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Abstract

Neuroinflammation,  characterized  by  the  appearance  of  reactive  microglial  and  astroglial  cells,  is  one  of  the

several  pathogenic  mechanisms  of  amyotrophic  lateral  sclerosis  (ALS),  a  fast-progressing  and  fatal

neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high

concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation

by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated

in  ALS  models  is  still  to  be  clarified.  The  mechanism  of  inflammasome  activation  was  studied  in  murine

microglial  cells  overexpressing  hSOD1(G93A) and verified in  the  spinal  cord of  hSOD1(G93A) mice.  Murine

microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to

an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously

react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease

in  caspase1  activity.  Protein  nitration  and  caspase1  activity  are  concomitantly  increased  in  the  spinal  cord  of

pre-symptomatic  SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a

key  trigger  of  caspase1/inflammasome  activation.  Peroxynitrite  formation  may  play  a  critical  role  in

inflammasome activation and might be exploited as potential therapeutic target for ALS.
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Introduction
AQ3

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a fast-progressing motor neuron

death. Usually, patients show severe muscle atrophy, paralysis and ultimately denervation of respiratory muscles and

surrender to the disease within 2–5 years from the clinical onset [ 1 ]. Most of the ALS cases are classified as

sporadic, since there is no family history of the disease. The remaining few cases (5–10%) are defined as familial

since inherited in an autosomal dominant fashion. These two forms of ALS are clinically indistinguishable,

notwithstanding the genetic differences. Almost 20% of familial cases are connected with mutations in the

superoxide dismutase 1 (SOD1) gene [ 2 ], such as the substitution of glycine to alanine in position 93 (G93A).

hSOD1(G93A) transgenic mice, which undergo a gradually progressive disease, are used as the gold standard in ALS

research.

Non-cell autonomous mechanisms involving non-neuronal cells contribute to motor neuron death [ 3 ], suggesting

that multiple damages, occurring in multiple cellular compartments, can ultimately lead to the neuromuscular failure,

the main feature of ALS.

The reduction of mutant SOD1 in microglia extends survival in transgenic SOD1(G37R) mice and supports the

hypothesis of the contribution of non-neuronal cell toxicity to the pathogenesis of the disease [ 4 ]. Therefore, it is

accepted that the microglial compartment is one of the non-cell autonomous player in the killing of motor neurons

[ 5 ].

Indeed, the appearance of activated microglial and astroglial cells, a process known as neuroinflammation,

characterizes ALS. Furthermore, in transgenic mouse models of mutant SOD1-associated familial ALS, the loss of

motor neurons follows the appearance of activated microglial cells [ 6, 7 ], thus underpinning the fundamental role of

microglial cells in the phenotype development.

Microglia are macrophage-like cells performing the main active immune defense towards infection or injury in the

central nervous system (CNS). Because of these functions, microglia display a range of pattern recognition receptors

(PRRs) and produce a few important pro-inflammatory mediators, such as tumor necrosis factor (TNF)α and

interleukin 1β (IL-1β) [ 6 ], thus taking part in the inflammatory responses to stimuli. Since ALS pathogenesis is

underpinned by a vicious cycle of inflammation and neurodegeneration, the ability of microglial cells to trigger and

maintain chronic inflammation has strengthen its pivotal role in the disease [ 6, 7, 8 ]. For instance, in the CNS of

ALS patients and mutant SOD1 transgenic mice, elevated levels of IL-1β were found [ 9 ]. However, it is still unclear

the cellular source of this IL-1β or the stimulus that drives its expression. IL-1β is expressed as an inactive precursor

which, to be activated, has to undergo a proteolytic processing by caspase1. Caspase1, in turn, is bound to and

activated by a multiprotein complex, to form the inflammasome. A range of substances that arise during infections,

tissue damage or metabolic imbalance causes the inflammasome formation.

Commonly, inflammasomes are composed by three elements: a cytosolic PRR, pro-caspase1 and a PRR-specific

adaptor molecule. The best-characterized inflammasome forming PRR is NOD-like receptor pyrin domain containing

three (NLRP3) [ 10, 11 ]. NLRP3, activated by a wide range of molecules related to damage or infection,

oligomerizes with the adaptor ASC (apoptosis-associated speck-like protein containing a caspase recruitment

domain) and caspase1 to form the NLRP3-inflammasome, which leads to the processing of pro- to mature IL-1β and

its release. Although the likely importance of IL-1β in ALS and the potential capacity of NLRP3 to associate

inflammation to IL-1β production, relatively few studies have surveyed the link between ALS and NLRP3

[ 12, 13, 14, 15 ].

In this study, we investigated the inflammasome activation in the spinal cord of hSOD1(G93A) mice and in murine
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microglial cells overexpressing hSOD1(G93A) and hypothesized that, by activating NLRP3 in glial cells,

inflammation-induced peroxynitrite could drive chronic inflammation in the context of ALS.

Materials and Methods

Materials

All the reagents, unless otherwise stated, were from Sigma-Aldrich (St. Louis, MO). All the antibodies, unless

otherwise stated, were from Santa Cruz Biotech (Santa Cruz, CA). Cell culture reagents were from Life

Technologies (GibcoBRL, Gaithersburg, MD).

Mice

Thirteen-week-old (W13) female C57BL/6 and SOD1(G93A) mice were treated in strict accordance to the guidelines

of the Institutional Animal Care and Use Committee and to National and European legislation, throughout the

experiments. LPS (5 mg/kg) was administered i.p., and animals were killed after 24 h.

Immortalized Microglia

Immortalized microglial cells, obtained from embryonic (E14) cortices from non-transgenic and transgenic

hSOD1(G93A) mice following the method described by Righi and colleagues [ 16 ], were a kind gift of Dr. G.

Pietrini (Università di Milano). Microglia were characterized by Western Blot and immunofluorescence for the

presence of selective markers (CSF-1) and the absence of astrocyte-specific molecules (i.e., glial fibrillary acidic

protein).

Cell Cultures and Treatments

Non-transgenic and SOD1(G93A) microglial cells were cultured in DMEM F-12 supplemented with 5% fetal bovine

serum (FCS), glutamine (4 mM), penicillin (50 U/ml) and streptomycin (50 mg/ml) at 37 °C in a humidified 5% CO

environment and seeded at the density of 31.00094,000/cm . After a 24-h subculture, cells were exposed to 1 μg/ml

LPS for various time. When inhibitors were used, 1400 W (iNOS inhibitor) and apocynin (APO, NOX2 inhibitor),

were added to SOD1(G93A) cells 30 min prior to 1 μg/ml LPS exposure.
AQ4

Measurement of NO Production

Nitric oxide (NO) production was determined indirectly through the measurement of nitrite, a stable metabolite of

nitric oxide, by Griess reaction [ 17 ]. Results were expressed as percentage of the control, assumed as 100%. Nitrite

standard reference curve was prepared for each determination.

Measurement of Cytokine Levels by ELISA

Cytokine production was measured with an enzyme-linked immunosorbent assay (ELISA) kit in cell medium

collected from control and LPS-treated cells. Samples were analyzed according to the manufacturer’ s protocols (BD

Biosciences Pharmigen, San Diego, CA).

RT-PCR

Total RNA was isolated with TRIZOL Reagent (Invitrogen Ltd., Paisley, UK) according to the manufacturer’s

instructions, and complementary DNA (cDNA) was synthesized using iScript cDNA synthesis kit (Bio-Rad Lab,

Hercules, CA). PCR products from synthetized cDNA were amplifield with specific mouse primer sequences

obtained from Invitrogen (Invitrogen Ltd., Paisley, UK) and listed in Table 1 . Two microliters of cDNA was used for

each PCR reaction using Taq DNA polymerase (New England Biolabs, Whitby, ON, Canada), according to the

manufacturer’s protocol. The products were visualized on ethidium bromide-stained 1.8% agarose gels.

Table 1

List of primers
AQ5

Glyceraldehyde-3-phosphate-dehydrogenase Gapdh F: GCCAAATTCAACGGCACAGT

2
2
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R: AGATGGTGATGGGCTTCCC

Interleukin 1beta IL1β
F: AAAAGCCTCGTGCTGTCGGACC

R: TTGAGGCCCAAGGCCACAGGT

Interleukin 6 IL6
F: GCTGGAGTCACAGAAGGAGTGGC

R: GGCATAACGCACTAGGTTTGCCG

Tumor necrosis factor alpha Tnfα
F: GCCCACGTCGTAGCAAACCAC

R: GGCTGGCACCACTAGTTGGTTGT

NLR family, pyrin domain containing 1A Nlrp1a
F: CTTGAGAAGTTGGGTGGGGT

R: GATGGAGCAACTCAGGACCA

NLR family, pyrin domain containing 3 NLRP3
F: GACACGAGTCCTGGTGACTTT

R: CAGACGTATCTGAGCCAT

NLR family, CARD domain containing 4 IPAF
F: TCAGGTCACAGAAGACCT

R: TTCACCCAGGGGGTAGAAGT

Absent in melanoma 2 Aim2
F: AAAACTGCTCTGCTGCCTCT

R: GATGGCTTCCTGTTCTGCCA

PYD and CARD domain containing Asc
F: AACTGCGAGAAGGCTATGGG

R: TGAGCTCCAAGCCATACGAC

Heme-binding membrane glycoprotein gp91phox gp91phox
F: TCACCACTAGTACCAGCATCACCA

R: ACTCTGTCTTGCATTTCTGGATGCC

Inducible nitric oxide synthase iNOS
F: GGTGTTCTTTGCTTCCATGCTAAT

R: GTCCCTGGCTAGTGCTTCAGA

Real-Time PCR

Total RNA was isolated with TRIZOL Reagent (Invitrogen Ltd., Paisley, UK) according to the manufacturer’s

instructions, and cDNA was synthesized using iScript cDNA synthesis kit (Bio-Rad Lab, Hercules, CA). Real-time

PCR was performed using the iCycler iQ detection system (Bio-Rad) and SYBR Green chemistry. Mouse primer

sequences, obtained from Invitrogen (Invitrogen Ltd., Paisley, UK) were listed in Table 1 . SYBR Green RT-PCR

amplifications were carried out in a 96-well plate in a 25-μl reaction volume that contained 12.5 μl of 2× iQ™

SYBR® Green SuperMix (Bio-Rad), 400 nM forward and reverse primers and 5 to 40 ng of cDNA. In each assay,

no-template controls were included and each sample was run in triplicates. The thermal profile consisted of

incubation at 95 °C 3 min, followed by 40 cycles of denaturation for 10 s at 95 °C and an annealing/extension step of

30 s at 62 °C. Mean of Ct values of the stimulated sample was compared with the untreated control sample. ΔCt is

the difference in Ct values derived from the target gene (in each assayed sample) and Gpdh, while ΔΔCt represents

the difference between the paired samples. The n-fold differential ratio was expressed as 2 .

Western Blotting Analyses

Non-transgenic and SOD1(G93A) total cell lysate were obtained using hot Laemli sample buffer 1× (60 mM Tris

HCl, pH 6.8, 2% SDS, 10% glycerol, 0.72 M β-mercaptoethanol). Extracts were loaded on SDS-polyacrylamide gel,

transferred on nitrocellulose membrane and immunoblotted with phospho-NF-kB p65 (Ser536) antibody (1:1000)

(Cell Signaling Technology, Danvers, MA), NLRP3 (Cryo-2) antibody (1:1000; AdipoGen Corp., San Diego, CA),

iNOS (M-19) antibody (1:200), caspase1 antibody (1:1500; Cell Signaling Technology, Danvers, MA), gp91 phox

(BD Biosciences Pharmigen, San Diego, CA) antibody (1:2000), IL-1β (1:250; Cell Signaling Technology, Danvers,

MA) and horseradish peroxidase-conjugated anti-IgG antibody (1:5000). GAPDH (6-C5; 1:500) actin (I-19; 1:400)

antibodies were used as marker protein for total extracts and membrane extracts. Immunocomplexes were visualized

with an enhanced chemiluminescence kit (ECL, Pierce Biotechnology, Rockford, IL).

Caspase1 Activity

−ΔΔCt
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Cell pellet from SOD1(G93A) cells were treated with lysis buffer (50 mM HEPES, pH 7.4, 0.1% CHAPS, 0.1 mM

EDTA) and incubated 10 min on ice. After centrifugation, protein extract (50 μg) was incubated with a caspase1

reaction mixture (20 mM PIPES, pH 7.4, 30 mM NaCl, 0.1% CHAPS, 1 mM EDTA, 10% sucrose) containing 50 μM

caspase1 fluorogenic peptide substrate (Ac-YVAD-AFC). Then, elicited fluorescence was recorded (λexc 380 nm

and λem 505 nm). The florescence of AFC (fluorocoumarin) standard solutions (0–5 μM) was used to construct a

calibration curve and caspase1 activity was expressed as pmol of AFC released/min/mg protein.

Measurement of Intracellular Fluorescence

SOD1(G93A) microglial cells, seeded on glass coverslips, were used for evaluation of ROS production, detection of

activate caspase1, immunolocalization of nitrated protein and actin labeling. Lumbar spinal cords (L4–L6) were

dissected, embedded in tissue freezing medium (Leica, Wetzlar, Germany) and frozen in isopentane pre-cooled in

liquid nitrogen. Cryosections of 16 μm thickness were obtained using a Leica cryostat and used to detect activate

caspase1 and immunolocalization of nitrated protein.

ROS Production The 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) method was used to detect ROS

intracellular levels [ 18, 19 ]. The fluorescence of 2′,7′-dichlorofluorescein was detected at 485 nm excitation and at

535 nm emission.

Detection of Activate caspase1 SOD1(G93A) cells were loaded with 50 μM Ac-YVAD-AFC for 1 h at 37 °C and

fixed for 20 min in 4% PFA at room temperature.

Immunolocalization of Nitrated Protein Cells were fixed with 4% PFA for 20 min at room temperature and

incubated overnight at 4 °C with nitrotyrosine antibody (1:50; Sigma-Aldrich, St. Luis, MO).Cells were then

incubated with tetramethylrhodamine (TRITC)-conjugated anti-rabbit IgG (1:100; Jackson ImmunoResearch

Laboratories, INC, PA, USA) for 1 h at room temperature. Control samples were incubated with non-immune serum.

Actin Labeling Phalloidin was used to detect filamentous actin (F-actin) content on SOD1(G93A). The cells were

fixed with 4% PFA for 20 min at room temperature and F-actin was stained with tetramethylrhodamine TRITC-

labeled phalloidin (1:250) for 30 min at room temperature.

At the end of each experimental procedure, cell nuclei were counter-stained with 4′,6-diamidino-2-phenylindole

(DAPI) and samples were analyzed with a Zeiss Axio Observer Z1 equipped with Apotome and Digital Camera

Axiocam MRm Zeiss.

Immunoprecipitation

SOD1(G93A) microglial cells were lysed in RIPA buffer (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA,

0.05% sodium deoxycholate, 1% Triton X-100, 0.1% SDS, 1 mM PMSF, protease inhibitors) and

immunoprecipitated with nitrotyrosine antibody (1:200) and protein A sepharose. Immunoprecipitated complexes

were washed in lysis buffer and boiled for 5 min in Laemli Sample Buffer 1×. Samples were loaded on

SDS-polyacrylamide gel, transferred on nitrocellulose membrane and immunoblotted with NLRP3 (Cryo-2) antibody

(1:1000) and nitrotyrosine antibody (1:2000).

Statistical Analysis

All results were confirmed in at least three separate experiments and expressed as mean ± SD. Data were analyzed

for statistical significance by Student’s t test. p values <0.05 were considered significant.

Results

LPS Activates NLRP3 Inflammasome in SOD1(G93A) Microglial Cells

Since microglial cells are the key players in neuroinflammatory reactions, to determine the mechanisms leading to

neuroinflammation in ALS, we used immortalized microglial cells from hSOD1(G93A) mice. It has been reported

that the exposure of BV2 microglial cells to exogenous SOD1(G93A)-induced activation of the inflammasome [ 12 ].

Therefore, we sought to determine whether the endogenous expression of SOD1(G93A) could induce the same

effect. We first evaluated the expression of inflammasome components in murine immortalized hSOD1(G93A)

overexpressing microglial cells (SOD1(G93A)) (Fig. 1a ) and found that NLRP1, NLRP3, IPAF and AIM2

inflammasome receptors messenger RNAs (mRNAs) are expressed in SOD1(G93A) cells, together with the
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inflammasome adapter protein ASC, suggesting that, upon stimulation, cells can be able to activate the

inflammasome. Therefore we exposed SOD1(G93A) microglial cells to 1 μg/ml LPS and evaluate the changes in

gene expression of the inflammasome components (Fig. 1b ) and found that a 3-h LPS exposure is sufficient to

increase the expression of the sole NLRP3 inflammasome. This result has been confirmed on protein level (Fig. 1c ).

Indeed, a 6-h LPS exposure caused a robust increase of NLRP3 protein in SOD1(G93A) microglial cells. The

observed increase in NLRP3 expression prompted us to evaluate inflammasome activation. We determined caspase1

activation in SOD1(G93A) microglial cells and found that a 6-h LPS exposure caused an increase in the cleaved

form of caspase1 (Fig. 1d ). To further analyze caspase1 activation in SOD1(G93A) cells, we used the fluorescent

YVAD substrate and found that LPS induced an increase in caspase1-mediated substrate cleavage (Fig. 1e )

corresponding to a doubling of caspase1 specific activity (Fig. 1e ). The addiction of ATP failed to further increase

caspase1 activity (data not shown). The activation of caspase1 through inflammasome results in the secretion of

mature IL-1β [ 11 ]. Indeed, we found that LPS exposure induces a significant increase in IL-1β secretion that is

accompanied by an increase in IL-17 secretion (Fig. 1f ), a direct target of IL-1β in microglial cells [ 20 ]. The

presence of the cleaved form of IL-1β was confirmed by Western blotting (Fig. 1g ). We did not observe any

LPS-induced increase in caspase1 activation in non-transgenic microglial cells (Fig. 1h ). These results suggest that

LPS is capable of activating a functional NLRP3 inflammasome in SOD1(G93A) microglial cells.

Fig. 1

LPS activates NLRP3 inflammasome in SOD1(G93A) microglial cells. Untreated SOD1(G93A) microglial cells were

used for a RT-PCR analysis of inflammasome component expression (1, NLRP1; 2, NLRP3; 3, IPAF-1; 4, AIM2; 5,

ASC); SOD1(G93A) microglial cells were exposed to 1 μg/ml LPS and used for b qRT-PCR of the indicated genes after

a 3-h LPS exposure. Gene expression values were normalized to Gapdh and presented as 2 . Relative mRNA gene

abundance in untreated cells was assumed to be 1 (control). Data represent mean ± SD (n = 3). *p < 0.05 vs. untreated

cells. c Western blotting analysis of NLRP3 and d active caspase1 after 6 h LPS exposure. GAPDH was used as loading

control.  The  images  are  representative  of  one  out  of  three  separate  experiments;  e  detection  of  activated

caspase1/specific enzyme activity assay after a 6-h LPS exposure. Scale bar, 100 μm; f cytokine secretion were assayed

in cell medium by ELISA after an 18-h LPS exposure. Data represent mean ± SD (n = 3). *p < 0.05 vs. untreated cells;

g  Western blotting analysis of IL-1β. h  Non-transgenic microglial  cells  were exposed to 1 μg/ml LPS and used for

Western blotting analysis of active caspase1. The images are representative of one out of three separate experiments.

GAPDH was used as loading control
AQ6
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LPS Induces Protein Nitration in SOD1(G93A) Microglial Cells

LPS is a toll-like receptor 4 ligand known to induce an inflammatory response in microglial cells [ 21 ]. To test

whether the canonical response is also activated in SOD1(G93A) microglial cells, we first determined the effects of

LPS exposure on cell morphology and found that, in the presence of LPS, cells assume an amoeboid shape

characteristic of microglial activation (Fig. 2a ). Moreover, LPS induces the activation of the transcription factor

NF-κB as detected by the increase in the phosphorylation/activation of the p65 subunit, already after a 3-h exposure

(Fig. 2b ). The activation results in an increase in the expression of several pro-inflammatory genes such as IL-6,

IL-1β, TNFα, (Fig. 2c ), inducible nitric oxide synthase (iNOS) and the gp91phox subunit of NADPH oxydase

(NOX)2 (Fig. 2d , e). The gene expression parallels the increase in cytokine secretion (Fig. 1f ) and the protein

expression (Fig. 2d , e).

Fig. 2

LPS  induces  protein  nitration  in  SOD1(G93A)  microglial  cells.  SOD1(G93A)  microglial  cells  were  treated  with

1 μg/ml LPS. a  Phalloidin staining after  a 24-h exposure. Scale bar,  100 μm; b  time course  of  p-NF-κB.  At  each

indicated  time,  cells  were  collected  and  total  extract  analyzed  by  Western  blotting.  GAPDH  was  used  as  loading

control. The images are representative of one out of three separate experiments; c qRT-PCR of the indicated genes after

a 6-h LPS exposure. Gene expression values were normalized to Gapdh and presented as 2 . Relative mRNA gene
−ΔΔCt
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abundance in untreated cells was assumed to be 1 (control). Data represent mean ± SD (n = 4). *p < 0.05 vs. untreated

cells. SOD1(G93A) microglial cells were exposed to 1 μg/ml LPS and used for d,  e  qRT-PCR and Western blotting

analysis of iNOS (d) and gp91 phox (e) at the indicated times. Gene expression values were normalized to Gapdh and

presented as 2 . Relative mRNA gene abundance in untreated cells was assumed to be 1 (control). Data represent

mean ± SD (n = 5). *p < 0.05 vs. untreated cells. GAPDH was used as loading control in Western Blotting analyses.

The images are representative of one out of three separate experiments; f detection of NO production after a 24-h LPS

exposure by Griess Reagent (100% control NO absorbance, 0.29 ± 0.05). *p < 0.05 vs. untreated cells; g detection of

ROS  generation  by  DCF  fluorescence  after  24  h  LPS  exposure.  Scale  bar,  100  μm;  h  immunolocalization  of

nitrotyrosine. The immunofluorescence staining was performed as described using anti-nitrotyrosine antibody after a

6-h LPS exposure. The images are representative of one out of three separate experiments. Scale bar, 100 μm

The activity of iNOS and NOX2 enzymes can be inferred by the observation that the concentration of their products

increases after LPS exposure (Fig. 2f , g). Indeed, LPS induces about a 400% increase in NO levels (Fig. 2f ) and an

increase in ROS levels, as determined by DCFH staining (240 ± 135 vs. 517,860 ± 56,541 pixel over threshold) (Fig.

2g ) and by dihydroethidium staining (Online Resource 1A ). By reacting with NOX2-produced superoxide anion,

NO can form highly reactive peroxynitrite, responsible for protein nitration [ 22 ]. We found that LPS treatment

increases the levels of nitrotyrosine (150 ± 58 vs. 4440 ± 1057 pixel over threshold) (Fig. 2h ) suggesting that

LPS-exposed SOD1(G93A) microglial cells undergo an oxidative/nitrosative stress.

Peroxynitrite Is Responsible for Inflammasome Activation

It has been shown that peroxynitrite is involved in NLRP3 inflammasome activation in intracerebral hemorrhage

−ΔΔCt
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(ICH)-induced inflammatory injury [ 23 ]. To test whether the same mechanism is responsible for LPS-induced

NLRP3 activation in SOD1(G93A) microglial cells, we pre-treated the cells with specific iNOS and NOX2

inhibitors, i.e. 1400W and apocyanin, respectively. 1400W reduced the LPS-induced increase in NO levels (Fig. 3a )

while it did not affect ROS levels (Online Resource 1B ). Apocyanin reduced LPS-induced increase in ROS levels

(3063 ± 380 vs. 1030 ± 118 pixel over threshold) (Fig. 3b ) and NO levels were also affected (Online Resource 1C ).

Both inhibitors reduced nitrotyrosine levels in LPS-treated SOD1(G93A) microglial cells (1400W − 172 ± 28 vs.

1400W + LPS 128 ± 41; APO − 329 ± 72 vs. APO + LPS − 356 ± 94 pixel over threshold) (Fig. 3c ). In the presence

of each single inhibitor, caspase1 activity is strongly reduced (Fig. 3d , e) indicating that LPS induces caspase1

activation in SOD1(G93A) microglial cells through peroxynitrite formation.

Fig. 3

Peroxynitrite  is  responsible  for  inflammasome activation.  SOD1(G93A)  microglial  cells  were  exposed  to  250  μM

1400 W or 500 μM APO prior to 1 μg/ml LPS used for a detection of NO production by Griess Reagent and b detection

of ROS generation by DCF fluorescence (scale bar, 100 μm) after a 24-h LPS exposure. Absorbance of control cells

(0.29 ± 0.05) was assumed as 100%. Data represent mean ± SD (n = 3). *p  < 0.05 vs. control cells; p  < 0.05 vs.

LPS-treated cells; c immunolocalization of nitrotyrosine after a 6-h LPS exposure. Scale bar, 100 μm. SOD1(G93A)

microglial cells, treated with d 250 μM 1400 W or e 500 μM APO prior to a 6-h 1 μg/ml LPS exposure, were collected

and total extracts were subjected to Western blotting. SOD1(G93A) microglial cells were exposed to a 6-h 1 μg/ml LPS

and cell  extracts  were  subjected to  immunoprecipitation (f)  with  anti-  nytrotyrosine  antibody followed by Western

Blotting analysis of NLRP3. The images are representative of one out of three separate experiments. GAPDH was used

as loading control

#
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To determine whether peroxynitrite modifies the NLRP3 inflammasome, we performed immunoprecipitation to

exploreNLRP3 nitration in SOD1(G93A) microglial cells treated with LPS for 6 h (Fig. 3f ). We found that NLRP3

is immunoprecipitated by anti-nitrotyrosine antibody in LPS-treated cells suggesting that this post-translational

modification, induced by the increase in peroxynitrite, could modify NLRP3 function in SOD1(G93A) microglial

cells.

Protein Nitration and Caspase1 Activation Are Increased in the Spinal Cord of
SOD1(G93A) Mice

To determine whether spinal cords of pre-symptomatic hSOD1(G93A) mice display the molecular features of the

mechanism described in vitro, we investigated caspase1 activation and protein nitration in the gray matter of the

lumbar spinal cord of pre-symptomatic (W13) hSOD1(G93A) mice. We found that the spinal cord of ALS mouse

model is robustly stained by the anti-nitrotyrosine antibody (912 ± 400 vs. 14,878 ± 1622 pixel over threshold) (Fig.

4a ) indicating that, even in the pre-symptomatic stage of the pathology, mice undergo a significant increase in

peroxynitrite formation. Moreover, the spinal cord of pre-symptomatic mice shows a strong increase in active

caspase1 (Fig. 4 b). Image analysis of fluorescent signals indicate that caspase1 fluorescence was approximately ten

times higher in SOD1(G93A) compared with control spinal cord (280 ± 148 vs. 2478 ± 504 pixel over threshold).

Moreover, the induction of caspase1 activity was much greater in SOD1(G93A) spinal cord than in 5 mg/kg

LPS-treated control spinal cords. These data indicate that peroxynitrite formation and inflammasome activation are

early concomitant events in ALS pathology and can be, at least in part, responsible for motoneuron cell death.

Fig. 4

Protein nitration and caspase1 activation are increased in the spinal cord of SOD1(G93A) mice. Lumbar spinal cord of

13-week-old untreated (control), LPS-treated (5 mg/kg; LPS) and hSOD1(G93A) (pre-symptomatic) mice were used

for immunolocalization of nytrotyrosine (a) and detection of activate caspase1 (b). The images are representative of

one out of three separate experiments. Scale bar, 100 μm

Discussion
Here we showed, for the first time, that that peroxynitrite activates caspase1 and the downstream inflammatory

cascade in SOD1(G93A) microglial cells thus contributing to one of the several ALS pathogenic mechanisms. To

date, Feng et al. [ 23 ] showed that peroxynitrite is a downstream signaling molecule of P2X7 receptor, which plays a

critical role in triggering NLRP3 inflammasome activation, but by IP we have shown that nitration occurs precisely

at NLRP3 levels. Although the pathogenesis of ALS is believed to involve a vicious circle of inflammation leading

to neurodegeneration and further inflammation, the mechanisms supporting this chronic inflammatory response

remain poorly understood. In this study, we explored the link between protein nitration, resulting from an acute

inflammatory stimulus (LPS), and the activation of the NLRP3 inflammasome as a possible driver of chronicity in

the context of ALS. In glial cells expressing the (G93A) mutant SOD1, we demonstrated that challenge with LPS can
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drive protein nitration-dependent NLRP3 activation. Moreover, we showed that the L4–L6 region of the spinal cord

of pre-symptomatic (W13) SOD1(G93A) mice undergoes massive protein nitration with a concomitant increase in

caspase1 activity, two events which could support our in vitro results. By connecting an acute inflammatory response

to activation of the NLRP3 inflammasome (and thereby IL-1β production/secretion), these data together identify

protein nitration as a potential ‘smoking gun’ in the search for molecular mechanisms underpinning the chronic

neuroinflammation driving ALS pathogenesis.

Several pathogenic factors have been proposed to explain ALS pathogenic mechanisms [ 24 ]; these include increased

production of reactive oxygen species (ROS) [ 25 ] and nitroxyradicals responsible for protein tyrosine nitration

[ 23, 26, 27, 28 ]. The increase in ROS and NO is a hallmark of neuroinflammation, i.e. the occurrence of a

neuroinflammatory reaction consisting of activated glial cells, mainly microglia and astrocytes. Microglia, the

resident mononuclear phagocytes in the brain, are activated to protect the neuronal environment in response to

infection or damage. In these conditions, microglia acquire an amoeboid appearance, up-regulate oxidant molecules

such as NO and superoxide anion and secrete pro-inflammatory molecules such as TNFα and IL-1β [ 6 ]. For these

reasons, we used immortalized microglial cells from hSOD1(G93A) mice to study the mechanism leading to

neuroinflammation. Thus we exposed SOD1(G93A) overexpressing cells to LPS, a common inflammogen able to

induce neuroinflammation and reactive microgliosis in vivo and in vitro [ 21 ]. The exposure of SOD1(G93A)

microglial cells to LPS induced an increase in gene and protein expression of iNOS and gp91phox subunit of NOX2,

resulting in an increase in NO and ROS levels that consequently drove an increase in protein nitration. Several

reports link oxidative/nitrosative stress to ALS. Indeed, it has been described that NOX2 produces damaging ROS in

ALS [ 29, 30 ]; SOD1 mutations induce NADPH oxidase-dependent ROS production in microglia of SOD1(G93A)

mice, leading to motor neuron death [ 31, 32 ]; and the deletion of iNOS gene, significantly extends the lifespan of

SOD1(G93A) mice [ 33 ]. These data suggest that protein nitration may be one of the underlying causes of the

pathology.

It is worth noticing that, besides NOX2, mitochondria can also contribute to ROS generation. Indeed, in

neurodegenerative disorders, an increase in mitochondrial ROS generation, leading to NLPR3 activation, has been

reported [ 34, 35, 36 ].

We found that SOD1(G93A) microglial cells, activated by LPS stimulation, increased gene expression and protein

secretion of pro-inflammatory cytokines, including IL-1β. The IL-1 family of cytokines plays a role in host defense

and immune system regulation in inflammatory diseases [ 6 ]. IL-1β is produced as an inactive precursor (pro-IL-1β)

by microglia [ 6 ]. The biological effects of IL-1β follow the cleavage and activation of pro-IL-1β. The mature form

is then released and acts on the type I IL-1 receptor (IL-1RI) on the surface of responsive cells. Caspase1 is the key

protease essential for the processing of pro-IL-1β. The activity of caspase1 is regulated by its recruitment to

inflammasomes that follows an inflammatory stress [ 11 ]. NLRP3, the best-characterized inflammasome receptor

[ 10, 11 ], upon activation by many disease-associated molecules, oligomerizes with the adaptor ASC and caspase1 to

form the NLRP3 inflammasome. It is conceivable that activated SOD1(G93A) microglial cells have inflammasome

components to secrete mature IL-1β. We observed that all inflammasome receptors are indeed expressed in the

SOD1(G93A) microglial cell line and that LPS stimulation increased the gene and protein expression of NLRP3. By

binding to TLR4, LPS, via NF-κB, induces the expression of NLRP3 [ 10 ]. Moreover, in dendritic cells, TLR4

signaling is sufficient to trigger inflammasome activation [ 10, 37 ]. These reports suggest that TLR4 ligands are

active players in modulating inflammasome activation and that, depending on cell type, they can interact with

cell-specific target molecules and lead to an active inflammasome, even in the absence of other stimuli. Activated

SOD1(G93A) microglial cells also showed an active caspase1, indicating that all the steps needed to obtain a mature

IL-1β are present and active in this cell line. Indeed, LPS exposure caused an increase in the mature form of IL-1β.

Recently, the capacity to form a functional NLRP3 inflammasome and to secrete IL-1β, has been attributed to the

microglial compartment in the mouse brain [ 38 ]. On the other hand, NLRP3, ASC, active caspase1 and IL-18 are

concomitantly expressed in astroglial cells of spinal cord tissue samples from SOD1(G93A) mice and in sporadic

ALS patients [ 14 ].

Our work confirmed the presence of active caspase1 in spinal cord of SOD1(G93A) mice [ 14, 39 ] and causally

linked nitrotyrosyne levels to the activation of caspase1. Indeed, when the levels of nitrated proteins were reduced

by specific inhibition of iNOS and NOX2, the levels of active caspase1 were also reduced. It has been shown that

iNOS-positive activated glial cells were increased in transgenic SOD1(G93A) mice and that the reduction in the

levels of NO by අ-arginine administration, reduced motor neuron death and glial activation [ 40 ]. Moreover, the

pharmacological inhibition of NF-κB activation and iNOS expression, extended lifespan of transgenic mouse model
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of ALS [ 41 ]. Furthermore, genetic deletion and specific inhibition of NOX2 in the SOD1(G93A) mice was reported

to remarkably increase survival [ 29 ].

These results underpin that the increased levels of NO and ROS are potentially responsible for ALS pathogenesis

and/or progression. We propose that the noxious effects of oxidative/nitrosative stress are due to inflammasome

activation possibly due to nitration of NLRP3 itself. This hypothesis is in line with the results obtained in

intracelebral hemorrage where P2X7 receptor, which has peroxynitrite as a downstream signaling molecule, plays a

critical role in NLRP3 inflammasome activation [ 23 ]. It is to note that P2X7 receptor is involved in NLRP3

inflammasome activation [ 42 ]. Moreover, a blood-brain barrier permeable P2X7 receptor antagonist significantly

increased motor neuron survival and decreased lumbar spinal cord microgliosis, delayed the onset of the disease and

improved the motor performance of ALS mice. These effects have been related to the modulation of inflammatory

markers such as NF-κB, NOX2 and IL-1β [ 43 ].

Conclusion
Our results indicate that NOX2/iNOS-dependent formation of peroxynitrite, a downstream signaling component of

reactive microgliosis, may be a key trigger of caspase1 activation (Fig. 5 ). Thus, inhibition of peroxynitrite

formation could be a potential therapeutic target for ALS.

Fig. 5

Schematic  representation  of  peroxynitrite-induced  inflammasome  cascade  activation.  Neuroinflammatory  stimuli,

through NF-κB activation, induce in glial cells the expression of iNOS and gp91 phox subunit of NOX2 resulting in

increased levels of ROS and NO [44]. These species spontaneously react to form peroxynitrite, which, in turn, affect

inflammasome activation. This event leads to the cleavage of pro- to mature IL-1β, which upsurges the vicious circle of

inflammation
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