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Abstract We consider non-autonomous semilinear elliptic equations of the
type

−∆u = |x|αf(u), x ∈ Ω, u = 0 on ∂Ω,

where Ω ⊂ R2 is either a ball or an annulus centered at the origin, α > 0 and
f : R → R is C1,β on bounded sets of R. We address the question of estimating
the Morse index m(u) of a sign changing radial solution u. We prove that
m(u) ≥ 3 for every α > 0 and that m(u) ≥ α+3 if α is even. If f is superlinear
the previous estimates become m(u) ≥ n(u) + 2 and m(u) ≥ α + n(u) + 2,
respectively, where n(u) denotes the number of nodal sets of u, i.e. of connected
components of {x ∈ Ω;u(x) 6= 0}. Consequently, every least energy nodal
solution uα is not radially symmetric and m(uα) → +∞ as α → +∞ along
the sequence of even exponents α.
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1 Introduction

Let us consider a non-autonomous semilinear elliptic equation of the type

−∆u = g(|x|, u) in Ω, u = 0 on ∂Ω, (1)

E. Moreira dos Santos
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where Ω ⊂ RN , N ≥ 2, is either a ball or an annulus centered at the origin,
g : [0,+∞) × R → R is such that r 7→ g(r, u) is C0,β on bounded sets of
[0,+∞) × R, u 7→ gu(r, u) is C0,γ on bounded sets of [0,+∞) × R, where gu
denotes the derivative of g with respect to the variable u. Since the problem
is invariant by spherical symmetry we can consider classical radial solutions
of (1). Here we address the question of estimating the Morse index of sign
changing radial solutions of (1).

Given any continuous function u : Ω → R we will denote by n(u) the
number of nodal sets of u, i.e. of connected components of {x ∈ Ω;u(x) 6= 0}.

We recall that the Morse index m(u) of a solution u of (1) is the maximal
dimension of a subspace of H1

0 (Ω) in which the quadratic form

w 7−→ Qu(w,w) =

∫
Ω

|∇w(x)|2dx−
∫
Ω

gu(|x|, u(x))w2(x)dx

is negative definite. Alternatively, since we are considering the case of bounded
domains, m(u) can be defined as the number of negative eigenvalues, counted
with their multiplicity, of the linearized operator Lu := −∆− gu(|x|, u) in the
space H1

0 (Ω).

In the case of autonomous problems, i.e. when the nonlinear term g does
not depend on the space variable, Aftalion and Pacella [1], as a consequence of
a more general result in symmetric domains, obtained the following theorem.

Theorem A (Autonomous problems). Let g(r, u) = f(u) with f ∈ C1(R).
Then any sign changing radial solution of (1) has Morse index greater than or
equal to N + 1.

Remark 1 More precisely in [1] it is proved that the linearized operator Lu
has at least N negative eigenvalues whose corresponding eigenfunctions are
non-radial and change sign. Therefore, adding the first eigenvalue, which is
obviously associated to a radial eigenfunction, one gets at least N +1 negative
eigenvalues. In the case when f is superlinear, i.e. satisfies (4), then it is easy
to see, testing the quadratic form on the solution u in each nodal region, that
there are at least n(u) negative eigenvalues in the space of radial functions.
Hence for these nonlinearities, any sign changing radial solution has Morse
index greater than or equal to N + n(u). In particular this holds for Lane-
Emden problems, i.e.

−∆u = |u|p−1u in Ω, u = 0 on ∂Ω, p > 1. (2)

We also point out that the assumption f(0) ≥ 0 in [1] is not really needed.

As a consequence of Theorem A and in the case of superlinear, subcritical
problems, like (2) for p < N+2

N−2 if N ≥ 3, in [1] it is deduced that any least
energy nodal solution cannot be radial, since their Morse index is precisely 2;
cf. [6,2,3]. Obviously this break of symmetry is relevant for many applications.



Morse index of radial nodal solutions of Hénon type equations in dimension two 3

The proof of Theorem A uses in a crucial way the fact that the derivatives
∂u
∂xi

, i = 1, . . . , N , of a solution u of (1) are indeed solutions of the linearized
equation Lu(w) = 0. This property is a peculiarity of autonomous problems.
For this reason the proof of [1] does not extend to the case of non-autonomous
nonlinearities. So it is an open question to understand whether a similar esti-
mate on the Morse index of nodal radial solutions holds for the general problem
(1) and also whether least energy nodal solutions are radial or not.

In this paper we answer these questions in the case of nonlinearities of the
type g(|x|, u) = |x|αf(u) and N = 2. More precisely we consider the problem

−∆u = |x|αf(u) in Ω, u = 0 on ∂Ω, (3)

where α > 0, Ω ⊂ R2 is either a ball or an annulus centered at the origin and
f : R→ R is C1,β on bounded sets of R. In some of our results we also assume
the following superlinear condition

f ′(u) >
f(u)

u
∀u ∈ R\{0}. (4)

Our first result is the following.

Theorem 2 Let u be a radial sign changing solution of (3). Then u has Morse
index greater than or equal to 3. Moreover, if (4) holds, then the Morse index
of u is at least n(u) + 2.

In the case that f(u) = |u|p−1u, with p > 1, (3) turns out to be the so
called Hénon equation [11]

−∆u = |x|α|u|p−1u x ∈ Ω, u = 0 on ∂Ω, (5)

which has been extensively studied since the work of Ni [14]. We mention that
apart from its mathematical interest, the Hénon equation is important in the
applications, in particular in astrophysics; cf. [11,13]. Ni considered (5) in
the case of Ω being an open ball centered at zero in RN with N ≥ 3. In
this case the Pohožaev identity, as in [9, Lemma 1.1], shows that (5) has no
nontrivial solution if p ≥ N+2+2α

N−2 . On the other side, with 1 < p < N+2+2α
N−2 ,

the existence of a positive radial solution can be proved by using classical
variational methods, for example, combining the Radial Lemma in [14] with
the mountain pass theorem. Again in the same range of p, a combination of the
Radial Lemma in [14] with some arguments in [3] gives the existence of a least
energy solution among the nodal radial solutions of (5), hereafter called least
energy nodal radial solution. In addition, in the case when Ω is an annulus,
these existence results hold trivially for any p > 1, since no lack of compactness
occurs in the setting of radial functions.

Next we recall that it is proved in [3, Theorem 1.3], see also [6], that a least
energy nodal solution of (3) exists and has Morse index 2 if f satisfies (4) and
the additional conditions:

f(0) = 0 and ∃ p > 1 s.t. |f ′(u)| ≤ C(1 + |u|p−1) ∀u ∈ R, (6)
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∃R > 0, θ > 2 s.t. 0 < θ

∫ u

0

f(τ)dτ ≤ uf(u) ∀ |u| ≥ R. (7)

Then, as a consequence of Theorem 2, we get the following result.

Corollary 3 Assume (4), (6) and (7). Then any least energy nodal solution
of (3) is not radially symmetric.

In contrast to the above symmetry breaking result, we recall that it is
proved in [18,4] that every least energy nodal solution of (3) is foliated Schwarz
symmetric, i.e. axially symmetric and monotone in the angular coordinate. We
also point out that Corollary 3 was already shown for the Hénon equation (5),
for every N ≥ 2, but only for particular cases of α: for α large in [4, Remark
6.4] by a comparison of energy argument; for α small in [5, Corollary 1.6 (iii)]
by an asymptotic analysis, as α→ 0, of the least energy nodal solutions. The
general symmetry breaking result, for any α > 0, was, up to now, an open
question.

We point out that the proof of Theorem 2 is different from that of Theorem
A of [1]. Indeed it relies on a suitable change of variable which works well
in R2. This change of variable was considered previously in [7], see also the
recent papers [8,10], where an alternative approach to identify the critical
exponent N+2+2α

N−2 , N ≥ 3, associated with the Hénon equation (5) in the case

when Ω is an open ball centered at zero in RN , was presented. In these three
papers, while studying radial solutions, the authors consider the corresponding
ODE problem. Then, the critical exponent N+2+2α

N−2 comes out as a result of a
suitable one dimensional change of variable that reduces the weighted problem
to a non-weighted one.

The novelty in our arguments consists in applying the change of variable to
functions in R2 which are not necessarily radially symmetric, even though it
does not act well on the gradient or on the Laplacian as it does for spherically
symmetric functions; cf. (15), Remark 11, (17) and (21). Nevertheless, we
show that it is useful to get an estimate from below on the Morse index of
radial nodal solutions of (3) in the whole space H1

0 (Ω), i.e. not only on radial
directions; cf. Proposition 13.

Another question which arises from Theorem 2 is that of having a more
precise estimate on the Morse index as the exponent α varies. How does the
weight |x|α influence the Morse index of nodal radial solutions of (3) ? In this
direction, using some different changes of variables, we prove that the Morse
indices go to infinity along the sequence of even exponents α.

Theorem 4 Let α > 0 be even and let u be a radial nodal solution of (3).
Then u has Morse index greater than or equal to α + 3. If in addition (4)
holds, then the Morse index of u is at least n(u) + α+ 2.

The proof of Theorem 4 relies on a modification of the previous change of
variable that works fine for the case when α is even. This change of variable is
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the key argument to prove the existence of many negative eigenvalues of the
linearized operator Lu, associated to a radial sign changing solution u of (3),
and related to the weighted problem

−∆ϕ− |x|αf ′(u)ϕ = λ|x|αϕ in Ω, ϕ = 0 on ∂Ω. (8)

Indeed its peculiarity is to transform eigenfunctions of the non-weighted prob-
lem (32) with a certain symmetry into eigenfunctions of (8) with a different
symmetry. A variant of this was used in [17] in higher dimensions to pass
from doubly symmetric solutions of a supercritical problem in dimension 2m,
m ≥ 2, to axially symmetric solutions of a subcritical problem in dimension
m + 1. Here we do not change dimension but we apply a somehow similar
idea to create a correspondence between eigenfunctions of linearized operators
of two different problems. We believe that the simple ideas exploited in this
paper could be useful in other kind of problems.

Next we consider the particular case of the Hénon equation (5) and we
prove the following non-degeneracy result.

Theorem 5 Let α ≥ 0 and p > 1.

i) For each n ∈ N there is only one radial solutions uα,n of (5), up to mul-
tiplication by −1, with n nodal sets. Moreover,

uα,n(x) =

(
α+ 2

2

) 2
p−1

Uα,n(|x|α2 x)

where Uα,n is the unique, up to multiplication by −1, nodal radial solution
of (2) in Ωα = {|x|α2 x; x ∈ Ω} with n nodal regions.

ii) Let uα be a least energy nodal radial solution of (5). Then uα has two
nodal regions, and so uα = uα,2 or uα,p = −uα,2. Moreover, it is non-
degenerate in the space of radial functions, that is, if ϕ is a radial solution
of

−∆ϕ = p|x|α|uα|p−1ϕ in Ω, ϕ = 0 on ∂Ω,

then ϕ ≡ 0.

Finally, consider the case when Ω is the unit ball in R2 centered at zero.
Then Ωα = Ω for all α > 0 and Uα,2 does not depend on α as well, hence we
denote Uα,2 simply by U . Then the non-degeneracy of uα in H1

0,rad(Ω), i.e. ii)
of Theorem 5, together with Theorem 4, i.e. m(uα)→ +∞ along the sequence
of even exponents α, indicates that there should be infinitely many branches
of non-radial solutions of (5) bifurcating from the curve

C =

{
uα : α > 0, uα(x) =

(
α+ 2

2

) 2
p−1

U(|x|α2 x)

}

of least energy nodal radial solutions of (5).
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This paper is organized as follows. In Section 2 we introduce a change
of variable in R2, we prove several properties of it and Theorem 5. Then in
Section 3, based on the results from Section 2, we compare the Morse indices
of radial nodal solutions of (3) with those of the corresponding nodal solutions
of a non-weighted problem, and we prove Theorem 2. Finally, in Section 4, in
the case of even α, we consider some slightly different changes of variables
in R2 which again relate weighted semilinear elliptic equations like (3) to
corresponding non-weighted ones. This allows to produce more directions in
which the quadratic form Qu is negative definite proving so Theorem 4.

2 Preliminary results

2.1 A useful change of variable

Let us fix some notation that will be used throughout in this paper. To a
point x = (x1, x2) ∈ R2 in cartesian coordinates, we will associate the polar
coordinates (r, θ), namely

x1 = r cos θ, x2 = r sin θ, r =
√
|x1|2 + |x2|2.

So, for every function u defined according to the cartesian coordinates (x1, x2),
we will write

u(x1, x2) = u(r cos θ, r sin θ) = u(r, θ).

Then we recall the following formulae

∇x =

(
∂

∂x1
,
∂

∂x2

)
=

(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
, sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)
,

|∇x|2 =

(
∂

∂x1

)2

+

(
∂

∂x2

)2

=

(
∂

∂r

)2

+
1

r2

(
∂

∂θ

)2

, (9)

and

∆x =
∂2

∂x21
+

∂2

∂x22
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (10)

We will perform some changes of variables x ←→ y in R2. Then to y =
(y1, y2) ∈ R2 we will associate the polar coordinates (s, σ) by setting

y1 = s cosσ, y2 = r sinσ, s =
√
|y1|2 + |y2|2.

As before, if the function v is defined according to the cartesian coordinates
(y1, y2) then we will also write

v(y1, y2) = v(s cosσ, s sinσ) = v(s, σ).

Let κ > 0 and consider the following transformation

Tκ : R2 → R2, Tκy := y|y|κ−1, (11)
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where we set Tκ(0, 0) := (0, 0) and x = Tκy. Then, with respect to the polar
coordinates (s, σ) and (r, θ), the transformation Tκ reads

Tκ : R2 → R2, Tκ(s, σ) := (sκ, σ), i.e., r = sκ, θ = σ. (12)

The transformation Tκ has a simpler expression in polar coordinates, which
shortens many computations. In view of the applications, we present some of
our results, and arguments, also in cartesian coordinates.

Lemma 6 The following properties hold.

i) Tκ is a homeomorphism whose inverse is

T−1κ x = x|x| 1κ−1, i.e., T−1κ = T 1
κ
. (13)

ii) In cartesian coordinates, the Jacobian matrix of Tκ is

JTκ(y) =
∂(x1, x2)

∂(y1, y2)
(y) = |y|κ−3

 |y|2 + (κ− 1)y21 (κ− 1)y1y2

(κ− 1)y1y2 |y|2 + (κ− 1)y22


for all y 6= 0 and

|det JTκ(y)| = κ |y|2κ−2, ∀ y 6= 0. (14)

iii) Given a function ψ defined on a subset of R2, set ϕ = ψ ◦ T−1κ . Let y 6= 0
and x = Tκy. Then ψ is differentiable at y if and only if ϕ is differentiable
at x.

iv) Let ψ, ϕ, y, x as before and r, s, σ and θ as in (12). Then[
ψ2
s +

1

s2
ψ2
σ

]
s2−2κ = k2ϕ2

r +
1

r2
ϕ2
θ, ∀ s 6= 0, (15)

which implies that

min{1, κ2}|∇ϕ(x)|2 ≤ |∇ψ(y)|2 |y|2−2κ ≤ max{1, κ2}|∇ϕ(x)|2, ∀ y 6= 0.
(16)

Moreover, if ψ is radially symmetric, then

κ2|∇ϕ(x)|2 = |∇ψ(y)|2 |y|2−2κ, ∀ y 6= 0. (17)

Proof. The statements from i), ii) and iii) are just matter of computation.
Regarding iv), the identity (15) follows from (12). From (15) we infer that

min{1, k2}
[
ϕ2
r +

1

r2
ϕ2
θ

]
≤
[
ψ2
s +

1

s2
ψ2
σ

]
s2−2κ ≤ max{1, k2}

[
ϕ2
r +

1

r2
ϕ2
θ

]
which combined with (9) implies (16). If ψ is radially symmetric, it is also
clear that (17) follows from (15) since ψσ ≡ 0 and ϕθ ≡ 0.

From now on in this section Ω ⊂ R2 represents either a ball or an annulus
centered at the origin and we set Ωκ = T−1κ (Ω), where Tκ is given by (11).
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Lemma 7 Let 1 ≤ r <∞. Then

Sκ : Lr(Ωκ)→ Lr(Ω, |x|
2−2κ
κ ), defined by Sκψ := ψ ◦ T−1κ ,

is a continuous linear isomorphism such that∫
Ωκ

|ψ(y)|rdy = κ−1
∫
Ω

|ϕ(x)|r|x|
2−2κ
κ dx, with ϕ = ψ ◦ T−1κ . (18)

Proof. In the case when Ω is an annulus centered at the origin, then (18) comes
out as an application of the standard change of variables theorem, using (13)
and (14).

In the case when Ω = B(0, R) is a ball centered at the origin and radius
R > 0, the singularity at zero of Tκ or T−1κ causes no problem, since we
can reduce the arguments to the previous case by approximation with annuli.
Indeed, take into account that∫

B(0,R)

|h(z)|dz = lim
δ→0+

∫
B(0,R)\B(0,δ)

|h(z)|dz, ∀ h ∈ L1(B(0, R)).

Then the monotone convergence theorem, passing to the limit, gives the result
for the ball.

With the same arguments we can prove the following lemma.

Lemma 8 Let F : R→ R be a continuous function. Then F ◦ ψ ∈ L1(Ωκ) if,

and only if, F ◦ ϕ ∈ L1(Ω, |x| 2−2κ
κ ) with ϕ = ψ ◦ T−1κ . Moreover,∫

Ωκ

F (ψ(y))dy = κ−1
∫
Ω

F (ϕ(x))|x|
2−2κ
κ dx. (19)

We point out that if κ = 2
α+2 , then 2−2κ

κ = α and so the weights |x| 2−2κ
κ

at (19) and |x|α at (3) coincide.

Lemma 9 The application

Sκ : H1
0 (Ωκ)→ H1

0 (Ω), defined by Sκψ := ψ ◦ T−1κ ,

is a continuous linear isomorphism. Moreover, with ϕ = ψ ◦ T−1κ ,

min

{
κ,

1

κ

}∫
Ω

|∇ϕ(x)|2dx ≤
∫
Ωκ

|∇ψ(y)|2dy ≤ max

{
κ,

1

κ

}∫
Ω

|∇ϕ(x)|2dx,

for all ψ ∈ H1
0 (Ωκ) and

κ

∫
Ω

|∇ϕ(x)|2dx =

∫
Ωκ

|∇ψ(y)|2dy, ∀ ψ ∈ H1
0,rad(Ωκ).

Proof. Here we use (13), (14), (16), (17) and we proceed as in the proof of
Lemma 7.
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Remark 10 Let N ≥ 3, κ > 0 and consider the homeomorphism Tκ : RN →
RN defined by

Tκ(y1, . . . , yN ) = (y1, . . . , yN )|(y1, . . . , yN )|κ−1

i.e. the same as (11) but in RN . Then observe that a result like the one of
Lemma 9 cannot hold. For example, consider Ω = B(0, 1) and ψ(y) = |y|−γ−1,
with 0 < γ < N−2

2 and 0 < κ ≤ 2γ
N−2 . Then, under these conditions, ψ ∈

H1
0 (Ωκ) but ψ ◦ T−1κ /∈ H1

0 (Ω).

2.2 Equivalence between some weighted and non-weighted elliptic equations
in the setting of radial solutions

Hereafter in this section we consider the change of variable (11) restricted to
radial functions. In this setting it was already used in [7,8,10].

Let Ω ⊂ R2 be either a ball or an annulus centered at the origin and set
Ωκ = T−1κ (Ω), where Tκ is given by (11). For a radial function u : Ω ⊂ R2 → R
we define the radial function v : Ωκ → R by setting v(y) = u(Tκy), i.e.,

v(s) = u(sk) = u(r), r = sκ, r = |x|, s = |y|. (20)

Then an easy computation yields

vss(s) +
1

s
vs(s) = κ2s2κ−2

[
urr(s

κ) +
1

sκ
ur(s

κ)

]
, s > 0.

So, using the previous notation in polar coordinates, we infer that

∆v(y) = κ2|y|2κ−2∆u(Tκy) = κ2|x|2− 2
κ∆u(x), r = |x|, s = |y|, r = sκ. (21)

Hence, if u is a radial solution of the Hénon type equation (3), then v : Ωκ → R
is a radial function that satisfies

−∆v(y) = κ2|y|2κ−2+καf(v(y)), y ∈ Ωκ, v = 0 on ∂Ωκ.

Thus if we choose κ such that

2κ− 2 + κα = 0, i.e., κ =
2

α+ 2
, (22)

then we infer that

−∆v(y) =

(
2

α+ 2

)2

f(v(y)), y ∈ Ωκ, v = 0 on ∂Ωκ. (23)

Remark 11 It is clear that, in general, the change of variable (11) does not
satisfy

∆y = κ2|x|2− 2
κ∆x,

as it does for radial functions; cf. (21). Indeed from (10) it is evident that also
the angular part should be taken into account to write the complete Laplacian.
However, see Proposition 13, the change of variable (11), with κ = 2

α+2 , turns
out to be very useful to compare the Morse index of a radial solution u of (3)
and the Morse index of the corresponding radial solution v = u ◦ Tκ of (23).
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Remark 12 Let N ≥ 3 and α > 0. Then it is easy to see, just a matter of
computation as in [8, Proposition 4.2], that it is not possible to find a one
dimensional change of variable

r = sκ, r = |x|, s = |y|, x, y ∈ RN ,

that is, to find κ, such that

v(s) = u(sκ) and ∆yv = C
1

|x|α
∆xu, C constant,

in the setting of radial functions defined in RN . This is one of the reasons why
the proofs of this paper cannot be extended to dimension 3 or higher.

Proof of Theorem 5.
i) This can be deduced by the analogous result for Lane-Emden equation (2),
cf. [15, Theorem 2.15] and [12, p. 263], by using the transformation (20) and
the identitie (21) with κ = 2

α+2 .

ii) Let uα be a least energy nodal radial solution of (5). Since the Morse index
of uα in H1

0,rad(Ω) is two, then uα has precisely two nodal regions and then

uα(x) =
(
α+2
2

) 2
p−1 Uα(|x|α2 x) where Uα, up to multiplication by −1, is the

unique least energy nodal radial solution of (2) in Ωα = {|x|α2 x; x ∈ Ω}.
Moreover, the equation (21) with κ = 2

α+2 guarantees that uα is a degenerate

radial solution of (5) in the space H1
0,rad(Ω) if, and only if, Uα is a degenerate

radial solution of the Lane-Emden equation (2) in Ωα in the space H1
0,rad(Ωα).

So the above argument reduces the proof to the case α = 0, i.e. to the
Lane-Emden equation. With α = 0 and in the case that Ω is an annulus, this
non-degeneracy result is known; cf. [16, Proposition 4]. Next, essentially, we
mimic the arguments from [16, Proposition 4] to include both cases of a ball
and an annulus.

Let u be a least energy nodal radial solution of (2). We know that u has
precisely two nodal sets and Morse index 2 in the space H1

0,rad(Ω). By contra-

diction, suppose that u is degenerate in H1
0,rad(Ω). Then the third eigenvalue

in the space H1
0,rad(Ω) of Lu = −∆ − p|u|p−1 is zero, and hence there exists

w, a radial solution of

−∆w = p|u|p−1w in Ω, w = 0 on ∂Ω, (24)

with precisely three nodal regions. Now consider the auxiliary function

z = x · ∇u+
2

p− 1
u.

Then, by direct computation, we obtain that

−∆z = p|u|p−1z in Ω, z(x) = x · ∇u(x), x ∈ ∂Ω. (25)
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Next we multiply (24) by z, (25) by w and we integrate by parts. The two
resulting identities yield∫

∂Ω

[x · ∇u(x)]
∂w

∂ν
(x) dS = 0.

However, if Ω is either a ball or an annulus, by the Hopf lemma, we infer that

[x · ∇u(x)]
∂w

∂ν
(x) > 0 on ∂Ω or [x · ∇u(x)]

∂w

∂ν
(x) < 0 on ∂Ω,

since u and w have two and three nodal regions, respectively. Hence, the proof
is complete.

3 Proof of Theorem 2

Let Ω ⊂ R2 be either a ball or an annulus centered at the origin. Let α > 0 and
f : R→ R be C1,β on bounded sets of R. From now on we take κ = 2

α+2 as in

(22) and Ωκ = T−1κ (Ω), with Tκ as in (11). Given u ∈ H1
0 (Ω) and v ∈ H1

0 (Ωκ),
consider the bilinear forms

Qu(U,W ) =

∫
Ω

∇U∇Wdx−
∫
Ω

|x|αf ′(u)UWdx, U,W ∈ H1
0 (Ω)

and

Qv(U ,W) =

∫
Ωκ

∇U∇Wdy −
(

2

α+ 2

)2 ∫
Ωκ

f ′(v)UWdy, U ,W ∈ H1
0 (Ωκ)

associated with (3) and (23), respectively. The crucial point for the proof of
Theorem 2 is the following result.

Proposition 13 Let v, ψ ∈ H1
0 (Ωκ) and set u = v ◦ T−1κ and ϕ = ψ ◦ T−1κ .

Then

Qv(ψ,ψ) ≥ 2

α+ 2
Qu(ϕ,ϕ), ∀ψ ∈ H1

0 (Ωκ) (26)

and

Qv(ψ,ψ) =
2

α+ 2
Qu(ϕ,ϕ), ∀ψ ∈ H1

0,rad(Ωκ).

Proof. It is a direct consequence of Lemmas 8 and 9.

Proof of Theorem 2. Let u be a radial nodal solution of (3). Then, define
v : Ωκ → R by setting v(y) = u(Tκ(y)), with κ = 2

α+2 . Hence v is a radial
nodal solution of (23). Observe that the eigenvalue problem for the linearized
operator associated with (23) is

−∆ψ −
(

2

α+ 2

)2

f ′(v)ψ = λψ in Ωκ, ψ = 0 on ∂Ωκ. (27)
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Hence, if ψ is a radial eigenfunction of (27) then, writing ψ(s) = ϕ(s
2

α+2 ), we
infer from (21) and (22) that ϕ is a radial eigenfunction of

−∆ϕ− |x|αf ′(u)ϕ = λ

(
α+ 2

2

)2

|x|αϕ in Ω, ϕ = 0 on ∂Ω. (28)

We know, from [1], that the Morse index of v is at least 3 and greater
than or equal to n(u) + 2 if (4) is satisfied; cf. Theorem A and Remark 1 in
the introduction. More precisely, the problem (27) has a negative eigenvalue
λ1,rad (the first eiganvalue) with a corresponding radial eigenfunction ψ1,rad

and there are two other negative eigenvalues λ2 = λ3 with corresponding
eigenfunctions ψ2 and ψ3. Moreover, see [1],

ψ2(y1, y2) is even w.r.t. y2 and odd w.r.t. y1,
ψ3(y1, y2) is even w.r.t. y1 and odd w.r.t. y2.

(29)

Hence, in particular,

Qv(ψ1,rad, ψ1,rad) < 0 and Qv(ψi, ψi) < 0, i = 2, 3.

Moreover, if (4) is satisfied then the radial eigenvalues of (27), up to the n(u)-
th, are also negative. In this case let us denote these eigenvalues by λi,rad and
the associated radial eigenfunctions by ψi,rad, i = 2, . . . , n(u).

As we have observed, the change of variable s 7→ sκ, guarantees that
ϕi,rad, defined by ψi,rad(y) = ϕi,rad(Tκ(y)) with i = 1, 2, . . . , n(u), are ra-
dial eigenfunction of (28) with λ = λi,rad. Eventhough, ϕ2 and ϕ3 defined by
ϕi(x) = ψi(T

−1
κ x), i = 2, 3, are not eigenfunctions of (28), they correspond

to directions in which the quadratic form induced by Qu is negative definite,
which follows from (26). Moreover, using that

i) ϕi,rad, i = 1, 2, . . . , n(u), are eigenfunctions of (28) with λ = λi,rad;
ii) the symmetries of ϕ1,rad, ϕ2,rad, . . . , ϕn(u),rad, ϕ2, ϕ3;

it is simple to verify that ϕ1,rad, ϕ2,rad, . . . , ϕn(u),rad, ϕ2, ϕ3 are mutually or-
thogonal with respect to both the bilinear forms

(U,W ) 7→
∫
Ω
|x|αUWdx, and

(U,W ) 7→ Qu(U,W ) =
∫
Ω

[∇U∇W − |x|αf ′(u)UW ] dx.

Therefore, we infer that Qu(w,w) < 0 for every nonzero w in the span
[ϕ1,rad, ϕ2, ϕ3] or for every nonzero w in the span[
ϕ1,rad, ϕ2,rad, . . . , ϕn(u),rad, ϕ2, ϕ3

]
if (4) is satisfied. This proves Theorem

2.
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4 Other changes of variables: proof of Theorem 4

To the aim of proving Theorem 4 we now consider a variant of the change
of variable in R2 defined in Section 2, which involves changing both polar
coordinates r and θ.

Given κ > 0 and m ∈ N we set

Tκ,m : [0,∞)× [0, 2π]→ [0,∞)× [0, 2πm ],

Tκ,m(s, σ) :=
(
sκ, σm

)
, r = sκ, θ = σ

m .
(30)

Obviously Tκ,1 is just Tκ of (12).

Consider any continuous function ψ defined on a radially symmetric domain
Ω in R2 in the cartesian coordinates (y1, y2). Then, as in Section 2, using the
polar coordinates

y1 = s cosσ, y2 = s sinσ, s =
√
|y1|2 + |y2|2,

we can write

ψ(y1, y2) = ψ(s cosσ, s sinσ) = ψ(s, σ), with σ ∈ [0, 2π] and ψ(s, 0) = ψ(s, 2π).

We then set

ϕ(x1, x2) = ϕ(r, θ) = ψ(T−1κ,m(r, θ)).

Hence ϕ is a function defined for θ ∈ [0, 2πm ] which, since ψ(s, 0) = ψ(s, 2π),
can be extended 2π

m -periodically and continuously for all θ ∈ [0, 2π]. We still
denote this extension by ϕ and we observe that if it is smooth, by direct
computation, then we have

κ2r2−
2
κ

[
ϕrr +

1

r
ϕr +

1

r2
ϕθθ

]
= ψss +

1

s
ϕs +

m2κ2

s2
ψσσ.

Hence if we choose κ = 1
m , for the Laplacian in cartesian coordinates we have

m−2|x|2(1−m)∆ϕ(x) = ∆ψ(y). (31)

In view of the relation (31) involving the Laplacians of ϕ and ψ, we will
apply the above procedure to work with the Hénon type equations (3) in the
case that α = 2(m− 1), with m ≥ 2, that is for every α even. Indeed

α = 2(m− 1)⇐⇒ κ =
1

m
=

2

α+ 2

which coincides with the relation (22) between κ and α.

Note that, in view of the complex plane, the above transformation T 1
m ,m

is just the one which sends z into z
1
m , z ∈ C.
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Remark 14 Observe that, in the particular case when m is even, if ψ is a
function such that

ψ(y1, y2) = ψ(y1,−y2), (y1, y2) ∈ R2

i.e. even with respect to y2, then the extended function ϕ(x1, x2), given by
ψ = ϕ ◦ T 1

m ,m
, is such that ϕ is even with respect to x1 and x2, that is

ϕ(x1, x2) = ϕ(|x1|, |x2|), (x1, x2) ∈ R2.

Hence functions that are symmetric with respect to one axis produce functions
that are symmetric with respect to both axes.

With the above choice of α we consider a radial nodal solution u of (3).
By Theorem 2 we know that u has Morse index greater than or equal to 3
and at least n(u) + 2 if (4) is also satisfied. We will use the change of variable
(30) with κ = 1

m to construct α+ 2 = 2m convenient non-radial directions on
which the quadratic form Qu(w,w) is negative.

We can now proceed with the proof of Theorem 4.

Proof of Theorem 4. Let α = 2(m − 1), with m ≥ 2, κ = 1
m , and let u be

a radial nodal solution of (3). Then, by (23), the radial function v = u ◦ Tκ
solves

−∆v =
1

m2
f(v) in Ωκ, v = 0 on ∂Ωκ.

Therefore, by the results of [1], already used at (29), there exist two eigen-
functions ψ2 and ψ3 for the eigenvalue problem

−∆ψ − 1

m2
f ′(v)ψ = λψ in Ωκ, ψ = 0 on ∂Ωκ, (32)

with the following properties:

i) the corresponding eigenvalues λ2 = λ3 are negative;
ii) ψ2 is even with respect to y2 and odd with respect to y1, while ψ3 is even

with respect to y1 and odd with respect to y2;
iii) ψ2(y1, y2) > 0 if y1 > 0, while ψ3(y1, y2) > 0 if y2 > 0.

Next, applying the change of variables (30), we consider the functions
ϕm,i(r, θ) = ψi ◦ T−11

m ,m
(r, θ), i = 2, 3, extended by periodicity as before for all

θ ∈ [0, 2π], so to have them defined on the whole Ω. Then, by the conditions
∂ψ2

∂σ = 0 and ψ3 = 0 at σ = 0, we have that ϕm,i, i = 2, 3, are C2(Ω)-functions
and by (31) they satisfy

−∆ϕ− |x|αf ′(u)ϕ = λ|x|αϕ in Ω, ϕ = 0 on ∂Ω, (33)

with λ = λim
2. Moreover it is easy to see that both ϕm,i, i = 2, 3, have

2m nodal sets, each one being an angular sector of amplitude π
m . This means
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that each one is a first eigenfunction of (33) in that sector with corresponding
eigenvalue λim

2 < 0. In particular ϕm,2 is the first eigenfunction in the sector

Ωm,2 =
{

(x1, x2) = (r cos θ, r sin θ) ∈ Ω, θ ∈
[
− π

2m
,
π

2m

]}
,

while ϕm,3 is the first eigenfunction in the sector

Ωm,3 =
{

(x1, x2) = (r cos θ, r sin θ) ∈ Ω, θ ∈
[
0,
π

m

]}
.

Then, by the monotonicity of the first eigenvalues with respect to the domain,
by inclusion, we have that the first eigenvalue in Ωn,2 or Ωn,3 are also nega-
tive for every integer 1 ≤ n < m, Ωn,i defined as before, replacing m by n, for
i = 2, 3. The corresponding eigenfunctions, say ϕn,i extended by oddness with
respect to the anticlockwise border of Ωn,i and periodically, with angular pe-
riod 2π

n , give rise to other two eigenfunctions for (33), for every n ∈ {1, . . . ,m}.
By construction, their symmetry or antisymmetry, all these pairs of eigenfunc-
tions are mutually orthogonal with respect to both the bilinear forms

(U,W ) 7→
∫
Ω
|x|αUWdx, and

(U,W ) 7→ Qu(U,W ) =
∫
Ω

[∇U∇W − |x|αf ′(u)UW ] dx,

so that we get 2m negative eigenvalues for (33) corresponding to nonradial
directions. Counting also the first radial eigenvalue, which is negative, and
from the second up to the n(u)-th radial eigenvalue which are also negative if
(4) holds, we get the assertion, since α = 2(m− 1).
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the Hénon equation in RN . Adv. Math., 249:1–36, 2013.
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