zero entropy. Considering that there
were 11 inputs, the frontal cluster with highest entropy is

the CING (2.16 nats), and that with the smallest entropy,
the voPFC (1.32 nats). In parietal cortex, the highest
entropy was observed in the pmSPL (1.92 nats), and the
lowest in aSPL (1.44 nats). The average entropy of parietal
and frontal areas was 1.69 and 1.67 nats, respectively
(therefore very similar), indicating that both sets of areas
tend to have a similar architecture of cortical connectivity.

The analysis of the relative strength of the inputs to
each cluster provides an example of the connections
between parietal and frontal cortex and their degree of
reciprocity (Markov et al., 2014) and aids comprehension
of the overall design of the parieto-frontal system (Fig. 6),
as highlighted in the Discussion.

The intraparietal connections between SPL and IPL
areas: clusters of parietal areas

The clusters of parietal areas identified from parieto-
frontal connectivity were also identified on the basis of the
intrinsic connectivity between SPL and IPL areas (Fig. 7).
In the SPL (Fig. 7A), we identified the same pmSPL cluster
as before, however, now also including MIP. The medi-
odorsal SPL cluster (mdSPL) was formed by areas PEc
and PEci. A third cluster in the anterior part of SPL (aSPL)
included areas PE, SI, and PEa, the latter to be consid-
ered as a new entry in this cluster, since it belonged to the
mdSPL cluster, when the cluster affiliation of parietal
areas was decided on the basis of their connections with
frontal cortex. These clusters were very robust, since in
the best 100 trees the first occurred 85 times, the second
68 times, and the third 68 times. Thus, the cluster affilia-
tion of cortical areas within parietal cortex can change
depending on which set of connections is considered,
medium-range intraparietal or long-range parieto-frontal,
which might have intriguing functional consequences.

In the IPL (Fig. 7B), we found the same aIPL and pIPL
clusters previously identified from fronto-parietal connec-
tivity. They were robust, both occurring 100 times in the
best 100 trees.

The dominant inputs to these clusters are shown in Fig.
7C. With the exception of the mdSPL cluster, all other
clusters entertain reciprocal SPL–IPL connections. The
parietal cluster with highest entropy was mdSPL (1.42),
whereas that with smaller entropy was pIPL (1.17).

The average entropy of the connectivity of SPL and IPL
areas was 1.33 and 1.18 nats, respectively, which sug-
gests a slightly more complex organization of inputs of the
former relative to the latter. The overall organization of
these internal SPL–IPL connections is schematized in Fig.
8 and discussed below.

Discussion
This study shows that parietal and frontal areas sharing

cortical connectivity can be grouped into discrete clus-
ters, within which cortical areas are linked by local con-
nections with short average path length, whereas distant
areas are targeted through long-distance corticocortical
pathways. Within each cluster, cortical areas share sev-
eral functional properties, thus shaping specific neural
domains where cell activity is tuned in a preferential fash-
ion to a given function, while representing at the same
time other related information, although with different
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weight. Thus, the term domain refers to a cluster of areas,
as identified by the statistics of their connectivity and their
functional properties. Cortical connections between func-
tionally equivalent domains sculpt information processing
systems that operate on the basis of different inputs and
distribute several outputs. Thus, the grand design of the
network is redundant for the several entry or command
nodes and outflow pathways, which can be selected on
the basis of the congruence between properties of the
node and task demands, as first hypothesized by Mount-
castle (1978).

Parieto-frontal domains and parieto-frontal systems
The analysis of parieto-frontal connectivity (Figs. 6 and

9) reveals that the parieto-frontal system originates from
the combinatorial (visual, eye, hand) visuomotor domains
of postero-medial parietal areas (pmSPL; areas PGm,
V6A, 31) and lateral (pIPL, area Opt) parieto-occipital

cortex, which distribute visuomotor information to both
SPL (mdSPL) and IPL (aIPL) domains.

Dorsal parieto-occipital areas encode the early visual,
eye, and hand signals necessary for eye–hand coordina-
tion during reaching and other eye visuomotor functions
related to navigation in extrapersonal space. As such,
they can serves as an intermediate step in the coordinate
transformation from retinal to allocentric coordinates,
which is refined in the hippocampus. This information flow
is also addressed to area F7 in the MI-dmPM domain and
can be regarded as forming an early eye–hand coordina-
tion and navigation system. In fact, reversible inactivation
of PGm impairs navigation in virtual environments (Sato
et al., 2006). Lateral parieto-occipital areas, such as Opt,
also distribute visual, eye- and hand-related information,
which is however addressed to selected areas (LIP) within
the same pIPL domain, as well as to areas (PG) that
belong to a more rostral IPL domain (aIPL). This is the

Figure 6. Parieto-frontal information systems. Organization of main cortical connections among parietal and frontal clusters. For each
cluster, the arrow size indicates the strength (mean value across input areas; see Materials and Methods) of inputs (scale: 0–100).
Note that the strongest detected mean input was equal to 50. Main systems are highlighted by colored thicker lines.
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origin of a system encoding reaching and complex man-
ual action, as will be detailed below.

An important stream emerges from the projections of
the parieto-occipital (V6A) and medial (PGm) parietal ar-
eas to the arm-dominant visuomotor domain of SPL (md-
SPL; PEc, MIP, PEa), which in turns projects to the frontal

arm motor output domain (MI-dmPM). This system en-
codes arm kinetics, kinematics, and the coordinate trans-
formation underlying planning, execution, correction, and
suppression of visual reaching (Fig. 9). This is the dorsal
reaching system (Caminiti et al., 1996; Johnson et al.,
1996; Battaglia-Mayer et al., 2000, 2001; Marconi et al.,

Figure 7. Trees fit of the data and intrinsic parietal inputs. Consensus trees of superior (A) and inferior (B) parietal clusters defined
on the basis of the SPL–IPL connections. C, Spider plots displaying the mean values (scale: 0–100) of parietal inputs to any given SPL
and IPL cluster. The cluster entropy is also reported. Conventions and symbols as in Figs. 2 and 4.
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2001), which also participates in representation of the
body scheme and its extension after tool use, thanks to its
link with the anterior parietal somatosensory domain
(aSPL). Reciprocal intraparietal connections link these
two domains, as well as mdSPL with the dorsal parieto-
occipital areas (see also Fig. 8). This reentrant signaling
within SPL can provide information about hand position
and limb geometry essential for the visuomotor transfor-
mation underlying reach planning. The reciprocal connec-
tivity between the aSPL domain (areas PE/SI) and dorsal
premotor and motor cortex (Figs. 6 and 9) can subserve
somatosensory control of arm and hand movement. This
network’s design and function are consistent with both
the consequences of reversible inactivation of mdSPL in
monkeys (Battaglia-Mayer et al., 2013), as well as with the
observation that SPL and parieto-occipital lesions in hu-
mans result in optic ataxia.

Another crucial function concerns the representation of
hand grasping and grip type (Fig. 9) and others’ action
and intention understanding. Grasping an object of inter-
est requires visual information about the object’s shape,
physical properties, orientation, and expected weight, so
as to specify the appropriate hand kinetics and kinemat-
ics. In this process, the necessary visual information can
be supplied through internal IPL signaling between se-
lected areas of the oculomotor intention and attention
domain (pIPL, LIP) and those of the anterior IPL parietal
domain (aIPL, AIP), as well as from temporal areas (Borra

et al., 2008) conveying information about object identity.
The projection arising from AIP and PFG to F5a in the
ventral premotor domain (vPM), and those from F5a to
areas 46vc–rostral and intermediate-12r in the lateral sec-
tor of the orbitofrontal domain (voPFC), shape the lateral
grasping system (Fig. 9; Borra et al., 2014), which is
therefore endowed with all the richness derived from the
specification of action goal and strategy, and object
affordance. Reversible inactivation of AIP results in a
dramatic impairment of hand preshaping in monkeys
trained to grasp objects of different features (Gallese
et al., 1994).

This system shares areas PFG and part of F5 with the
mirror system (not shown in Fig. 9), which provides an
observation/execution matching mechanism for other’s
action and intention recognition (Rizzolatti et al., 2014).

The posterior visuomotor domain of IPL (pIPL) and the
ventral premotor cortex (vPM) domain, thanks to the con-
nections between VIP and F4, shape a parieto-frontal
system (not shown in Fig. 9) dedicated to limb movements
and probably to ethologically relevant actions. This sys-
tem might implement a transformation of a multisensory
peripersonal representation of space into a multimodal
body-centered action space. Consistent with this inter-
pretation are the consequences of lesions of the periar-
cuate areas of the ventral premotor domain (vPM), i.e.,
neglect of peripersonal space (Rizzolatti et al., 1983;
Schieber, 2000).

Figure 8. Overall view of SPL–IPL information flows. Organization of main cortical connections among SPL and IPL clusters. For
each cluster, the arrow size indicates the strength (mean value across input areas; see Materials and Methods) of inputs (scale:
0 –100). Note that the strongest detected mean input was equal to 70.
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Beyond VIP, the posterior IPL domain (pIPL) includes
areas Opt, LIP, and MST, which shape the IPL oculomotor
intention and attention domain. This, together with the
frontal eye field motor output domain of the posterior
prefrontal cortex (cluster pPFC), forms a complex system
devoted to oculomotor intention and control, selective
visual attention, visuo-acoustic orienting and communica-
tion, and recognition of numerosity. The visual functions
encoded by this system also include the analysis of 3D
object properties, large-scale motion analysis for heading
perception, and manual interception of moving targets.
This system is also involved in the transformation of ac-
tion choices into motor plans and participates in encoding
decision value, thus providing a path from the reward and
decision value domain of ventral orbitofrontal cortex
(voPFC) to the motor output. Therefore, this system re-
lates to oculomotor intention and decision-making, atten-
tion, visual analysis of objects structure and motion,
numerosity, and heading perception. The function en-
coded in this system can explain, among others, why
human IPL lesions result in hemispatial neglect (Vallar and
Bolognini, 2014), and acalculia (Nieder and Dehaene,
2009; Nieder, 2016), depending on where they occur in
the parieto-frontal gradient.

The CING cluster (Fig. 6) is the target of projections
from all SPL domains and projects to them, mostly to the
eye–hand coordination and navigation domain (pmSPL)
and to the SPL hand-dominant domain. It also entertains
reciprocal connections with the frontal motor output do-
main (MI-dmPM). The CING domain is a target of the
dopaminergic and serotoninergic systems, as well as of
the noradrenergic outflow of the locus coeruleus, all ex-
erting a strong modulatory influence on neural activity,
and probably also on information transfer through corti-
cocortical connections. Therefore, this domain allows sig-
nals from the command mechanism of the parietal lobe to
be combined with internal drive for action selection and
monitoring, related to encoding visually driven, internally
generated and remembered movements, as well as motor
sequences. In this domain reward, decision value and
choice outcome meet motivation and can be evaluated by
the error monitoring system, thanks to the input (Fig. 9)
from the reward and decision value domain of the ventro-
orbital prefrontal cortex (voPFC). Interestingly, the CING
domain is reciprocally linked to the goal and strategy
domain of dorsomedial prefrontal and polar frontal cortex
(dmPFC; Fig. 9). This interplay can allow action goal,
strategy, and tactics to be evaluated, and eventually ve-

Figure 9. Parietal and frontal domains and parieto-frontal information systems. Parietal, frontal, and prefrontal domains underlying the
dorsal reaching system, the lateral grasping system, the lateral reach and action space system, and the oculomotor intention and
attention system. The domain acronyms (pmSPL, pIPL, etc.) correspond to those of the clusters. However, in each domain, only the
areas (ovals) that participate in any given systems are indicated.
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toed, by the monitoring system of the cingulate cortex.
Lesions involving the mid-dorsolateral prefrontal cortex,
including areas 46d and 9, impair performance on working
memory tasks that require monitoring the selection of
stimuli from a set or the occurrence of stimuli from an
expected set (Petrides, 1991, 2000). The cingulate do-
main can be considered a hub for internal drive, cognition,
motor intention, and performance monitoring. Therefore,
the complex interplay of parietal, frontal, prefrontal, and
cingulate domains can tentatively be regarded as forming
a cognitive–motor intention and executive function mon-
itoring system.

The ventral orbitofrontal domain (voPFC) includes or-
bitofrontal areas involved in encoding reward and subjec-
tive decision value and VLPF areas involved in controlling
skeletomotor behavior. Orbitofrontal areas encode re-
wards in an explicit fashion independently from sensory
signals, in the form of values related to objects, actions,
and differences aimed at economic decision-making
(Schultz, 2015, 2016). Beyond the above relations with the
cingulate domain, the outflow of the orbitofrontal opera-
tions can be addressed to the motor output through the
connections of VLPF areas of this domain with vPM and
IPL areas or indirectly through the pPFC domain.

SPL–IPL connections and functional interplay with
the parieto-frontal network: the lateral reach and
action space system

The design of the medium-range connections between
SPL and IPL areas (Figs. 8 and 9) details the participation
of the dorsal parieto-occipital areas (pmSPL; V6A, PGm)
and the visuomotor areas (PEc, MIP and PEa) of the SPL
hand-dominant visuomotor domain (mdSPL) to the dorsal
reaching system, as illustrated above.

However, closer scrutiny of this intraparietal network
and its relationships with the parieto-frontal system re-
veals the existence of another relevant action system (Fig.
9), which however stems from area Opt. This parieto-
occipital area is characterized by a graded coexistence of
visual, eye, and hand related-signals in neural activity
(Battaglia-Mayer et al., 2005, 2007). Opt projects to area
PG (Rozzi et al., 2006), which in turns projects to MIP and
PEc in the SPL arm-dominant visuomotor domain (md-
SPL), through which all SPL operations seem to reach the
frontal motor output domain (Johnson et al., 1996;
Battaglia-Mayer et al., 2001; Marconi et al., 2001). There-
fore, the outflow of this IPL system uses the SPL segment
of the dorsal reaching system to address its messages to
the dorsal premotor and motor cortex. This shapes the
lateral reach and action space system, in which area PG
plays a pivotal role as a parietal broadcasting center
allowing cross-talk between the SPL dorsal reaching and
this IPL lateral action systems. The latter, beyond visual
reaching to both stationary and moving targets, pro-
cesses visuospatial information underlying complex ac-
tions, such as assembling parts to construct an object or
analyzing maze architecture and finding its exit. At vari-
ance from fast reaching, these tasks unfold over long
periods of time and require continuous access to sensory
information and constant evaluation of intermediate ac-

tion outcomes. Within this system, the representation of
action space is uniform during memory or delay periods
intervening between the visual analysis of the workspace
and the onset of eye and hand action, whereas it be-
comes anisotropic and highly skewed toward contralat-
eral space at the onset of actions relying on different
forms of eye–hand coordination movement (Battaglia-
Mayer et al., 2005), solution of visual mazes (Crowe et al.,
2004, 2005), and construction tasks (Chafee et al., 2005,
2007; Crowe et al., 2008). This is in keeping with the
difficulties of action initiation typical of directional hypo-
kinesia in patients suffering neglect after inferior parietal
lesion and with the consequence of IPL lesion in humans
suffering from constructional apraxia (Kleist, 1934).

The eye–hand coordination network
All information processing systems described above

imply eye–hand coordination, which seems to percolate
from the design of the intraparietal and parieto-frontal
networks, in which these systems are embedded. This
edifice can be idealized as formed by five antero-posterior
pillar domains, oriented medio-laterally in posterior pari-
etal, anterior parietal, cingulate, frontal, and prefrontal
cortex (Fig. 9). Early combination of retinal, eye and hand
signals can occur in the dorsal (areas PGm and V6A) and
lateral (area Opt) parieto-occipital nodes of the posterior
parietal domains. V6A and PGm are the main source of
visual input to the areas of the SPL arm-dominant visuo-
motor domain (mdSPL; MIP, PEc, PEa), which projects to
dorsal premotor and motor cortex (MI-dmPM domain).
Area Opt projects to LIP, in the IPL oculomotor intention
and attention domain (pIPL). In this context, it is important
to stress that there are not direct connections between
SPL areas MIP, PEc, PEa, and LIP (see Figs. 8 and 9).
However, a parallel signal concerning the accumulation
of decision variables is addressed to both MIP and LIP
before a hand (MIP) or either an eye or a hand move-
ment (LIP) is made (de Lafuente et al., 2015). When the
decision outcome is an eye movement, neural activity in
MIP is attenuated. Thus, an early temporal locking of
hand and eye movement onset time can be achieved
through lateral communication between dorsal and lat-
eral parieto-occipital areas, and LIP (pIPL domain). The
presaccadic outflow from LIP is addressed to the FEF
and the caudal part of area 46 in the prefrontal eye
motor output domain, thus shaping a parieto-frontal
oculomotor intention and attention system that also
provides the allocation of visual attention to salient eye
and hand movement targets.

The subcortical parietal and frontal outflows to motor
structures converge on the mesencephalic reticular for-
mation (MRF) and the intermediate and deep layers of the
superior colliculus (SC), which receive not only eye but
also a substantial proportion of arm signals, which prob-
ably confer reach-related activity to the SC (Werner, 1993;
Werner et al., 1997a, b; Reyes-Puerta et al., 2011). The
final temporal locking between the eye and the hand
might occur at this subcortical stage. The output of pre-
motor and motor cortex is addressed to spinal interneu-
rons and motor neurons controlling arm and hand
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movement, where it might also be integrated with that
coming from the MRF, while the SC projects to the ocu-
lomotor centers of the brainstem.

The information transfer from caudal to rostral domains
allows coordinate transformation and leads to the eye and
hand motor output. Reentrant signaling between areas
belonging to different rostro-caudal parietal and frontal
domains can subserve diverse functions, such as coordi-
nate transformation, formation of efferent copies or cor-
ollary discharges of eye and hand motor commands,
sensory control of movement and evaluation of the sen-
sory consequences of actions, central representation of
body image, and control of intermediate steps of complex
tasks (such as tool use, object construction, and maze
analysis and solution), among many others. This informa-
tion transfer is characterized by temporally dispersed
conduction delays, resulting from the wide spectrum of
axon diameters typical of interareal communication
(Caminiti et al., 2009, 2013; Innocenti et al., 2014). This
seems to expand the number of oscillatory regimes of the
cerebral cortex, and therefore might result in an increase
of the computational power of parieto-frontal networks.

Conclusions
In both parietal and frontal cortex, different areas can

be grouped into discrete clusters or domains, based on
their cortical connectivity and functional properties. Areas
belonging to any given domain display partially common
functional properties, thus allowing a flexible combination
of retinal, eye, and hand signals necessary for different
functions, therefore suitable for satisfying different task
demands. These domains combine signals from different
modalities and effectors, although with different degrees
of dominance, which are determined by the domain loca-
tion in the parieto-frontal functional gradient. In the more
posterior parietal domains, retinal and eye signals domi-
nate over hand information, whereas in the rostralmost
parietal domains, the opposite is true. A similar gradient is
oriented from rostral to caudal in frontal cortex. Thus, with
exclusion of FEF and motor cortex, there are not effector-
specific domains in parietal and frontal cortex, but rather
hand-dominant and eye-dominant domains. Therefore,
models of eye–hand coordination based on the interplay
between hand- and eye-specific modules are not consis-
tent with available knowledge on cortical organization.
Although at the output level the eye and hand motor
control centers are largely segregated in the brain, eye–
hand coordination seems to occur first in the posterior
parietal cortex, thanks to internal reentrant signaling be-
tween different hand- and eye-dominant domains located
in the SPL and IPL, where the initial temporal locking
between eye and hand coordinate transformation and
movement seems to occur.

The parietal outflow pathways toward the premotor and
motor output domains of the frontal lobe shapes different
information processing systems, such as the dorsal
reaching system, the lateral reach and action space sys-
tem, the lateral grasping system, the mirror system, and
the oculomotor intention and attention system. These
different systems mostly rely on independent, parallel

pathways, although at times they rely on common out-
flows, as to minimize connection costs and maximizing
information transfer efficiency.

The cingulate domain links motor intention with moti-
vation. Moreover, its interplay with the prefrontal cortex
domains, where the selection of goals and strategies and
the associated reward and economic decision value oc-
cur, might allow evaluation and monitoring of cognitive
motor operations, for error detection and correction
aimed at optimizing action outcome.

In conclusion, the logic of this edifice seems redundant,
in the sense that there are many access nodes and par-
allel outflow paths that can be set in motion by different
task demands. Thanks to this, different systems can use
common domains, which complicates the interpretation
of results of cortical lesions restricted to a single area.
Studies of axon diameters and lengths also indicate that
parietal and frontal areas communicate through tempo-
rally dispersed conduction delays that can produce an
expansion of the oscillatory regimes of the cortex. This is
consistent with the consequences of lesions that when
involving a single area are milder and less disruptive than
when affecting a distributed system, thus providing a
basis for interpreting neuropsychological syndromes as
the result of the collapse of interareal communication and
temporal dynamics.
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