
Fiat–Shamir for Highly Sound
Protocols is Instantiable

Arno Mittelbach1 Daniele Venturi2

1 Cryptoplexity, Technische Universität Darmstadt, Germany
2 Department of Computer Science, Sapienza University of Rome, Italy

mail@arno-mittelbach.de, venturi@di.uniroma1.it

Abstract. The Fiat–Shamir (FS) transformation (Fiat and Shamir, Crypto ’86) is a popular
paradigm for constructing very efficient non-interactive zero-knowledge (NIZK) arguments and
signature schemes using a hash function, starting from any three-move interactive protocol
satisfying certain properties. Despite its wide-spread applicability both in theory and in practice,
the known positive results for proving security of the FS paradigm are in the random oracle
model, i.e., they assume that the hash function is modelled as an external random function
accessible to all parties. On the other hand, a sequence of negative results shows that for certain
classes of interactive protocols, the FS transform cannot be instantiated in the standard model.
We initiate the study of complementary positive results, namely, studying classes of interactive
protocols where the FS transform does have standard-model instantiations. In particular, we show
that for a class of “highly sound” protocols that we define, instantiating the FS transform via a
q-wise independent hash function yields NIZK arguments and secure signature schemes. In the
case of NIZK, we obtain a weaker “q-bounded” zero-knowledge flavor where the simulator works
for all adversaries asking an a-priori bounded number of queries q; in the case of signatures, we
obtain the weaker notion of random-message unforgeability against q-bounded random message
attacks.
Our main idea is that when the protocol is highly sound, then instead of using random-oracle
programming, one can use complexity leveraging. The question is whether such highly sound
protocols exist and if so, which protocols lie in this class. We answer this question in the affirmative
in the common reference string (CRS) model and under strong assumptions. Namely, assuming
indistinguishability obfuscation and puncturable pseudorandom functions we construct a compiler
that transforms any 3-move interactive protocol with instance-independent commitments and
simulators (a property satisfied by the Lapidot-Shamir protocol, Crypto ’90) into a compiled
protocol in the CRS model that is highly sound. We also present a second compiler, in order
to be able to start from a larger class of protocols, which only requires instance-independent
commitments (a property for example satisfied by the classical protocol for quadratic residuosity
due to Blum, Crypto ’81). For the second compiler we require dual-mode commitments.
We hope that our work inspires more research on classes of (efficient) 3-move protocols where
Fiat–Shamir is (efficiently) instantiable.

Keywords. Fiat-Shamir transform, non-interactive zero-knowledge, signature schemes, indistin-
guishability obfuscation, standard model

1

Contents
1 Introduction 3

1.1 Fiat–Shamir NIZK and Signatures . 3
1.2 Positive and Negative Results . 3
1.3 Our Contributions . 5
1.4 Perspective . 5
1.5 Related Work and Open Questions . 6
1.6 Roadmap . 7

2 Technical Overview 7

3 Preliminaries 10
3.1 Notation . 10
3.2 q-Wise Independent Hashing . 11
3.3 Interactive and Non-Interactive Arguments . 11
3.4 Obfuscation . 13
3.5 Puncturable Pseudorandom Functions . 15

4 Fiat–Shamir NIZK 15
4.1 The Fiat–Shamir Transform . 15
4.2 A Selective Variant of Fiat–Shamir . 17
4.3 The FS-Collapse . 18
4.4 Putting it Together . 23
4.5 Obtaining the Required Properties . 23

5 Obtaining Small Soundness-Error-to-Guessing Ratio 24
5.1 The Compiler . 24
5.2 Security Analysis . 25

6 Obtaining Instance-Independence 31
6.1 The Compiler . 32
6.2 Security Analysis . 32

7 Fiat–Shamir Signatures 36
7.1 Identification and Signature Schemes . 36
7.2 Proof of Random-Message Unforgeability . 38
7.3 Obtaining the Required Properties . 40

2

1 Introduction
The Fiat–Shamir (FS) transformation [FS87] is a popular1 technique to build efficient non-interactive
zero-knowledge (NIZK) arguments and signature schemes, starting from three-round public-coin
(3PC) protocols satisfying certain properties. In a 3PC protocol the prover starts by sending a
commitment α, to which the verifier replies with a challenge β drawn at random from some space
B; finally the prover sends a reply γ and the verifier’s verdict is computed as a predicate of the
transcript (α, β, γ).

1.1 Fiat–Shamir NIZK and Signatures

We briefly review both the main applications of the FS transform below.

NIZK. A NIZK is a non-interactive protocol in which the prover—holding a witness w for
membership of a statement x in some NP-language L—can convince the verifier—holding just x—
that x ∈ L, by sending a single message π. NIZK should satisfy three properties. First, completeness
says that an honest prover holding a valid witness (almost) always convinces an honest verifier.
Second, soundness says that a malicious prover should not be able to convince the honest verifier
into accepting a false statement, i.e. a statement x 6∈ L; we speak of arguments (resp., proofs)
when the soundness requirement holds for all computationally bounded (resp., computationally
unbounded) provers. Third, zero-knowledge requires that a proof does not reveal anything about
the witness beyond the validity of the statement being proven.

Apart from being a fascinating topic, NIZK have been demonstrated to be extremely useful
for cryptographic applications (see, e.g., [GMW87, KZZ15, EL04, CL02, CHL05, DDN91]). NIZK
require a setup assumption, typically in the form of a common reference string (CRS).

Starting with a 3PC protocol, the FS transform makes it a NIZK by having the prover compute
the verifier’s challenge as a hash of the commitment α via some hash function H (with “hash key”
hk); this results in a single message π = (α, β, γ), where β = H(hk, α), that is sent from the prover
to the verifier.2 (The description of the hash function, i.e. key hk, is included as part of the CRS.)

Signatures. Digital signatures are among the most important and well-studied cryptographic
tools. Signature schemes allow a signer (holding a public/secret key pair (pk, sk)) to generate a
signature σ on a message m, in such a way that anyone possessing the public key pk can verify
the validity of (m,σ). Signatures must be unforgeable, meaning that it should be hard to forge a
signature on a “fresh” chosen message (even after seeing polynomially many signatures on possibly
chosen messages).

Starting with a 3PC protocol, the FS transform makes it a signature by having the signer
compute the verifier’s challenge as a hash of the commitment α, concatenated with the message
m, via some hash function H (with “hash key” hk); this results in a signature σ = (α, β, γ), where
β = H(hk, α||m).

1.2 Positive and Negative Results

We refer to the non-interactive system obtained by applying the FS transform to a 3PC protocol
(i.e., a NIZK or a signature scheme) as the FS collapse. A fundamental question in cryptography
is to understand what properties the initial 3PC protocol and the hash function should satisfy in

1There are over 3.000 Google-Scholar-known citations to [FS87], as we type.
2The value β is typically omitted from the proof, as the verifier can compute it by itself.

3

order for the FS collapse to be a NIZK argument or a secure signature scheme. This question has
been studied extensively in the literature; we briefly review the current state of affairs below.

Positive results. All security proofs for the FS transform follow the random oracle methodology
(ROM) of Bellare and Rogaway [BR93], i.e., they assume that the function H behaves like an
external random function accessible to all parties (including the adversary). In particular, a
series of papers [FS87, Oka93, PS00, AABN02] establishes that the FS transform yields a secure
signature scheme in the ROM provided that the starting 3PC is a passively secure identification
scheme. The first definition of NIZK in the ROM dates back to [BR93] (where a particular
protocol was analyzed); in general, it is well known that, always in the ROM, the FS transform
yields a NIZK satisfying sophisticated properties such as simulation-soundness [FKMV12] and
simulation-extractability [BPW12].

Barak et al. [BLV03] put forward a new hash function property (called entropy preservation3)
that allows to prove soundness of the FS transformation without random oracles; their result requires
that the starting 3PC protocol is statistically sound, i.e. it is a proof. Dodis et al. [DRV12] show
that such hash functions exist in case a conjecture on the existence of certain “condensers for
leaky sources” turns out to be true. Canetti et al. [CCR15] study the correlation intractability
of obfuscated pseudorandom functions and show a close connection between entropy preservation
and correlation intractability, but it remains open whether their construction achieves entropy
preservation or, in fact, whether entropy-preserving hash functions exist in the standard model. A
negative indication to this question was recently presented by Bitansky et al. [BDG+13] who show
that entropy-preservation security cannot be proven via a black-box reduction to a cryptographic
game.

Negative results. It is often difficult to interpret what a proof in the ROM means in the standard
model. This is not only because concrete hash functions seem far from behaving like random oracles,
but stems from the fact that there exist cryptographic schemes that can be proven secure in the
ROM, but are always insecure in the standard model no matter how we instantiate the hash
function [CGH98].

The FS transformation is not an exception in this respect. In their study of “magic functions”,
Dwork et al. [DNRS99] establish that whenever the initial 3PC protocol satisfies the zero-knowledge
property, its FS collapse can never be (computationally) sound for any implementation of the hash
function. Goldwasser and Kalai [GK03], building on previous work of Barak [Bar01], construct a
specially-crafted 3PC argument for which the FS transform yields an insecure signature scheme for
any standard model implementation of the hash function; this in particular means that the random
oracle in the FS transform cannot be universally instantiated on all 3PC arguments.

Recently, Bitansky et al. [BGW12] and Dachman-Soled et al. [DJKL12] (see also [BDG+13])
show an unprovability result that also covers 3PC proofs. More in detail, [BGW12] shows that the
FS transform cannot always preserve soundness when starting with a 3PC proof, under a black-box
reduction to any falsifiable assumption (even ones with an inefficient challenger). [DJKL12] shows a
similar black-box separation (although only for assumptions with an efficient challenger) for any
concrete proof that is honest-verifier zero-knowledge against sub-exponential size distinguishers. In
a related paper, Goyal et al. [GOSV14] obtain a negative result for non-interactive information-
theoretically secure witness indistinguishable arguments.

3Entropy preservation roughly says that for all efficient adversaries that get a uniformly random hash key hk and
produce a correlated value α, the conditional Shannon entropy of β = H(hk, α) given α, but not hk, is sufficiently
large.

4

1.3 Our Contributions

The negative results show that, for certain classes of interactive protocols, the FS transform cannot
be instantiated in the standard model. We initiate the study of complementary positive results,
namely, studying classes of interactive protocols where the FS transform does have a standard-model
instantiation. We show that for a class of “highly sound” protocols that we define, instantiating
the FS transform via a q-wise independent hash function yields both a NIZK argument in the CRS
model and a secure signature scheme. In the case of NIZK, we obtain a weaker “q-bounded” zero-
knowledge flavor where the simulator works for all adversaries asking an a-priori bounded number of
queries q; in the case of signatures, we obtain the weaker notion of random-message unforgeability
against q-bounded random message attacks, where the forger can only observe signatures on random
messages and has to produce a forgery on a fresh random message.

Very roughly, highly sound protocols are a special class of 3PC arguments and identification
schemes satisfying three additional properties: (P1) The honest prover computes the commitment
α independently of the instance being proven and of the corresponding witness; (P2) The soundness
error of the protocol is tiny, in particular the ratio between the soundness error and the worst-case
probability of guessing a given commitment is bounded-away from one; (P3) Honest conversations
between the prover and the verifier on common input x can be simulated knowing just x, and
moreover the simulator can fake α independently of x itself.

We are not aware of natural protocols that are directly highly sound according to our definition.
(But we will later discuss that, e.g., the Lapidot-Shamir protocol [LS91] partially satisfies our
requirements.) Hence, the question is whether such highly sound protocols exist and, if so, which
languages and protocols lie in this class. We answer this question in the affirmative in the CRS model
and under strong assumptions. Namely, assuming indistinguishability obfuscation, puncturable
pseudorandom functions and equivocal commitments, we build a sequence of two compilers that
transform any three-move interactive protocol with instance-independent commitments (i.e., property
P1) into a compiled protocol in the CRS model that satisfies the required properties. Noteworthy,
our compilers are language-independent, and we know that assuming one-way permutations three-
move interactive protocols with instance-independent commitments exist for all of NP. We refer
the reader to Section 1.4 for a more in-depth interpretation of our results.

Our result avoids Dwork et al. [DNRS99], because we start from a protocol that is honest-verifier
zero-knowledge rather than fully zero-knowledge. Note that our approach also circumvents the
negative result of [BGW12, GOSV14] as our technique applies only to a certain class of 3PC
arguments. Furthermore, we circumvent the black-box impossibility result [DJKL12] by using
complexity leveraging and sub-exponential security assumptions.

1.4 Perspective

The main contribution from our perspective is to initiate the study of restricted positive standard-
model results for the FS transform. Namely, we show that for the class of highly sound protocols,
the FS transform can be instantiated via a q-wise independent hash function (both for the case
of NIZK and signatures). This is particularly interesting given the negative results in [DNRS99,
GK03, BDG+13].

An important complementary question is, of course, to study the class of highly sound protocols.
Under strong assumptions, our compilers show that highly sound protocols exist for all languages in
NP. However, the compilers yield protocols in the CRS model and, at least for the case of NIZK,
as we discuss now, one has to take particular care in interpreting positive results about the FS
transform applied to 3PC protocols in the CRS model.

5

It is well known that in the CRS model one can obtain a NIZK both for NP-complete lan-
guages [BFM88] and for specific languages [GS08]. Let L be a language. Given a standard 3PC
protocol for proving membership of elements x ∈ L, and with transcripts (α, β, γ), consider the
following dummy “compiler” for obtaining a 3PC protocol for L in the CRS model. The first
message α∗ and the second message β∗ of the compiled protocol are equal to the empty string ε;
the third message is a NIZK proof γ∗ that x ∈ L. Note that the FS transform is easily seen to
be secure (without random oracles) on such a dummy protocol, the reason for this being that α∗
and β∗ play no role at all in the obtained 3PC! Further note that this artificial “compiler” actually
ignores the original protocol, and hence it does not rely on any of the security features of the
underlying protocol. Regrettably, the above example does not shed any light on the security of the
FS transform and when it applies.

In turn, our result for FS NIZK has two interesting features. First, our instantiation of the
FS transform works even if the starting 3PC is in the standard model (provided that it satisfies
P1-P3). Second, our CRS-based compiler is very different from the above dummy compiler in that
we do not simply “throw away” the initial 3PC but instead rely on all of its properties in order to
obtain a 3PC satisfying P1-P3.

We remark that the above limitation does not apply to our positive result for FS signatures,
since assuming the initial 3PC protocol works in the CRS model does not directly yield a dummy
compiler as the one discussed above.

1.5 Related Work and Open Questions

On Fiat–Shamir. It is worth mentioning that using indistinguishability obfuscation and punc-
turable PRFs one can directly obtain a NIZK for all NP as shown by Sahai and Waters [SW14].
However, our main focus is not on constructions of NIZK, rather we aim at providing a better
understanding of what can be proved for the FS transform without relying on random oracles. In
this respect, our result shares similarities to the standard-model instantiation of Full-Domain Hash
given in [HSW14].

In the case of NIZK, an alternative version of the FS transform is defined by having the prover
hashing the statement x together with value α, in order to obtain the challenge β. The latter variant
is sometimes called the strong FS transform (while the variant we analyze is known as the weak FS
transform). Bernhard et al. [BPW12] show that the weak FS transform might lead to problems in
certain applications where the statement to be proven can be chosen adversarially (this is the case,
e.g., in the Helios voting protocol). Unfortunately, it seems hard to use our proof techniques to
prove zero-knowledge of the strong FS collapse, because the simulator for zero-knowledge does not
know the x values in advance.

Our positive result for FS signatures shares some similarities with the work of Bellare and
Shoup [BS07], showing that “actively secure” 3PC protocols yield a restricted type of secure signature
schemes (so-called two-tier signatures) when instantiating the hash function in the FS transform via
any collision-resistant hash function.

Compilers. Our approach of first compiling any “standard” 3PC protocol into one with additional
properties that suffice for proving security of the FS transform is similar in spirit to the approach
taken by Haitner [Hai09] who shows how to transform any interactive argument into one for which
parallel repetition decreases the soundness error at an exponential rate.

Lindell recently used a similar idea to first transform a 3PC into a new protocol in the CRS
model, and then show that the resulting 3PC when transformed with (a slightly modified version
of) Fiat–Shamir satisfies zero-knowledge in the standard model [Lin15]. His approach was later

6

improved in [CPS+16c]. We note that the use of a CRS-enhanced interactive protocol is only implicit
in Lindell’s work as he directly analyzes the collapsed non-interactive version. On the downside, to
prove soundness Lindell still requires (non-programmable) random oracles. We note that one of our
compilers is essentially equivalent to the compiler used by Lindell. Before Lindell’s work, interactive
protocols in the CRS model have also been studied by Damgård who shows how to build 3-round
concurrent zero-knowledge arguments for all NP-problems in the CRS model [Dam00].

Alternative transforms. Other FS-inspired transformations were considered in the literature.
For instance Fischlin’s transformation [Fis05] (see also [DV14]) yields a simulation-sound NIZK
argument with an online extractor; as mentioned above, Lindell [Lin15] defines a twist of the
FS transform that allows to prove zero-knowledge in the CRS model, and soundness in the non-
programmable random oracle model. It is an interesting direction for future research to apply our
techniques to analyze the above transformations without random oracles.

Concurrent paper. Recently, in a concurrent and independent work, Kalai, Rothblum and
Rothblum [KRR16] showed a positive result for FS in the plain model, under complexity assumptions
similar to ours. More in details, assuming sub-exponentially secure indistinguishability obfuscation,
input-hiding obfuscation for the class of multi-bit point functions, and sub-exponentially secure
one-way functions, [KRR16] shows that, when starting with any 3PC proof, the FS transform yields
a two-round computationally-sound interactive protocol.

On the positive side, their result applies to any 3PC proof (while ours only covers a very special
class of 3PC arguments). On the negative side, their technique only yields a positive result for a
two-round interactive variant of the FS transform (while our techniques apply to the full FS collapse,
both for NIZK and for signatures).

1.6 Roadmap

We provide a detailed informal overview of our main techniques in Section 2. In Section 3 we setup
some notation and define the main cryptographic primitives on which we build. Section 4 contains
our positive result for FS NIZK. We present our compilers for obtaining highly sound protocols (in
the CRS model) in Section 5 and Section 6. Finally, we explain how to adapt our techniques to the
case of FS signatures in Section 7.

2 Technical Overview
We first discuss the class of highly sound protocols for which the FS transform can be instantiated
via a q-wise independent hash function. Then, we will explain how to obtain a compiler that
transforms a large class of 3PC protocols into ones that are highly sound (in the CRS model). For
the purpose of this overview we will only focus on the case of Fiat–Shamir NIZK, explaining only at
the end how our techniques can be adapted to cover Fiat–Shamir signatures as well.

The security proof proceeds in two modular steps. In the first step, we prove completeness and
soundness of a “selective” variant of the FS transform (which we define formally in Section 4.1); in
the second step we analyze the standard FS transform using complexity leveraging. Details follow.

The selective FS transform. Consider a 3PC argument for a language L. For a hash family
H, consider the following (interactive) selective adaptation of the FS transformation: The prover
sends the commitment α as in the original protocol; the verifier, instead of sending the challenge

7

β ∈ B directly, forwards a honestly generated hash key hk; finally the prover uses (hk, α) to compute
β = H(hk, α) and then obtains the response γ as in the original 3PC argument.

In Section 4 we prove that if the starting 3PC protocol has instance-independent commitments, is
complete and computationally sound, so is the one obtained by applying the selective FS transform.
The idea is to use a “programmable” q-wise independent hash function (e.g., a random polynomial
of degree q − 1 over a finite field) to “program” the hash function up-front; note that commitment
α is computed before the hash key is generated and hence, we can embed the challenge value β
into the hash function such that it maps α to β and reduce to the soundness of the underlying 3PC
argument.

Complexity leveraging. The second step in proving soundness of the FS collapse (we discuss
zero-knowledge below) consists in applying complexity leveraging so that we can swap the order of
α and β. Note however that if β is shorter than α, and if the soundness of the protocol is 2−|β|,
then we loose too much through complexity leveraging. Hence, this step can only be applied to
protocols satisfying an additional property as we discuss next.

Let Π be the initial 3PC argument, and denote by Π its corresponding FS collapse. Given a
malicious prover P∗ breaking soundness of Π, we construct a prover P attacking soundness of the
selective FS transform as follows. P picks a random α from the set of all possible commitments, and
forwards α to the verifier; after receiving the challenge hash key hk, prover P runs P∗ which outputs
a proof (α∗, γ∗). Prover P simply hopes that α∗ = α, in which case it forwards γ∗ to the verifier
(otherwise it aborts). It follows that if the selective FS has soundness roughly s(λ) (for security
parameter λ), the soundness of Π is roughly s(λ) divided by the probability of guessing correctly
the value α∗ in the first step of the reduction.

Note that for the above argument to give a meaningful bound, we need that the soundness of Π
is bounded away from one. This leads to the following (non-standard) requirement that the initial
3PC argument should satisfy.

P2: %(λ) := s(λ)/2−a(λ) < 1, where s(λ) is the soundness error and a(λ) is the maximum
bit-length associated to the commitment α.

Zero-knowledge. We assume that the initial 3PC is honest-verifier zero-knowledge (HVZK)—i.e.,
that it is zero-knowledge for honest verifiers. We need to show that Π satisfies zero-knowledge.
Here, we require two additional properties as explained below; interactive protocols obeying the first
property already appeared in the literature under the name of “input-delayed” protocols [CPS+16a,
HV16, CPS+16b].

P1: The value α output by the prover is computed independently of the instance x
being proven (and of the corresponding witness w).

P3: The value α output by the simulator is computed independently of the instance x
being proven.

We now discuss the reduction for the zero-knowledge property and explain where P1 and P3
are used. We need to construct an efficient simulator that is able to simulate arguments for
adaptively chosen (true) statements—without knowing a witness for such statements. The output
of the simulator should result in a distribution that is computationally indistinguishable from the
distribution generated by the real prover. The simulator gets extra power, as it can produce a “fake”
CRS together with some trapdoor information tk (on which the simulator can rely) such that the
“fake” CRS is indistinguishable from a real CRS.

8

In order to build some intuition, it is perhaps useful to recall the random-oracle-based proof
for the zero-knowledge property of the FS transform. There, values αi and βi corresponding to
the i-th adversarial query are computed by running the HVZK simulator and are later “matched”
relying on the programmability of the random oracle. Roughly speaking, in our standard-model
proof we take a similar approach, but we cannot use adaptive programming of the hash function.
Instead, we rely on P1 and P3 to program the hash function in advance. More specifically, the
trapdoor information will consist of q random tapes ri (one for simulating each proof queried by the
adversary) and the corresponding q challenges βi (that can be pre-computed as a function of ri,
relying on P1). Since the challenges have the correct distribution, we can use the underlying HVZK
simulator to simulate the proofs; here is where we need P3, as the simulator has to pre-compute
the values αi in order to embed the βi values on the correct points.

A caveat is that our simulator needs to know the value of q in advance; for this reason we
only get a weaker bounded flavor of the zero-knowledge property where there exists a “universal”
simulator that works for all adversaries asking q queries, for some a-priori fixed value of q. Note,
however, that the CRS—as it contains the description of a q-wise independent hash function—needs
to grow with q, and hence bound q should be seen as a parameter of the construction rather than a
parameter of the simulator.

It is an interesting open problem whether this limitation can be removed, thus proving that
actually our transformation achieves unbounded zero-knowledge.

Compilers. Wrapping up the above discussion, we can show that for 3PC protocols that satisfy
completeness, computational soundness, HVZK and additionally P1-P3, the FS transform can
be instantiated by a (programmable) q-wise independent hash function. We informally refer to
protocols that satisfy all of the above properties as highly sound arguments.

Unfortunately we do not know of a natural highly sound 3PC argument. However, we do know
of protocols that partially satisfy our requirements. Recall, for instance, the classical 3PC argument
for quadratic residuosity due to Blum [Blu81] (all operations are modulo an integer N which is the
product of two Blum integers): (i) The prover chooses a random r in Z∗N , and sends α = r2; (ii)
The verifier selects a random bit β ∈ {0, 1}; (iii) The prover computes γ = wβ · r, and finally the
verifier checks that γ2 = xβ · α. While the above clearly satisfies P1 and moreover can be shown to
achieve completeness, soundness, and HVZK, one can easily see that P2 and P3 are not directly
met. P2 is not met, because β consists only of a single bit and the soundness parameter is 1

2 , and
to see that P3 is not met, one needs to consider the simulator for this protocol which—for readers
familiar with the protocol—computes its first message depending on the statement.

Another interesting example is given by the Lapidot-Shamir protocol for the NP-complete
problem of graph Hamiltonicity [LS91] (see also [OV12, Appendix B]). Here, the prover’s commitment
consists of a (statistically binding) commitment to the adjacency matrix of a random k-vertex cycle,
where k is the size of the Hamiltonian cycle.4 Hence, the protocol clearly satisfies P1. Additionally
the simulator fakes the prover’s commitment by either committing to a random k-vertex cycle, or
by committing to the empty graph. Hence, the protocol also satisfies P3. As a corollary, we know
that assuming non-interactive statistically binding commitment schemes (which follow from one-way
permutations [Blu81]), for all languages in NP, there exist 3PC protocols that satisfy completeness,
computational soundness, and HVZK, as well as P1 and P3.

Motivated by the above examples, we turn to the question whether it is possible to compile
a 3PC protocol (with completeness, soundness, and HVZK) satisfying either P1 or P1 and P3,
into a highly sound argument. We refer the reader to Section 4.5 for a high-level overview how

4Note that the value k can be included in the language, and thus considered as public.

9

this can be achieved. We only mention here that our compilers rely on several cryptographic tools
(including indistinguishability obfuscation, puncturable PRFs, complexity leveraging and equivocal
commitment schemes), and yield a 3PC in the CRS model; note that this means that we obtain an
interactive protocol with a CRS even if the original protocol was in the standard model. It is an
intriguing open problem if a highly sound argument can be constructed in the standard model, or
whether a CRS is, in fact, necessary.

The case of signatures. Finally, let us explain how our techniques can be adapted to the case
of FS signatures. To this end, we introduce a notion of highly-sound canonical identification schemes
that need to satisfy similar requirements to the properties P1, P2, and P3 discussed above for the
case of 3PC arguments.

Recall that in order to apply our main technique, we need to program the q-wise independent hash
function up-front. For this reason we are only able to show that our standard-model instantiation
of FS signatures achieves the weaker notion of random-message unforgeability against q-bounded
random-message attacks (q-bounded RUF-RMA)—in which the adversary can only observe signatures
on up-to q randomly chosen messages, and also has to forge on an additional fresh random message.
While strictly weaker that standard existential unforgeability against chosen-message attacks (EUF-
CMA), RUF-RMA is still useful for some applications (e.g., to secure authentication [FHN+12,
NVZ14]). We refer the reader directly to Section 7 for the details.

3 Preliminaries

3.1 Notation

By λ ∈ N, we denote the security parameter that we give to all algorithms implicitly in unary
representation 1λ. By {0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗ the set of
all bit-strings of finite length. If x, y ∈ {0, 1}∗ are two bit strings, then x‖y denotes concatenation.
The length of x is denoted by |x|. We denote vectors of strings in bold face, for example, x and
denote the i-th component by x[i]. For a finite set X, we denote the action of sampling x uniformly
at random from X by x←$X, and denote the cardinality of X by |X|. We denote by [i] the
set {1, . . . , i}. Algorithms are assumed to be randomized, unless otherwise stated. In particular
polynomial-time refers to deterministic polynomial-time computable algorithms, while PPT refers
to probabilistic polynomial-time. We write x←$A(·) to denote that probabilistic algorithm A is
run on freshly sampled random coins and produces output x. We write x← A(·; r) to denote that
A runs on coins r. Similarly, we write x← A(·) to denote that deterministic algorithm A outputs x.
We say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1). We say a function poly(λ) is polynomial
if poly(λ) ∈ λO(1).

Function families. We formalize families of functions F by considering a tuple of algorithms
F.KGen, F.kl, F.Eval, F.il and F.ol. Algorithm F.KGen is a PPT algorithm taking the security
parameter 1λ and outputting a key k ∈ {0, 1}F.kl(λ) where F.kl : N → N denotes the key length.
Functions F.il : N→ N and F.ol : N→ N denote the input and output length functions associated to
F and for any x ∈ {0, 1}F.il(λ) and k←$ F.KGen(1λ) we have that F.Eval(k, x) ∈ {0, 1}F.ol(λ), where
the PPT algorithm F.Eval denotes the “evaluation” function associated to F. Depending on the
function, Eval may be renamed to a more speaking name and additional algorithms might be added.
If the functionality is randomized then we let F.rl(λ) denote the randomness length.

10

Asymptotic security. In this paper we allow adversaries to be probabilistic polynomial-time
(PPT) and ask that the success probability be smaller than some function ε(λ) in the security
parameter λ. However, when we fix a function ε(λ), then for finitely many λ, a specific PPT
adversary might be more successful than ε(λ). Hence, when defining ε-security for a scheme, we
say that for all PPT adversaries A, the advantage function AdvA(λ) is asymptotically smaller than
ε, denoted AdvA(λ)

asym
≤ ε(λ), which means that there is some value λ0 such that for all λ ≥ λ0, it

holds that Adv(λ) ≤ ε(λ).
For two random variables X and Y , we say that they are ε-indistinguishable, denoted X ≈ε Y ,

if for all PPT distinguishers the distinguishing advantage is asymptotically smaller than ε.

3.2 q-Wise Independent Hashing

We recall the standard notion of a q-wise independent hash function.

Definition 3.1 (q-Wise Independent Hashing) A family of functions H := (H.KGen, H.kl,
H.Eval, H.il, H.ol) is called q-wise independent if for all λ ∈ N and x1, . . . , xq ∈ {0, 1}H.il(λ) and all
y1, . . . , yq ∈ {0, 1}H.ol(λ) we have that

Pr
[
H.Eval(hk, x1) = y1 ∧ . . . ∧ H.Eval(hk, xq) = yq : hk←$ H.KGen(1λ)

]
≤ 2−q·H.ol(λ).

We call a q-wise independent hash function programmable if there exists an additional procedure
H.KGen(1λ,x,y) such that for any two q-size vectors x and y, with x[i] ∈ {0, 1}H.il(λ) and y[i] ∈
{0, 1}H.ol(λ) for all i ∈ [q], we have that

Pr
[
H.Eval(hk,x[i]) = y[i] : hk←$ H.KGen(1λ,x,y)

]
= 1

and furthermore the distributions H.KGen(1λ) and H.KGen(1λ,x,y) are identical where the second
distribution is also over the uniformly random choice of vectors x and y.

We note that the constant function H(hk, x) := hk is 1-wise independent and programmeable.
Furthermore, note that we can construct a programmable q-wise independent hash function by
considering polynomials of degree q − 1 over finite fields. Programmability is obtained by using
polynomial interpolation.

3.3 Interactive and Non-Interactive Arguments

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a polynomial-time computable relation together with a
polynomial p(·), defining the NP-language

LR := {x : ∃w s.t. |w| < p(|x|) and R(x,w) = 1} .

In the rest of the paper, we will drop the bound p(·) for ease of presentation. An interactive argument
system for R, consists of three PPT algorithms (K,P,V). Algorithm K takes as input 1λ and outputs
a common reference string (CRS) crs ∈ {0, 1}∗. Later the prover P interacts with the verifier V to
convince him into accepting a common input x ∈ LR (where both P and V are also given crs); the
honest prover additionally holds a witness w for x, i.e. R(x,w) = 1. At the end of the protocol
execution, the verifier outputs a bit (representing his decision); we write 〈P(w),V〉(crs, x) for the

11

random variable corresponding to the verifier’s verdict. Similarly, we write P(crs, x, w) � V(crs, x)
for the random variable corresponding to transcripts of honest protocol executions.5

An interactive argument should satisfy at least two properties, completeness and soundness.
Completeness says that an honest prover (holding a valid witness) is able to convince the verifier.

Definition 3.2 (Completeness) Let Π = (K,P,V) be an interactive argument system for a
polynomial-time computable relation R. We say that Π satisfies c-completeness if for all (x,w) such
that R(x,w) = 1 we have

Pr
[
〈P(w),V〉(crs, x) = 1 : crs←$ K(1λ)

] asym
≥ 1− c(λ),

where the probability is taken over the randomness of algorithms P, V and K.
Soundness informally says that, whenever x 6∈ LR, no computationally bounded prover can

convince the verifier into accepting x.

Definition 3.3 (Soundness) Let Π = (K,P,V) be an interactive argument system for a polynomial-
time computable relation R. We say that Π satisfies s-soundness if for all PPT algorithms P∗, and
for any x 6∈ LR, we have that

Pr
[
〈P∗,V〉(crs, x) = 1 : crs←$ K(1λ)

] asym
≤ s(λ),

where the probability is taken over the randomness of algorithms P∗, V and K.
Completeness and soundness do not quantify how much information an interactive argument

reveals about the witness, which in turn can be covered by notions such as witness indistinguishability
and zero-knowledge. In this paper we will use different flavors of the zero-knowledge property. We
will postpone the actual definitions to the place in the paper where they are actually used.

Standard model interactive arguments. We can cast the case where the interactive argument
is in the standard-model, i.e., it does not rely on a CRS (which is typically the case), by saying
that the algorithm K returns the empty string; similarly P and V do not take the CRS as input (or
take an empty string as additional input). When we write Π = (P,V), we denote an interactive
argument in the standard model. Adapting the definitions of completeness and soundness to the
standard model works by replacing the CRS generation algorithm by an algorithm that outputs the
empty string.

Non-interactive arguments. We speak of non-interactive arguments in case the protocol consists
of a single message π sent from the prover to the verifier. Non-interactive arguments that satisfy
a zero-knowledge property typically require a setup assumption, such as a CRS.6 Syntactically a
non-interactive argument system for a polynomial-time computable relation R consists of three PPT
algorithms Π := (K,P,V) specified as follows: (i) Algorithm K takes as input 1λ and outputs a CRS
crs ∈ {0, 1}∗; (ii) Algorithm P takes as input (crs, x, w) such that R(x,w) = 1 and outputs a proof
π; (iii) Algorithm V takes as input (crs, x, π) and outputs a bit indicating whether π is a valid proof
for x (under crs) or not.

A non-interactive argument should satisfy three main properties, which are analogous to the
definitions of completeness, soundness and (honest-verifier) zero-knowledge for interactive arguments.
We define these properties below.

5We stress that interactive arguments typically do not require a CRS. Looking ahead, the reason for defining
interactive arguments in the CRS model is that our compilers in Section 5 and 6 will produce an interactive argument
in the CRS model (to be used in our instantiation of the FS transform).

6In particular, assuming a CRS is necessary for obtaining non-interactive zero knowledge [Gol01, Chapter 4].

12

Definition 3.4 (Completeness of non-interactive arguments) Let Π = (K,P,V) be a non-
interactive argument system for a polynomial-time computable relation R. We say that Π satisfies
c-completeness if for all (x,w) such that R(x,w) = 1 we have

Pr
[
V(crs, x, π) = 1 : crs←$ K(1λ);π←$ P(crs, x, w)

] asym
≥ 1− c(λ),

where the probability is taken over the randomness of algorithms P, V and K.

Definition 3.5 (Soundness of non-interactive arguments) Let Π = (K,P,V) be a non-interactive
argument system for a polynomial-time computable relation R. We say that Π satisfies s-soundness
if for all for all PPT algorithms P∗, and for any x 6∈ LR, we have that

Pr
[
V(crs, x, π) = 1 : crs←$ K(1λ);π←$ P∗(crs, x)

] asym
≤ s(λ),

where the probability is taken over the randomness of algorithms P∗, V and K.

Definition 3.6 (q-Bounded Computational Zero-Knowledge) Let Π = (K,P,V) be a non-
interactive argument system for a polynomial-time computable relation R. We say that Π satisfies
q-bounded ε-computational zero-knowledge if for all binary PPT adversaries A there exists a PPT
simulator S := (S ′,S ′′) such that rNIZKΠ

A(λ) ≈ε sNIZKΠ
S′,S′′(λ), where experiments rNIZK and sNIZK

are defined below

rNIZKΠ
A(λ)

crs←$ K(1λ)

return AProv(crs,·,·)(1λ, crs)

sNIZKΠ
S′,S′′(λ)

(crs, tk)←$S′(1λ)

return ASimu(crs,tk,·,·)(1λ, crs)

Prov(crs, x, w)
if R(x,w) = 1 then

return π ←$ P(crs, x, w)

else return ⊥

Simu(crs, tk, x, w)
if R(x,w) = 1 then

return π ←$S′′(crs, tk, x)

else return ⊥

and A can ask q(λ) queries to its oracle. Additionally we say that Π satisfies unbounded computa-
tional non-interactive zero-knowledge if indistinguishability of the above experiments holds for an
arbitrary polynomial q(λ).

Note that we quantify over all binary adversaries, that is, we consider only adversaries that
output a bit. This is without loss of generality, but makes notation in later game-hop proofs easier.
For brevity, we sometimes write that Π is a (c, s, q, ε)-NIZK to denote that Π satisfies c-completeness,
s-soundness, and q-bounded ε-computational zero-knowledge.

3.4 Obfuscation

Indistinguishability obfuscation [BGI+01, BGI+12] intuitively captures that the obfuscation of two
functionally equivalent circuits cannot be distinguished. We here give a game-based definition,
following the definitional framework of [BST14] which captures indistinguishability obfuscation
based notions via the IO security game and a class of samplers Sam.

13

Definition 3.7 (Obfuscation Scheme) A PPT algorithm O is called an obfuscation scheme if,
on input the security parameter 1λ and a description of a circuit C, it returns (a description of) a
circuit C such that ∀x : C(x) = C(x). We call a PPT algorithm Sam a circuit sampler if on input
the security parameter 1λ sampler Sam outputs (C0, C1, aux) where C0 and C1 are descriptions of
circuits and aux is a string. If Sam is a circuit sampler and O is an obfuscation scheme we define
the advantage Advio

O,Sam,D(·) for a distinguisher D relative to game IO:

Advio
O,Sam,D(λ) := 2 · Pr

[
IOO

D,Sam(λ)
]
− 1

IOO
D,Sam(λ)

b←$ {0, 1}
(C0, C1, aux)←$ Sam(1λ)
C ←$ O(1λ, Cb)
b′←$ D(1λ, C, aux)
return (b = b′)

If S is a class of circuit samplers, we call an obfuscation scheme O εO-secure for S, if for all
Sam ∈ S and all PPT distinguishers D advantage Advio

O,Sam,D(λ)
asym
≤ εO(λ).

We can now capture indistinguishability obfuscation via restricting the class of samplers to
so-called equality samplers. As we only use efficient samplers we can further restrict the class of
samplers.

Definition 3.8 (Equality circuit sampler) We call a PPT algorithm Sam an equality circuit
sampler if for all security parameters λ ∈ N it outputs a triple (C0, C1, aux) consisting of two circuit
descriptions and a string such that with overwhelming probability over the coins of Sam we have
that the circuits C0 and C1 have the same size, number of inputs and number of outputs and are
functionally equivalent, that is

Pr(C0,C1,aux)←$ Sam(1λ) [|C0| = |C1| ∧ ∀x : C0(x) = C1(x)] ≥ 1− negl(λ) .

A beautiful result that we will use is the relationship between differing-inputs obfuscation and
indistinguishability obfuscation proved by Boyle, Chung and Pass [BCP14], who show that any
general purpose indistinguishability obfuscator is also a differing-inputs obfuscator for circuits that
differ only on a few (at most polynomially many) inputs. We first define differing-inputs obfuscation
by restricting samplers to be differing-inputs samplers.

Definition 3.9 (Differing-inputs circuit sampler) Let Sam be a circuit sampler. We call Sam
a differing-inputs circuit sampler if advantage Advdiff

Sam,Ext(·) is negligible for all PPT algorithms Ext
and where the advantage is defined as (relative to game Diff on the right):

Advdiff
Sam,Ext(λ) := Pr

[
DiffExt

Sam(λ)
] DiffExt

Sam(λ)

(C0, C1, aux)←$ Sam(1λ)
x←$ Ext(1λ, C0, C1, aux)
return (C0(x) 6= C1(x))

With that we are ready to formulate the result due to Boyle, Chung and Pass [BCP14].

Theorem 3.10 ([BCP14]) Let iO be an indistinguishability obfuscator for all circuits in P/poly.
Let Sam be a differing-inputs circuit sampler for which there exists a polynomial d : N→ N, such
that

Pr
[
|{x : C0(x) 6= C1(x)}| ≤ d(λ)

∣∣∣ (C0, C1, aux)←$ Sam(1λ)
]
≥ 1− negl(λ) .

Then iO is a differing-inputs obfuscator for Sam, i.e., obfuscator iO is {Sam}-secure.

14

3.5 Puncturable Pseudorandom Functions

A key ingredient in the compilers are so-called puncturable pseudorandom functions (PRFs) [SW14].
A family of puncturable PRFs is a function family that additionally comes with a PPT puncturing
algorithm Pntr which on input a polynomial-size set S ⊆ {0, 1}il(λ), outputs a special key kS .

Definition 3.11 (Puncturable PRF) A family of functions F := (F.KGen, F.Pntr, F.kl, F.Eval,
F.il, F.ol) is called a εprf-secure, puncturable PRF if the following holds.

Functionality preserved under puncturing. For every PPT adversary A such that A(1λ)
outputs a polynomial-size set S ⊆ {0, 1}F.il(λ), it holds for all x ∈ {0, 1}F.il(λ) \ S that:

Pr
[
F.Eval(k, x) = F.Eval(kS , x) : k←$ F.KGen(1λ), kS←$ F.Pntr(k, S)

]
= 1.

Pseudorandom at punctured points. For every PPT adversary (A1,A2), the advantage
Advpprf

F,A1,A2
(·) is asymptotically smaller than εprf , i.e.,

Advpprf
F,A1,A2

(λ) = 2 · Pr
[
pPRFF

A1,A2(λ)
]
− 1

asym
≤ εprf

where game pPRF is defined as

pPRFF
A1,A2(λ)

S ← ∅; b←$ {0, 1}

k←$ F.KGen(1λ)

state←$AChallenge
1 (1λ)

k∗ ←$ F.Pntr(k, S)

b′ ←$A2(1λ, state, k∗)
return (b = b′)

Challenge(x)
if x ∈ S then return ⊥
S ← S ∪{x}

if b = 0 then
y ← F.Eval(k, x)

else y ←$ {0, 1}F.ol(λ)

return y

4 Fiat–Shamir NIZK
We show that under specific assumptions on the underlying protocol, a q-wise independent hash
function is enough to instantiate the random oracle in the Fiat–Shamir collapse yielding a secure
NIZK with q-bounded computational zero-knowledge.

After recalling the standard FS transform in Section 4.1, we present a “selective” interactive
variant of the transformation, and establish its completeness and soundness in Section 4.2. Later,
in Section 4.3, we put forward three properties of the initial 3PC argument that allow to prove
completeness, soundness, and q-bounded computational zero-knowledge of the FS-collapse in the
standard model; the proof of completeness and soundness reduce directly to the completeness and
soundness of the above selective FS transform. Our main theorem is summarized in Section 4.4.
Finally, in Section 4.5, we take a closer look at the required properties and discuss how to achieve
them.

4.1 The Fiat–Shamir Transform

The Fiat–Shamir (FS) transform [FS87] is a generic way to remove interaction from certain argument
systems, using a hash function. For the rest of the paper, we consider only interactive arguments
consisting of three messages—which we denote by (α, β, γ)—where the first message is sent by the

15

A 3PC Argument and its FS collapse

Prover: P(crs, x, w; r) Verifier: V(crs, x)

. Initial 3PC with CRS crs .

α← P0(crs, x, w; r) α

β β←$ V0(1λ)

γ ← P1(crs, x, w, β; r) γ

↓
V1(crs, x, (α, β, γ)) = d

. .

Prover: PFS(crs, x, w; r) Verifier: VFS(crs, x)

. FS collapse with CRS crs = (crs, hk)

α← P0(crs, x, w; r)
β ← H.Eval(hk, α)
γ ← P1(crs, x, w, β; r) π := (α, γ)

β ← H.Eval(hk, α)
↓

V1(crs, x, (α, β, γ)) = d

Figure 1: Message flow of a typical 3PC argument system and its corresponding FS collapse. In case the initial 3PC is
in the standard model we simply have Π = (P,V) and crs contains only the hash key. Note also that we consider
public-coin protocols and thus do not specify the randomness of the verifier (the randomness of V0 is β and V1 is
deterministic given β).

prover. We also focus on so-called public-coin protocols where the verifier’s message β is uniformly
random over some space B (e.g., β ∈ {0, 1}k for some k ∈ N). We call this a 3PC argument system
for short.

For 3PC arguments it is convenient to think of the prover algorithm as being split into two
sub-algorithms P := (P0,P1), where P0 takes as input a pair (x,w) and outputs the prover’s first
message α (the so-called commitment) and P1 takes as input (x,w) as well as the verifier’s challenge
β to produce the prover’s second message γ (the so-called response). In general P0 and P1 are
allowed to share the same random tape, which we denote by r ∈ {0, 1}∗. In a similar fashion we can
think of the verifier’s algorithm as split into two sub-algorithms V = (V0,V1), where V0 outputs a
uniformly random value β ∈ B and V1 is deterministic and corresponds to the verifier’s verdict (i.e.,
V1 takes as input x and a transcript (α, β, γ) and returns a decision bit d ∈ {0, 1}).

Non-interactive version. The FS transform allows to remove interaction from any 3PC argument
system for a polynomial-time computable relation R as specified below (see also Fig. 1). Let
Π = (K,P,V) be the initial 3PC argument system. Additionally, consider a family of hash functions
H consisting of algorithms H.KGen, H.kl, H.Eval, H.il and H.ol (see Section 3.1); here H.il and H.ol
correspond, respectively, to the bit lengths of messages α and β (as a function of the security
parameter λ).

16

The FS collapse of Π using H is a triple of algorithms ΠFS,H := (KFS,PFS,VFS) defined as follows.

• Algorithm KFS takes as input the security parameter, samples hk←$ H.KGen(1λ), crs←$ K(1λ),
and publishes crs := (crs, hk).

• Algorithm PFS takes as input (crs, x, w) and runs P0(crs, x, w) in order to obtain the com-
mitment α ∈ {0, 1}H.il(λ); next PFS defines the challenge as β := H.Eval(hk, α) and runs
P1(crs, x, w, β) in order to obtain the response γ. Finally PFS outputs π := (α, γ).

• Algorithm VFS takes as input (crs, x, π) and returns 1 if and only if verifier V1(crs, x, (α, β, γ)) =
1 where β = H.Eval(hk, α).

In a nutshell the result of Fiat and Shamir says that whenever Π = (P,V) is a (standard model)
3PC argument satisfying completeness, computational soundness, and computational honest-verifier
zero-knowledge (in addition to a basic requirement on the min-entropy of the prover’s commitment),
its FS collapse ΠFS,H is a NIZK argument system if H is modeled as a random oracle.

4.2 A Selective Variant of Fiat–Shamir

As an intermediate step in the proof of soundness of our standard model instantiation of the FS
transform, we will consider a selective variant of the FS transform of a 3PC argument system which
basically translates into allowing the hash function to depend on the commitment α. Note that
this selective variant is still interactive since we consider the prover to be split into two algorithms,
where the first algorithm is identical to P0 and the second algorithm first computes β using the
received hash key and later runs P1 in order to obtain γ; similarly the verifier is split into two
algorithms, where the first algorithm now generates the hash key (instead of sampling β directly)
and the second algorithm is identical to V1:

Prover: P(crs, x, w; r) Verifier: V(crs, x)
. 3PC with CRS crs .

α← P0(crs, x, w; r) α
hk←$ H.KGen(λ)hk

β ← H.Eval(hk, α)
γ ← P1(crs, x, w, β; r) γ

β ← H.Eval(hk, α)
↓

V1(crs, x, (α, β, γ)) = d

Note that the verifier in the above protocol accepts if and only if (α, β, γ) is an accepting proof for
x and moreover β = H.Eval(hk, α). We write Πsel-FS,H for the above selective (interactive) version of
the FS transform, and define its completeness and soundness properties below.

Definition 4.1 (Completeness of the Selective FS Transform) Let Π = (K, (P0,P1), (V0,V1))
be a 3PC argument system for a polynomial-time computable relation R, and let Πsel-FS,H be the
corresponding selective FS transform using hash function family H. We say that Πsel-FS,H satisfies
c-completeness if for all (x,w) such that R(x,w) = 1 we have

Pr

V1(crs, x, (α, β, γ)) = 1 :
crs←$ K(1λ);α←$ P0(crs, x, w);
hk←$ H.KGen(1λ);
β = H.Eval(hk, α); γ←$ P1(crs, x, w, β)

 asym
≥ 1− c(λ),

17

where the probability is taken over the randomness of algorithms P0, P1, V, K and over the choice
of the hash key.

Definition 4.2 (Soundness of the Selective FS Transform) Let Π = (K, (P0,P1), (V0,V1))
be a 3PC argument system for a polynomial-time computable relation R, and let Πsel-FS,H be the
corresponding selective FS transform using hash function family H. We say that Πsel-FS,H satisfies
s-soundness if for all PPT algorithms P∗ = (P∗0,P∗1), and for all x 6∈ LR, we have that

Pr

V1(crs, x, (α, β, γ)) = 1 :
crs←$ K(1λ);α←$ P∗0(crs, x);
hk←$ H.KGen(1λ);
β = H.Eval(hk, α); γ←$ P∗1(crs, x, hk, α, β)

 asym
≤ s(λ),

where the probability is taken over the randomness of algorithms P∗, V, K and over the choice of the
hash key.

Completeness and soundness for selective FS. We can now move on to state our first result:
If H is a 1-wise independent hash function, then the selective FS transform instantiated with H
maintains completeness and computational soundness of the starting 3PC argument.7 Note that
already the constant function H(hk, x) = hk is 1-wise independent and thus fulfills the requirements
of the following theorem.

Theorem 4.3 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable
relation R, that is c-complete and s-sound, and let H be a 1-wise independent hash function. Then,
the selective FS transform Πsel-FS,H of Π using H is c-complete and s-sound for relation R.

Proof. The proof for completeness and soundness follows directly from noting that β is distributed
uniformly at random in {0, 1}H.ol(λ) over the choice of the hash key, and as the hash key is chosen
independently of α the proof reduces directly to the completeness and soundness of the interactive
version of the underlying 3PC. �

4.3 The FS-Collapse

We now consider the standard FS collapse and discuss each property (completeness, soundness, and
zero-knowledge) in turn. We reduce soundness and completeness to the soundness and completeness
of the selective FS transform, and reduce zero-knowledge directly to the (instance-independent
honest-verifier) zero-knowledge property of the underlying 3PC argument. Instance-independence is
a new property for protocols that we define in this section.

Note that, for our final theorem, we require the starting 3PC protocol to satisfy three “non-
standard” requirements (that we introduce along the way), including for example, the previously
mentioned instance-independence property.

4.3.1 Completeness and Soundness

We start by showing that if the underlying 3PC argument satisfies completeness, so does the resulting
FS non-interactive argument.

Lemma 4.4 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable relation
R satisfying c-completeness. Then, assuming H is a 1-wise independent hash function, the FS
collapse ΠFS,H of Π using H satisfies c-completeness.

7Note that we do not prove zero-knowledge of the selective FS transform; this is because we will later prove directly
non-interactive zero-knowledge of the FS collapse.

18

Proof. The proof follows by noting that when both the prover and the verifier of the non-interactive
protocol are honest, the probability that the verifier accepts is the same as in the (interactive)
selective variant of the FS transform applied to Π. The statement then follows from Theorem 4.3.
�

Let a(λ) ∈ N be the maximum bit-length of the commitment α. To capture soundness of the
FS-collapse we need an additional property of the underlying 3PC protocol, namely, a gap between
the worst-case probability 2−a(λ) with which one can guess the first message of the protocol and
the soundness error s(λ). We can interpret that s/2−a < 1 as follows: even if we allow a loss of
2−a to guess the first message, then still there remains a level of security that can be leveraged
to obtain soundness. The soundness of our standard model instantiation depends upon the above
ration, which we call the soundness-error-to-guessing-gap.

Definition 4.5 (Soundness-Error-to-Guessing Ratio) Let λ be a security parameter, and con-
sider a 3PC argument system Π = (K,P,V) for a polynomial-time computable relation R with
commitments of bit-length a(λ) and satisfying s(λ)-soundness. The soundness-error-to-guessing
ratio (SEGR) associated to Π is defined as %(λ) := s(λ)/2−a(λ).

Armed with a “sub-one” soundness-error-to-guessing ratio we can now quantify the soundness of
our instantiation of the FS-collapse.

Lemma 4.6 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable relation
R, with worst-case collision probability δ and SEGR %, s-soundness and instance-independent
commitments. Then, assuming H is a 1-wise independent hash function, the FS collapse ΠFS,H =
(KFS,PFS,VFS) of Π using H satisfies %-soundness.

Proof. Let algorithm P∗FS be an adversary for the non-interactive FS collapse. Let x 6∈ LR and let

µ(λ) := Pr
[

VFS((crs, hk), x, (α∗, γ∗)) = 1 : crs←$ K(1λ); hk←$ H.KGen(1λ);
(α∗, γ∗)←$ P∗FS((crs, hk), x)

]

the advantage of P∗FS in breaking soundness of the FS collapse. We show how to use P∗FS to construct
a malicious prover P∗ := (P∗0,P∗1) breaking soundness of Πsel-FS,H as follows. The prover P∗0 picks a
value α uniformly at random from the set of all possible commitments, and sends α to the verifier.
It gets back a hash-function key hk that is independent from the value α that P∗0 sent to the verifier
in the first message. Now, prover P∗1 runs prover P∗FS on ((crs, hk), x) to obtain a pair (α∗, γ∗). If
α∗ = α, then P∗1 passes γ∗ to the verifier. Else, P∗1 aborts.

Observe that the success probability of P∗ is lower bounded by the success probability of P∗FS
times the probability that α∗ is equal to α. If the selective FS transform of Π has soundness s′(λ)
we obtain

µ(λ) · 2−a(λ) asym
≤ s′(λ) = s(λ)

where the last equality is due to Theorem 4.3. The statement now follows by a division of the
inequality by 2−a(λ) and by the definition of soundness-error-to-guessing ratio. �

4.3.2 Zero-Knowledge

To prove zero-knowledge we need two more properties of the underlying 3PC. The first property
requires that the prover chooses its commitment α independently of the instance x and the witness
w. We call this property instance-independent commitment.

19

Definition 4.7 (Instance-Independent Commitments) Let Π = (K,P = (P0,P1),V) be a
3PC argument system for a polynomial-time computable relation R. We say that Π has instance-
independent commitments if P0(crs, x, w; r) := P0(crs; r) for any choice of randomness r, instance x
and witness w.

Interactive protocols obeying the above requirement are sometimes known under the name of “input-
delayed” protocols [CPS+16a, HV16, CPS+16b]. One example of a 3PC protocol that has instance-
independent commitments is the 3PC argument due to Blum for the quadratic residuosity [Blu81].
Another example is given by the Lapidot-Shamir protocol for graph Hamiltoniacity [LS91].

The second property we need is the analogue to instance-independent commitments for honest-
verifier zero-knowledge (HVZK) simulators, that is, we require that also simulators can choose
α and β independently of the instance. Note that while instance-independent commitments has
nothing to do with the challenge β, it follows from the definition of 3PC protocols that β is chosen
independently of the instance by verifier V0. Additionally, we note that we can only prove bounded
HVZK, that is, we require that the adversary can only make q-many oracle queries where q is
an arbitrary polynomial. We define the property in the CRS model and, again, note that the
standard-model version of this definition is obtained by replacing the crs with an empty string.

Definition 4.8 (q-Bounded Instance-Independent HVZK) Let Π = (K, P, V) be a 3PC
argument system in the CRS model for a polynomial-time computable relation R, with instance-
independent commitments. We say that Π satisfies q-bounded instance-independent ε-computational
honest-verifier zero-knowledge (instance-independent (q, ε)-HVZK for short) if there exists a PPT
simulator S := (S ′, (S ′′0 ,S ′′1)) such that for all binary PPT adversaries A we have that rIPSΠ

A(λ) ≈ε
sIPSΠ

S′,(S′′0 ,S′′1),A(λ), where experiments rIPS and sIPS are defined below:

rIPSΠ
A(λ)

for i = 1, . . . , q(λ) do

rP[i]←$ {0, 1}P.rl(λ)

rV[i]←$ {0, 1}V.rl(λ)

crs←$ K(1λ)

return AProv(rP,rV,crs,·,·,·,·)(1λ, crs)

sIPSΠ
S′,(S′′0 ,S′′1),A(λ)

for i = 1, . . . , q(λ) do

rS [i]←$ {0, 1}S.rl(λ)

(crs, tk)←$S′(1λ)

return ASimu(rS ,crs,tk,·,·,·,·)(1λ, crs)

Prov(rP, rV, crs, x, w, b, i)
if R(x,w) = 0 ∨ i /∈ [q(λ)] then

return ⊥

if T [i, b] 6= ⊥ then

return T [i, b]

if b = 0 then

α← P0(crs; rP[i])

β ← V0(crs; rV[i]) // i.e. β = rV[i]

γ ← ⊥

else

α← P0(crs; rP[i])

β ← V0(crs; rV[i]) // i.e. β = rV[i]

γ ← P1(crs, x, w; rP[i])

T [i, b]← (α, β, γ)

return (α, β, γ)

Simu(rS , crs, tk, x, w, b, i)
if R(x,w) = 0 ∨ i /∈ [q(λ)] then

return ⊥

if T [i, b] 6= ⊥ then

return T [i, b]

if b = 0 then

(α, β)← S′′0 (crs, tk; rS [i])

γ ← ⊥

else

(α, β, γ)← S′′1 (crs, tk, x; rS [i])

T [i, b]← (α, β, γ)

return (α, β, γ)

and A can ask q(λ) queries to its oracle and outputs a single bit. Additionally we say that Π satisfies
instance-independent ε-HVZK if indistinguishability of the above experiments holds for an arbitrary
polynomial q(λ).

Note that a standard q-bound variant (i.e., without instance-independence) is obtained by fixing
bit b in oracles Prov and Simu to 1 and provide P0 with x and w as additional input, as then the
oracles either return a complete honest transcript or a complete simulated transcript.

20

One example of a protocol readily satisfying (unbounded) instance-independent HVZK is given
by the Lapidot-Shamir protocol for graph Hamiltoniacity [LS91].

We are now in a position to quantify the zero-knowledge property of our instantiation of the FS
collapse.

Lemma 4.9 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable relation
R, such that Π has instance-independent commitments and satisfies q-bounded instance-independent
ε-HVZK. Then, assuming H is a programmable q-wise independent hash function, the FS collapse
ΠFS,H = (KFS,PFS,VFS) of Π using H satisfies q-bounded ε-computational zero-knowledge.

Proof. For ease of notation let us write Π := ΠFS,H. We start with the real distribution rNIZKΠ
A(λ),

where the CRS is defined as crs = (crs, hk) for crs←$ K(1λ) and hk←$ H.KGen(1λ). Here the
adversary A, given the CRS, can ask q adaptive queries (xi, wi) to oracle Prov which replies with
π←$ PFS(crs, xi, wi) (provided that R(xi, wi) = 1).

We describe a series of computationally close hybrids, starting from rNIZKΠ
A(λ). The hybrids

are depicted in Fig. 2 and are described below.

rNIZK1(λ): This is identical to the real experiment, but now the randomness ri used to generate the
q proofs πi corresponding to A’s queries is pre-sampled. Additionally, values αi = P0(1λ; ri)
are pre-computed—note that this is possible because of instance-independent commitments—
which allows us to also pre-compute values βi as βi = H.Eval(hk, αi) where hk is the hash key.
All of these values are stored in a trapdoor tk which is given to the hybrid oracle (which is now
a mixture between Prov and Simu). We write P.rl for the length of the random tape required
for (P0,P1). Note that the Prov oracle now additionally takes as input tk = (β, r1, . . . , rq)
and uses ri as random tape of both P0 and P1 (and thus of PFS).
Observe that all of the above steps (pre-computing values) are clearly just syntactical changes,
and thus rNIZKΠ

A(λ) ≡ rNIZK1(λ).

rNIZK2(λ):

q
-w

is
e

In the second and last step we replace all values βi with uniformly random values
sampled from the range of hash function H and the key hk is chosen via programming the
hash function. Down to the programmable q-wise independence property of H the distribution
corresponding to rNIZK1(λ) and rNIZK2(λ) are identical, i.e., rNIZK2(λ) ≡ rNIZK1(λ).

Simulator. Let S = (S ′,S ′′ = (S ′′0 ,S ′′1)) be the instance-independent HVZK simulator for the
underlying 3PC protocol (cf. Definition 4.8). Let q denote a bound on the number of oracle queries
of adversary A. We write S ′′.rl to denote the length of the random tape required for algorithm S ′′.

We construct simulator Sim = (Sim′,Sim′′) for q-bounded computational zero-knowledge (cf.
Definition 3.6). Simulator Sim′ first runs S ′ in order to obtain a pair (crs, tk). Afterwards Sim′
chooses q random strings r1, . . . , rq of length |ri| = S ′′.rl(λ). It then runs S ′′0 on randomness ri to
obtain q pairs (αi, βi), and chooses a “programmed” hash key hk←$ H.KGen(1λ,α,β). It outputs
key hk together with crs as common reference string crs for the FS collapse, and tk together with
the list of all ri’s as trapdoor tk. It thus perfectly simulates the setup in rNIZK2.

Upon input crs and tk, together with the i-th query xi, simulator Sim′′ extracts randomness ri
from tk and calls S ′′ on input (crs, tk, xi) and with random coins ri to obtain a proof πi = (α, β, γ)
which it returns. We give the pseudocode of Sim = (Sim′, Sim′′) in Figure 3. Note that the adversary
can only make q queries to its oracle and we provide index i as explicit input to simulator Sim′′.

21

rNIZK1(λ)

1 : crs←$ K(1λ)

2 : hk←$ H.KGen(1λ)

3 : for i = 1, . . . , q do
4 : r[i]←$ {0, 1}P.rl(λ)

5 : α[i]← P0(1λ; r[i])

6 : β[i]← H.Eval(hk,α[i])

7 :

8 : tk← (β, r)

9 : crs← (crs, hk)

10 : return AProv(crs,tk,·,·)(1λ, crs)

rNIZK2(λ)

crs←$ K(1λ)

for i = 1, . . . , q do

r[i]←$ {0, 1}P.rl(λ)

α[i]← P0(1λ; r[i])

β[i]←$ {0, 1}H.ol(λ)

hk← H.KGen(1λ,α,β)

tk← (β, r)

crs← (crs, hk)

return AProv(crs,tk,·,·)(1λ, crs)

Prov(crs, tk, xi, wi)
if R(xi, wi) = 1 then

(crs, hk)← crs

tk← (β, r)

α[i]←$ P0(1λ; r[i])

γi ←$ P1(crs, xi, wi,β[i]; r[i])

return πi ← (α[i], γ[i])

else return ⊥

pre-compute values
q-wise independence

Figure 2: The game hops needed for the proof of Lemma 4.9. The highlighted lines mark those lines that change from
step to step. By H.KGen(1λ,α,β) in line 7 of rNIZK2 we denote the “programming” of the q-wise independent hash
function such that H.Eval(hk, α[i]) = β[i] for all i ∈ [q]. Note that by choosing H to be a (q − 1) degree polynomial
over an appropriate finite field we can do the programming via polynomial interpolation.

Sim′(1λ)

(crs, tk)←$S ′(1λ)
for i = 1, . . . , q(λ) do

r[i]←$ {0, 1}S
′′.rl(λ)

(α[i],β[i])← S ′′0 (1λ; r[i])
hk←$ H.KGen(1λ,α,β)
crs := (crs, hk)
tk := (tk, r)
return (crs, tk)

Sim′′(crs, tk, x, i)

if i /∈ [q(λ)] then
return ⊥

if T [i] 6= ⊥ then
return T [i]

(crs, hk)← crs
tk← (tk, r)
(α, β, γ)← S ′′(crs, tk, x; r[i])
T [i]← (α, β, γ)
return (α, β, γ)

Figure 3: The HVZK simulator for the proof of Lemma 4.9.

Analysis. Note that simulator Sim′ can pre-compute the values αi using the HVZK simulator
S ′′0 of the underlying 3PC protocol. This is because S ′′ is instance-independent. It remains to
show that for all q-query adversaries A, the distributions rNIZK2(λ) and sNIZKSim′Sim′′(λ) are
computationally close which follows by q-bounded HVZK of the initial 3PC protocol. For this note
that games rNIZK2(λ) and sNIZKSim′Sim′′(λ) differ only in how values α, β and γ are computed. In
game rNIZK2(λ) they are computed with the honest prover while in game sNIZKSim′Sim′′(λ) they
are computed using the instance-independent HVZK simulator S. Hence, an adversary against
the instance-independent HVZK property of the underlying protocol can perfectly simulate games
rNIZK2(λ) and sNIZKSim′Sim′′(λ), by running the steps of rNIZK2(λ) and using its oracle to obtain
αi, βi and later using its oracle to complete proofs and obtain γi. If the adversary is connected to
Prov it perfectly simulates game rNIZK2(λ) and otherwise it perfectly simulates sNIZKSim′Sim′′(λ).
Thus, if the underlying protocol is instance-independent (q, ε)-HVZK then

|Pr[rNIZK2(λ) = 1]− Pr[sNIZKSim′Sim′′(λ) = 1]|
asym
≤ ε(λ).

22

4.4 Putting it Together

Combining the results in the previous section we obtain the following theorem stating that the FS
transform is instantiable with a q-wise independent hash function given that the underlying 3PC
satisfies three properties P1-P3.

Theorem 4.10 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable
relation R. Let H be a programmable q-wise independent hash function. Assume that Π is c-complete
and s-sound and additionally satisfies the following three properties:

(P1) instance-independent commitment;

(P2) SEGR % < 1;

(P3) instance-independent (q, ε)-HVZK.

Then, the FS collapse ΠFS,H of Π using H is a (c, s′, q, ε)-NIZK for the relation R, with s′ = %.

4.5 Obtaining the Required Properties

It remains the question which 3PC arguments (if any) satisfy properties P1-P3. While we know
of protocols directly satisfying P1 (e.g., the Blum protocol [Blu81]), and of at least one candidate
satisfying both P1 and P3 (i.e., the Lapidot-Shamir protocol [LS91]), we do not know any 3PC
argument already satisfying all properties.

Hence, we turn to the question how to compile a 3PC argument into one satisfying all the
properties we need. We do so using two compilers, as outlined below:

• Given a 3PC argument satisfying P1 and P3, we show a compiler yielding a 3PC argument that
additionally satisfies P2, that is, it has a small soundness-error-to-guessing ratio while retaining
properties P1 and P3. This compiler requires a CRS and relies heavily on indistinguishability
obfuscation (which we formally introduce in Section 3.4), and is presented in details in
Section 5.

• Given a 3PC argument satisfying P1 and special HVZK (properties, for example, present in
the classical 3PC argument for quadratic residuosity due to Blum [Blu81]), we show a compiler
yielding a 3PC argument that additionally satisfies P3, that is, it has instance-independent
HVZK while retaining property P1. This compiler—which is presented in details in Section 6—
also requires a CRS, and is inspired by the recent work of Lindell [Lin15]. It relies on so-called
dual-mode commitments [CV05, CV07] which can be set up either to be perfectly binding or
to be equivocal.
Intuitively, the protocol is changed such that the prover, instead of sending α, sends a
commitment c to α which it opens in the last message. As in an honest setup the commitment
is perfectly binding, soundness and completeness follow easily; for zero-knowledge the simulator
can setup the commitment scheme such that it is equivocal, which allows it to choose its first
message as a simulated commitment and later open this to the message α as obtained by the
underlying simulator. Note that, in particular, this allows the simulator to choose its first
message independently of the instance x.

Open questions are whether we can similarly find compilers that do not require a CRS and
whether there exist compilers also for protocols which do not already satisfy P1 and special HVZK.

23

5 Obtaining Small Soundness-Error-to-Guessing Ratio
In this section we present a compiler that turns a 3PC argument (possibly in the CRS model)
with instance-independent commitments and HVZK (Definition 4.7) into a 3PC argument which
has the soundness-error-to-guessing ratio (Definition 4.5) needed for the complexity leveraging in
Lemma 4.6. We note that the resulting protocol will be in the CRS model regardless whether the
starting protocol is in the CRS model or in the standard model. The idea for the compiler is to
provide a mechanism that allows to produce many challenges β given only a single commitment α.
To this effect the CRS will contain two obfuscated circuits to help the prover and the verifier run
the protocol. For obfuscation we use an indistinguishability obfuscator (which we formally introduce
in Section 3.4). The first circuit C0 is used by the prover to generate a pre-commitment α∗ which
it sends over to the verifier. The verifier will then use the second circuit C1 and run it on α∗ to
obtain multiple commitments. For this C1[k, crs] has a PRF key and the crs for algorithm P0 of the
underlying protocol hardcoded, and computes ` commitments as follows:

C1[k, crs](α∗)

for i = 1, . . . , ` do
r∗ ← F.Eval(k, α∗ + i)
α[i]← P0(crs; r∗)

return α

Using C1 the compiled verifier V∗ can generate ` real commitments α[1] to α[`] given the single
(short) pre-commitment α∗. The verifier will then run the underlying verifier V on all these
commitments to receive β1, . . . , β` which it sends back to the prover.

In order to correctly continue the prover’s computation (which was started on the verifier’s side)
the compiled prover P∗ needs to somehow obtain the randomnesses r∗ used within C1. For this, we
will build a backdoor into C1 which allows to obtain the randomness r∗ if one knows the randomness
that was used to generate α∗. Once the prover has recovered randomnesses r∗1, . . . , r∗` it can run the
underlying prover P on this randomness and the corresponding challenges βi to get correct values
γi which it sends back to the verifier. In a final step verifier V∗ runs the original verifier on the
implicit transcripts (αi, βi, γi)i=1,...,` and returns 1 if and only if the original verifier returns 1 on all
the transcripts.

We will next present a formal description of the compiler and then show that it achieves the
claimed properties and retains soundness, completeness and zero-knowledge.

5.1 The Compiler

Let Π = (K,P,V) be a 3PC argument system where the prover generates instance-independent
commitments and that satisfies instance-independent HVZK. Let rl denote an upper bound on the
randomness used by the prover (i.e., P.rl) and HVZK simulator (i.e., S.rl). Let F1 be a puncturable
pseudorandom function which is length doubling. Let F2 be a puncturable pseudorandom function
with F2.il = F1.ol and with F2.ol = rl. Let ` be a polynomial. We construct an argument system
Π∗ = (K∗,P∗,V∗) in the CRS model as follows. On input the security parameter K∗ will construct
an obfuscation of the following two circuits:

24

Π∗ = (K∗,P∗,V∗)

crs←$ K∗(1λ)
. .3PC with CRS. .

Prover: P∗(crs, x, w; rτ) Verifier: V∗(crs, x)
(crs, C0, C1)← crs (crs, C0, C1)← crs
τ ← rτ

α∗ ← C0(τ)
α∗

(α,⊥)← C1(α∗,⊥)
for i = 1, . . . , ` do
βi←$ V0(1λ)

β1, . . . , β`
(α, r∗)← C1(α∗, τ)
for i = 1, . . . , ` do
γ1 ← P1(crs, x, w, βi; r∗[i])

γ1, . . . , γ` success← 0
for i = 1, . . . , ` do

success← success+
V1(crs, x, (α[i], βi, γi))
↓

success = `

Accept if, and only if,
all ` proofs verify.

Recovered random-
ness that was used in
the creation of α by
circuit C1.

Figure 4: The compiled protocol from Section 5.1 to turn a 3PC protocol into one that has a small soundness-error-to-
guessing ratio (in the CRS model).

K∗(1λ)

crs←$ K(1λ)
k1←$ F1.KGen(1λ)
k2←$ F2.KGen(1λ)
C0←$ iO(C0[k1])
C1←$ iO(C1[k1, k2, `, crs])
crs← (crs, C0, C1)
return crs

C0[k1](τ)

α∗ ← F1.Eval(k1, τ)
return α∗

C1[k1, k2, `, crs](α∗, τ)

for i = 1, . . . , ` do
r∗[i]← F2.Eval(k2, α

∗ + i)
α[i]← P0(crs; r∗[i])

if α∗ 6= F1.Eval(k1, τ) then
r∗[i]← ⊥

return (α, r∗)

Note that we assume that the underlying protocol is in the CRS model and has a setup algorithm K.
If this is not the case one recovers the transformation for a 3PC in the standard model by assuming
that K outputs the empty string ε. The compiled 3PC Π∗ = (K∗,P∗,V∗) is then constructed as in
Figure 4.

5.2 Security Analysis

It remains to show that the compiled protocol is computationally sound, achieves (bounded) instance-
independent HVZK, is complete, and that it has instance-independent commitments and a sufficient
soundness-error-to-guessing ratio:

25

Theorem 5.1 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable
relation R such that Π is c-complete and s-sound and has instance-independent commitments and
satisfies q-bounded instance-independent HVZK. Let iO be an indistinguishability obfuscator and F1
and F2 puncturable pseudorandom functions. Let ` be a polynomial. Then, in the CRS model, the
compiled protocol Π∗ = (K∗,P∗,V∗) is (` · c)-complete, (2 · s−` + 2F1.ol(λ)s−`)-sound, has a worst-case
collision probability of 2−F1.il(λ), and satisfies q/`-bounded instance-independent HVZK. Furthermore
the compiled protocol has instance-independent commitments.

We discuss each of these properties in turn.

Completeness. Consider an honest protocol execution of the compiled protocol that does not
end with an accepting vote of the verifier. As the final verification uses the underlying verifier and
also α, β, and γ are constructed using the underlying algorithms P and V this thus yields also an
honest protocol execution of the underlying protocol where the verifier does not accept. There are
two things to note: the compiled protocol “internally” runs the underlying protocol multiple times
(` times) and algorithm P0 is run on pseudorandom coins rather than on truly random coins. Thus,
if the underlying protocol is c-complete the compiled protocol is at most (` · c)-complete plus the
distinguishing probability for the pseudorandom function.

Soundness. We analyze the soundness in two steps: Firstly, if the original protocol has soundess s,
then its `-parallel repetition version has soundness s`, as the protocol is public-coin [PV07, HPWP10,
CL09, CP15]. In a second step, we consider that α[1],...,α[`] are generated via applying the first stage
of the prover P0 to the output of an obfuscated pPRF rather than using truly uniformly random
coins. We loose a factor of 2−|α∗| for the number of choices that the prover can make for the input
to the obfuscated pPRF and else reduce to iO and the pPRF via a standard puncturing argument.
Hence, when using iO that is 2−|α∗|` log s-secure, and using a pPRF that is 2−|α∗|` log s-secure, adding
up soundness error s`, iO-security 2−|α∗|` log s and pPRF-security 2−|α∗|` log s and multiplying them
all by 2|α∗|, we obtain that the soundness of the compiled protocol is 2 · s−` + 2|α∗|s−`. Note that
the length of α∗ is independent from the number of repetition ` and thus, we can make soundness
as small as we want.

Soundness-error-to-guessing ratio. Note that the commitment of the compiled protocol α∗ is
generated by evaluating pseudorandom function F1 on a random value τ . This gives us a∗(λ) =
F1.ol(λ). In particular, this value is independent of the soundness amplification parameter ` (yielding
a SEGR %(λ) which is bounded away from 1).

Instance-independence. The compiled protocol has instance independent commitments (see
Definition 4.7). Furthermore, the protocol retains instance-independent HVZK simulators as we
discuss below.

Zero-knowledge. Finally, we show that the compiled protocol satisfies instance-independent
q/`-bounded HVZK if the underlying protocol satisfies instance-independent q-bounded HVZK (see
Definition 4.8). We show the proof for the simplified setting where the amplification parameter ` is
set to 1. The proof for the general case is analogous. For the argument we assume the existence of
an injective one-way function po with domain po.il = F1.il. The one-way function will be used as a
simple point obfuscation scheme. To obfuscate a point x we store px ← po(x) which allows us to
later compare a point x′ by simply checking if px = po(x′).

26

Let Π = (K,P,V) be a 3PC protocol which satisfies the conditions for the compiler and which is
instance-independent HVZK. We need to show that the compiled protocol Π∗ = (K∗,P∗,V∗) achieves
bounded instance-independent HVZK in the CRS model. For this we will use several game hops
where the first game is the real world setting rIPS and the last game is identical to the simulated
setting sIPS (with a simulator to be defined). We first describe the individual games and present
the accompanying pseudocode in Figures 7, 8, and 9 (starting on page 48). We present a formal
analysis of the individual game hops after the description of all games and denote the reduction
target for each step next to the game description.

Game1(λ): The game is identical to the real world setting rIPS where the crs is honestly generated
by K∗ and the adversary on querying oracle Prov on an instance x in the language with
witness w, obtains a transcript of an honest execution between prover P∗(1λ, crs, x, w) and
verifier V∗(1λ, crs, x). Without loss of generality we assume that prover P∗ on the i-th query
uses random coins τi sampled uniformly at random from {0, 1}P.rl(λ) = {0, 1}F1.il(λ).

Game2(λ):

iO

The game is identical to the previous game except that setup K∗ now punctures k1 on
all values τ . For this it chooses q random values τ1, . . . , τq in {0, 1}F1.il(λ) (if the values are
not distinct we abort and define that the adversary wins). Additionally simple forms of “point
obfuscations” are generated for all q points τi by running each τi through one-way function po
to obtain

pτi ← po(τi).

It then punctures key k1 on values τ1, . . . , τq to receive punctured key k∗1 and hardcodes this
into both circuits. To not change the functionality on these circuits the original PRF values
are hardcoded, that is α∗i ← F1.Eval(k1, τi) is hardcoded into both circuits C0 and C1. The
branching and test operation whether an input is for a punctured value is done with the point
obfuscation.
In addition, on the i-th call to oracle Prov prover P∗ is run on randomness τi. Note that τi
is the only randomness of the prover and prover P∗ then choses its commitment as αi.

Game3(λ):

pP
RF

The game is identical to the previous game except that now values α∗i are chosen
uniformly at random in {0, 1}F1.ol(λ).

Game4(λ):

ba
d α
∗

The game is identical to the game before except that we define that the adversary wins
in case any of the values α∗[i] is chosen to be in the image of the PRF for key k1. Note that
since F1 is length doubling this happens only with probability q · 2−λ.

Game5(λ):

iO

As before but we again use the unpunctured key k1. The hardcoded values for τ1, . . . , τq
(i.e. their point obfuscations) as well as the α∗i remain hardcoded.

Game6(λ):

di
O

+
B

C
P

14
+

O
W

F

We now change the if branch in circuit C1 such that it does not depend on hardcoded
values pτ anymore. Note that the if-branch was changed in the second step in order not to
change the functionality of the circuits. This step changes the functionality by reverting the
if-branch to check only whether input α∗ is different from F1.Eval(k1, τ) (i.e., the original
check).

Game7(λ):

iO

The game is identical to the previous game but now key k∗2 is punctured on values
α∗1, . . . , α

∗
q . To not change the functionality on these circuits the original PRF values are

hardcoded, that is r∗[i]← F2.Eval(k2, α
∗
i) is hardcoded into circuit C1.

27

Sim′(1λ)
(crs, tk)←$S′(1λ)
k1 ←$ F1.KGen(1λ)
k2 ←$ F2.KGen(1λ)
for i = 1, . . . , q do

τ [i]←$ {0, 1}F.il(λ)

pτ [i]← po(τ [i])

α∗[i]←$ {0, 1}F.ol(λ)

r∗[i]←$ {0, 1}F.ol(λ)

(α[i], βtmp)←$S′′0 (crs, tk; r∗[i])
k∗2 ←$ F2.Pntr(k2,{α∗[1], . . . ,α∗[q]})
C0 ←$ iO(C0[k1,p,α∗])
C1 ←$ iO(C1[k1,α

∗, k∗2 ,α])
crs← (crs, C0, C1)
tk← (tk,α∗, r∗)
return (crs, tk)

Sim′′0(1λ, crs, tk)
(crs, C0, C1)← crs

(tk,α∗, r∗)← tk

.on i-th query.

(α, β)← S′′0 (crs, tk; r∗[i])
return (α[i], β)

Sim′′1(1λ, crs, tk, x)
(crs, C0, C1)← crs

(tk,α∗, r∗)← tk

.on i-th query.

γ ← S′′1 (crs, tk, x; r∗[i])
return γ

C0[k1,p,α∗](τ)
if ∃i ∈ [q] : p[i] = po(τ) then

return α∗[i]
α∗ ← F1.Eval(k1, τ)
return α∗

C1[k1,p,α∗, k∗2,α](α∗, τ)
if ∃i ∈ [q] : α∗ = α∗[i]
α← α[i]

else
r∗ ← F2.Eval(k∗2 , α∗)
α← P0(r∗)

if α∗ 6= F1.Eval(k1, τ) then
r∗ ← ⊥

return (α, r∗)

Figure 5: The complete pseudocode for q-bounded HVZK simulator Sim for the compiled protocol. Note that simulator
Sim′′1 runs the underlying simulator on the same random coins as simulator Sim′′0 thus “generating” the same values
(α, β).

Game8(λ):

pP
RF

The game is identical to the previous game but now hardcoded values r∗i are sampled
uniformly at random.

Game9(λ):

iO

In this step we precompute the actual values α instead of having values r∗ hardcoded.
That is, we change circuit K∗ to compute additionally α[i]← P0(crs; r∗[i]) and hardcode these
into C1.

Game10(λ):

hv
zk

Let S = (S ′,S ′′ = (S ′′0 ,S ′′1)) denote the honest verifier zero knowledge simulator of the
underlying 3PC protocol. The setting is identical to the previous game, but now we “switch
to oracle Simu”. The crs is generated as before with three exceptions: (1) the simulator of the
underlying protocol S ′ is run to generate a CRS and trapdoor crs and tk for the underlying
protocol; (2) Values α are computed with simulator S ′′0 of the underlying protocol (with coins
r∗[i]); (3) As we are now in the simulated setting we generate the trapdoor tk to contain the
randomness values r∗1, . . . , r∗q as well as pre-commitments α∗1, . . . , α∗q .
On the i-th query (crs, tk, x, w, b, i) oracle Simu answers as follows: if b = 0 then it runs
simulator S ′′0 of the underlying 3PC protocol on input its CRS and trapdoor and on randomness
ri to obtain α and β (which are identical as the precomputed ones) which are returned to the
adversary. If, on the other hand b = 1 it runs simulator S ′ of the underlying 3PC protocol
on input its CRS and trapdoor as well as instance x and with randomness r∗i to obtain a
proof π = (α, β, γ). Note that by definition, as S has instance-independent commitments S
will generate a commitment and challenge as (α, β) ← S ′′0 (crs, tk, r∗i) (where crs and tk are
the CRS and trapdoor by the underlying protocol). It replaces α for α∗[i] and returns proof
π∗ := (α∗[i], β, γ).
We give a complete description of simulator Sim = (Sim′, Sim′′ = (Sim′′0, Sim′′1)) for the compiled
protocol as pseudocode in Figure 5.

28

Analysis. First note that simulator Sim is indeed instance-independent. What remains to show
is that the view of the adversary between Game1 and the final game Game10 does only negligibly
change. We discuss each step in turn below.

Game1 to Game2. By construction the generated circuits C0 and C1 are equivalent in both games
and hence a distinguisher for the two games yields a distinguisher against the indistinguishability
obfuscator. Note that we are not dealing with a single circuit but two circuits and thus we have that

|Pr[Game1(λ) = 1]− Pr[Game2(λ) = 1]| ≤ 2 · Advio
iO,Sam,D(λ)

where sampler Sam and distinguisher D are the adversary induced by games Game1 and Game2.

Game2 to Game3. By construction the only change is that the answers on “punctured points”
are now chosen as uniformly random values. Thus, a distinguisher between the games induces a
distinguisher against the puncturable pseudorandom function F1.

|Pr[Game2(λ) = 1]− Pr[Game2(λ) = 1]| ≤ Advpprf
F1,A1,A2

(λ).

Game3 to Game4. By the fundamental lemma of the game playing technique [BR06] games Game3
and Game4 are identical unless event badα∗ occurs which we can upper bound by q · 2−F.il(λ) as the
PRF by definition has stretch 2.

|Pr[Game2(λ) = 1]− Pr[Game2(λ) = 1]| ≤ q · 2−F.il(λ).

Game4 to Game5. Noting that from Game4 to Game5 the circuits only change syntactically but
not functionally (the unpunctured key k1 is used instead of k∗1) allows us to perform an analysis
analogously to the first game hop.

|Pr[Game4(λ) = 1]− Pr[Game5(λ) = 1]| ≤ 2 · Advio
iO,Sam,D(λ).

Game5 to Game6. We will reduce the distinguishing advantage of any distinguisher between the
two games Game5 and Game6 to the security of the indistinguishability obfuscator iO and the security
of the injective one-way function po. For this we rely on the result of Boyle et al. [BCP14] who
relate indistinguishability obfuscation and restricted differing-inputs obfuscation. We recall their
result as Theorem 3.10 on page 14. For this we consider a circuit sampler Sam that runs the steps
of Game5 up to and including line 12. It outputs as auxiliary information circuit C0 and string
crs, that is, it sets aux ← (C0, crs). As circuits it constructs the circuit C1 from line 13 once as in
Game5 and once as in Game6.

Additionally we construct a diO distinguisher that gets as input an obfuscation C1 of either of
the two circuits and the auxiliary information aux ← (C0, crs). It sets crs← (crs, C0, C1) and then
runs the game distinguisher on input crs and outputs whatever it outputs.

If C1 is as in Game5 then together sampler and distinguisher perfectly simulate game Game5
and otherwise they perfectly simulate Game6. We want to argue that

|Pr[Game6(λ) = 1]− Pr[Game7(λ) = 1]| ≤ Advio
iO,Sam,D(λ) + [BCP14] + q · Advowf

po,A(λ)

where [BCP14] denotes the loss from using the indistinguishability obfuscator in a diO setting and
Advowf

po,A(λ) is a factor due to the use of one-way function po. For this we need to show that sampler
Sam is differing-inputs and the circuits differ only on polynomially many points. First note that

29

the two circuits, as prepared by sampler Sam, differ only on inputs τ [i] for i ∈ [q]. We can further
reduce the advantage of any extractor in the Diff game to the inversion advantage Advowf

po,A(λ) of
an adversary A against one-way function po. For this consider that all values in τ are sampled
uniformly at random and no extra information about these values is available in aux. Thus an
adversary A against the one-wayness of po that gets as input a random image y can simply choose
q − 1 additional values po(τi) and construct auxiliary information and circuits as does sampler Sam
but using y as one of the values in τ . An extractor that is successful in finding a differing input will
with probability 1/q have inverted y which concludes the argument.

Game6 to Game7. Again, the circuits are only changed syntactically allowing for an analogous
analysis as in the first game hop.

|Pr[Game6(λ) = 1]− Pr[Game7(λ) = 1]| ≤ 2 · Advio
iO,Sam,D(λ).

Game7 to Game8. Similarly to the second game hop the hardcoded values on punctured inputs
are now chosen uniformly at random allowing for an analysis analogous to the second game hop.

|Pr[Game7(λ) = 1]− Pr[Game8(λ) = 1]| ≤ Advpprf
F2,A1,A2

(λ).

Game8 to Game9. Precomputing values α for the punctured target points does not change the
functionality of circuit C1 and an analysis analogously to the first game hop allows us to reduce the
distinguishing probability to the security of the indistinguishability obfuscator. Note that here only
C1 is changed and thus:

|Pr[Game8(λ) = 1]− Pr[Game9(λ) = 1]| ≤ Advio
iO,Sam,D(λ).

Game9 to Game10. On the i-th query simulator Sim runs the simulator S of the underlying 3PC
protocol on random coins r∗[i] to obtain (α, β, γ). As by assumption S is instance-independent
it will generate (α, β, γ) such that (α, β) = S ′′0 (crs, tk; r∗[i]) where crs and tk are the CRS and
trapdoor of the underlying simulator. Simulator Sim returns as protocol transcript (α∗[i], β, γ). By
construction C1 will map α∗[i] to α thus presenting the adversary with an identical simulation as
in the previous step except that (α, β, γ) are now generated by the HVZK simulator S. Thus a
distinguisher between the two games can be used to construct a distinguisher against the HVZK
simulator.

To construct an attacker against HVZK note that in line 8 of games Game9 and Game10 the
randomness r∗ is not encoded in any of the circuits any longer and only used for running P0 and
S ′′0 , respectively. Thus we construct an adversary A that gets as input the crs and then runs game
Game9 up to but not including line 8. (The for loop is executed for the lines before line 8.) It then
calls its oracle on all indexes i = 1, . . . , q and with bit b = 0 (and x set to, for example, ⊥, see also
Definition 4.8). The oracle returns (αi, βi)i=1,...,q which allows adversary A to construct vector α
as is done in line 9. It then runs the remaining steps of the setup to obtain (crs, C0, C1) which it
passes on to the distinguisher. Queries of the distinguisher are passed on to its own oracle and it
outputs whatever the distinguisher outputs.

If the oracle implements Prov then the adversary perfectly simulates game Game9 and otherwise
it perfectly simulates Game10. Thus, if the underlying protocol achieves (q, ε)-bounded instance-
independent HVZK then

|Pr[Game8(λ) = 1]− Pr[Game9(λ) = 1]|
asym
≤ ε.

30

Note that for the general case with ` > 1 one needs to simulate q · ` oracle queries and thus
looses a factor of `ε.

6 Obtaining Instance-Independence
In this section, we present a compiler that turns a 3PC protocol with HVZK and instance-independent
commitments into a 3PC protocol in the CRS model that has instance-independent commitments
and instance-independent simulators, that is, the HVZK simulator produces α and β independently
of the instance.

The idea is inspired by Lindell’s compiler [Lin15]. Namely, we replace α by a commitment α∗ to
α where the deployed commitment scheme can come in one of two modes: if honestly generated the
commitment will be perfectly binding thus allowing us to directly argue that the resulting compiled
protocol retains soundness and completeness. On the other hand, the commitment scheme can be
initialized to be equivocal (looking indistinguishably from the honest commitment setup) such that
a simulator can open a commitment to arbitrary values. This way, the simulator can first commit
to an arbitrary α∗ and then, using the trapdoor in the CRS, it can open α∗ to some arbitrary value
α. In particular, in the reduction to the HVZK property, the verifier can choose α∗ before knowing
the statement that the simulator of the underlying protocol needs in order to produce α.

Such dual-mode commitment schemes were studied and constructed by Catalano and Vis-
conti [CV05, CV07] who called them hybrid commitments. We here give the definition due to
Lindell [Lin15]. We write C.Com(pp,m) taking public parameters pp and message m to obtain a
commitment c and opening δ, and write C.Vf(pp,m, c, δ) to denote verification of a commitment.
We also let C.il : N → N (resp., C.ol : N → N) denote the input (resp., output) length functions
corresponding to C.

Definition 6.1 (Dual-Mode Commitment) A dual-mode commitment scheme is a tuple of
PPT algorithms (C.GenPP, C.Com,C.Vf,C.il,C.ol) with PPT commitment simulator (Scom.GenPP,
Scom.Com, Scom.Open) such that the following holds.

Public Parameters. On input the security parameter 1λ algorithm GenPP outputs public
parameters pp.

Perfect Completeness. For all security parameters λ ∈ N and all messages m ∈ {0, 1}C.il(λ) it
holds that

Pr
[
C.Vf(pp, c,m, δ) = 1 : pp←$ GenPP(1λ), (c, δ)←$ C.Com(pp,m)

]
= 1.

Perfectly Binding. For all security parameters λ ∈ N and all public parameters pp←$ GenPP(1λ)
algorithm C.Com is a perfectly-binding non-interactive commitment scheme, that is, for all
security parameters λ ∈ N, all messages m,m′ ∈ {0, 1}C.il(λ) such that m 6= m′, and all
openings δ′ ∈ {0, 1}∗ we have that

Pr
[
C.Vf(pp, c,m′, δ′) = 0 : pp←$ GenPP(1λ), (c, δ)←$ C.Com(pp,m)

]
= 1

Equivocal. For every PPT adversary A, advantage Advcom
C,Scom,A(λ) defined as

Advcom
C,Scom,A(λ) := 2 · Pr

[
COMAC,Scom(λ)

]
− 1

should be negligible where game COM is defined as

31

COMAC,Scom(λ)

b←$ {0, 1}
pp0←$ C.GenPP(1λ)
(pp1, tkcom)←$Scom.GenPP(1λ)
b′←$ACom(ppb)
return b = b′

Com(m)

if b = 0 then
(c, δ)←$ C.Com(pp0,m)

else
c←$Scom.Com(pp1, tkcom)
δ←$Scom.Open(pp1, tkcom, c,m)

return (c, δ)

Additionally to dual-mode commitments we require that the underlying 3PC protocol satisfies
so-called special HVZK that essentially allows the simulator to simulate arguments for a given
challenge β ∈ B.

Definition 6.2 (Special HVZK) Let Π = ((P0,P1),V) be a 3PC argument system for a polynomial-
time computable relation R. We say that Π satisfies special ε-HVZK if there exists a PPT machine
S such that for all x ∈ LR and for all β ∈ B the following two distributions are ε-computationally
indistinguishable

{(α, β, γ) : α←$ P0(x,w); γ←$ P1(x,w, β)} and {(α, β, γ) : (α, γ)←$S(x, β)} .

In other words, for any β ∈ B, the simulator outputs an argument (α, β, γ) with this challenge,
which is indistinguishable from a real argument with challenge β.

As observed by Fischlin [Fis05] common protocols obey this special zero-knowledge notion and if,
furthermore, the challenge size is logarithmic in the security parameter then assuming special HVZK
is without loss of generality.

6.1 The Compiler

Given a 3PC protocol Π = (P,V) with HVZK simulator S which satisfies the conditions above, we con-
struct a compiled protocol Π∗ = (K∗,P∗,V∗) as follows. Let C = (C.GenPP,C.Com,C.Open,C.il,C.ol)
be a dual-mode commitment scheme, where C.GenPP is the honest public parameter generator for
the perfectly binding variant of the commitment scheme. On input the security parameter setup
algorithm K∗ simply runs the public parameter generation of the commitment scheme.

K∗(1λ)

pp←$ C.GenPP(1λ)
crs← pp
return crs

We present the compiled protocol in Figure 6. What remains to show is that the compiled
protocol retains instance-independent commitments, completeness, soundness and that it achieves
instance-independent HVZK simulators.

6.2 Security Analysis

Theorem 6.3 Let Π = (K,P,V) be a 3PC argument system for a polynomial-time computable
relation R such that Π is c-complete and s-sound and has instance-independent commitments and
satisfies special HVZK. Let C = (C.GenPP, C.Com, C.Open, C.il, C.ol) be a dual-mode commitment

32

Π∗ = (K∗,P∗,V∗)

crs←$ K∗(1λ)
. 3PC with CRS .

Prover: P∗(crs, x, w; rP, rC) Verifier: V∗(crs, x)
pp← crs pp← crs
α← P0(1λ; rP)
(α∗, δ)← C.Com(pp, α; rC)

α∗

β←$ V0(1λ)
β

γ ← P1(x,w, β; rP)
(γ, α, δ)

↓
V1(x, (α, β, γ)) = C.Vf(pp, α∗, α, δ) = d

Figure 6: The compiled protocol achieving instance-independent HVZK simulators.

scheme. Then, in the CRS model, the compiled protocol Π∗ = (K∗,P∗,V∗) is c-complete, s-sound and
satisfies unbounded instance-independent HVZK. Furthermore the compiled protocol has instance-
independent commitments.

We discuss the various properties in turn.

Instance-independent commitments. As instead of the original commitment α now we use α∗
which is a commitment to α, the compiled protocol retains instance-independent prover commitments.

Completeness. If the public parameters are generated honestly for the commitment scheme, the
scheme is perfectly binding. Hence, if on an honest execution the verifier does not accept it would
not accept for the same execution on the underlying protocol. Hence, if the underlying protocol is
c-complete then so is the compiled protocol.

Soundness. Again soundness directly follows from the underlying protocol and the fact that the
commitment scheme is perfectly binding if the public parameters are honestly created. Thus, if the
underlying 3PC protocol has s-soundness then so does the compiled protocol.

Zero-knowledge. We show that if the underlying protocol satisfies special-HVZK then the
compiled protocol satisfies q-bounded instance-independent HVZK (see Definition 4.8). Note that,
in fact we can prove an unbounded variant, but for our purpose the bounded variant suffices as our
FS-collapse only supports bounded zero-knowledge. Further note that we require the underlying
protocol to satisfy special-HVZK but claim that the compiled protocol does not achieve special any
longer. We note that the compiled protocol, in fact, achieves a special-instance-independent HVZK
variant but again, as we do not need this for our result we chose not to additionally formalize it.

The proof will be down to the security of the commitment scheme and the special-HVZK of the
underlying protocol and consists of two game hops.

33

Game1(λ): The first game is equivalent to real world setting rIPSΠ∗
A where the adversary has access

to the Prov oracle which runs honest executions of the protocol to obtain the transcripts for
the adversary.

Game2(λ):

C

The setting is similar to the previous game with the exception that now the commitment
is returning fake commitments. In order for this to work we switch to the Simu oracle and
let the trapdoor contain the commitment trapdoor. That is, the setup algorithm is changed
to run the simulated commitment setup and then the first message of the prover is replaced
by a simulated commitment. To make the view consistent on calling Simu with b = 1 the
simulated commitment will be opened to the correct α as obtained by the underlying protocol.
For this note that at this point the adversary already supplied a valid instance and witness.
That is the protocol transcript is still computed with the underlying prover and simulator.
The current setting is best visualized with an adapted protocol:

Π∗ = (K∗,P∗,V∗)
(pp, tkcom)←$Scom.GenPP(1λ)
crs← pp

. 3PC with CRS .

Prover: P∗(crs, x, w) Verifier: V∗(crs, x)
pp← crs pp← crs
α←$ P0(1λ)
α∗ ←$Scom.Com(pp, tkcom) α∗

β ←$ V0(1λ)β

γ ←$ P1(x,w, β)
δ ←$Scom.Open(pp, tkcom, α

∗, α) (γ, α, δ)
↓

V1(x, (α, β, γ)) = C.Vf(pp, α∗, α, δ) = 1

Game3(λ):

hv
zk

The setting now switches to use the HVZK simulator S of the underlying protocol.
Calls to Simu with bit b = 0 are answered as before with a simulated commitment. Note
that while in the last setting β was chosen by the verifier V0 we now choose a random value
β ∈ B. (Technically this is not a change, since we consider 3PC protocols.) If later for the
same index a call to Simu with bit b = 1 is made, then the special HVZK simulator is run
on challenge β (that was chosen before) and instance x to obtain (α, γ)←$S(x, β). Then,
as before the commitment is opened to α and (α∗, β, (γ, α, δ)) is returned to the adversary.
Before we present the pseudocode of the simulator, we again present a view of the adapted
protocol to visualize the setting:

34

Π∗ = (K∗,P∗,V∗)
(pp, tkcom)←$Scom.GenPP(1λ)
crs← pp

. 3PC with CRS .

Prover: P∗(crs, x, w) Verifier: V∗(crs, x)
pp← crs pp← crs
α∗ ←$Scom.Com(pp, tkcom) α∗

β ←$Bβ

(α, γ)←$S(x, β)
δ ←$Scom.Open(pp, tkcom, α

∗, α) (γ, α, δ)
↓

V1(x, (α, β, γ)) = C.Vf(pp, α∗, α, δ) = 1

We next present the pseudocode of the simulator Sim = (Sim′, (Sim′′0, Sim′′1)). Note that it is
assumed that Sim′′0 and Sim′′1 are always run on matching random coins, that is, Sim′′1 can
recover (α∗, β) as output by Sim′′0 (see Definition 4.8).

Sim′(1λ)
(pp, tkcom)←$Scom.GenPP(1λ)
tk← tkcom

crs← pp
return (crs, tk)

Sim′′0(crs, tk)
tkcom ← tk
pp← crs
α∗ ←$Scom.Com(pp, tkcom)
β ←$B
return (α∗, β)

Sim′′1(crs, tk, x)
tkcom ← tk
pp← crs
(α∗, β)←$ Sim′′0 (crs, tk)
(α, γ)←$S(x, β)
δ ←$Scom.Open(pp, tkcom, α

∗, α)
return (α∗, β, (γ, α, δ))

What is left to show is that the two game hops are negligibly close. We prove this below.

Game1 to Game2. The difference between the settings in Game1 and Game2 matches exactly the
commitment game. That is, a distinguisher can be turned into an adversary against the commitment
scheme. The commitment scheme adversary takes as input the public parameters pp which it
forwards to the distinguisher between games Game1 and Game2. On an oracle query for index i
with bit b the adversary distinguishes between b being set to 0 or to 1 and answers in these cases as
follows:

b = 0 It runs the underlying prover P0 on input the security parameter to obtain message α. It
then sends α to its commitment oracle to receive commitment α∗ and opening δ. Finally,
it runs verifier V0 on input the security parameter to receive β and returns (α∗, β) to the
distinguisher.

b = 1 It recovers α, α∗ and β (or if the corresponding call with b = 0 was not yet made, it performs
the above steps). It then calls prover P1 on input x,w and β to receive γ. (Note that P1 is
run on the same random coins as prover P0 before, and is thus able to recover α.) Finally, it
returns to the distinguisher (α∗, β, (γ, α, δ)).

It is easy to see that if the commitment oracle returns simulated commitments then the adversary
perfectly simulates Game2 and otherwise Game1. Thus, we have:

|Pr[Game1(λ) = 1]− Pr[Game2(λ) = 1]| ≤ Advcom
C,Scom,A(λ).

35

Game2 to Game3. The difference between the two games matches exactly the setup of the special-
HVZK setting. That is, a distinguisher between the two games can be turned into an adversary
A against the special-HVZK property of the underlying protocol. For this, adversary A runs the
simulated setup of the commitment scheme to obtain (pp, tkcom)←$Scom.GenPP(1λ) and forwards pp
as CRS to the distinguisher. On an oracle query for index i with bit b the adversary A distinguishes
between b being set to 0 or to 1 and answers these cases as follows:

b = 0 It runs commitment simulator Scom.Com to obtain a simulated commitment α∗. It then picks
a random value β ∈ B and returns (α∗, β).

b = 1 It recovers (α∗, β) (or freshly generates them if no corresponding oracle call with bit b = 0 has
been made). It then calls its own oracle on x,w and β to receive a transcript (α, β, γ). (Note
that Definition 6.2 is not stated in an oracle setting but it can be restated as an adversary
that gets oracle access to either the left distribution or the right distribution that it can call
on inputs x, w and β for values x in the language and where w is a valid witness to this effect.)
Adversary A then uses the commitment simulator to open the commitment α∗ to α and it
returns (α∗, β, (γ, α, δ)).

If the adversary receives honest protocol transcripts then it perfectly simulates Game2 and
otherwise it perfectly simulates Game3. Thus, the distinguishing probability between the two
settings can be upper bounded by:

|Pr[Game2(λ) = 1]− Pr[Game3(λ) = 1]|
asym
≤ ε

assuming that the underlying 3PC protocol is special ε-HVZK. This concludes the proof.

7 Fiat–Shamir Signatures
We explain how to extend our techniques in order to obtain a standard model instantiation of
FS signatures, under similar complexity assumptions as in the case of FS NIZK. In particular we
will identify a certain class of so-called highly sound identification (ID) schemes, such that we
can instantiate the hash function in the corresponding FS collapse via a q-wise independent hash
function. On the positive side, we remark that the obtained signature scheme is in the standard
model (i.e., without a CRS) even if the starting identification scheme is in the CRS model; the
reason is that in the case of signatures we can always include the CRS as part of the public key of
the verifier. On the negative side, the obtained signature scheme satisfies only a weak unforgeability
flavour.

We recall the definition of ID and signature schemes in Section 7.1. Section 7.2 contains our
positive result for FS signatures in the standard model. Finally, in Section 7.3, we explain how to
obtain the desired properties by relying on similar tools as the ones used in the compilers from
Section 5 and Section 6.

7.1 Identification and Signature Schemes

The FS transform can be used in order to generically obtain signature schemes starting from ID
schemes satisfying certain properties.

36

Canonical ID schemes. An ID scheme consists of three PPT algorithms (K,P,V). Algorithm K
takes as input 1λ and outputs a CRS crs ∈ {0, 1}∗, together with a pair of keys (pk, sk), where pk
is called the public key and sk is called the secret key. (In case the ID scheme is in the standard
model, then we simply set crs = ε.) Later the prover P interacts with the verifier V to convince
him he knows the secret key sk corresponding to pk (where both P and V are also given crs). At
the end of the protocol execution, the verifier outputs a bit (representing his decision); we write
〈P(sk),V〉(crs, pk) for the random variable corresponding to the verifier’s verdict. Similarly, we write
P(crs, pk, sk) � V(crs, pk) for the random variable corresponding to transcripts of honest protocol
executions.

For applying the FS transform one is typically interested in so-called canonical ID schemes.
Intuitively, canonical ID schemes are the counterpart of 3PC arguments (cf. Section 4.1). In
particular, we can think of the prover algorithm as being split into two sub-algorithms P := (P0,P1),
where P0 takes as input a pair (pk, sk) and outputs the prover’s first message α (the so-called
commitment) and P1 takes as input (pk, sk) as well as the verifier’s challenge β to produce the
prover’s second message γ (the so-called response). In general P0 and P1 are allowed to share the
same random tape, which we denote by r ∈ {0, 1}∗. In a similar fashion we can think of the verifier’s
algorithm as split into two sub-algorithms V = (V0,V1), where V0 outputs a uniformly random
value β ∈ B and V1 is deterministic and corresponds to the verifier’s verdict (i.e., V1 takes as input
pk and a transcript (α, β, γ) and returns a decision bit d ∈ {0, 1}).

A canonical ID scheme typically satisfies three properties known as completeness, soundness,
and HVZK, which are analogues to the corresponding properties of 3PC argument systems. We
provide an informal definition of completeness and soundness below (we discuss HVZK later in this
section).

• Completeness. The honest prover P (holding sk) convinces the verifier V (holding pk) with
overwhelming probability (over the randomness of K,P,V).

• Soundness. For all PPT provers P∗, the probability that P∗ convinces V on common input
(crs, pk) is bounded by s(λ) ∈ negl(λ).8

Signature schemes. A signature scheme is a triple of PPT algorithms (K,S,V). Algorithm K
takes as input the security parameter 1λ and outputs a pair of keys (pk, sk). Algorithm S takes as
input a pair (sk,m), and outputs a signature σ on message m ∈ {0, 1}∗. Algorithm V takes as input
pk and a pair (m,σ) and returns a decision bit d ∈ {0, 1}.

We say that a signature scheme satisfies completeness if for all messages m ∈ {0, 1}∗ we have
that V(pk, (m, S(sk,m))) = 1 with overwhelming probability over the generation of (pk, sk).

The standard security notion for signature schemes is called existential unforgeability against
chosen-message attacks (EUF-CMA). Roughly speaking this notion demands that it should be hard
to forge a signature without knowing the secret key, even when given access to an oracle, signing
polynomially many messages of the adversary’s choice. Here, we will instead stick to a strictly
weaker notion called random-message unforgeability against random message attack (RUF-RMA).
The difference is that now both signature queries and the final forgery are for messages that are not
under the adversary’s control (in particular they are uniformly random messages).

8The definition of soundness we consider is very weak, in that for instance, it is achieved by the naive protocol
where P forwards sk to V. Such a protocol is not passively secure, since an adversary observing a single honest
execution can later impersonate the prover. Note, however, that we additionally require a canonical ID scheme to
satisfy HVZK, which implies passive security.

37

Definition 7.1 (RUF-RMA) Let Π = (K,S,V) be a signature scheme. We say that Π satisfies
q-bounded random-message unforgeability against random-message attacks (q-bounded RUF-RMA)
if for all PPT adversaries A asking at most q oracle queries the following holds:

Pr
[
V(pk, (m∗, σ∗)) = 1 : (pk, sk)←$ K(1λ);m∗←$ {0, 1}∗;σ∗ ← ASign(sk)(1λ, pk,m∗)

]
≤ negl(λ) ,

where oracle Sign(sk), upon each query, samples a fresh random message mi←$ {0, 1}∗ and returns
(mi, σi) with σi←$ S(sk,mi).

FS signatures. The FS transform allows to turn canonical ID schemes into signature schemes, as
specified below. Let Π = (K,P,V) be the initial canonical ID scheme. Additionally, consider a family
of hash functions H consisting of algorithms H.KGen, H.kl, H.Eval, H.il and H.ol (see Section 3.1);
here H.il and H.ol correspond, respectively, to the bit lengths of messages α||m and β (as a function
of the security parameter λ).

The FS collapse of Π using H is a triple of algorithms ΠFS,H := (KFS, SFS,VFS) defined as follows.

• Algorithm KFS takes as input the security parameter, samples hk←$ H.KGen(1λ), (crs, pk, sk)←$

K(1λ), and outputs pk := (crs, hk, pk) and sk := (crs, hk, pk, sk).

• Algorithm SFS takes as input sk := (crs, hk, pk, sk) and a message m ∈ {0, 1}∗, and runs
P0(crs, pk, sk) in order to obtain the commitment α ∈ {0, 1}H.il(λ)−|m|; next PFS defines the
challenge as β := H.Eval(hk, α||m) and runs P1(crs, pk, sk, β) in order to obtain the response γ.
Finally PFS outputs σ := (α, γ).

• Algorithm VFS takes as input pk := (crs, hk, pk) and a pair (m,σ), and returns 1 if and only if
verifier V1(crs, pk, (α, β, γ)) = 1 where β = H.Eval(hk, α||m).

7.2 Proof of Random-Message Unforgeability

In a nutshell the result of Fiat and Shamir (for the case of signatures) says that whenever Π = (P,V)
is a (standard-model) canonical ID scheme satisfying completeness, computational soundness, and
computational HVZK (in addition to a basic requirement on the min-entropy of the prover’s
commitment), its FS collapse ΠFS,H is an EUF-CMA signature scheme if H is modeled as a random
oracle.

Here we show that the FS transform admits a very simple standard-model instantiation when
starting from a special class of canonical ID schemes Π = (K,P,V) satisfying three additional
properties. The obtained signature scheme will satisfy q-bounded RUF-RMA. Since most of the
technical details are identical to our standard-model instantiation for FS NIZK, we only highlight
the main differences here. The properties we need are defined below:

P1′: The first property requires that the commitment α can be computed independently of (pk, sk),
i.e. α←$ P0(crs). This property is analogous to “instance-independent commitments” for
argument systems (cf. Definition 4.7).

P2′: The second property requires that the SEGR %(λ) := s(λ)/2−a(λ) is negligible in the security
parameter, where s(λ) is the soundness parameter of the ID scheme and a(λ) ∈ N is the
maximum bit-length of the commitment. The definition of SEGR is analogous to the definition
of SEGR for argument systems (cf. Definition 4.5).

P3′: There exists a PPT simulator S := (S ′,S ′′) such that the following two distributions are
computationally indistinguishable.

38

• Adversary A(crs, pk) asking up-to q queries to an oracle returning transcripts of honest
executions between P(crs, pk, sk) and V(crs, pk), where (crs, pk, sk) are generated by
running algorithm K.
• Adversary A(crs, pk) asking up-to q queries to S ′′, where crs is generated by running S ′
(also holding a trapdoor tk) and (pk, sk) are generated using K. Here, S ′′ computes a sim-
ulated transcript (α, β, γ) knowing only pk (and some trapdoor information); furthermore
the simulator can compute (α, β) independently of pk.

This property is analogous to “q-bounded instance-independent HVZK” for argument systems
(cf. Definition 4.8).

We will call canonical ID schemes satisfying properties P1′-P3′ above (besides completeness
and soundness) highly sound canonical ID schemes.

Theorem 7.2 Let Π = (K,P,V) be a highly sound canonical ID scheme and H be a programmable
q-wise independent hash function. Then, the FS collapse ΠFS,H of Π using H yields a signature
scheme satisfying q-RUF-RMA.

Proof (sketch). Assume there exists a PPT adversary A and some polynomial p(·) such that for
infinitely many values of λ ∈ N the following holds:

Pr
[
VFS(pk, (m∗, σ∗)) = 1 : (pk, sk)←$ KFS(1λ);m∗←$ {0, 1}∗;σ∗ ← ASignFS(sk)(1λ, pk,m∗)

]
≥ 1/p(λ),

where oracle SignFS(sk) internally runs the signing algorithm SFS(sk, ·).
We consider a series of computationally indistinguishable games, which are outlined below.

Game1(λ): This is identical to the RUF-RMA experiment, but now the randomness ri used to
generate the q signatures σi corresponding to A’s signature queries, and the q messages
mi←$ {0, 1}∗, are pre-sampled. Additionally, values αi = P0(1λ; ri) are pre-computed—note
that this is possible because of property P1′—which allows us to also pre-compute values
βi as βi = H.Eval(hk, αi||mi) where hk is the hash key. All of these values are stored in a
trapdoor tk which is given to the hybrid oracle answering signature queries.
We say that Game1(λ) = 1 if and only if the forgery returned by A is accepting. Observe that
all of the above steps (pre-computing values) are clearly just syntactical changes, and thus
Pr[Game1(λ) = 1] ≥ 1/p(λ).

Game2(λ):

q
-w

is
e

In the second step we replace all values βi with uniformly random values sampled from
the range of hash function H and the key hk is chosen via programming the hash function.
Down to the programmable q-wise independence property of H the distribution corresponding
to Game1(λ) and Game2(λ) are identical, i.e., Game2(λ) ≡ Game1(λ).

Game3(λ):

H
V

ZK

In the third step we change the way signature queries are answered. In particular,
instead of running SFS(sk, ·), we define a simulator Sim that answers signature queries only
given as input pk (and some trapdoor information). The simulator pre-computes all values and
then relies on the HVZK simulator S (here is where we use property P3′). The description
of Sim is essentially identical (with minor modifications) to the simulator Sim defined in the
proof of Lemma 4.9, and is therefore omitted.
Down to the q-bounded instance-independent HVZK property of Π, we can write:

|Pr[Game3(λ) = 1]− Pr[Game2(λ) = 1]| ∈ negl(λ) .

39

Combining the above equations, we have that there exists a polynomial p(·) such that, for
infinitely many values of λ ∈ N, Pr[Game3(λ) = 1] ≥ 1/p(λ).

We now use this fact to contradict the soundness of the underlying ID scheme. This last step of
the proof is analogous to the proof of soundness for FS NIZK, and consists of two sub-steps that
are outlined below:

• In the first step, we consider a selective variant of the FS transform, in a similar way as we
did in Section 4.3 for the case of argument systems. In the selective variant, which we denote
by Πsel-FS,H, the verifier V sends a random hash key hk together with a random message
m∗←$ {0, 1}∗ that is hashed by the prover together with the commitment α in order to
generate the challenge β (and the corresponding answer γ).
Note that the above described selective variant of the FS transform still yields a public-coin
ID scheme. Furthermore, it is easy to prove that Πsel-FS,H satisfies both completeness and
soundness, provided that the original ID scheme does. This proof is almost identical to the
proof of Theorem 4.3, and is therefore omitted.

• In the second step, we use the adversary A (with non-negligible advantage in game Game3(λ))
to construct a prover P∗ that breaks the soundness of Πsel-FS,H with non-negligible advantage.
Prover P∗ receives as input a pair (crs, pk), and initially picks a value α (uniformly at random
from the set of all possible commitments) that it forwards to the verifier. The verifier replies
with a random hash key hk and random message m∗ ∈ {0, 1}∗. At this point, P∗ initializes
the adversary A with a simulated public key pk = (crs′, hk, pk) (where crs′ is the simulated
CRS coming from Sim) and replies to A’s signature queries as specified in Game3(λ) (i.e., by
running the simulator Sim). Finally, it forwards m∗ to A obtaining a forgery σ∗ = (α∗, γ∗).
In case α∗ = α, then P∗ passes γ∗ to the verifier. Else, P∗ aborts.
Clearly, the probability of P∗ breaking soundness is lower bounded by the success probability
of A times the probability that α∗ is equal to α. It follows that, if Πsel-FS,H has soundness
parameter s(λ), the SEGR %(λ) := s(λ)/2−a(λ) ≥ 1/p(λ), contradicting property P2′.

The above two facts imply the statement of the theorem. �

7.3 Obtaining the Required Properties

It remains to construct a highly sound canonical ID scheme. As we briefly explain now, the latter
can be done using similar techniques as the ones we used to construct highly sound 3PC arguments.

Let us start with any (standard-model) canonical ID scheme Π that satisfies completeness,
soundness, HVZK, and moreover has instance-independent commitments (i.e., property P1′). Many
canonical ID schemes satisfy this requirement, including the ones by Schnorr [Sch91] and Guillou-
Quisquater [GQ90]. Hence, we can apply the two compilers described in Section 5 and Section 6 in
order to obtain a highly sound canonical ID scheme Π′′ as follows:

• First, we transform Π into an ID scheme Π′ that additionally satisfies P3′ (i.e., the HVZK
simulator is instance-independent). This is achieved by having the prover commit to the value
α that would have been sent in Π using an equivocal commitment, in a similar fashion as we
did in our compiler from Fig. 6.

• Second, we transform Π′ into an ID scheme Π′′ that additionally satisfies P2′. This is achieved
by providing a mechanism that allows to produce many challenges β given only a single
commitment α, in a similar way as we did in the compiler from Fig. 4.

40

We remark that, for the case of FS signatures, the obtained signature scheme will be in the standard
model even though the starting highly sound canonical ID scheme is in the CRS model.

Acknowledgments
We are grateful to Christina Brzuska for her active participation in this research. Her feedback and
suggestions played an essential part in the development of this work.

We thank Nils Fleischhacker, Markulf Kohlweiss, Mihir Bellare, and Ivan Visconti for helpful
comments on the presentation. We are grateful to an anonymous reviewer of TCC 2016 for pointing
out that the constant hash function already suffices for obtaining a 1-bounded NIZK assuming
properties P1-P3 and thereby inspiring using a q-wise independent hash-function as instantiation.
Before, we used a more complicated construction based on indistinguishability obfuscation and
puncturable PRFs. We also thank the reviewer for pointing out the Blum-Lapidot-Shamir protocol,
and we thank Ivan Visconti for helpful discussions and clarifications on the protocol itself.

References
[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From

identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for
security and forward-security. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 418–433,
Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Berlin, Germany. (Cited
on page 4.)

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual
Symposium on Foundations of Computer Science, pages 106–115, Las Vegas, Nevada,
USA, October 14–17, 2001. IEEE Computer Society Press. (Cited on page 4.)

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of
Lecture Notes in Computer Science, pages 52–73, San Diego, CA, USA, February 24–26,
2014. Springer, Berlin, Germany. (Cited on pages 14 and 29.)

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai,
Adriana López-Alt, and Daniel Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In
Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785
of Lecture Notes in Computer Science, pages 182–201, Tokyo, Japan, March 3–6, 2013.
Springer, Berlin, Germany. (Cited on pages 4 and 5.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press. (Cited
on page 6.)

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Berlin, Germany. (Cited on page 13.)

41

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, May 2012. (Cited on page 13.)

[BGW12] Nir Bitansky, Sanjam Garg, and Daniel Wichs. Why Fiat-Shamir for proofs lacks a
proof. Cryptology ePrint Archive, Report 2012/705, 2012. http://eprint.iacr.org/
2012/705. (Cited on pages 4 and 5.)

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, Advances in
Cryptology – CRYPTO’81, volume ECE Report 82-04, pages 11–15, Santa Barbara, CA,
USA, 1981. U.C. Santa Barbara, Dept. of Elec. and Computer Eng. (Cited on pages 9, 20,
and 23.)

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box
zero knowledge. In 44th Annual Symposium on Foundations of Computer Science,
pages 384–393, Cambridge, Massachusetts, USA, October 11–14, 2003. IEEE Computer
Society Press. (Cited on page 4.)

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, pages 626–643, Beijing, China, December 2–6, 2012.
Springer, Berlin, Germany. (Cited on pages 4 and 6.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. (Cited on page 4.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology –
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426,
St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin, Germany. (Cited on
page 29.)

[BS07] Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable signatures,
and Fiat-Shamir without random oracles. In Tatsuaki Okamoto and Xiaoyun Wang,
editors, PKC 2007: 10th International Conference on Theory and Practice of Public
Key Cryptography, volume 4450 of Lecture Notes in Computer Science, pages 201–216,
Beijing, China, April 16–20, 2007. Springer, Berlin, Germany. (Cited on page 6.)

[BST14] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for any
one-way function and a framework for differing-inputs obfuscation. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume
8874 of Lecture Notes in Computer Science, pages 102–121, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Berlin, Germany. (Cited on page 13.)

[CCR15] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of
obfuscated pseudorandom functions. Cryptology ePrint Archive, Report 2015/334, 2015.
http://eprint.iacr.org/. (Cited on page 4.)

42

http://eprint.iacr.org/2012/705
http://eprint.iacr.org/2012/705
http://eprint.iacr.org/

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages
209–218, Dallas, Texas, USA, May 23–26, 1998. ACM Press. (Cited on page 4.)

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 302–321, Aarhus, Denmark, May 22–26,
2005. Springer, Berlin, Germany. (Cited on page 3.)

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
61–76, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany. (Cited
on page 3.)

[CL09] Kai-Min Chung and Feng-Hao Liu. Tight parallel repetition theorems for public-coin
arguments. Electronic Colloquium on Computational Complexity (ECCC), 16:109, 2009.
(Cited on page 26.)

[CP15] Kai-Min Chung and Rafael Pass. Tight parallel repetition theorems for public-coin
arguments using KL-divergence. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture
Notes in Computer Science, pages 229–246, Warsaw, Poland, March 23–25, 2015.
Springer, Berlin, Germany. (Cited on page 26.)

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved OR-composition of Sigma-protocols. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume
9563 of Lecture Notes in Computer Science, pages 112–141, Tel Aviv, Israel, January
10–13 2016. Springer, Berlin, Germany. (Cited on pages 8 and 20.)

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline or composition of sigma protocols. Cryptology ePrint Archive,
Report 2016/175, 2016. http://eprint.iacr.org/. (Cited on pages 8 and 20.)

[CPS+16c] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. A transform for NIZK almost as efficient and general as the Fiat-Shamir
transform without programmable random oracles. In Eyal Kushilevitz and Tal Malkin,
editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563
of Lecture Notes in Computer Science, pages 83–111, Tel Aviv, Israel, January 10–13
2016. Springer, Berlin, Germany. (Cited on page 7.)

[CV05] Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and their applications.
In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP 2005: 32nd International Colloquium on Automata, Languages
and Programming, volume 3580 of Lecture Notes in Computer Science, pages 298–310,
Lisbon, Portugal, July 11–15, 2005. Springer, Berlin, Germany. (Cited on pages 23 and 31.)

[CV07] Dario Catalano and Ivan Visconti. Hybrid commitments and their applications to
zero-knowledge proof systems. Theoretical computer science, 374(1):229–260, 2007.
(Cited on pages 23 and 31.)

43

http://eprint.iacr.org/

[Dam00] Ivan Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 418–430, Bruges, Belgium, May 14–18, 2000.
Springer, Berlin, Germany. (Cited on page 7.)

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In 23rd Annual ACM Symposium on Theory of Computing, pages 542–552,
New Orleans, Louisiana, USA, May 6–8, 1991. ACM Press. (Cited on page 3.)

[DJKL12] Dana Dachman-Soled, Abhishek Jain, Yael Tauman Kalai, and Adriana López-Alt.
On the (in)security of the Fiat-Shamir paradigm, revisited. IACR Cryptology ePrint
Archive, 2012:706, 2012. (Cited on pages 4 and 5.)

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions.
In 40th Annual Symposium on Foundations of Computer Science, pages 523–534, New
York, New York, USA, October 17–19, 1999. IEEE Computer Society Press. (Cited on
pages 4 and 5.)

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for
efficiently samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012:
9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer
Science, pages 618–635, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Berlin,
Germany. (Cited on page 4.)

[DV14] Özgür Dagdelen and Daniele Venturi. A second look at Fischlin’s transformation. In
David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 14: 7th Interna-
tional Conference on Cryptology in Africa, volume 8469 of Lecture Notes in Computer
Science, pages 356–376, Marrakesh, Morocco, May 28–30, 2014. Springer, Berlin, Ger-
many. (Cited on page 7.)

[EL04] Edith Elkind and Helger Lipmaa. Interleaving cryptography and mechanism design:
The case of online auctions. In Ari Juels, editor, FC 2004: 8th International Conference
on Financial Cryptography, volume 3110 of Lecture Notes in Computer Science, pages
117–131, Key West, USA, February 9–12, 2004. Springer, Berlin, Germany. (Cited on
page 3.)

[FHN+12] Sebastian Faust, Carmit Hazay, Jesper Buus Nielsen, Peter Sebastian Nordholt, and
Angela Zottarel. Signature schemes secure against hard-to-invert leakage. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 98–115, Beijing, China, December 2–6,
2012. Springer, Berlin, Germany. (Cited on page 10.)

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 152–168, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Berlin, Germany. (Cited on pages 7 and 32.)

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and
Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012: 13th International
Conference in Cryptology in India, volume 7668 of Lecture Notes in Computer Science,

44

pages 60–79, Kolkata, India, December 9–12, 2012. Springer, Berlin, Germany. (Cited on
page 4.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Berlin, Germany. (Cited on pages 3, 4, and 15.)

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th Annual Symposium on Foundations of Computer Science, pages
102–115, Cambridge, Massachusetts, USA, October 11–14, 2003. IEEE Computer Society
Press. (Cited on pages 4 and 5.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City„ New
York, USA, May 25–27, 1987. ACM Press. (Cited on page 3.)

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001. (Cited on page 12.)

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box non-
black-box zero knowledge. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 515–524, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. (Cited on pages 4 and 5.)

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signa-
ture scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in
Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages
216–231, Santa Barbara, CA, USA, August 21–25, 1990. Springer, Berlin, Germany.
(Cited on page 40.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 415–432, Istanbul, Turkey, April 13–17,
2008. Springer, Berlin, Germany. (Cited on page 6.)

[Hai09] Iftach Haitner. A parallel repetition theorem for any interactive argument. In 50th
Annual Symposium on Foundations of Computer Science, pages 241–250, Atlanta,
Georgia, USA, October 25–27, 2009. IEEE Computer Society Press. (Cited on page 6.)

[HPWP10] Johan Håstad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient
parallel repetition theorem. In Daniele Micciancio, editor, TCC 2010: 7th Theory of
Cryptography Conference, volume 5978 of Lecture Notes in Computer Science, pages
1–18, Zurich, Switzerland, February 9–11, 2010. Springer, Berlin, Germany. (Cited on
page 26.)

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 201–220, Copenhagen, Denmark, May 11–15, 2014.
Springer, Berlin, Germany. (Cited on page 6.)

45

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of secure
two-party computation. Cryptology ePrint Archive, Report 2016/074, 2016. http:
//eprint.iacr.org/. (Cited on pages 8 and 20.)

[KRR16] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. Cryptology ePrint Archive, Report 2016/303,
2016. http://eprint.iacr.org/. (Cited on page 7.)

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 468–498, Sofia, Bulgaria, April 26–30, 2015. Springer, Berlin,
Germany. (Cited on page 3.)

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014 of
Lecture Notes in Computer Science, pages 93–109, Warsaw, Poland, March 23–25, 2015.
Springer, Berlin, Germany. (Cited on pages 6, 7, 23, and 31.)

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology –
CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 353–365, Santa
Barbara, CA, USA, August 11–15, 1991. Springer, Berlin, Germany. (Cited on pages 5, 9,
20, 21, and 23.)

[NVZ14] Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. Leakage-resilient signatures
with graceful degradation. In Hugo Krawczyk, editor, PKC 2014: 17th International
Conference on Theory and Practice of Public Key Cryptography, volume 8383 of Lecture
Notes in Computer Science, pages 362–379, Buenos Aires, Argentina, March 26–28,
2014. Springer, Berlin, Germany. (Cited on page 10.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology –
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa
Barbara, CA, USA, August 16–20, 1993. Springer, Berlin, Germany. (Cited on page 4.)

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC), 19:164, 2012. (Cited on
page 9.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000. (Cited on page 4.)

[PV07] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. An efficient parallel repeti-
tion theorem for Arthur-Merlin games. In David S. Johnson and Uriel Feige, editors,
39th Annual ACM Symposium on Theory of Computing, pages 420–429, San Diego,
California, USA, June 11–13, 2007. ACM Press. (Cited on page 26.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991. (Cited on page 40.)

46

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. (Cited on pages 6 and 15.)

47

Ga
m

e 1
(λ

)

K
∗ (

1λ
)

1
:

cr
s
←

$
K

(1
λ

)
2

:
k 1
←

$
F 1
.K

G
en

(1
λ

)
3

:
k 2
←

$
F 2
.K

G
en

(1
λ

)
4

:
5

:
6

:
7

:
8

:
9

:
10

:
11

:
12

:
C

0
←

$
iO

(C
0
[k

1
])

13
:
C

1
←

$
iO

(C
1
[k

1
,k

2
])

14
:

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
](τ

)
1

:
2

:
3

:
α
∗
←

F 1
.E

va
l(k

1
,τ

)
4

:
re

tu
rn

α
∗

C
1[

k 1
,k

2]
(α
∗ ,
τ
)

1
:

2
:

3
:

4
:
r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

5
:
α
←

P 0
(r
∗
)

6
:

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en
7

:
8

:
r
∗
←
⊥

9
:

re
tu

rn
(α
,r
∗
)

Ga
m

e 2
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

F 1
.E

va
l(τ

[i]
)

if
ba

d τ
th

en
ab

or
t

k∗ 1
←

$
F 1
.P

nt
r(

k 1
,{

τ
[i]
,.
..
,τ

[q
]}

)

C
0
←

$
iO

(C
0
[k
∗ 1
,p
τ
,α
∗
])

C
1
←

$
iO

(C
1
[k
∗ 1
,p
τ
,α
∗
,k

2
])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k∗ 1,
p τ
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p τ
[i]

(τ
)

=
1

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k
∗ 1
,τ

)
re

tu
rn

α
∗

C
1[

k∗ 1,
p τ
,α
∗ ,

k 2
](α
∗ ,
τ
)

r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

α
←

P 0
(r
∗
)

if
(∃
i
∈

[q
]:

p τ
[i]

(τ
)

=
1
∧
α
∗
6=

α
∗
[i]

)
or

(∀
i
∈

[q
]:

p τ
[i]

(τ
)

=
0
∧
α
∗
6=

F 1
.E

va
l(k
∗ 1
,τ

))
th

en
r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

Ga
m

e 3
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

if
ba

d τ
th

en
ab

or
t

k∗ 1
←

$
F 1
.P

nt
r(

k 1
,{

τ
[i]
,.
..
,τ

[q
]}

)
C

0
←

$
iO

(C
0
[k
∗ 1
,p
τ
,α
∗
])

C
1
←

$
iO

(C
1
[k
∗ 1
,p
τ
,α
∗
,k

2
])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k∗ 1,
p τ
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p τ
[i]

(τ
)

=
1

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k
∗ 1
,τ

)
re

tu
rn

α
∗

C
1[

k∗ 1,
p τ
,α
∗ ,

k 2
](α
∗ ,
τ
)

r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

α
←

P 0
(r
∗
)

if
(∃
i
∈

[q
]:

p τ
[i]

(τ
)

=
1]
∧
α
∗
6=

α
∗
[i]

)
or

(∀
i
∈

[q
]:

p τ
[i]

(τ
)

=
0
∧
α
∗
6=

F 1
.E

va
l(k
∗ 1
,τ

))
th

en
r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

iO
st

ar
t

pu
nc

tu
ri

ng
τ

-s

pP
RF

co
m

pl
et

e
pu

nc
tu

ri
ng

τ
-s

ba
d α
∗

ch
oo

se
α
∗

ou
ts

id
e

im
ag

e

Fi
gu

re
7:

P
se
ud

oc
od

e
fo
r
pr
oo

fo
fz

er
o-
kn

ow
le
dg

e
fo
r
th
e
co
m
pi
le
d
pr
ot
oc
ol

fr
om

Se
ct
io
n
5.

48

Ga
m

e 4
(λ

)

K
∗ (

1λ
)

1
:

cr
s
←

$
K

(1
λ

)
2

:
k 1
←

$
F 1
.K

G
en

(1
λ

)
3

:
k 2
←

$
F 2
.K

G
en

(1
λ

)
4

:
fo

r
i

=
1,
..
.,
q

do
5

:
τ

[i]
←

$
{0
,1
}F
.il

(λ
)

6
:

p τ
[i]
←

po
(τ

[i]
)

7
:

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

8
:

9
:

10
:

if
ba

d τ
∨

ba
d α
∗

th
en

ab
or

t
11

:
k∗ 1
←

$
F 1
.P

nt
r(

k 1
,{

τ
[i]
,.
..
,τ

[q
]}

)
12

:
C

0
←

$
iO

(C
0
[k
∗ 1
,p
τ
,α
∗
])

13
:
C

1
←

$
iO

(C
1
[k
∗ 1
,p
τ
,α
∗
,k

2
])

14
:

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k∗ 1,
p τ
,α
∗]

(τ
)

1
:

if
∃i
∈

[q
]:

p τ
[i]

(τ
)

=
1

th
en

2
:

re
tu

rn
α
∗
[i]

3
:
α
∗
←

F 1
.E

va
l(k
∗ 1
,τ

)
4

:
re

tu
rn

α
∗

C
1[

k∗ 1,
p τ
,α
∗ ,

k 2
](α
∗ ,
τ
)

1
:

2
:

3
:

4
:
r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

5
:
α
←

P 0
(r
∗
)

6
:

if
(∃
i
∈

[q
]:

p τ
[i]

(τ
)

=
1
∧
α
∗
6=

α
∗
[i]

)
or

7
:

(∀
i
∈

[q
]:

p τ
[i]

(τ
)

=
0
∧
α
∗
6=

F 1
.E

va
l(k
∗ 1
,τ

))
th

en
8

:
r
∗
←
⊥

9
:

re
tu

rn
(α
,r
∗
)

Ga
m

e 5
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

if
ba

d τ
∨

ba
d α
∗

th
en

ab
or

t

C
0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

C
1
←

$
iO

(C
1
[k

1
,p
,α
∗
,k

2
])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k

1
,τ

)
re

tu
rn

α
∗

C
1[

k 1
,p
,α
∗ ,

k 2
](α
∗ ,
τ
)

r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

α
←

P 0
(r
∗
)

if
(∃
i
∈

[q
]:

p[
i]

=
po

(τ
)∧

α
∗
6=

α
∗
[i]

)
or

(∀
i
∈

[q
]:

p[
i]
6=

po
(τ

)∧
α
∗
6=

F 1
.E

va
l(k

1
,τ

))
th

en
r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

Ga
m

e 6
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

if
ba

d τ
∨

ba
d α
∗

th
en

ab
or

t

C
0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

C
1
←

$
iO

(C
1
[k

1
,α
∗
,k

2
])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k

1
,τ

)
re

tu
rn

α
∗

C
1[

k 1
,α
∗ ,

k 2
](α
∗ ,
τ
)

r
∗
←

F 2
.E

va
l(k

2
,α
∗
)

α
←

P 0
(r
∗
)

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en

r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

ba
d α
∗

iO
us

e
un

pu
nc

tu
re

d
ke

y
k 1

di
O
+
B
C
P1

4+
PO

ad
ap

t
if-

br
an

ch
in
C

1

iO
st

ar
t

pu
nc

tu
ri

ng
α
∗
-s

Fi
gu

re
8:

P
se
ud

oc
od

e
fo
r
pr
oo

fo
fz

er
o-
kn

ow
le
dg

e
fo
r
th
e
co
m
pi
le
d
pr
ot
oc
ol

fr
om

Se
ct
io
n
5.

49

Ga
m

e 7
(λ

)

K
∗ (

1λ
)

1
:

cr
s
←

$
K

(1
λ

)
2

:
k 1
←

$
F 1
.K

G
en

(1
λ

)
3

:
k 2
←

$
F 2
.K

G
en

(1
λ

)
4

:
fo

r
i

=
1,
..
.,
q

do
5

:
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

6
:

p τ
[i]
←

po
(τ

[i]
)

7
:

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

8
:

r∗
[i]
←

F 2
.E

va
l(k

2
,α
∗
[i]

)
9

:
10

:
if

ba
d τ
∨

ba
d α
∗

th
en

ab
or

t
11

:
k∗ 2
←

$
F 2
.P

nt
r(

k 2
,{

α
∗
[1

],
..
.,

α
∗
[q

]}
)

12
:
C

0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

13
:
C

1
←

$
iO

(C
1
[k

1
,α
∗
,k
∗ 2
,r
∗
])

14
:

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

1
:

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

2
:

re
tu

rn
α
∗
[i]

3
:
α
∗
←

F 1
.E

va
l(k

1
,τ

)
4

:
re

tu
rn

α
∗

C
1[

k 1
,α
∗ ,

k∗ 2,
r∗

](α
∗ ,
τ
)

1
:

if
∃i
∈

[q
]:
α
∗

=
α
∗
[i]

2
:

α
←

P 0
(r
∗
[i]

)
3

:
el

se
4

:
r
∗
←

F 2
.E

va
l(k
∗ 2
,α
∗
)

5
:

α
←

P 0
(r
∗
)

6
:

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en
7

:
8

:
r
∗
←
⊥

9
:

re
tu

rn
(α
,r
∗
)

Ga
m

e 8
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

r∗
[i]
←

$
{0
,1
}F

2
.o

l(
λ

)

if
ba

d τ
∨

ba
d α
∗

th
en

ab
or

t
k∗ 2
←

$
F 2
.P

nt
r(

k 2
,{

α
∗
[1

],
..
.,

α
∗
[q

]}
)

C
0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

C
1
←

$
iO

(C
1
[k

1
,α
∗
,k
∗ 2
,r
∗
])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k

1
,τ

)
re

tu
rn

α
∗

C
1[

k 1
,α
∗ ,

k∗ 2,
r∗

](α
∗ ,
τ
)

if
∃i
∈

[q
]:
α
∗

=
α
∗
[i]

α
←

P 0
(r
∗
[i]

)
el

se r
∗
←

F 2
.E

va
l(k
∗ 2
,α
∗
)

α
←

P 0
(r
∗
)

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en

r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

Ga
m

e 9
(λ

)

K
∗ (

1λ
)

cr
s
←

$
K

(1
λ

)
k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

r∗
[i]
←

$
{0
,1
}F

2
.o

l(
λ

)

α
[i]
←

$
P 0

(r
∗
[i]

)
if

ba
d τ
∨

ba
d α
∗

th
en

ab
or

t
k∗ 2
←

$
F 2
.P

nt
r(

k 2
,{

α
∗
[1

],
..
.,

α
∗
[q

]}
)

C
0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

C
1
←

$
iO

(C
1
[k

1
,α
∗
,k
∗ 2
,α

])

re
tu

rn
(c

rs
,C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k

1
,τ

)
re

tu
rn

α
∗

C
1[

k 1
,α
∗ ,

k∗ 2,
α

](α
∗ ,
τ
)

if
∃i
∈

[q
]:
α
∗

=
α
∗
[i]

α
←

α
[i]

el
se r
∗
←

F 2
.E

va
l(k
∗ 2
,α
∗
)

α
←

P 0
(r
∗
)

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en

r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

Ga
m

e 1
0(
λ

)

K
∗ (

1λ
)

(c
rs
,t

k)
←

$
S
′ (

1λ
)

k 1
←

$
F 1
.K

G
en

(1
λ

)
k 2
←

$
F 2
.K

G
en

(1
λ

)
fo

r
i

=
1,
..
.,
q

do
τ

[i]
←

$
{0
,1
}F

1
.il

(λ
)

p τ
[i]
←

po
(τ

[i]
)

α
∗
[i]
←

$
{0
,1
}F

1
.o

l(
λ

)

r∗
[i]
←

$
{0
,1
}F

2
.o

l(
λ

)

(α
[i]
,β

tm
p)
←

$
S
′′ 0

(c
rs
,t

k;
r∗

[i]
)

if
ba

d τ
∨

ba
d α
∗

th
en

ab
or

t
k∗ 2
←

$
F 2
.P

nt
r(

k 2
,{

α
∗
[1

],
..
.,

α
∗
[q

]}
)

C
0
←

$
iO

(C
0
[k

1
,p
,α
∗
])

C
1
←

$
iO

(C
1
[k

1
,α
∗
,k
∗ 2
,α

])
re

tu
rn

(c
rs
, C

0
,C

1
)

C
0[

k 1
,p
,α
∗]

(τ
)

if
∃i
∈

[q
]:

p[
i]

=
po

(τ
)

th
en

re
tu

rn
α
∗
[i]

α
∗
←

F 1
.E

va
l(k

1
,τ

)
re

tu
rn

α
∗

C
1[

k 1
,p
,α
∗ ,

k∗ 2,
α

](α
∗ ,
τ
)

if
∃i
∈

[q
]:
α
∗

=
α
∗
[i]

α
←

α
[i]

el
se r
∗
←

F 2
.E

va
l(k
∗ 2
,α
∗
)

α
←

P 0
(r
∗
)

if
α
∗
6=

F 1
.E

va
l(k

1
,τ

)
th

en

r
∗
←
⊥

re
tu

rn
(α
,r
∗
)

iO
pP

RF
co

m
pl

et
e

pu
nc

tu
ri

ng
α
∗
-s

iO
pr

es
am

pl
e

co
m

m
it

m
en

ts
α

hv
zk

us
e

si
m

ul
at

or
to

pr
es

am
pl

e
co

m
m

it
m

en
ts

Fi
gu

re
9:

P
se
ud

oc
od

e
fo
r
pr
oo

fo
fz

er
o-
kn

ow
le
dg

e
fo
r
th
e
co
m
pi
le
d
pr
ot
oc
ol

fr
om

Se
ct
io
n
5.

50

	Introduction
	Fiat–Shamir NIZK and Signatures
	Positive and Negative Results
	Our Contributions
	Perspective
	Related Work and Open Questions
	Roadmap

	Technical Overview
	Preliminaries
	Notation
	q-Wise Independent Hashing
	Interactive and Non-Interactive Arguments
	Obfuscation
	Puncturable Pseudorandom Functions

	Fiat–Shamir NIZK
	The Fiat–Shamir Transform
	A Selective Variant of Fiat–Shamir
	The FS-Collapse
	Putting it Together
	Obtaining the Required Properties

	Obtaining Small Soundness-Error-to-Guessing Ratio
	The Compiler
	Security Analysis

	Obtaining Instance-Independence
	The Compiler
	Security Analysis

	Fiat–Shamir Signatures
	Identification and Signature Schemes
	Proof of Random-Message Unforgeability
	Obtaining the Required Properties

