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Homotopy abelian L1 algebras and splitting property

RUGGERO BANDIERA

Abstract: We introduce a property for L1 algebras, which we call the splitting prop-
erty, and prove that an L1 algebra has the splitting property if and only if it is homotopy
abelian.

Introduction

It is nowadays well understood, see [9, 15, 16, 19] and references therein, that every
deformation problem over a field K of characteristic zero is controlled by some dg
Lie algebra via the associated functor of Maurer-Cartan elements modulo Gauge
equivalence (to our knowledge, this was first explicitly stated in the paper [21]),
with quasi-isomorphic dg Lie algebras controlling the same deformation problem.
This has been made precise recently in the works of Lurie [12] and Pridham [22],
whereas some first results were obtained in Manetti’s paper [18]: to do so, we
have to extend the usual category of deformation functors (functors of Artin rings
satisfying Schlessinger’s conditions [23]) to a certain 1-category of derived defor-
mation functors, also called formal moduli problems, and the associated homotopy
category is proved to be equivalent to the homotopy category of dg Lie algebras
(with respect to the usual model category structure, where weak equivalences are
quasi-isomorphisms). For several purposes, it is convenient to replace the category
of dg Lie algebras with the equivalent (at the level of homotopy categories) cat-
egory of L1 algebras, or strong homotopy Lie algebras [11]: the latter is not a
model category anymore, but it carries a structure of category of fibrant objects in
the sense of K. Brown [5], see [3, Section 5], thus an associated homotopy theory.
For instance, even if we want to stick with dg Lie algebras, it is convenient to en-
large the class of morphisms by considering the L1 ones, since every morphism in
the homotopy category is represented by an L1 morphism, whereas in general it is
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only represented by a zig-zag of dg Lie algebra morphisms. As another motivation,
the minimal model of a controlling dg Lie algebra, which is in general only an L1
algebra, is strictly related to the Kuranishi space of a given deformation problem.

An L1 algebra is homotopy abelian if it is weakly equivalent to an L1 algebra
with trivial brackets. These are precisely the L1 algebras such that the associated
(derived) deformation problem is unobstructed, see for instance [18, Section 7]: for
this reason, it is important to have criteria telling us whether a given L1 algebra is
homotopy abelian. The purpose of this paper is to investigate one such criterium.

This is more suggestively explained in Kontsevich and Soibelman’s geometric
language, cf. [16]: recall that a formal pointed dg manifold is a dg cocommutative
coaugmented coalgebra such that the underlying coalgebra is isomorphic to S(V ),
the symmetric coalgebra over some graded space V . Then an L1 algebra structure
on a space L is the same as the data of a formal pointed dg manifold and an
isomorphism of the underlying coalgebra with S(L[1]). Accordingly, we may think
of L1 algebras as formal pointed dg manifolds with a choice of coordinates. The
tangent complex (at the marked point) of a formal pointed dg manifold is the
space of primitives of the coalgebra structure with the induced di↵erential. The
dg Lie algebra of vector fields is the graded Lie algebra of coderivations with the
induced dg Lie algebra structure. Finally, evaluation at the marked point induces
a morphism of complexes from the vector fields to the tangent complex. We say
that an L1 algebra has the splitting property if the associated evaluation morphism
admits a dg right inverse (this is clearly a property of the associated formal pointed
dg manifold, that is, of the L1 isomorphism class of the L1 algebra). Our main
result, Theorem 2.4, is that an L1 algebra has the spitting property if and only if
it is homotopy abelian.

As an application, we review with a di↵erent proof one of the main results from
[2]. This is done in Theorem 2.9, where we show how to associate an L1 algebra to
a dg Lie algebra and a pre-Lie product inducing the bracket: since it is easy to show
that this L1 algebra has the splitting property, we can conclude that it is homotopy
abelian. As a particular case of interest, this applies to the Kodaira-Spencer dg Lie
algebra controlling the deformations of a Kähler manifold, together with the pre-Lie
product induced by the choice of a Kähler metric via the (1, 0)-part of the associated
Chern connection, cf. Remark 2.10 for more details: in this case, the construction
from Theorem 2.9 recovers the L1 algebra introduced by Kapranov in [13], showing
in particular that the latter is homotopy abelian over the field of complex numbers.

1 – Review of L1[1] algebras

We work over a field K of characteristic zero and with cohomologically Z-graded
vector spaces V = ⊕

i2Z

V i (in particular, di↵erentials raise the degree by one).
Given a homogeneous element v 2 V , its degree shall be denoted by |v|. Given
an integer n 2 Z, we denote by V [n] the space V with the degrees shifted by
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n, V [n]i = V i+n, and by s−n : V ! V [n] : v ! s−nv the natural degree (−n)
isomorphism. Given spaces V , W , we denote by Hom(V,W ) = ⊕

i2Z Homi(V,W )
the inner Hom(−,−) in the category of graded spaces. We denote by V ⌦n the n-th
tensor power of V , that is, the tensor product of n-copies of V , and by V �n, V ^n

the n-th symmetric and exterior powers of V , that is, the spaces of coinvariants of
V ⌦n under the symmetric (resp.: alternate) action of the symmetric group S

n

, with
the usual Koszul rule for twisting signs. By convention V ⌦0 = V �0 = V ^0 = K .
Given homogeneous elements v1, . . . , vn 2 V and a permutation σ 2 S

n

, we shall
denote by "(σ) = "(σ; v1, . . . , vn) the corresponding Koszul sign. Finally, we denote
by S(p, q) ⇢ S

p+q

the set of (p, q)-unshu✏es, that is, permutations σ 2 S
p+q

such
that σ(i) < σ(i+ 1) for i 6= p.

1.1 – Symmetric coalgebras and Nijenhuis-Richardson bracket

Given a graded space V , we denote by S(V ) = ⊕
n≥0V

�n the symmetric coalgebra
over V : the cocommutative coproduct ∆ : S(V ) ! S(V ) ⌦ S(V ) is the unshu✏e
coproduct

∆(v1 � · · ·� v
n

)=

nX

k=0

X

σ2S(k,n−k)

"(σ)(v
σ(1) � · · ·� v

σ(k))⌦ (v
σ(k+1) � · · ·� v

σ(n)),

with the understanding that in the extremal cases k = 0, n we replace the empty
string by 1 2 K = V �0 ⇢ S(V ). Recall that S(V ) is the cofree object over V in
a certain category of coalgebras1: in particular, given graded spaces V and W , a
morphism of graded coalgebras F : S(V ) ! S(W ) is uniquely determined by its
corestriction pF = (f1, . . . , fn, . . .) : S(V ) ! S(W ) ! W , where we denote by
p : S(W ) ! W�1 = W the natural projection and by f

n

: V �n ! W the com-
ponents of pF under the isomorphism Hom0(S(V ),W ) =

Q
n≥0 Hom0(V �n,W )

(notice that we always have F (1) = 1, and thus f0 = 0). We call the f
n

the Taylor
coefficients of F and f1 : V ! W its linear part. Recall the following formal analog
of the inverse function theorem, for a proof cf. [16].

Lemma 1.1. A morphism F : S(V ) ! S(W ) of graded coalgebras is an isomor-

phism (resp.: monomorphism, epimorphism) if and only if such is its linear part

f1 : V ! W .

We shall denote by CE(V ) := Coder(S(V )) the graded Lie algebra of coderiva-
tions of S(V ): again, corestriction induces an isomorphism of graded spaces

CE(V )
⇠=−! Hom(S(V ), V ) =

Y

n≥0

Hom(V �n, V ) : Q ! pQ = (q0, q1, . . . , qn, . . .)

1
Namely, the counital, coaugmented locally conilpotent cocommutative coalgebras, cf. [16].
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and we call the q
n

: V �n ! V the Taylor coefficients of the coderivation Q, and
q0 : K ! V , q1 : V ! V its constant and linear part respectively. We say that a
coderivation is constant (resp.: linear) if only the constant (resp.: linear) Taylor
coefficent is non-trivial. The inverse Hom(S(V ), V ) ! CE(V ) sends (q0, . . . , qn, . . .)
to the coderivation Q : S(V ) ! S(V )

Q(v1 � · · ·� v
n

) =

nX

k=0

X

σ2S(k,n−k)

"(σ)q
k

(v
σ(1) � · · ·� v

σ(k))� v
σ(k+1) � · · ·� v

σ(n),

where once again we replace the empty string with 1 2 V �0 ⇢ S(V ): in particular,
Q(1) = q0(1) 2 V �1 ⇢ S(V ). Given coderivations Q,R 2 CE(V ), we shall denote

by Q•R 2 CE(V ) the only coderivation with corestriction pQR : S(V )
R−! S(V )

Q−!
S(V )

p−! V : in Taylor coefficients

p(Q •R) = pQR =

 
q1 • r0, q2 • r0 + q1 • r1, . . . ,

nX

k=0

q
n+1−k

• r
k

, . . .

!
,

where − • − : Hom(V �n+1−k, V ) ⌦ Hom(V �k, V ) ! Hom(V �n, V ) is defined, ac-
cording to the previous formulas, by

(q
n+1−k

• r
k

)(v1 � · · ·� v
n

)

=
X

σ2S(k,n−k)

"(σ)q
n+1−k

(r
k

(v
σ(1) � · · ·� v

σ(k))� v
σ(k+1) � · · ·� v

σ(n)).

It is not hard to check directly that − • − is a right pre-Lie product on CE(V ),
cf. Remark 2.8, which we call the Nijenhuis-Richardson product : the associated Lie
bracket [Q,R] = Q • R − (−1)|Q||R|R • Q on CE(V ), which we call the Nijenhuis-

Richardson bracket, clearly coincides with the usual commutator of coderivations,
cf. [21]. Finally, we shall denote by CE(V ) ⇢ CE(V ) the graded (right pre-
)Lie subalgebra of coderivations Q with vanishing constant part q0 = 0: this
may be identified with the graded (right pre-)Lie algebra of coderivations of the
reduced symmetric coalgebra S(V ) = ⊕

n≥1V
�n over V (with the reduced co-

product ∆ : S(V ) ! S(V ) ⌦ S(V ) defined as before, but where the sum is taken
from k = 1 to n − 1). Denoting by i : CE(V ) ! CE(V ) the inclusion and by
ev(1) : CE(V ) ! V : Q ! q0(1) evaluation at 1 2 S(V ), we have the following
exact sequence of graded spaces

0 // CE(V )
i

// CE(V )
ev(1)

// V // 0 . (1.1)

Given v 2 V , we denote by σ
v

: K ! V the map defined by σ
v

(1) = v, and
by s0(v) := (σ

v

, 0, . . . , 0, . . .) the corresponding constant coderivation. Obviously
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s0(−) : V ! CE(V ) is a right inverse to ev(1): furthermore, the image s0(V ) ⇢
CE(V ) is an abelian Lie subalgebra, as follows immediately by the previous formula,
which show more in general the following

Lemma 1.2. Given v 2 V and Q = (q0, . . . , qn, . . .) 2 CE(V ), the coderivation

[Q, s0(v)] 2 CE(V ) is explicitly given in Taylor coecients by

p[Q, s0(v)] = ([q1,σv

], . . . , [q
n+1,σv

], . . .) ,

[q
n+1,σv

](v1 � · · ·� v
n

) = q
n+1(v � v1 � · · ·� v

n

) 8n ≥ 0.

As a particular case, we notice that given f : V ! V , seen as a linear coderivation
in CE(V ), we have [f, s0(v)] = s0(f(v)) for all v 2 V .

Remark 1.3. For future reference, we briefly recall the definition of the tensor
coalgebra and the Gerstenhaber bracket. The former is T (V ) = ⊕≥0V

⌦n with the
usual deconcatenation coproduct

∆(v1 ⌦ · · ·⌦ v
n

) =

nX

k=0

(v1 ⌦ · · ·⌦ v
k

)⌦ (v
k+1 ⌦ · · ·⌦ v

n

).

As before, corestriction induces an isomorphism of graded spaces Coder(T (V )) ⇠=Q
n≥0 Hom(V ⌦n, V ) : Q ! pQ = (q0, . . . , qn, . . .). The usual commutator of code-

rivations, called in this case the Gerstenhaber bracket, is induced by a right pre-Lie
product − •−, called the Gerstenhaber product, cf. [8]: this is explicitly described
in Taylor coefficients by

− •− : Hom(V ⌦i, V )⌦Hom(V ⌦j , V ) ! Hom(V ⌦i+j−1, V ) : f ⌦ g ! f • g,

(f •g)(v1 ⌦· · ·⌦ v
i+j−1)=

i−1X

k=0

±
K

f(v1⌦· · ·⌦v
k

⌦g(v
k+1 ⌦· · ·⌦ v

k+j

)⌦· · ·⌦v
i+j−1),

where ±
K

is the appropriate Koszul sign, namely, ±
K

= (−1)|g|(|v1|+···+|v
k

|).

1.2 – L1 and L1[1] algebras

Definition 1.4. An L1[1]-algebra structure (V,Q) = (V, q1, . . . , qn, . . .) on a

graded space V is a dg coalgebra structure Q 2 CE
1
(V ), [Q,Q] = 0, on S(V ) with

vanishing constant part. An L1[1]-morphism

F = (f1, . . . , fn, . . .) : (V, q1, . . . , qn, . . .) ! (W, r1, . . . , rn, . . .)

of L1[1] algebras is a morphism of dg coalgebras F : (S(V ), Q) ! (S(W ), R). An
L1[1] morphism F is strict if f

n

= 0 for n ≥ 2.
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Given an L1[1] algebra structure Q = (q1, . . . , qn, . . .) on a graded space V , the
linear part q1 is a di↵erential on V . Furthermore, the exact sequence (1.1) becomes
an exact sequence of complexes

0 // (CE(V ), [Q,−])
i

// (CE(V ), [Q,−])
ev(1)

// (V, q1) // 0 . (1.2)

Definition 1.5. We call (CE(V ), [Q,−]) (resp.: (CE(V ), [Q,−])) the (resp.:
reduced) Chevalley-Eilenberg complex of (V,Q) with coefficients in itself, and we
denote its cohomology byHCE(V, V ) (resp.: HCE(V, V )). We call (V, q1) the tangent
complex of (V,Q), and we denote its cohomology by H(V ).

Given an L1[1] morphism F : (V,Q) ! (W,R), its linear Taylor coefficient
f1 : (V, q1) ! (W, r1) is a dg morphism between the tangent complexes.

Definition 1.6. We say that F is a weak equivalence if H(f1) : H(V ) ! H(W )
is an isomorphism.

Remark 1.7. The category of L1[1] algebras and L1[1] morphisms is isomor-
phic, via décalage, to the one of L1 algebras and L1 morphisms as defined, for
instance, in [11]. Given graded spaces V , W and an integer n ≥ 1, décalage is the
degree (n− 1)-isomorphism

déc : Hom(V ⌦n,W ) ! Hom(V [1]⌦n,W [1]) : f ! déc(f),

déc(f)(s−1v1 ⌦ · · ·⌦ s−1v
n

) = (−1)n|f |+
P

n

k=1(n−k)|v
k

|s−1f(v1 ⌦ · · ·⌦ v
n

).

It is well known, and in any case easy to verify, that it turns graded anti-symmetric
maps into graded symmetric ones, that is, it restricts to a degree (n−1)-isomorphism

déc : Hom(V ^n,W ) ! Hom(V [1]�n,W [1]) : f ! déc(f).

Given a dg Lie algebra (L, d, [−,−]), there is an induced L1[1] algebra structure
Q = (q1, q2, 0, . . . , 0, . . .) = (déc(d), déc([−,−]), 0, . . . , 0, . . .) on the desuspension
L[1]. More generally, an L1 algebra structure on a graded space L is the da-
tum of a di↵erential d : L ! L and degree (2 − n) graded anti-symmetric brackets
[−, . . . ,−] : L^n ! L, for all n ≥ 2, such that (déc(d), . . . ,déc([−, . . . ,−]), . . .) are
the Taylor coefficents of an L1[1] algebra structure on L[1]. Similarly, an L1
morphism F = (f1, . . . , fn, . . .) : L ! M is the datum of degree (1 − n) graded
anti-symmetric maps f

n

: L^n ! M , n ≥ 1, such that (déc(f1), . . . ,déc(fn), . . .) are
the Taylor coefficents of an L1[1] morphism L[1] ! M [1].

We close this section by recalling the homotopy transfer theorem and the theory
of the minimal model.
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Definition 1.8. A contraction from a complex (V, q1) to a complex (W, r1) is
the data of dg morphisms ı1 : W ! V , ⇡1 : V ! W such that ⇡1ı1 = id

W

and a
homotopy K 2 Hom−1(V, V ) between ı1⇡1 and id

V

, ı1⇡1 − id
V

= q1K +Kq1, such
that ⇡1K = K2 = Kı1 = 0.

Theorem 1.9. Given an L1[1] algebra (V,Q) and a contraction ı1 : W !
V , ⇡1 : V ! W , K 2 Hom−1(V, V ) from (V, q1) to a complex (W, r1), there

is an induced L1[1] algebra structure (W, r1, . . . , rn, . . .) on W with linear part

r1, and induced L1[1] morphisms ı1 = (ı1, . . . , ın, . . .) : (W,R) ! (V,Q) and

⇡1 = (⇡1, . . . ,⇡n

, . . .) : (V,Q) ! (W,R) with linear parts ı1 and ⇡1 respectively.

For a proof of the previous important theorem, we refer to [4, 16]. We remark
that there are explicit recursive formulas, as well as formulas in terms of sums over
rooted trees, for the induced L1[1] algebra structure and morphisms (although the
computation might be hard in general).

Definition 1.10. An L1[1] algebra (H,R) is called minimal if r1 = 0. Given
an L1[1] algebra (V,Q), a minimal model is the datum of a minimal L1[1] algebra
(H, 0, r2, . . . , rn, . . .) and a weak equivalence F : (H,R) ! (V,Q).

An explicit minimal model of (V,Q) can be constructed via homotopy trans-
fer. Since we are working over a field, we may choose a direct sum decomposi-
tion V = H ⊕ B ⊕ W such that the restriction of q1 to W is an isomorphism

q1 : W
⇠=−! B[1], and the restriction of q1 to H is zero: in particular H ⇠= H(V ),

and the inclusion ı1 : (H, 0) ! (V, q1), the projection ⇡1 : (V, q1) ! (H, 0) and the

contracting homotopy K : V ! B
(q1)

−1

−−−−! W [−1] ! V [−1], where the first map is
the projection and the last map is the inclusion, define a contraction from (V, q1) to
(H, 0). Via homotopy transfer, there is an induced minimal L1[1] algebra structure
(H, 0, r2, . . . , rn, . . .) on H and a weak equivalence ı1 : (H,R) ! (V,Q) with linear
part ı1.

Remark 1.11. There is also an induced L1[1] morphism ⇡1 : (V,Q) ! (H,R)
with linear part ⇡1. According to Lemma 1.1, a weak equivalence between minimal
L1[1] algebras has to be an L1[1] isomorphism: thus, given a second minimal model
F : H 0 ! V of V as in the previous definition, the composition ⇡1F : H 0 ! V ! H
is an L1[1] isomorphism. More in general, given a weak equivalence V ! W
between L1[1] algebras and minimal models H

V

, H
W

, constructed as before, the
induced H

V

! V ! W ! H
W

is an L1[1] isomorphism. We conclude that the
L1[1] isomorphism class of a minimal model is a homotopy invariant of an L1[1]
algebra.

The inclusion ı1 : (H, 0) ! (V, q1) extends to an isomorphism of complexes

g1 : (H, 0)⇥ (B ⊕W, q1)
⇠=−! (V, q1).
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Since (B ⊕ W, q1) is acyclic, an obstruction theory argument proves the following
structure theorem for L1[1] algebras, cf. [16], where the direct product of L1[1]
algebras on the left hand side is defined in the obvious way.

Theorem 1.12. In the above situation, the morphism ı1 : (H,R) ! (V,Q)
extends to an isomorphism G = (g1, . . . , gn, . . .) of L1[1] algebras

G : (H, 0, r2, . . . , rn, . . .)⇥ (B ⊕W, q1, 0, . . . , 0, . . .) ! (V, q1, q2, . . . , qn, . . .).

1.3 – L1[1] algebras via higher derived brackets

Let (M,d, [−,−]) be a dg Lie algebra and L ⇢ M a dg Lie subalgebra. The
(desuspended) mapping cocone of the inclusion i : L ! M is the complex C(i)[1] =
L[1]⇥M , with the di↵erential r1 : C(i)[1] ! C(i)[1] : (s−1l,m) ! (−s−1(dl), dm−l).
In the paper [7], there is shown how to define (via homotopy transfer) an L1[1]
algebra structure (C(i)[1], r1, . . . , rn, . . .) so that (C(i)[1], R) is a model of the ho-
motopy fiber if i in the homotopy category of L1[1] algebras: we refer to [7] for
more details, and in particular to [7, Theorem 5.5] for explicit formulas.

Given a graded subspace A ⇢ M such that M = L ⊕ A, we shall denote by
P : M ! A the projection with kernel L and by P? := id

M

−P . Since L is close
under the di↵erential, we see that PdP? = 0 ) Pd = PdP , and in particular that
Pd : A ! A is a di↵erential on A. It is easy to exhibit a contraction ı1 : A ! C(i)[1],
⇡1 : C(i)[1], K : C(i)[1] ! C(i)[1] from the mapping cocone (C(i)[1], r1) to (A,Pd),

ı1(a) = (s−1P?(da), a), ⇡1(s
−1l,m) = Pm, K(s−1l,m) = (s−1P?(m), 0).

In particular, via homotopy transfer there is an induced L1[1] algebra structure
on A and an induced L1[1] morphism ı1 : A ! C(i)[1]. These were explicitly
computed in the paper [1] under the additional assumption that A ⇢ M is a graded
Lie subalgebra: in the particular case when A ⇢ M is an abelian Lie subalgebra,
we recover the L1[1] algebra structure induced via higher derived brackets as in
Voronov’s paper [25].

Theorem 1.13. In the above situation, if A ⇢ M is an abelian Lie subalgebra,

the L1[1] algebra structure (A, q1 = Pd, q2, . . . , qn, . . .) and the L1[1] morphism

ı1 = (ı1, . . . , ın, . . .) : A ! C(i)[1] induced via homotopy transfer are explicitly

given, for n ≥ 2, by

q
n

(a1 � · · ·� a
n

) = P [· · · [da1, a2], . . . , an],
ı
n

(a1 � · · ·� a
n

) =
�
s−1P?[· · · [da1, a2] · · · , an], 0

�
.

For a proof, we refer to [1]. We point out that graded symmetry of the above q
n

,
ı
n

, follows from the hypothesis that A is abelian.
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Remark 1.14. Composing ı1 with the projection C(i)[1] = L[1] ⇥ M ! L[1]
(which is a strict morphism of L1[1] algebras) yelds an L1[1] morphism F =
(f1, . . . , fn, . . .) : A ! L[1], f

n

(a1 � · · · � a
n

) = s−1P?[· · · [da1, a2] · · · , an], fitting
into a homotopy fiber sequence (cf. [6]) of L1[1] algebras

A
F−! L[1]

i−! M [1].

In particular, there is an associated long exact sequence in tangent cohomology,
which may be identified (up to a shift in degrees) with the one associated to the
short exact sequence of complexes

0 ! (L, d)
i−! (M,d)

P−! (A,Pd) ! 0.

A particular case when Theorem 1.13 applies is if we are given an L1[1] algebra
(V,Q), and in the previous situation we take

M = (CE(V ), [Q,−], [−,−]), L = (CE(V ), [Q,−], [−,−]), A = s0(V ),

where the bracket is the Nijenhuis-Richardson bracket and s0 : V ! CE(V ) : v !
(σ

v

, 0, . . . , 0, . . .) is defined as in Lemma 1.2. The L1[1] algebra structure on s0(V )
induced via higher derived brackets pulls back to an L1[1] algebra structure on V .
This is easily computed: the n-th higher derived bracket sends s0(v1)� · · ·� s0(vn)
to the constant part of [· · · [Q, s0(v1)] · · · , s0(vn)], and according to Lemma 1.2 this
is s0(qn(v1�· · ·�v

n

)). We find that the induced L1[1] algebra structure on V is the
original one (V,Q), in other words, every L1[1] algebra structure may be obtained
via a higher derived brackets construction (this was already observed in [24]). The
L1[1] morphism F as in Remark 1.14 can be computed using again Lemma 1.2,
and turns out to be the natural L1[1] generalization of the adjoint morphism of a
dg Lie algebra introduced in the paper [6].

Definition 1.15. Given an L1[1] algebra (V, q1, . . . , qn, . . .), there is an L1[1]
morphism Ad1 = (Ad1, . . . ,Ad

k

, . . .) : V ! CE(V )[1], explicitly given by

Ad
k

(v1 � · · ·� v
k

)=s−1 (q1+k

(v1 � · · ·� v
k

�−), · · · , q
n+k

(v1 � · · ·� v
k

�−), . . .)

fitting into a homotopy fiber sequence of L1[1] algebras

V
Ad1

// CE(V )[1]
i

// CE(V )[1] .

We call Ad1 the L1[1] adjoint morphism of (V,Q).
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2 – Homotopy abelian L1[1] algebras and splitting property

2.1 – Homotopy abelian L1[1] algebras

The aim of this section is to give several equivalent characterization of homotopy
abelian L1[1] algebras.

Definition 2.1. An L1[1] algebra (V,Q) is abelian if Q = (q1, 0, . . . , 0, . . .) is
a linear coderivation. An L1[1] algebra (V,Q) = (V, q1, . . . , qn, . . .) is homotopy
abelian if it is weakly equivalent to an abelian L1[1] algebra.

Given an L1[1] algebra (V,Q), recall the exact sequence of complexes from
Definition 1.5

0 // (CE(V ), [Q,−])
i

// (CE(V ), [Q,−])
ev(1)

// (V, q1) // 0 .

Proposition 2.2. The following are equivalent conditions:

(1) there is a dg right inverse s : (V, q1) ! (CE(V ), [Q,−]) to ev(1);
(2) the induced H(ev(1)) : HCE(V, V ) ! H(V ) is surjective;

(3) the induced H(i) : HCE(V, V ) ! HCE(V, V ) is injective;

(4) the induced H(Ad1) : H(V ) ! HCE(V, V )[1] vanishes, where Ad1 is the linear

part of the adjoint L1[1] morphism Ad1 : V ! CE(V )[1] from Definition 1.15.

Proof. (1))(2) as H(s) : H(V ) ! HCE(V, V ) will be a right inverse to
H(ev(1)). (2),(3),(4) by the long exact sequence in cohomology, which, as we
already noticed in Remark 1.14, is the same as the one associated to the homotopy
fiber sequence of L1[1] algebras

V
Ad1

// CE(V )[1]
i

// CE(V )[1] .

Finally, assuming (4) we can find a primitive of Ad1 : x ! [Q, s0(x)] − s0(q1(x))
in the complex Hom(V,CE(V )), where s0 is as in Lemma 1.2, that is, we can find
s : V ! CE(V ) such that [Q, s(x)] − s(q1(x)) = Ad1(x) = [Q, s0(x)] − s0(q1(x)),
and then s : V ! CE(V ), s(x) := s0(x)− s(x), is a dg right inverse to ev(1). ⇤

Definition 2.3. An L1[1] algebra (V, q1, . . . , qn, . . .) has the splitting property
if the equivalent conditions from the previous proposition are satisfied.

The main result of this paper is the following theorem.
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Theorem 2.4. Given an L1[1]-algebra (V,Q) the following are equivalent con-

ditions:

(1) (V,Q) is homotopy abelian;

(2) the minimal model of (V,Q) has a trivial L1[1] algebra structure;

(3) there is an L1[1] isomorphism

F = (f1 = id
V

, f2, . . . , fn, . . .) : (V, q1, 0, . . . , 0, . . .) ! (V, q1, q2, . . . , qn, . . .)

with linear part the identity;

(4) (V,Q) has the splitting property;

(5) The natural (Chevalley-Eilenberg) spectral sequence computing HCE(V, V ) de-

generates at E1.

Proof. We included item (5) to establish a connection with the paper [20],
where there is proved (1),(5): the most interesting aspect of this result is the
fact, which is the main result from [20], that more in general degeneration at E2 of
the Chevalley-Eilenberg spectral sequence is equivalent to formality of the L1[1]
algebra (V,Q), see [20] for more details. Recall that the Chevalley-Eilenberg spectral
sequence is the cohomology spectral sequence associated to the exhaustive and
complete filtration F p CE(V ) = {R 2 CE(V ) s.t. r

i

= 0 for i < p}, p ≥ 0, on
the Chevalley-Eilenberg complex. It is well known that degeneration at E1 of the
spectral sequence is equivalent to injectivity ofH(F p+1 CE(V )) ! H(F p CE(V )) for
all p ≥ 0, and since H(F 0 CE(V )) = HCE(V, V ), H(F 1 CE(V )) = HCE(V, V ), this
shows (5))(4) (more precisely, this shows (5)) item (3) in Proposition 2.2). On the
other hand, the implication (3))(5) in the claim of the theorem is a straightforward
consequence of invariance properties of the Chevalley-Eilenberg spectral sequence
under L1[1] isomorphism, cf. [20, Proposition 5.5]. Having said so, we concentrate
on the equivalence between the first four items: we should point out that only
the equivalence (1),(4) is actually interesting, while the other ones are rather
straightforward (and in any case well known).

We show (1))(2). According to Remark 1.11, a weak equivalence between (V,Q)
and an abelian L1[1] algebra induces an L1[1] isomorphism between the minimal
models: but the minimal model of an abelian L1[1] algebra has a trivial L1[1]
algebra structure, and this property is stable under L1[1] isomorphisms2.

The implication (2))(3) follows from Theorem 1.12: the desired F is the com-
position of the L1[1] isomorphism

G : (H, 0, 0, . . . , 0, . . .)⇥ (B ⊕W, q1, 0, . . . , 0, . . .) ! (V, q1, q2, . . . , qn, . . .)

2
This is a trivial fact: notice however how abelian L1[1] algebra structures fail to be stable

under L1[1] isomorphisms.
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as in Theorem 1.12 and the isomorphism of complexes (g1)
−1, seen as a strict L1[1]

isomorphism

(g1)
−1 : (V, q1, 0, . . . , 0, . . .) ! (H, 0, 0, . . . , 0, . . .)⇥ (B ⊕W, q1, 0, . . . , 0, . . .).

To prove (3))(4) we consider the induced isomorphism of dg Lie algebras (where
the bracket is the Nijenhuis-Richardson bracket)

F − F−1 : (CE(V ), [q1,−], [−,−]) ! (CE(V ), [Q,−], [−,−]).

A dg right inverse s : V ! CE(V ) to ev(1) is given by s(v) := Fs0(v)F
−1, where

s0 : V ! CE(V ) is defined as in Lemma 1.2: in fact

[Q, s(v)] = [Q,Fs0(v)F
−1] = F [q1, s0(v)]F

−1 = Fs0(q1(v))F
−1 = s(q1(v)).

Finally, to prove (4))(1) we consider (recall the results from Section 1.3) the map-
ping cocone (C(i)[1], r1, . . . , rn, . . .) of the inclusion i : CE(V ) ! CE(V ). Given a
dg right inverse s : V ! CE(V ) to ev(1), there is an induced quasi-isomorphism
of complexes es : V ! C(i)[1] = CE(V )[1] ⇥ CE(V ) : v ! (0, s(v)), and since
the explicit formulas from [7, Theorem 5.5] show that the higher Taylor coef-
ficients r

n

, n ≥ 2, vanish on Im (es�n) ⇢ CE(V )�n ⇢ C(i)[1]�n, we see that
es : (V, q1, 0, . . . , 0, . . .) ! (C(i)[1], r1, r2, . . . , rn, . . .) is a strict morphism of L1[1]
algebras. The diagram of L1[1] algebras and weak equivalences

(V,Q)
ı1

// (C(i)[1], R) (V, q1)
es

oo ,

where ı1 is as in Theorem 1.13, implies that (V,Q) is homotopy abelian: in
fact, we could also observe that the composition of es and the L1[1] morphism
⇡1 : (C(i)[1], R) ! (V,Q) induced via homotopy transfer yelds an L1[1] isomor-
phism F : (V, q1) ! (V,Q) as in item (3) (although, in general it will be hard to
compute ⇡1 explicitly). ⇤

Remark 2.5. In light of the results discussed in Section 1.3, the implication
(4))(1) from the above theorem is just a particular case of [10, Lemma 2.1].

It seems worthwhile to reformulate Theorem 2.4 in the particular case when
V = L[1] is the L1[1] algebra associated to a dg Lie algebra (L, d, [−,−]).

Corollary 2.6. A dg Lie algebra (L, d, [−,−]) is homotopy abelian if and only

if there exist degree (−n) linear maps '
n

: L ! Hom(L^n, L), for all n ≥ 1, with
the property that for all x, y 2 L

d ('1(x)(y)) + '1(dx)(y) + (−1)|x|'1(x)(dy) = [x, y],
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and for all x, y1, . . . , yn 2 L, n ≥ 2,

d ('
n

(x)(y1 ^ · · · ^ y
n

))− (−1)n'
n

(dx)(y1 ^ · · · ^ y
n

)

− (−1)n+|x|'
n

(x)(dy1 ^ · · · ^ y
n

)− · · ·− (−1)n+|x|+···+|y
n−1|'

n

(x)(y1 ^ · · · ^ dy
n

)

=
X

σ2S(2,n−2)

χ(σ)'
n−1(x)

�
[y

σ(1), yσ(2)] ^ · · · ^ y
σ(n)

�

− (−1)n
X

σ2S(n−1,1)

χ(σ)
⇥
'
n−1(x)

�
y
σ(1) ^ · · · ^ y

σ(n−1)

�
, y

σ(n)

⇤
,

where we denote by χ(σ) = χ(σ; y1, . . . , yn) the alternate Koszul sign.

Proof. We denote byQ=(q1,q2,0, . . . , 0, . . .)=(déc(d), déc([−,−]),0, . . . , 0, . . .)
the induced L1[1] algebra structure on L[1]. A family of degree (−n) maps '

n

: L !
Hom(L^n, L), n ≥ 1, corresponds, under décalage (cf. Remark 1.7), to a family of
degree zero maps r

n

: L[1] ! Hom(L[1]�n, L[1]), n ≥ 1: explicitly,

r
n

(s−1x)(s−1y1 � · · ·� s−1y
n

)

= (−1)n|x|+(n−1)|y1|+···+|y
n−1|s−1'

n

(x)(y1 ^ · · · ^ y
n

).

A tedious but straightforward verification shows that the maps '
n

satisfy the rela-
tions in the claim of the proposition if and only if the maps r

n

are the components
of a dg right inverse

(L[1], q1) ! (CE(L[1]), [Q,−]) : s−1x !
�
σ
s

−1
x

,r1(s
−1x), . . . ,r

n

(s−1x), . . .
�

to the evaluation ev(1) : (CE(L[1]), [Q,−]) ! (L[1], q1). ⇤

2.2 – Formality of Kapranov’s brackets on pre-Lie algebras

As an application of Theorem 2.4, we present a di↵erent proof of one of the main
results from [2].

Definition 2.7 (Cf. [17]). A left pre-Lie algebra (L, .) is a graded space L with
a bilinear product . : L⌦2 ! L such that the associator

A : L⌦3 ! L : x⌦ y ⌦ z ! A(x, y, z) = (x . y) . z − x . (y . z)

is graded symmetric in the first two arguments, i.e., A(x, y, z) = (−1)|x||y|A(y, x, z).
In particular, this implies that the commutator [−,−] : L^2 ! L,

[x, y] = x . y − (−1)|x||y|y . x = r
x

(y)− (−1)|x||y|r
y

(x),
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is a Lie bracket on L. We denote by r : L ! End(L) : x ! r
x

(y) = x . y the left
adjoint morphism: then the left pre-Lie identity is the same as

[r
x

,r
y

] = r[x,y] for all x, y 2 L, (2.1)

where on the right hand side we have the induced bracket on L and on the left hand
side the usual commutator in End(L).

Remark 2.8. A graded right pre-Lie algebra is defined similarly: in this case
we require the associator to be graded symmetric in the last two arguments, or
equivalently that the right adjoint morphism anti -commutes with the brackets.

Theorem 2.9. Let (L, .) be a graded left pre-Lie algebra. Given a derivation

d 2 Der(L, [·, ·]) of the associated graded Lie algebra, the maps Φ(d)
n

: L⌦n ! L,
n ≥ 1, defined by the recursion

8
<

:

Φ(d)1 = d
Φ(d)2(x⌦ y) = −[d,r

x

](y) +r
dx

(y)
Φ(d)

n+1(x⌦ y1 ⌦ · · ·⌦ y
n

) = −[Φ(d)
n

,r
x

](y1 ⌦ · · ·⌦ y
n

) for n ≥ 2,

where on the right hand side we take the Gerstenhaber bracket in Coder(T (L)) (cf.
Remark 1.3) and we consider r

x

: L ! L as a linear coderivation, are all graded

symmetric. The induced correspondence

Φ(−) : Der(L, [−,−]) ! CE(L) : d ! Φ(d) = (Φ(d)1, . . . ,Φ(d)n, . . .)

is a morphism of graded Lie algebras, where we consider the commutator bracket

on Der(L, [−,−]) and the Nijenhuis-Richardson bracket on CE(L). Finally, given

a dg Lie algebra structure d 2 Der1(L, [−,−]), [d, d] = 0, on (L, [−,−]), Φ(d) is a

homotopy abelian L1[1] algebra structure on L.

Proof. We can rewrite Φ(d)2 as

Φ(d)2(x⌦ y) = −[d,r
x

](y) +r
dx

(y) = −d(x . y) + d(x) . y + (−1)|x||d|x . d(y).

In other words, Φ(d)2 measures how far is d from satisfying the Leibniz rule with
respect to the pre-Lie product .. It is then cleat that

Φ(d)2(x⌦ y)− (−1)|x||y|Φ(d)2(y ⌦ x) = −d[x, y] + [dx, y] + (−1)|x||d|[x, dy] = 0,

since d is supposed to be a derivation with respect to [−,−]. We can therefore
consider Φ(d)2 as an element in CE(L).

The recursive definition implies that Φ(d)3 is graded symmetric in the last two
arguments, so it suffices to show that it is also graded symmetric in the first two.
Using graded symmetry of Φ(d)2 and Lemma 1.2, we can write

Φ(d)3(x⌦ y ⌦ z) = −[Φ(d)2,rx

](y � z) = −[[Φ(d)2,rx

],σ
y

](z)
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where now the bracket is the Nijenhuis-Richardson one in CE(L). Graded symmetry
of Φ(d)3 follows from the following computation in the graded Lie algebra CE(L),
where we use the Jacobi identity, the recursive definition, Lemma 1.2 and the pre-Lie
identity (2.1).

[[Φ(d)2,rx

],σ
y

]− (−1)|x||y|[[Φ(d)2,ry

],σ
x

]

= [Φ(d)2, [rx

,σ
y

]] + (−1)|x||y|[[Φ(d)2,σy

],r
x

]

− (−1)|x||y|[Φ(d)2, [ry

,σ
x

]]− [[Φ(d)2,σx

],r
y

]

= [Φ(d)2,σr
x

(y)] + (−1)|x||y|[r
dy

− [d,r
y

],r
x

]

− (−1)|x||y|[Φ(d)2,σr
y

(x)]− [r
dx

− [d,r
x

],r
y

]

=r
dr

x

(y) − [d,rr
x

(y)] + (−1)|x||y|[r
dy

,r
x

]

− (−1)|x||y|[[d,r
y

],r
x

]− (−1)|x||y|r
dr

y

(x)

+ (−1)|x||y|[d,rr
y

(x)]− [r
dx

,r
y

] + [[d,r
x

],r
y

]

=r
d[x,y] − [d,r[x,y]] + (−1)|x||y|r[dy,x] −r[dx,y]

+ [[d,r
x

],r
y

] + (−1)|x||d|[r
x

, [d,r
y

]]

=r
d[x,y]−[dx,y]−(−1)|x||d|[x,dy] + [d, [r

x

,r
y

]−r[x,y]] = 0 .

Finally, suppose inductively that we have shown that Φ(d)
i

is graded symmetric for
all 1  i < n, n ≥ 4. As before, by graded symmetry of Φ(d)

n−1 and Lemma 1.2
we can write

Φ(d)
n

(x⌦ y ⌦ z1 ⌦ · · ·⌦ z
n−2) = −[Φ(d)

n−1,rx

](y � z1 � · · ·� z
n−2)

= −[[Φ(d)
n−1,rx

],σ
y

](z1 � · · ·� z
n−2).

The above computation can be repeated, and it actually becomes simpler, due to
the simpler form of the recursion: we obtain

[[Φ(d)
n−1,rx

],σ
y

]− (−1)|x||y|[[Φ(d)
n−1,ry

],σ
x

] = [Φ(d)
n−2, [rx

,r
y

]−r[x,y]] = 0.

This finishes the proof that the maps Φ(d)
n

are graded symmetric. In particular,
Φ(d) = (Φ(d)1, . . . ,Φ(d)n, . . .) is a well defined element of CE(L).

We denote by s the correspondence

s : L ! CE(L), s(x) = (σ
x

,r
x

, 0, . . . , 0, . . .).

We notice that Φ(d) 2 CE(L) ⇢ CE(L) could be characterized more compactly as
the only coderivation such that

[Φ(d), s(x)] = s(dx) for all x 2 L. (2.2)
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In fact, expanding the above identity in Taylor coefficients and using Lemma 1.2 we
exactly recover the recursive definition for the Φ(d)

n

in the claim of the theorem.
Given derivations d1, d2 2 Der(L, [−,−]), equation (2.2) and the Jacoby identity
show that

[[Φ(d1),Φ(d2)], s(x)] = s([d1, d2](x)) for all x 2 L.

and by the above, this proves [Φ(d1),Φ(d2)] = Φ([d1, d2]). Finally, it is now clear
that if d 2 Der1(L, [−,−]), [d, d] = 0, is a dg Lie algebra structure on (L, [−,−])
then [Φ(d),Φ(d)] = Φ([d, d]) = 0, that is, Φ(d) is an L1[1] algebra structure on L,
and it is also clear that it has the splitting property, hence it is homotopy abelian,
since (2.2) exhibits s : (L, d) ! (CE(L), [Φ(d),−]) as an explicit dg right inverse to
ev(1). ⇤

Remark 2.10. As briefly mentioned in the introduction, the previous construc-
tion of L1[1] brackets has an interesting instance in Kähler geometry. We denote
by KS

X

= A0,⇤(T
X

) the Kodaira-Spencer dg Lie algebra of a Kähler manifold X,
see [19]. Given a Kähler metric, there is unique connection (the Chern connection)
on the tangent bundle T

X

which is compatible with both the complex structure and
the metric, see for instance [14, Proposition 4.9]. Denoting by r the (1, 0)-part of
the Chern connection and by r

↵

(β) 2 A0,p+q(T
X

), ↵ 2 A0,p(T
X

), β 2 A0,q(T
X

),
the corresponding covariant derivative (combined with the wedge product of forms),
then the Kähler property implies that r is torsion free, see [14, Proposition 7.19],
that is, the commutator [↵,β] = r

↵

(β) − (−1)pqr
β

(↵) is the usual bracket on
KS

X

. Knowing this fact, the identity (2.1) follows by holomorphic Cartan for-
mulas and easy manipulations, see [2, Section 4] for more details: in other words,
. : KS

X

⌦ KS
X

! KS
X

, ↵ . β := r
↵

(β), is a left pre-Lie product inducing the
usual bracket on KS

X

. We are in the hypotheses of Theorem 2.9, with d = @ the
usual Dolbeault di↵erential. Finally, there is proven in [2, Theorem 4.2] that the in-
duced L1[1] algebra structure Φ(@) on A0,⇤(T

X

) coincides with the one introduced
by Kapranov in the paper [13], showing in particular that the latter is homotopy
abelian over the field C of complex numbers.
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