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Abstract

We provide a formal treatment of security of digital signatures against subversion attacks
(SAs). Our model of subversion generalizes previous work in several directions, and is
inspired by the proliferation of software attacks (e.g., malware and buffer overflow attacks),
and by the recent revelations of Edward Snowden about intelligence agencies trying to
surreptitiously sabotage cryptographic algorithms. The main security requirement we put
forward demands that a signature scheme should remain unforgeable even in the presence
of an attacker applying SAs (within a certain class of allowed attacks) in a fully-adaptive
and continuous fashion. Previous notions—e.g., the notion of security against algorithm-
substitution attacks introduced by Bellare et al. (CRYPTO ’14) for symmetric encryption—
were non-adaptive and non-continuous.

In this vein, we show both positive and negative results for the goal of constructing
subversion-resilient signature schemes.

• Negative results. As our main negative result, we show that a broad class of ran-
domized signature schemes is unavoidably insecure against SAs, even if using just a
single bit of randomness. This improves upon earlier work that was only able to attack
schemes with larger randomness space. When designing our new attack we consider
undetectability as an explicit adversarial goal, meaning that the end-users (even the
ones knowing the signing key) should not be able to detect that the signature scheme
was subverted.

• Positive results. We complement the above negative results by showing that signa-
ture schemes with unique signatures are subversion-resilient against all attacks that
meet a basic undetectability requirement. A similar result was shown by Bellare et al.
for symmetric encryption, who proved the necessity to rely on stateful schemes; in con-
trast unique signatures are stateless, and in fact they are among the fastest and most
established digital signatures available. As our second positive result, we show how to
construct subversion-resilient identification schemes from subversion-resilient signature
schemes. We finally show that it is possible to devise signature schemes secure against
arbitrary tampering with the computation, by making use of an un-tamperable cryp-
tographic reverse firewall (Mironov and Stephens-Davidowitz, EUROCRYPT ’15), i.e.,
an algorithm that “sanitizes” any signature given as input (using only public informa-
tion). The firewall we design allows to successfully protect so-called re-randomizable
signature schemes (which include unique signatures as special case).

As an additional contribution, we extend our model to consider multiple users and show
implications and separations among the various notions we introduced. While our study is
mainly theoretical, due to its strong practical motivation, we believe that our results have
important implications in practice and might influence the way digital signature schemes
are selected or adopted in standards and protocols.
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1 Introduction

Balancing national security interests with the rights to privacy of lawful citizen is always a
daunting task. It has been particularly so in the last couple of years after the revelations of
Edward Snowden [PLS13, BBG13, Gre14] that have evidenced a massive collection of metadata
and other information perpetrated by several intelligence agencies. It is now clear that intel-
ligence operators were not just interested in collecting and mining information but they also
actively deployed malware, exploited zero-day vulnerabilities, and carried out active attacks
against standard protocols. In addition, it appears some cryptographic protocol specifications
were modified to embed backdoors.

Whether this activity was effective or even allowed by the constitution is open to debate
and it is indeed being furiously discussed among policy makers, the public, and the intelligence
community. Ultimately, a balance between security and privacy must be found for a free and
functioning society.

The ability of substituting a cryptographic algorithm with an altered version was first con-
sidered formally by Young and Yung (extending previous works of Simmons on subliminal
channels [Sim83, Sim84]), who termed this field kleptography [YY96, YY97]. The idea is that
the attacker surreptitiously modifies a cryptographic scheme with the intent of subverting its se-
curity. This research area has recently been revitalized by Bellare et al. [BPR14] who considered
encryption algorithms with the possibility of mass surveillance under the algorithm-substitution
attack. They analyzed the possibility of an intelligence agency substituting an encryption al-
gorithm with the code of an alternative version that undetectably reveals the secret key or the
plaintext. What they uncovered is that any randomized and stateless encryption scheme would
fall to generic algorithm-substitution attacks. The only way to achieve a meaningful security
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guarantee (CPA-security) is to use a nonce-based encryption that must keep state. Unfortu-
nately, only stateless schemes are deployable effectively with the current network technology
and indeed all deployed encryption algorithms are in this class.

In this paper we analyze digital signature schemes under the so-called subversion attacks
(SAs), that in particular include algorithm-substitution and kleptographic attacks as a special
case, but additionally cover more general malware and virus attacks (see below). Unlike en-
cryption, we show positive results and truly efficient schemes that provide the strongest security
guarantee and can thus be deployed within real systems. We stress that our intention is not to
propose schemes that can be abused by criminals to avoid monitoring. We are motivated by
pure scientific curiosity and aspire to contribute to an active field of research.

1.1 Our Results and Techniques

We introduce a new and generic framework and definitions for subversions of digital signatures.
In the standard black-box setting, a signature scheme should remain unforgeable even against
an adversary able to obtain signatures on (polynomially many) chosen messages. Our security
definitions empower the adversary with the ability of continuously subverting the signing algo-
rithm within a class A of allowed SAs. For each chosen subversion in the class, the adversary
can access an oracle that answers (polynomially many) signature queries using the subverted
signature algorithm. Importantly, the different subversions can be chosen in a fully-adaptive
manner possibly depending on the target verification key of the user.

We believe our model is very general and flexible, as it nicely generalizes previous models
and definitions. First off, when the class A consists of a set of algorithms containing a secretly
embedded backdoor, and in case the adversary is restricted to non-adaptively choose only a
single subversion algorithm from this class, we obtain the setting of algorithm-substitution
and kleptographic attacks as a special case. However, we note that the above definition is
far more general as it covers (fully-adaptive and continuous) tampering with the computation
performed by the signing algorithm (within the class A). This models, for instance, a machine
running a signature software infected by a malware (e.g., via a buffer overflow attack [One96,
Fry00, PB04]); we also obtain memory and randomness tampering (see Section 1.3) as a special
case. We refer the reader to Section 3.1 (where we introduce our model formally) for a more
comprehensive discussion.

Clearly, without making any restriction on the class A (or without making additional as-
sumptions) there is no hope for security: An arbitrary subverted signature algorithm could,
for instance, just ignore all inputs and output the secret key. In this paper we investigate two
approaches to tackle attacks of this sort and obtain positive results.

• Limiting the adversarial power. We consider a setting where the adversarial goal is to
subvert the signature algorithm in a way that is undetectable to the end-user (or at least
allows to maintain plausible deniability). For instance the simple attack above—where
the subversion outputs the secret key—is easily detectable given only public informa-
tion. As we show in Section 5, requiring that the class A satisfies a basic undetectability
requirement already allows for interesting positive results.

• Using a Reverse Firewall. In Section 6 we show that security against arbitrary tam-
pering with the computation can be achieved, by making the additional assumption of an
un-tamperable cryptographic reverse firewall (RF) [MS15]. Roughly, a RF takes as input
a message/signature pair and is allowed to “sanitize” the input signature using only public
information.

A more detailed description of our techniques follows.
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Negative results. We define what it means for a class A of SAs to be (efficiently) unde-
tectable; roughly this means that a user, given polynomially many queries, cannot distinguish
the output of the genuine signature algorithm from the output of the subverted algorithm. See
Section 3.2 for a precise definition. Our definitions of undetectability are similar in spirit to
the ones put forward by [BPR14] for the setting of symmetric encryption. Importantly we
distinguish the case where the user (trying to detect the attack) knows only public or private
information (i.e., it knows the secret key).1

Next, we explore the possibility of designing classes of SAs that are (even secretly) unde-
tectable and yet allow for complete security breaches. This direction was already pursued by
Bellare et al., who showed that it is possible to stealthily bias the random coins of sufficiently
randomized symmetric encryption schemes in a way that allows to extract the secret key after
observing a sufficient number of (subverted) ciphertexts. As a first negative result, we explain
how to adapt the “biased randomness attack” of [BPR14] to the case of signature schemes.

The above generic attack requires that the signature scheme uses a minimal amount of
randomness (say, 7 bits). This leaves the interesting possibility that less randomized schemes
(such as the Katz-Wang signature scheme [KW03], using only one bit of randomness) might be
secure. In Section 4, we present a new attack showing that this possibility is vacuous: Our attack
allows to stealthily bias the randomness in a way that later allows to extract the signing key—
regardless of the number of random bits required by the scheme—assuming that the targeted
signature scheme is coin-extractable. The latter roughly means that the random coins used for
generating signatures can be extracted efficiently from the signature itself; as we discuss in more
detail in Section 4.2 many real schemes (including Katz-Wang) are coin-extractable.

Positive results. As a first positive result we show that fully deterministic schemes with
unique2 signatures are existentially unforgeable under chosen-message attacks against the class
of SAs that satisfies the so-called verifiability condition.3 This means that—for all values in
the message space—signatures produced by the subverted signature algorithm should (almost
always) verify correctly under the target verification key (note that both attacks mentioned
above fall into this category).

Clearly, the assumption that the verifiability condition should hold for all messages is quite
a strong one. Hence, we also relax the verifiability condition to hold for all but a negligible
fraction of the messages. However, we are not able to prove that unique signatures achieve
existential unforgeability under chosen-message attacks against the class of SAs that satisfies
relaxed verifiability.4 Instead, as our second positive result, we show that unique signatures
are existentially unforgeable under random-message attacks (where the adversary can only see
potentially subverted signatures of random messages) against the class of SAs that satisfies
relaxed verifiability. Interestingly, this weaker security flavor is still useful for applications, e.g.
to construct subversion-resilient identification schemes.

As our third positive result, we provide a way how to achieve the ambitious goal of protecting
signature schemes against arbitrary SAs, relying on a cryptographic reverse firewall. The latter

1As we show, secret and public undetectability are not equivalent, in that there exist natural classes of SAs
that are publicly undetectable but secretly detectable.

2A signature scheme is unique if for a honestly generated verification key there is a single valid signature for
each message.

3One might ask whether a similar result holds for all deterministic schemes where signatures are not unique;
the answer to this question is negative as our attacks also apply to certain types of deterministic schemes (e.g.,
de-randomized schemes—see the proof of Theorem 9 in Section 7.4).

4In fact, as shown very recently by Degabriele et al. [DFP15] for the case of symmetric encryption, it is
not hard to show that such limitation is inherent: No (even deterministic) scheme can achieve security under
chosen-message attacks against the class of SAs that meets relaxed verifiability. See Section 1.3 for more details.
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primitive was recently introduced in [MS15] (see also [DMS15]) to model security of arbitrary
two-party protocols run on machines possibly corrupted by a virus. On a high level a RF for
a signature scheme is a piece of software taking as input a message/signature pair (m,σ) and
some public state, and outputting a “patched” signature (m,σ′); the initial state of the firewall
is typically a function of the verification key vk . A good RF should maintain functionality,
meaning that whenever the input is a valid message/signature pair the patched signature (almost
always) verifies correctly under the target verification key. Moreover, we would like the firewall
to preserve unforgeability; this means that patched signatures (corresponding to signatures
generated via the subverted signing algorithm) should not help an adversary to forge on a fresh
message.

We prove that every signature scheme that is re-randomizable (as defined in [HJK12]) admits
a RF that preserves unforgeability against arbitrary SAs. Re-randomizable signatures admit
an efficient algorithm ReRand that takes as input a tuple (m,σ, vk) and outputs a signature
σ′ that is distributed uniformly over the set of all valid signatures on message m (under vk);
unique signatures, for instance, are re-randomizable. Upon input a pair (m,σ) our firewall uses
the public state to verify (m,σ) is valid under vk , and, in case the test passes, it runs ReRand
on (m,σ) and outputs the result. Otherwise the firewall simply returns an invalid symbol ⊥
and self-destructs, i.e., it stops processing any further query.5 The latter is a requirement that
we prove to be unavoidable: No RF can at the same time maintain functionality and preserve
unforgeability of a signature scheme without the self-destruct capability.

We remark that our results and techniques for the setting of RFs are incomparable to the
ones in [MS15]. The main result of Mironov and Stephens-Davidowitz is a compiler that takes
as input an arbitrary two-party protocol and outputs a functionally equivalent (but different)
protocol that admits a RF preserving both functionality and security.Instead, we model directly
security of RFs for signatures schemes in the game-based setting; while our goal is more re-
stricted (in that we only design RFs for signatures), our approach results in much more efficient
and practical solutions.

Multi-user setting. Our discussion so far considered a single user. In Section 7 we discuss
how our models and results can be extended to the important (and practically relevant) multi-
user scenario. In particular, similarly to [BPR14], we generalize our undetectability and security
notions to a setting with u > 1 users, where each user has a different signing/verification key.

As we argue, security in the single-user setting already implies security in the multi-user
setting (by a standard hybrid argument). This does not hold for undetectability, as there exists
classes of SAs that are undetectable by a single user but can be efficiently detected by more
than one user. However, as we show in Section 8, the concrete attacks analysed in Section 4
can be modified to remain undetectable even with multiple users.

1.2 Impact

Our study has strong implications in practice and might influence the way digital signature
schemes are selected or adopted in standards and protocols. A subverted signature scheme is
arguably even more deceitful and dangerous in practice than subverted encryption. Indeed, it
is well-known that authenticated encryption must involve digital certificates that are signed by
Certification Authorities (CAs). If a CA is using a subverted signature scheme, it is reasonable
to expect the signing key will eventually be exposed. With knowledge of the signing key, it
is possible to impersonate any user and carry out elementary man-in-the-middle attacks. This

5This can be implemented, for instance, by having the public state include a single one-time writable bit used
to signal a self-destruct took place.
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renders the use of any type of encryption utterly pointless and underlines the important role
played by signatures in the context of secure communications.

Unfortunately, signature schemes currently employed to sign digital certificates, or used in
protocols such as OTR, TLS/SSL, SSH, etc., are all susceptible to a subversion attack and
their use should possibly be discontinued. The positive news however is that there already exist
signature schemes that are subversion-resilient and they are efficient and well-established. This
is in contrast with encryption where good schemes are not deployable in all contexts since they
require retention of state information (see [BPR14]).

1.3 Related Work

Sabotage of cryptographic primitives before and during their deployment has been the focus of
extensive research over the past years. We briefly review the main results below.

Subliminal channels and backdoored implementations. After their introduction, the
potential of subliminal channels has been explored in several works (e.g., [Des88a, Des88b,
BDI+99]); this line of research lead for instance to the concept of divertible protocols, that are
intimately related to reverse firewalls.

The setting of backdoored implementations has also been the focus of extensive research.
This includes, in particular, the realm of kleptography and SETUP attacks (see [YY04] for a
survey). In recent work, Dodis et al. [DGG+15] provide a formal treatment of trapdoored pseu-
dorandom generators (building on previous work of Vazirani and Vazirani [VV83]); this setting
is of particular importance, given the potential sabotage of the NIST Dual EC PRG [NIS07].
Russell et al. [RTYZ15] consider the setting of complete subversion, where all algorithms (in-
cluding for instance the key generation algorithm) are subject to kleptographic attacks, and
show how to build (trapdoor) one-way functions in this model.

We refer the reader to [SFKR15] for a taxonomy of these (and more) types of attacks.

Stateless subversion attacks Bellare et al. [BJK15] introduced a stronger definition of
undetectability where the user trying to detect a subverted scheme can query messages to the
signing oracle and receive as output a pair (σ, τ) containing the signature and the state; since
the original signature scheme is stateless the state τ will always be empty (represented by the
empty string ε) when querying the original signing algorithm. This way, any stateful subversion
can be easily detected by checking whether τ = ε.

Moreover, the “biased randomness attack” from [BPR14] is modified into a stateless version,
so it can remain undetectable under this stronger undetectability definition. We note that the
attack from Fig. 1 (also shown in [AMV15]) can also be made stateless by using the same
techniques.

Input-triggered subversions. In a very recent paper, Degabriele, Farshim and Poetter-
ing (DFP) [DFP15] pointed out some shortcomings of the Bellare-Patterson-Rogaway (BPR)
[BPR14] security model for subversion resilience of symmetric encryption schemes. Consider
the class of SAs that upon input a secret (trapdoor) message m̄ outputs the secret key, but
otherwise behaves like the genuine signature algorithm. Clearly this class of SAs will be unde-
tectable by the users, as without knowing the trapdoor there is only a negligible chance to query
the secret message m̄ and check if the signature algorithm was subverted (at least if the message
space is large enough). Yet, an adversary mounting a chosen-message attack can recover the
signing key by asking a signature for message m̄.
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As a consequence, it is impossible to prove existential unforgeability under-chosen message
attacks against such “input-triggered” subversions (in the BPR model). Note however that,
for the case of signatures, one can still prove a positive result by restricting the adversary to
only see signatures of random messages (i.e., in case of a random-message attack). Indeed,
input-triggered subversions meet our notion of relaxed verifiability (see Section 1.1) and thus
our positive results for unique signatures apply to such case.

The solution proposed by DFP is to modify the definition of undetectability so that the ad-
versary (and not the user) specifies the input messages to the (potentially subverted) encryption
algorithm, whereas the goal of the user is to detect the attack given access to the transcript of
all queries made by the adversary (and answers to these queries). Hence, a scheme is said to
be subversion-resilient if there exists a fixed polynomial-time test algorithm such that either a
subversion attack cannot be detected efficiently but it does not leak any useful information, or
it is possible to efficiently detect that the system was subverted.6

It is possible to make a similar change as in [DFP15] and adapt the DFP model to signature
schemes in order to achieve security under chosen-message attacks. The end result would share
some similarities with our approach using cryptographic RFs;7 however, our framework provides
notable advantages. First, note that the DFP model does not provide any guarantee against
SAs that are efficiently detectable, whereas our RF model explicitly accounts for the actions to
be taken after an attack is detected; this is particularly relevant for signature schemes where our
generic attack uncovered the necessity of a self-destruct capability. Second, the polynomial-time
detection test in DFP is performed directly by the user since it requires knowledge of the secret
key. This is problematic in practice since often the user’s machine is completely compromised;
instead, in our framework, a cryptographic RF for a signature scheme relies only on public
information and could easily be located on a (untrusted) external proxy.

Tampering attacks. A related line of research analyzes the security of cryptosystems against
tampering attacks. Most of these works are restricted to the simpler setting of memory tam-
pering (sometimes known as related-key security), where only the secret key of a targeted
cryptoscheme is subject to modification. By now we know several concrete primitives that
remain secure against different classes of memory-tampering attacks, including pseudorandom
functions and permutations [BK03, Luc04, BC10, AFPW11, BCM11], pseudorandom generators
and hard-core bits [GL10], hash functions [GOR11], public-key encryption [AHI11, Wee12], iden-
tification and digital signature schemes [KKS11, DFMV13]. Elegant generic compilers are also
available, relying on so-called tamper-resilient encodings and non-malleable codes (see, among
others, [GLM+04, DPW10, LL12, FMNV14, FMVW14, ADL14, JW15, DLSZ15, AGM+15,
FMNV15, DFMV15]).

The setting of randomness tampering, where the random coins of a cryptographic algorithm
are subject to tampering, has also been considered. For instance Austrin et al. [ACM+14]
consider so-called p-tampering attacks, that can efficiently tamper with each bit of the random
tape with probability p. In this setting they show that some cryptographic tasks (including
commitment schemes and zero-knowledge protocols) are impossible to achieve, while other tasks
(in particular signature and identification schemes) can be securely realized.

Yet another related setting is that of tampering attacks against gates and wires in the com-
putation of a cryptographic circuit, and the design of tamper-proof circuit compilers [IPSW06,
FPV11, DK12, KT13, DK14, GIP+14].

6For instance, in case of the attack outlined above, the polynomial-time test could simply decrypt the cipher-
text and check the outcome matches the input message.

7On a high level, one can interpret the polynomial-time test as playing the role of the reverse firewall.
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2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

We denote with κ ∈ N the security parameter. A function negl : N→ R is negligible in the
security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in κ, i.e. negl(κ) = κ−ω(1).

The statistical distance between two random variables A and B defined over the same
domain D is defined as SD (A; B) = 1

2

∑
x∈D |P [A = x] − P [B = x]|. We rely on the following

lemma (which follows directly from the definition of statistical distance):

Lemma 1. Let A and B be a pair of random variables, and E be an event defined over the
probability space of A and B. Then,

SD (A; B) ≤ SD (A; B|¬E) + P [E].

2.2 Signature Schemes

A signature scheme is a triple of algorithms SS = (KGen, Sign,Vrfy) specified as follows: (i) KGen
takes as input the security parameter κ and outputs a verification/signing key pair (vk , sk) ∈
VK×SK, where VK := VKκ and SK := SKκ denote the sets of all verification and secret keys
produced by KGen(1κ); (ii) Sign takes as input the signing key sk ∈ SK, a message m ∈M and
random coins r ∈ R, and outputs a signature σ ∈ Σ; (iii) Vrfy takes as input the verification
key vk ∈ VK and a pair (m,σ), and outputs a decision bit that equals 1 iff σ is a valid signature
for message m under key vk .

Correctness of a signature scheme says that verifying honestly generated signatures always
works (with overwhelming probability over the randomness of all involved algorithms).

Definition 1 (Correctness). Let SS = (KGen, Sign,Vrfy) be a signature scheme. We say that
SS satisfies νc-correctness if for all m ∈M

P [Vrfy(vk , (m,Sign(sk ,m))) = 1 : (vk , sk)← KGen(1κ)] ≥ 1− νc,

where the probability is taken over the randomness of KGen, Sign, and Vrfy.

The standard notion of security for a signature scheme demands that no PPT adversary given
access to a signing oracle returning signatures for arbitrary messages, can forge a signature on
a “fresh” message (not asked to the signing oracle).

Definition 2 (Existential Unforgeability). Let SS = (KGen, Sign,Vrfy) be a signature scheme.
We say that SS is (t, q, ε)-existentially unforgeable under chosen-message attacks ((t, q, ε)-EUF-
CMA in short) if for all PPT adversaries A running in time t it holds:

P
[
Vrfy(vk , (m∗, σ∗)) = 1 ∧m∗ 6∈ Q : (vk , sk)← KGen(1κ); (m∗, σ∗)← ASign(sk ,·)(vk)

]
≤ ε,

where Q = {m1, . . . ,mq} denotes the set of queries to the signing oracle. Whenever ε(κ) =
negl(κ) and q = poly(κ), we simply say that SS is EUF-CMA.
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Unique signatures. For our positive results we rely on so called unique signatures, that we
define next. Informally a signature scheme is unique if for any message there is a single signature
that verifies w.r.t. a honestly generated verification key.

Definition 3 (Uniqueness). Let SS be a signature scheme. We say that SS satisfies νu-
uniqueness if ∀m ∈M and ∀σ1, σ2 s.t. σ1 6= σ2

P [Vrfy(vk , (m,σ1)) = Vrfy(vk , (m,σ2)) = 1 : (vk , sk)← KGen(1κ)] ≤ νu,

where the probability is taken over the randomness of the verification and key generation algo-
rithms.

Full Domain Hash signatures with trapdoor permutations, for instance RSA-FDH [BR96],
are unique. Sometimes unique signatures are also known under the name of verifiable unpre-
dictable functions (VUFs).8 Known constructions of VUFs exist based on strong RSA [MRV99],
and on several variants of the Diffie-Hellman assumption in bilinear groups [Lys02, Dod03,
DY05, ACF14, Jag15].

2.3 Pseudorandom Functions

Let F : {0, 1}κ×X → Y be an efficient keyed function, where X and Y denote the domain and
the range of F . Denote by F the set of all functions mapping X into Y.

Definition 4 (Pseudorandom function). A function F : {0, 1}κ × X → Y is a (t, q, ε)-secure
pseudorandom function (PRF), if for all adversaries D running in time at most t we have∣∣∣∣ P

s←$ {0,1}κ

[
DFs(·)(1κ) = 1

]
− P
f ←$ F

[
Df(·)(1κ) = 1

]∣∣∣∣ ≤ ε,
where D asks at most q queries to its oracle.

3 Subverting Signatures

We proceed to define what it means for an adversary B to subvert a signature scheme SS =
(KGen,Sign,Vrfy). We model subversion as the ability of the adversary to replace the genuine
signing algorithm with a different algorithm within a certain class A of Subversion Attacks
(SAs). A subversion of SS is an algorithm Ã ∈ A, specified as follows.

• Algorithm Ã(·, ·; ·) takes as input a signing key sk ∈ SK, a message m ∈M, random coins
r ∈ R, and outputs a subverted signature σ̃ ∈ Σ, where σ̃ := Ã(sk ,m; r). Notice that
algorithm Ã is completely arbitrary, with the only restriction that it maintains the same
input-output interfaces as the original signing algorithm.

In particular, algorithm Ã can hard-wire arbitrary auxiliary information chosen by the adversary,
which we denote by a string α ∈ {0, 1}∗. In general we also allow algorithm Ã to be stateful,
even in case the original signing algorithm is not, and we denote the corresponding state by
τ ∈ {0, 1}∗; the state is only used internally by the subverted algorithm and never outputted to
the outside.

In Section 3.1 we define what it means for a signature scheme to be secure against a certain
class of SAs. In Section 3.2 we define what it means for a class of SAs to be undetectable by a
user. Some of our definitions are similar in spirit to the ones put forward in [BPR14], except
that our modelling of subversion is more general (see below for a more detailed comparison).

8Strictly speaking, VUFs satisfy a stronger requirement—namely the uniqueness property holds even for
maliciously generated verification keys; the weak variant above is sufficient for the results of this paper.
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3.1 Impersonation

We consider two security definitions, corresponding to different adversarial goals.

Indistinguishability. In the first definition, it is required that an adversary B having access
to polinomially many subversion oracles chosen adaptively (possibly depending on the user’s
verification key), cannot distinguish signatures produced via the standard signing algorithm
from subverted signatures.

Definition 5 (Indistinguishability against SAs). Let SS = (KGen, Sign,Vrfy) be a signature
scheme, and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-indistinguishable w.r.t
continuous A-SAs if for all PPT adversaries B running in time t, we have

∣∣P [B wins]− 1
2

∣∣ ≤ ε(κ)
in the following game:

1. The challenger runs (vk , sk)← KGen(1κ), samples b←$ {0, 1}, and gives vk to B.

2. The adversary B can ask the following two types of queries; the queries can be specified
adaptively and in an arbitrary order:

• Choose an algorithm Ãj ∈ A, for j ∈ [n], and give it to the challenger.

• Forward a pair (j,mi,j) to the challenger, where i ∈ [q] and j ∈ [n]. The answer
to each query depends on the value of the secret bit b. In particular, if b = 1, the
output is σi,j ← Sign(sk ,mi,j); if b = 0, the output is σ̃i,j ← Ãj(sk ,mi,j).

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

Whenever ε(κ) = negl(κ), q = poly(κ), and n = poly(κ) we simply say that SS is indistinguish-
able against continuous A-SAs.

Impersonation under chosen-message attacks. We also consider an alternative (strictly
weaker—cf. Section 7.3) definition, where the goal of the adversary is now to forge a signature
on a “fresh” message (not asked to any of the oracles).

Definition 6 (EUF-CMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature scheme,
and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-CMA w.r.t. continuous
A-SAs if for all PPT adversaries B running in time t, we have P [B wins] ≤ ε(κ) in the following
game:

1. The challenger runs (vk , sk)← KGen(1κ), and gives vk to B.

2. The adversary B is given oracle access to Sign(sk , ·). Upon input the i-th query mi, this
oracle returns σi ← Sign(sk ,mi); let Q = {m1, . . . ,mq} be the set of all queried messages.

3. For each j ∈ [n], the adversary B can adaptively choose an algorithm Ãj ∈ A. For each

algorithm, B is given oracle access to Ãj(sk , ·). Upon input a message m̃i,j , the oracle

returns σ̃i,j ← Ãj(sk , m̃i,j); let Q̃j = {m̃1,j , . . . , m̃q,j} be the set of all queried messages to

the oracle Ãj .

4. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(vk , (m∗, σ∗)) = 1 and
m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j .

Whenever ε(κ) = negl(κ), q = poly(κ), and n = poly(κ) we simply say that SS is EUF-CMA
against continuous A-SAs.
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Remarks. Some remarks on the above definitions are in order.

• First, note that it is impossible to prove that a signature scheme SS satisfies Definition 5
(and consequently Definition 6) for an arbitrary class A, without making further assump-
tions.9 To see this, consider the simple algorithm that ignores all inputs and outputs the
secret key.10

• We observe that continuous A-SAs security, implies security against continuous tampering
attacks with the secret key. This can be seen by considering a class of algorithms Akey =

{Ãf}f∈F , where F is a class of functions such that each f ∈ F has a type f : SK → SK,

and for all f ∈ F , m ∈M and r ∈ R we have that Ãf (·,m; r) := Sign(f(·),m; r).11

• It is useful to compare Definition 5 to the security definition against algorithm-substitution
attacks given in [BPR14] (for the case of symmetric encryption). In the language of
Bellare et al. [BPR14], a subversion of a signature scheme would be a triple of algorithms

S̃S = (K̃Gen, S̃ign, Ṽrfy), where in the security game K̃Gen is run by the challenger in
order to obtain a trapdoor α ∈ {0, 1}∗ and some initial state τ ∈ {0, 1}∗ which are both

hard-wired in the algorithm S̃ign := S̃ignα,τ (and given to B).12

The above setting can be cast in our framework by considering the class of SAs ABRP14 :=

{Ãα,τ : (α, τ) ← K̃Gen(1κ)}, and by setting n = 1 in Definition 5. Our definition is more
general, as it accounts for arbitrary classes of SAs and moreover allows B to subvert a
user’s algorithm continuously and in a fully-adaptive fashion (possibly depending on the
target verification key).

Multi-user setting. For simplicity Definition 5 and 6 consider a single user. We provide an
extension to the more general setting with u ≥ 2 users, together with a complete picture of the
relationships between different notions, in Section 7.

3.2 Public/Secret Undetectability

By undetectability, we mean the inability of ordinary users to tell whether signatures are com-
puted using the subverted or the genuine signing algorithm. We will distinguish between the
case where a subversion is publicly or secretly undetectable. Roughly speaking, public unde-
tectability means that no user can detect subversions using the verification key vk only (i.e.,
without knowing the signing key sk); secret undetectability means that no user, even with
knowledge of the signing key sk , can detect subversions.

A formal definition follows. While reading it, bear in mind that the challenger plays the
role of the “bad guy” trying to sabotage the signature scheme without being detected.

Definition 7 (Public/Secret Undetectability). Let SS = (KGen, Sign,Vrfy) be a signature
scheme, and A be some class of SAs for SS. We say that A is secretly (t, q, ε)-undetectable

9Looking ahead, one of our positive results achieves security w.r.t. arbitrary SAs assuming the existence of a
cryptographic reverse firewall. See Section 6.

10In case the secret key is too long, one can make the algorithm stateful so that it outputs a different chunk
of the key at each invocation. Alternatively, consider the class of algorithms {Ãm̄}m̄∈M that always outputs a
signature σ̄ on m̄; obviously this subversion allows to forge on m̄ without explicitly querying the message to any
of the oracles.

11It is worth noting that already for n = 1 Definition 6 implies non-adaptive key tampering, as the subverted
algorithm can hard-wire (the description of) polynomially many pre-set tampering functions.

12The algorithm Ṽrfy is not explicitly part of the definitions in [BPR14]—in fact, a secure scheme implicitly

excludes that any Ṽrfy algorithm exists—and can be considered as part of the adversary itself.
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w.r.t. SS if for all PPT users U running in time t, there exists an efficient challenger such that∣∣P [U wins]− 1
2

∣∣ ≤ ε(κ) in the following game:

1. The challenger runs (vk , sk)← KGen(1κ), chooses an algorithm Ã ∈ A (possibly depending
on vk), samples b←$ {0, 1} and gives (vk , sk) to U.

2. The user U can ask queries mi ∈M, for all i ∈ [q]. The answer to each query depends on
the secret bit b. In particular, if b = 1, the challenger returns σi ← Sign(sk ,mi); if b = 0,
the challenger returns σ̃i ← Ã(sk ,mi).

3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say that A is publicly undetectable w.r.t. SS if in step 1. of the above game, U is only
given the verification key. Moreover, whenever ε(κ) = negl(κ) and q = poly(κ) we simply say
that A is secretly/publicly undetectable w.r.t. SS.

Our definition of undetectability is similar to the corresponding definition considered by
Bellare et al. [BPR14] for the case of symmetric encryption. One key difference is that, in the
definition above, the challenger is allowed to choose the subversion algorithm possibly depending
on the verification key of the user.13 While one could in principle define even stronger forms of
undetectability, e.g. by requiring that continuous and fully-adaptive SAs remain undetectable,
we do not pursue this direction here. The reason for this is that the attacks we analyze in
Section 4 are non-adaptive and only require to use a single subversion.

Secret vs. public undetectability. While secret undetectability clearly implies public un-
detectability, the converse is not true. In particular, in Section 7.4 we show that there exists a
signature scheme SS and a set of subversions A of it such that A is publicly undetectable w.r.t.
SS but it is secretly detectable w.r.t. SS.

Multi-user setting. For simplicity Definition 7 considers a single user. We provide an ex-
tension to the more general setting with u ≥ 2 users, together with a complete picture of the
relationships between different notions, in Section 7.

4 Mounting Subversion Attacks

In Section 4.1 we show that the biased-randomness attack of [BPR14] (adapted to the case of
signatures), satisfies secret undetectability as per Definition 7 while allowing to recover the user’s
signing key with overwhelming probability. This attack allows to break all signature schemes
using a sufficient amount of randomness; in Section 4.2 we present a new attack allowing to
surreptitiously subvert even signature schemes using only little randomness (say 1 bit), provided
that the targeted scheme satisfies an additional property.

4.1 Attacking Coin-Injective Schemes

We start by recalling an information-theoretic lemma from [BPR14]. Suppose g : R → R′ where
R,R′ ⊆ {0, 1}∗, f : {0, 1}∗ → {0, 1}, and ρ = |R|. For b ∈ {0, 1} consider the following biased
distribution:

R̃f,g(b,R) = {r ∈ R : f(g(r)) = b}. (1)

The lemma below roughly says that if a value r is chosen at random from the real distribution
R, the probability that r is also in the biased distribution R̃ is high if |R| is large enough.

13Looking ahead, our new attack (cf. Section 4.2) will rely on this feature in the multi-user setting.
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SA class AFbias

Let SS = (KGen, Sign,Vrfy) be a randomized signature scheme with randomness space R, and
F : {0, 1}κ × {0, 1}∗ → {0, 1} be a pseudorandom function. The class AFbias consists of a set of

algorithms {Ãs,τ}s∈{0,1}κ,τ=1, where each algorithm in the class behaves as follows:

Ãs,τ (sk ,m):

• For |sk | = `, let i := τ mod `.

• Define the function g(·) := Sign(sk ,m; ·)||τ and sample a random element r̃
from the distribution

R̃F (s,·),g(·)(sk [i],R) := {r ∈ R : F (s, g(r)) = sk [i]}. (2)

• Return the signature σ := Sign(sk ,m; r̃), and update the state τ ← τ + 1.

Extracting the signing key. Given as input a vector of signatures ~σ = (σ1, ..., σ`), for each
signature σi ∈ ~σ try to extract the i-th bit of the signing key by defining sk ′[i] := F (s, σi||i).
Return the signing key sk ′ := (sk ′[1], . . . , sk ′[`]).

Figure 1: Attacking coin-injective schemes

Lemma 2 (Lemma 1 of [BPR14]). Let f , g, b, R, and R̃ = R̃f,g(b,R) be as defined above.
Then, if g is injective and f is drawn at random, for all r ∈ R we have

P
r̃←$ R̃

[r = r̃] = (1− 2−ρ)/ρ.

The following attack is based on the biased-randomness attack from [BPR14]. Roughly,
what it does is to embed a trapdoor—a key for a pseudorandom function—in the subverted
signing algorithm and to “bias” the randomness in a way that it becomes possible to any party
that knows the trapdoor to leak one bit of the signing key for each signed messaged under that
signing key. Hence, if the adversary can obtain at least |sk | signed messages then it can later
extract the entire signing key in full.

For the analysis, which relies on Lemma 2, we will need to assume the signing function is
injective w.r.t. its random coins—a notion which we define below.

Definition 8 (Coin-injective). We say that SS is coin-injective if for all m ∈ M, and for all
(vk , sk)← KGen(1κ), we have that Sign(sk ,m; ·) is injective.

Theorem 1. Let F : {0, 1}κ × {0, 1}∗ → {0, 1} be a (tprf , qprf , εprf)-secure PRF. For a random-
ized, coin-injective signature scheme SS with randomness space of size ρ = |R|, consider the
class of SAs AFbias described in Fig. 1. Then,

(i) AFbias is secretly (t, q, ε)-undetectable for t ≈ tprf , q ≈ qprf and ε ≤ q · 2−(ρ+1) + εprf .

(ii) Each Ã ∈ AFbias recovers the signing key of the user with probability at least (1 − (1/2 +
εprf)

ρ)` where ` is the size of the signing key.

Proof. (i) Let G be the game described in Definition 7, where the challenger picks Ã←$AFbias
(independently of the user’s verification key). Consider the game G0, an identical copy of game
G when b = 0, and consider the game G1, an identical copy of game G when b = 1. For the
first part of the proof the objective is to show that G0 ≈ G1.

12



Now consider game G′0 an identical copy of game G0 except that G′0 utilizes the distribution
from Eq. (1) instead of the distribution from Eq. (2).

Claim 1. |P [U wins in G0]− P [U wins in G′0]| ≤ εprf .

Proof. We assume that there exists a user U that distinguishes between games G0 and G′0,
and we build a distinguisher D (using U) that breaks the pseudorandomness of the PRF F .
Distinguisher D is described below below.

Distinguisher D:

• Run (vk , sk)← KGen(1κ), and return (vk , sk) to U.

• For each query mi ∈M asked by U, do:

1. Pick a random r←$R and compute xi = Sign(sk ,mi; r)||τ .

2. Forward xi to the target oracle, which answers with yi = f(xi) if b = 0 or
with yi = F (s, xi) if b = 1 (for a hidden bit b).

3. If yi = sk [i], then forward σi = Sign(sk ,mi; r) as an answer to the query
of U, otherwise return to step (1).14

• Output whatever U outputs.

Notice that the probability that D aborts in step (3) of the reduction is the same probability
that in game G0 and G′0 the subverted signing algorithm fails to sample from the set R̃. It
follows that in case b = 0 distinguisher D perfectly emulates the distribution of G0, whereas in
case b = 1 it perfectly emulates the distribution of G′0. The claim follows.

Claim 2. |P [U wins in G′0]− P [U wins in G1]| ≤ q · 2−(ρ+1).

Proof. Abusing notation, let us write G′0 and G1 for the distribution of the random variables
corresponding to U’s view in games G′0 and G1 respectively. For an index i ∈ [0, q] consider the
hybrid game Hi that answers the first i signature queries as in game G′0 while all the subsequent
queries are answered as in G1. We note that H0 = G1 and Hq = G′0.

We claim that for all i ∈ [q], we have SD (Hi−1,Hi) ≤ 2−(ρ+1). To see this, fix some i ∈ [q]
and denote with R (resp. R̃) the random variable defined by sampling an element from R (resp.
R̃) uniformly at random. Clearly,

SD (Hi−1,Hi) ≤ SD(R, R̃) =
1

2
·
∑
r∈R

∣∣∣P [R = r]− P[R̃ = r]
∣∣∣

=
1

2
·
∑
r∈R

∣∣∣∣1ρ − 1− 2−ρ

ρ

∣∣∣∣ (3)

=
1

2
· 2−ρ = 2−(ρ+1),

where Eq. (3) follows by Lemma 2.
The claim now follows by the triangle inequality, as

SD
(
G1,G

′
0

)
≤

q∑
i=1

SD (Hi−1,Hi) ≤ q · 2−(ρ+1).

14In case |R| is exponential D simply aborts after polynomially many trials.
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The two claims above finish the proof of statement (i).
(ii) For the second part of the proof we show that the attack of Fig. 1 fails to recover the secret

key with probability at most e1 +e2 + . . .+e`, where ej := P
[
sk ′[j] 6= sk [j]

]
. In the analysis, we

replace for simplicity the function F with a truly random function f ; a generalization accounting
for the negligible error due to the use of a pseudorandom function is straightforward. Note that
all applications of f are independent because we append the value τ to each query.

Now if g is injective and f is a random function that outputs one bit, then for each element
r ∈ R we have P [f(g(r)) = sk [j]] = 1/2. Extending to the entire set R of size ρ we have that

ej := P
[
R̃f,g(sk [j],R) = ∅

]
= 2−ρ,

is the error probability for each bit of the secret key. Therefore the probability of recovering
the key is at least (1− 2−ρ)`.

Notice that for the attack to be undetectable with high probability, the underlying signature
scheme needs to rely on a minimal amount of randomness, say ρ ≥ 27.

Making the attack stateless Note that the attack of Fig. 1 requires the subverted signature
algorithm to maintain a state of logarithmic size (the counter τ). At first sight this might seem
a strong assumption, since the original signing algorithm is typically stateless.

However, if we assume that the message space is polynomial and that the adversary can
control the input messages, one can easily adapt the attack to be completely stateless by letting
the input message play the role of the counter τ . Namely, algorithm Ã interprets the input
message m as an integer i ∈ [`] and proceeds as before. The above adaptation still allows to
recover the signing key and it is undetectable under the strong undetectability definition put
forward by [BJK15].

4.2 Attacking Coin-Extractable Schemes

The attack on Section 4.1 allows to break all sufficiently randomized schemes. This leaves the
interesting possibility to show a positive result for schemes using less randomness, e.g., the
Katz-Wang signature scheme [KW03] that uses a single bit of randomness. In this section we
present a simple attack (cf. Fig. 2) ruling out the above possibility for all signature schemes
that are coin-extractable, a notion which we define next.

Definition 9 (Coin-extractable). Let SS = (KGen, Sign,Vrfy) be a signature scheme. We say
that SS is νext-coin-extractable if there exists a PPT algorithm CExt such that for all m ∈M

P [σ = Sign(sk ,m; r) : (vk , sk)← KGen(1κ);σ = Sign(sk ,m); r ← CExt(vk ,m, σ)] ≥ 1− νext.

We point that many existing signature schemes are coin-extractable:

• All public-coin signature schemes [Sch12], where the random coins used to generate a
signature are included as part of the signature. Concretely, the schemes in [GHR99,
CS00, NPS01, CL02, Fis03, CL04, BB08, HW09a, HW09b, HK12], and the Unstructured
Rabin-Williams scheme [Ber08], are all public-coin.

• The Katz-Wang scheme [KW03], where the signature on a message m is computed as
σ = f−1(H(m||r)) such that f is a trapdoor permutation, H is a hash function, and r is
random bit. Given a pair (m,σ) the extractor simply sets r = 1 iff f(σ) = H(m||1).

• The PSS signature scheme [BR96, Cor02].
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SA class Acext

Let SS = (KGen, Sign,Vrfy) be a coin-extractable, randomized signature scheme with ran-
domness space R of size ρ = 2d. For simplicity assume that d|`, where ` is the size of the
signing key (a generalization is straightforward). The class Acext consists of a set of algorithms
{Ãs,τ}s∈{0,1}`,τ=0, where each algorithm in the class behaves as follows:

Ãs,τ (sk ,m):

• If τ ≥ ` output a honestly generated signature σ := Sign(sk ,m; r).

• Else,

– for each value j ∈ [d] compute the biased random bit r̃[j] := s[τ + j] ⊕
sk [τ + j];

– return the signature σ := Sign(sk ,m; r̃), and update the state τ ← τ + d.

Extracting the signing key. Given as input a vector of signatures ~σ = (σ1, . . . , σ`/d), parse
the trapdoor s as `/d chunks of d bits s = {s1, . . . , s`/d}. For each signature σi ∈ ~σ try to
extract the d-bit chunk sk′i of the signing key as follows.

• Extract the randomness from the i-th signature r̃ ← CExt(vk ,mi, σi).

• For each value j ∈ [d] compute the secret key bit sk′i[j] := r̃[j]⊕ si[j].

Return the signing key sk ′ := (sk ′i, . . . , sk ′`/d).

Figure 2: Attacking coin-extractable schemes

Theorem 2. For a randomized, νext-coin-extractable, signature scheme SS with randomness
space R of size ρ = 2d, consider the class of SAs Acext described in Fig. 2. Then,

(i) Acext is secretly (t, q, 0)-undetectable for t, q ∈ N.

(ii) Each Ã ∈ Acext recovers the signing key of the user with probability at least (1 − νext)`/d,
where ` is the size of the key.

Proof. (i) Let G be the game described in Definition 7, where the challenger picks Ã←$Acext

uniformly at random (and independently of the user’s verification key). Consider the game G0,
an identical copy of game G when b = 0, and consider the game G1, an identical copy of game
G when b = 1. For the first part of the proof the objective is to show that G0 ≈ G1.

Claim 3. |P [U wins in G0]− P [U wins in G1]| = 0.

Proof. Abusing notation, let us write G0 and G1 for the distribution of the random variables
corresponding to U’s view in games G0 and G1 respectively. For an index i ∈ [0, q] consider the
hybrid game Hi that answers the first i signature queries as in game G0 while all the subsequent
queries are answered as in G1. We note that H0 ≡ G1 and Hq ≡ G0.

We claim that for all i ∈ [q], we have Hi−1 ≡ Hi. To see this, fix some i ∈ [q] and denote with
R (resp. R̃) the random variable defined by sampling an element from R (resp. R̃) uniformly
at random. It is easy to see that R and R̃ are identically distributed, as the biased distribution
consists of a one-time pad encryption of (part of) the signing key with a uniform key. The claim
follows.
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(ii) For the second part of the proof we note that the attack of Fig. 2 successfully recovers
the biased randomness r̃ of each σi ∈ {σ1, . . . , σ`/d} and computes the chunk ski of the signing
key with probability at least 1 − νext. This gives a total probability of recovering the entire
signing key of at least (1− νext)`/d.

Making the attack stateless. Note that the attack of Fig. 2 requires the subverted signature
algorithm to maintain a state of logarithmic size (the counter τ). Similarly to the case of the
attack of Fig. 1 this assumption can be removed by letting the input message play the role of
the counter. (See also the discussion at the end of Section 4.1.)

5 Security of Unique Signatures

In this section we prove that signature schemes with unique signatures are subversion-resilient
against SAs that meet a basic undetectability requirement, which we call the verifiability con-
dition.

5.1 The Verifiability Condition

We say that A meets the verifiability condition relative to SS if for all Ã ∈ A and for all m ∈M
the signatures produced using the subverted signing algorithm Ã (almost) always verify under
the corresponding verification key vk .

Definition 10 (Verifiability). Let A be some class of SAs for a signature scheme SS. We say
that A satisfies νv-verifiability if for all Ã ∈ A and for all m ∈M

P
[
Vrfy(vk , (m, Ã(sk ,m))) = 1 : (vk , sk)← KGen(1κ)

]
≥ 1− νv,

where the probability is taken over the randomness of all involved algorithms.

Public undetectability vs. verifiability. One might think that verifiability is a special case
of public undetectability. However, this is not true and in fact Definition 10 and 7 are incompa-
rable. To see this, consider the class of SAs Amsg = {Ãm̄}m̄∈M that behaves identically to the
original signing algorithm, except that upon input m̄ ∈ M it outputs an invalid signature.15

Clearly, Amsg satisfies public undetectability as a user has only a negligible chance of hitting
the value m̄; yet Amsg does not meet the verifiability condition as the latter is a property that
holds for all messages.

On the other hand, consider the class of SAs Adet that is identical to the original signing
algorithm, except that it behaves deterministically on repeated inputs. Clearly, Adet meets the
verifiability condition relative to any (even randomized) signature scheme SS; yet Adet does not
satisfy public undetectability for any randomized signature scheme SS, as a user can simply
query the same message twice in order to guess the value of the hidden bit b with overwhelming
probability.

Relaxed verifiability. Clearly, the assumption that the verifiability condition should hold for
all values m ∈ M is quite a strong one. A natural relaxation is to require that the probability
in Definition 10 is taken also over the choice of the message.

15A similar class of attacks—under the name of input-triggered subversion—has been recently considered
in [DFP15] for the case of symmetric encryption.
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Definition 11 (Relaxed Verifiability). Let A be some class of SAs for a signature scheme SS.
We say that A satisfies relaxed νv-verifiability if for all Ã ∈ A

P
[
Vrfy(vk , (m, Ã(sk ,m))) = 1 : (vk , sk)← KGen(1κ);m←$M

]
≥ 1− νv,

where the probability is taken over the choice of the message and over the randomness of all
involved algorithms.

We argue that relaxed verifiability is implied by public undetectability (cf. Definition 7) in
many interesting cases.

• Input-triggered subversions. Whenever public undetectability holds for all algorithms in
the class A. This is the case, for instance, for the class Amsg of input-triggered subversions
described above.

To see this, let A be a class of SAs that is publicly undetectable for all Ã ∈ A. Towards a
contradiction, assume that A does not satisfy relaxed verifiability. This means that there
exists an Ã ∈ A and a polynomial p(·) such that

P
[
Vrfy(vk , (m, Ã(sk ,m))) = 0 : (vk , sk)← KGen(1κ);m←$M

]
≥ 1

p(κ)
,

for infinitely many values of κ ∈ N. It follows that Ã can be used to break public un-
detectability with probability 1/p(κ), by simply signing a random message and trying to
verify the outcome.

• Backdoored implementations. The above implication also holds for the class ABPR14

of algorithm-substitution attacks and backdoored implementations (see paragraph “Re-
marks” in Section 3.1), as long as the winning condition in Definition 7 and Definition 11
is taken also over the choice of the backdoor (i.e., over the random coins of algorithm

K̃Gen).

5.2 Chosen-Message Attacks

The theorem below shows that unique signature schemes (cf. Definition 3) achieve indistin-
guishability (and thus EUF-CMA) against the class of all SAs that meet the verifiability con-
dition (cf. Definition 10).

Theorem 3. Let SS = (KGen, Sign,Vrfy) be a signature scheme with νc-correctness and νu-
uniqueness, and denote by Aνvver the class of all algorithms that satisfy νv-verifiability relative to
SS. Then SS is (t, n, q, ε)-indistinguishable against continuous Aνvver-SAs, for all n, q ∈ N and
for ε ≤ qn · (νc + νv + νu).

Proof. Let G be the game described in Definition 5. Consider the game G0, an identical copy
of game G when b = 0, and consider the game G1, an identical copy of game G when b = 1.
The objective here is to show that G0 ≈ G1.

For an index k ∈ [0, n], consider the hybrid game Hk that answers each query (j,mi,j)
such that j ≤ k as in game G0 (i.e., by running Sign(sk ,mi,j)), while all queries (j,mi,j) such

that j > k are answered as in G1 (i.e., by running Ãj(sk ,mi,j)). We note that H0 ≡ G1

and Hn ≡ G0. Abusing notation, let us write Gk for the distribution of the random variable
corresponding to B’s view in games Gk.

Fix a particular k ∈ [0, n], and for an index l ∈ [0, q] consider the hybrid game Hk,l that is
identical to Hk except that queries (k,mi,k) with i ≤ l are treated as in game G0, while queries
(k,mi,k) with i > l are treated as in G1. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.
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Claim 4. Fix some k ∈ [0, n]. For each l ∈ [0, q], we have SD (Hk,l−1,Hk,l) ≤ νc + νv + νu.

Proof. Notice that the only difference between Hk,l−1 and Hk,l is how the two games answer
the query (k,ml,k): Game Hk,l−1 returns σl,k ← Sign(sk ,ml,k), whereas game Hk,l returns

σ̃l,k ← Ãk(sk ,ml,k). Now let El,k be the event that σl,k 6= σ̃l,k. We can write

SD (Hk,l−1,Hk,l) ≤ SD (Hk,l−1; Hk,l|¬El,k) + P [El,k] (4)

≤ νc + νu + νv. (5)

Eq. (4) follows by Lemma 1 and Eq. (5) follows by the fact that Hk,l−1 and Hk,l are identically
distributed conditioned on El,k not happening, and moreover P [El,k] ≤ νc + νu + νv. The latter
can also be seen as follows. By the correctness condition of SS we have that σl,k is valid for

ml,k under vk except with probability at most νc. By the assumption that Ãk ∈ Aνvver we have
that σ̃l,k is also valid for ml,k under vk except with probability at most νv. Finally, by the
uniqueness property of SS we have that σl,k and σ̃l,k must be equal except with probability at
most νu. It follows that P [El,k] ≤ νc + νu + νv, as desired.

The statement now follows by the above claim and by the triangle inequality, as

SD (G0,G1) ≤
n∑
k=1

SD (Hk−1,Hk) ≤
n∑
k=1

q∑
l=1

SD (Hk,l−1,Hk,l) ≤ qn · (νc + νu + νv).

Unfortunately, unique signatures do not satisfy EUF-CMA against the class of all SAs that
satisfy relaxed verifiability (cf. Definition 11). In fact, it is not hard to show that no signature
scheme with large enough message space (no matter if randomized or deterministic) can achieve
EUF-CMA against such class of SAs.

This can be seen by looking again at the class of SAs Amsg = {Ãm̄}m̄∈M that behaves
identically to the original signing algorithm, except that upon input m̄ ∈ M it outputs the
secret key. Clearly, Amsg satisfies relaxed verifiability as a randomly chosen message will be
different from m̄ with high probability user has only a negligible chance of hitting the value m̄;
yet Amsg clearly allows to break EUF-CMA for an adversary knowing m̄.

5.3 Random-Message Attacks

We show that if we restrict to the case of random-message attacks (RMA), i.e. the adversary
can only see signatures of randomly chosen messages, unique signatures achieve unforgeability
against the class of SAs that meets relaxed verifiability (cf. Definition 11).

Definition 12 (EUF-RMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature scheme,
and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-RMA w.r.t. continuous
A-SAs if for all PPT adversaries B running in time t, we have P [B wins] ≤ ε(κ) in the game
of Definition 6 with the adaptation that the messages in the sets Q, Q̃1, . . . , Q̃n are drawn
uniformly at random from the message space M.

While the above definition might seem a weak guarantee, it is still useful for applications. In
particular, in Section 5.4 we show how to use any signature scheme that is EUF-RMA against
a given class of SAs, to construct an identification scheme that is subversion-resilient against
the same class of SAs.
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Theorem 4. Let SS = (KGen, Sign,Vrfy) be a (t, (q + 1) · n, ε)-EUF-CMA signature scheme
with νc-correctness and νu-uniqueness, and denote by Aνvr ver the class of all algorithms that
satisfy relaxed νv-verifiability relative to SS. Then SS is (t′, n, q, ε′)-indistinguishable against
continuous Aνvrel ver-SAs, for t′ ≈ t, for all n, q ∈ N, and for ε′ ≤ ε+ qn · (νc + νv + νu).

Proof. Let G be the game of Definition 12. Consider the modified game H that is identical to
G except that queries to the subverted signing algorithms are answered as described below:

• For all i ∈ [q], j ∈ [n], sample m̃i,j ←$M and return σi,j ← Sign(sk , m̃i,j).

Claim 5. |P [B wins in G]− P [B wins in H]| ≤ qn · (νc + νv + νu).

Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query to the j-th
subversion oracle, such that j ≤ k, as in game G, while all queries with j > k are answered as in
H. We note that H0 ≡ H and Hn ≡ G. Abusing notation, let us write Hk for the distribution
of the random variable corresponding to B’s view in game Hk.

We will show that SD (Hk−1,Hk) ≤ q · (νc + νv + νu) for all k. Fix a particular k ∈ [0, n],
and for an index l ∈ [0, q] consider the hybrid game Hk,l that is identical to Hk except that it
answers queries (k, i) with i ≤ l as in game G, while all queries (k, i) with i > l are treated as
in H. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) ≤ νc + νv + νu. Notice
that the only difference between Hk,l−1 and Hk,l is how the two games answer the query (k, l):

Game Hk,l−1 returns σl,k ← Sign(sk , m̃l,k), whereas game Hk,l returns σ̃l,k ← Ãk(sk , m̃l,k)
(where m̃l,k←$M). Now let El,k be the event that σl,k 6= σ̃l,k. We can write

SD (Hk,l−1,Hk,l) ≤ SD (Hk,l−1; Hk,l|¬El,k) + P [El,k] (6)

≤ νc + νu + νv. (7)

Eq. (6) follows by Lemma 1 and Eq. (7) follows by the fact that Hk,l−1 and Hk,l are identically
distributed conditioned on El,k not happening, and moreover P [El,k] ≤ νc + νu + νv. The latter
can also be seen as follows. By the correctness condition of SS we have that σl,k is valid for

m̃l,k under vk except with probability at most νc. By the assumption that Ãk ∈ Aνvr ver we have
that σ̃l,k is also valid for m̃l,k under vk except with probability at most νv (this is because m̃l,k

is chosen at random). Finally, by the uniqueness property of SS we have that σl,k and σ̃l,k must
be equal except with probability at most νu. It follows that P [El,k] ≤ νc + νu + νv, as desired.

The claim now follows by the above argument and by the triangle inequality, as

SD (G,H) ≤
n∑
k=1

SD (Hk−1,Hk)

≤
n∑
k=1

q∑
l=1

SD (Hk,l−1,Hk,l)

≤ qn · (νc + νv + νu).

Claim 6. P [B wins in H] ≤ ε.

Proof. Towards a contradiction, assume B wins in game H with probability larger than qn · ε.
We build an adversary B′ (using B) that breaks EUF-CMA of SS. Adversary B′ is described
below.
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Adversary B′:

• Receive the verification key vk from the challenger, and return vk to B.

• Upon input the i-th signature query, query the target oracle receiving back a
signature σi ← Sign(sk ,mi) for mi←$M. Return σi to B.

• Upon input a query of the form (j, i), query the target oracle receiving back a
signature σi,j ← Sign(sk , m̃i,j) for m̃i,j ←$M. Return σi,j to B.

• Whenever B outputs (m∗, σ∗), output (m∗, σ∗).

For the analysis, note that B′ runs in time similar to that of B and asks a total of at most q+qn
signing queries. Moreover, the simulation is perfect and thus P [B′ wins] ≥ ε, a contradiction.

The proof follows by combining the above two claims.

5.4 Subversion-Resilient Identification Schemes

We show how to apply EUF-RMA against SAs to the setting of subversion-resilient identification
(ID) schemes. Similar applications already appeared in the literature for leakage and tamper
resistance [ADW09, FHN+12, DFMV13, NVZ14, FNV15].

In a public-key ID scheme a prover with secret key sk attempts to prove its identity to
a verifier holding the corresponding verification key vk . More formally, an ID scheme ID =
(Setup,KGen,P,V) consists of four PPT algorithms described as follows: (1) The parameters
generation algorithm takes as input the security parameter and outputs public parameters
params ← Setup(1κ), shared by all users.16 (2) The key generation algorithm takes as input
the security parameter and outputs a verification key/secret key pair (vk , sk) ← KGen(1κ).
(3) P and V are probabilistic Turing machines interacting in a protocol; at the end of the
execution V outputs a decision bit d ∈ {0, 1}, where d = 1 means that the identification was
successful. We write 〈P(sk),V(vk)〉 for the random variable corresponding to the verifier’s
verdict, and P(sk) � V(vk) for the random variable corresponding to transcripts of honest
protocol executions.

We now define a variant of passive security, where in a first phase the adversary is allowed
to subvert the prover algorithm; in a second phase the adversary has to impersonate the prover.
Similarly to the case of signature schemes subversion is modelled by considering a class A of
SAs, where each Ã ∈ A is an algorithm replacing the prover algorithm P within the ID scheme
ID.

Definition 13 (Subversion-Resilient Identification). Let ID = (Setup,KGen, Sign,Vrfy) be an
ID scheme, and A be some class of SAs for ID. We say that ID is (t, n, q, ε)-secure w.r.t.
continuous A-SAs if for all PPT adversaries B running in time t, we have P [B wins] ≤ ε(κ) in
the following game:

1. The challenger runs params← Setup(1κ), (vk , sk)← KGen(1κ), and forwards (params, vk)
to B.

2. The adversary B can observe q transcripts P(sk) � V(vk) corresponding to honest protocol
executions between the prover and the verifier.

16In what follows all algorithms take as input params, but we omit to explicitly write this for ease of notation.
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3. For each j ∈ [n], the adversary B can adaptively choose an algorithm Ãj ∈ A. For

each algorithm, B can observe q transcripts Ãj(sk) � V(vk) corresponding to protocol
executions between the subverted prover and the verifier.

4. The adversary B loses access to all oracles and plays the role of the prover in an execution
with an honest verifier d← 〈B(vk),V(vk)〉; we say that B wins if and only if d = 1.

Consider the following standard construction (see, e.g., [BFGM01]) of an identification
scheme ID from a signature scheme SS = (KGen,Sign,Vrfy).

• Parameters generation. Algorithm Setup samples the public parameters params for the
signature schemes (if any).

• Key Generation. Algorithm KGen runs the key generation algorithm of the signature
scheme, obtaining (vk , sk)← KGen(1κ).

• Identification protocol. The interaction P(sk) � V(vk) is depicted in Figure 3.

Prover P(sk) Verifier V(vk)
m∗←− m∗ ←M

σ∗ ← Sign(sk ,m∗)
σ∗−→

Output d = Vrfy(vk , (m∗, σ∗))

Figure 3: Two-round identification using a signature scheme SS with message space M

The theorem below states that the above protocol achieve subversion resilience w.r.t. a given
class A of SAs, provided that the underlying signature scheme is EUF-RMA w.r.t. the same
class A.

Theorem 5. Let SS be a signature scheme with message space M, and let A be a class of SAs
for SS. Assume that SS is (t, n, q, ε)-EUF-RMA w.r.t. continuous A-SAs. Then the ID scheme

ID from Figure 3 is (t′, n, q, ε′)-secure w.r.t. continuous A-SAs where t′ ≈ t and ε′ ≤ ε+ (n+1)q
|M| .

Proof. For the sake of contradiction, assume that there exists an adversary B breaking security of
the identification scheme with probability larger than ε+ (n+1)q

|M| . We construct a PPT adversary

B′ breaking EUF-RMA of SS with probability at least ε (a contradiction). Adversary B′ runs
in the game of Definition 12 and is described below. The main observation is that the prover’s
algorithm P is completely specified by algorithm Sign, and thus subverting the ID scheme is
equivalent to subverting the signature scheme.

Adversary B′:

1. Receive the public parameters params and the verification key vk for SS and
forward (params, vk) to B.

2. Whenever B wants to observe a honest transcript P(sk) � V(vk), query the
signing oracle obtaining a pair (mi, σi) such that σi ← Sign(sk ,mi) and mi←$

M. Forward (mi, σi) to B.

3. Whenever B specifies an algorithm Ãj ∈ A, forward Ãj to the challenger. For
each query of B to its own j-th oracle, query the target j-th oracle obtain-
ing a pair (m̃i,j , σ̃i,j) such that σ̃i,j ← Ãj(sk , m̃i,j) and m̃i,j ←$M. Forward
(m̃i,j , σ̃i,j) to B.
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4. Finally, when B is ready to start the impersonation phase, sample a random
message m∗←$M and send it to B. Upon receiving a value σ∗ from B output
(m∗, σ∗) as forgery.

It is easy to see that B′’simulation of B’s queries is perfect; moreover, since the message m∗ in
the impersonation stage is chosen at random fromM, also the simulation of this phase has the
right distribution and in particular the forgery (m∗, σ∗) will be valid with probability ε.

It remains to compute the probability that B′ is successful. Observe that B′ is successful
whenever (m∗, σ∗) is valid and m∗ 6∈ Q ∪ Q̃. Also, note that m∗ is independent from Q̃, so in
particular

P
[
m∗ ∈ Q ∪ Q̃

]
≤ |Q|+ |Q̃|

|M|
=

(n+ 1)q

|M|
.

Let E be the event that m∗ 6∈ Q ∪ Q̃. We have,

P
[
B′ wins

]
≥ P [B wins ∧ E] ≥ P [B wins]− P [¬E]

≥ P [B wins]− (n+ 1)q

|M|
> ε,

where the last inequality follows by our initial assumption on B’s advantage. This concludes
the proof.

6 Reverse Firewalls for Signatures

In Section 5 we have shown that unique signatures are secure against a restricted class of
SAs, namely all SAs that meet the so-called verifiability condition. As discussed in Section 3,
by removing the latter requirement (i.e., allowing for arbitrary classes of SAs in Definition 5
and 6) would require that a signature scheme SS remains unforgeable even against an adversary
allowed arbitrary tampering with the computation performed by the signing algorithm. This is
impossible without making further assumptions.

In this section we explore to what extent one can model signature schemes secure against ar-
bitrary tampering with the computation, by making the extra assumption of an un-tamperable
cryptographic reverse firewall (RF) [MS15]. Roughly, a RF for a signature scheme is a (possi-
bly stateful) algorithm that takes as input a message/signature pair and outputs an updated
signature; importantly the firewall has to do so using only public information (in particular,
without knowing the signing key). A formal definition follows.

Definition 14 (RF for signatures). Let SS be a signature scheme. A RF for SS is a pair
of algorithms FW = (Setup,Patch) specified as follows: (i) Setup takes as input the security
parameter and a verification key vk ∈ VK, and outputs some initial (public) state δ ∈ {0, 1}∗;
(ii) Patch takes as input the current (public) state δ, and a message/signature pair (m,σ) and
outputs a possibly modified signature or a special symbol ⊥ and an updated (public) state δ′.
We write this as σ′ ← Patchδ(m,σ) (and omit to denote the updated state δ′ as an explicit
output).

We will typically assume that the current state δcur of the RF, can be computed efficiently
given just the verification key vk , the initial state δ and the entire history of all inputs to the
RF.

22



6.1 Properties

Below, we discuss the correctness and security requirements of cryptographic RF FW for a
signature scheme SS.

Maintaining functionality. The first basic property of a RF is that it should preserve the
functionality of the underlying signature scheme, i.e. if a signature σ on a message m is computed
using signing key sk , and the firewall is initialized with the corresponding verification key vk ,
the patched signatures σ′ should (almost always) be a valid signatures for m under vk . More
precisely, we say that FW is functionality maintaining for SS, if for any polynomial p(κ) and
any vector of inputs (m1, . . . ,mp) ∈ M, there exists a negligible function ν : N → [0, 1] such
that

P

[
∃i ∈ [p] s.t. Vrfy(vk , (mi, σ

′
i)) = 0 :

(vk , sk)← KGen(1κ), δ ← Setup(vk , 1κ)
σ1 ← Sign(sk ,m1), . . . , σp ← Sign(sk ,mp)

σ′1 ← Patchδ(m1, σ1), . . . , σ′p ← Patchδ(mp, σp)

]
≤ ν(κ),

where the probability is taken over the coin tosses of all involved algorithms. Recall that each
invocation of algorithm Patch updates the (public) state δ of the RF.

Preserving Unforgeability. The second property of a RF is a security requirement. Note
that a firewall can never “create” security (as it does not know the signing key). Below we
define what it means for a RF to preserve unforgeability of a signature scheme against arbitrary
tampering attacks.

Definition 15 (Unforgeability preserving RF). Let SS = (KGen,Sign,Vrfy) be a signature
scheme with RF FW = (Setup,Patch). We say that FW (t, n, q, ε)-preserves unforgeability for
SS against continuous SAs if for all adversaries B running in time t we have that P [B wins] ≤ ε
in the following game:

1. The challenger runs (vk , sk)← KGen(1κ), δ ← Setup(vk , 1κ), and gives (vk , δ) to B.

2. The adversary B is given oracle access to Sign(sk , ·). Upon input the i-th query mi, this
oracle returns σi ← Sign(sk ,mi). Let Q = {m1, . . . ,mq} be the set of all signature queries.

3. The adversary B can adaptively choose an arbitrary algorithm Ãj , and correspondingly

obtain oracle access to Patchδ(·, Ãj(sk , ·)):

• Upon input the i-th query m̃i,j , for i ∈ [q] and j ∈ [n], the oracle returns σ̃i,j ←
Patchδ(m̃i,j , Ãj(sk , m̃i,j)) and updates the public state δ;

• Whenever σ̃i,j = ⊥ the oracle enters a special self-destructs mode, in which the
answer to all future queries is by default set to ⊥.

Let Q̃j = {m̃1,j , . . . , m̃q,j} be the set of all queries for each Ãj .

4. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(vk , (m∗, σ∗)) = 1 and
m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j .

Whenever t = poly(κ), q = poly(κ) and ε = negl(κ) we simply say that FW preserves unforge-
ability for SS. Furthermore, in case A specifies all of its queries {Ãj , m̃i,j}j∈[n],i∈[q] at the same
time we say that FW non-adaptively preserves unforgeability.
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We observe that Definition 15 is very similar to Definition 6, except for a few crucial dif-
ferences. First, note that the above definition considers arbitrary classes of SAs instead of SAs
within a given class A; this is possible because the output of each invocation of the subverted
signing algorithm is patched using the firewall (which is assumed to be un-tamperable).

Second, observe that the above definition relies on the so-called self-destruct capability:
Whenever the firewall returns ⊥, all further queries to any of the oracles results in ⊥; as we show
in Section 6.2 this is necessary as without such a capability there exists simple generic attacks
that allow for complete security breaches. We stress, however, that the assumption of the self-
destruct capability does not make the problem of designing an unforgeability preserving reverse
firewall trivial. In fact, the biased-randomness attacks of Section 4 allow to break all randomized
scheme without ever provoking a self-destruct. On the positive side, in Section 6.3, we show
how to design an unforgeability preserving RF for any re-randomizable signature scheme.

Exfiltration resistance. More in general, one might require a stronger security property from
a RF. Namely, we could ask that patched signatures are indistinguishable from real signatures
to the eyes of an attacker. This property, which is called exfiltration resistance in [MS15],
would be similar in spirit to our definition of indistinguishability w.r.t. continuous SAs (see
Definition 5).

It is not hard to see that exfilatration resistance against arbitrary SAs is impossible to achieve
in the case of signature schemes; this is because the attacker could simply set the subverted
signing algorithm to always output the all-zero string, in which case the RF has no way to patch
its input to a valid signature (and thus the adversary can easily distinguish subverted patched
signatures from real signatures).17

6.2 Necessity of Self-Destruct

We show that no RF can preserve both functionality and unforgeability, without assuming the
self-destruct capability. This is achieved via a generic (non-adaptive) attack that allows to
extract the secret key in case the RF does not self-destruct. The attack itself is a generalization
of a similar attack by Gennaro et al. [GLM+04] in the context of memory tampering.

Theorem 6. Let SS be an EUF-CMA signature scheme. No RF FW can at the same time be
functionality maintaining and non-adaptively (poly(κ), 1, poly(κ),negl(κ))-preserve unforgeabil-
ity for SS, without assuming the self-destruct capability.

Proof sketch. Consider the following adversary B playing the game of Definition 15 (omitting
the self-destruct capability).

• Upon input the verification key vk , and the initial state δ, initialize τ := 1.

• Forward Ãτ to the challenger, where algorithm Ãτ is defined as follows: Upon input a
message m̃i, set j = τ mod ` (where ` := |sk |) and

– If sk [j] = 1, output σ̃i ← Sign(sk , m̃i).

– Else, output 0|σ|.

Update τ ← τ + 1.

17We note, however, that our techniques from Section 5 can be extended to design a RF that is weakly exfil-
tration resistant, namely it is exfiltration resistant against restricted SAs that satisfy the verifiability condition.
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Alice RAlice’s Firewall R
m ∈M
σ̃ ← Ã(sk ,m)

m,σ̃
−−−−→

Read δ = (vk , β)
If β = 1 set σ̃′ = ⊥
Else if Vrfy(vk , (m, σ̃)) = 1

σ̃′ ← ReRand(vk ,m, σ̃)
Else set σ̃′ = ⊥ and β = 1
Forward (m, σ̃′)

Figure 4: A cryptographic reverse firewall preserving unforgeability of any re-randomizable
signature scheme against arbitrary SAs.

• Let (m̄, σ̃′1), . . . , (m̄, σ̃′`) be the set of tampered signature queries (and answers to these

queries) asked by B, where σ̃′i ← Patchδ(m̄, Ãτ (sk , m̄)). Define sk ′[i] = Vrfy(vk , (m̄, σ̃′i))
and return sk ′ := (sk ′[1], . . . , sk ′[`]).

Notice that B specifies its queries non-adaptively, and moreover it only uses one subversion
which is queried upon a fixed message m̄ ∈M. We will show that the extracted key sk ′ is equal
to the original secret key sk with overwhelming probability, which clearly implies the statement.
The proof is by induction; assume that the statement is true up to some index i ≥ 1. We claim
that sk ′[i+ 1] = sk [i+ 1] with all but negligible probability. To see this, define the event Ei+1

that sk [i + 1] = 0 and Vrfy(vk , (m̄, σ̃′i+1)) = 1 or sk [i + 1] = 1 and Vrfy(vk , (m̄, σ̃′i+1)) = 0. By
the assumption that the RF does not self-destruct and is functionality maintaining, we get that
the latter sub-case happens only with negligible probability. On the other hand, if the former
sub-case happens we get that the RF forged a signature on m̄, which contradicts EUF-CMA
security of SS. By a union bound, we get that P [Ei+1] is negligible as desired.

6.3 Patching Re-Randomizable Signatures

We design a RF preserving unforgeability of so-called re-randomizable signature schemes (that
include unique signatures as a special case).

Definition 16 (Re-randomizable signatures). A signature scheme SS = (KGen,Sign,Vrfy)
is efficiently νr -re-randomizable, if there exists a PPT algorithm ReRand such that for all
messages m ∈ M and for all (vk , sk) ← KGen(1κ) and σ ← Sign(sk ,m), we have that
SD (ReRand(vk ,m, σ); Sign(sk ,m)) ≤ νr .

Note that unique signatures are efficiently re-randomizable, for ReRand(vk ,m, σ) = σ and
νr = 0; Waters’ signature scheme [Wat05], and its variant by Hofheinz et al. [HJK12], are also
efficiently re-randomizable.

Our firewall, which is formally described in Fig. 4, first checks if σ is a valid signature on
message m under key vk (provided that a self-destruct was not provoked yet). If not, it self-
destructs and returns ⊥; otherwise it re-randomizes σ and outputs the result. The self-destruct
capability is implemented using a one-time writable bit β (which is included in the public state).

Theorem 7. Let SS be a (t, (q + 1)n, ε)-EUF-CMA signature scheme that is efficiently νr -re-
randomizable and that satisfies νc-correctness. Then, the RF of Fig. 4 maintains functionality
and (t′, q, ε′)-preserves unforgeability for SS, where t′ ≈ t and ε′ ≤ qn · (νc + νr + ε).
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Proof. The fact that the firewall maintains functionality follows directly by νc-correctness of
SS. We now show the firewall preserves unforgeability. Let G be the game of Definition 15;
we write (i∗, j∗) ∈ [q] × [n] for the pair of indexes in which the firewall self-destructs (if any).
Consider the modified game H that is identical to G except that tampered signature queries
are answered as described below:

• For all j < j∗, upon input (j, m̃i,j) return σi,j ← Sign(sk , m̃i,j) for all i ∈ [q].

• For j = j∗, upon input (j, m̃i,j) if i < i∗ return σi,j ← Sign(sk , m̃i,j); else return ⊥.

• For all j > j∗, upon input message m̃i,j return ⊥ for all i ∈ [q].

Claim 7. |P [B wins in G]− P [B wins in H]| ≤ qn · (νc + νr ).

Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query (j, m̃i,j)
such that j ≤ k as in game G, while all queries (j, m̃i,j) such that j > k are answered as in H.
We note that H0 ≡ H and Hn ≡ G. Abusing notation, let us write Hk for the distribution of
the random variable corresponding to B’s view in game Hk.

We will show that SD (Hk−1,Hk) ≤ q · (νc + νr ) for all k. Fix a particular k ∈ [0, n], and for
an index l ∈ [0, q] consider the hybrid game Hk,l that is identical to Hk except that it answers
queries (k, m̃i,k) with i ≤ l as in game G, while all queries (k, m̃i,k) with i > l are treated as in
H. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) ≤ νc + νr . Observe
that, since for k > j∗ both games always return ⊥, we can assume without loss of generality
that k ≤ j∗. Note that the only difference between Hk,l−1 and Hk,l is how the two games
answer the query (k, m̃l,k): Hk,l−1 returns σl,k ← Sign(sk , m̃l,k) whereas Hk,l returns σ̃′l,k ←
Patchδ(m̃l,k, σ̃l,k) where σ̃l,k ← Ãk(sk , m̃l,k). Let El,k be the event that Vrfy(vk , (m̃l,k, σl,k)) = 0.
We have

SD (Hk,l−1; Hk,l) ≤ SD (Hk,l−1; Hk,l|¬El,k) + P [El,k] (8)

≤ νr + νc. (9)

Eq. (8) follows by Lemma 1 and Eq. (9) by the fact that Hk,l−1 and Hk,l are statistically close
(up to distance νr ) conditioned on El,k not happening, and moreover P [El,k] ≤ νc. The former is
because signatures are re-randomizable, and thus (as long as the firewall did not self-destruct)
the output of ReRand is statistically close (up to distance νr ) to the output of the original
signing algorithm; the latter follows by νc-correctness of the signature scheme.

The statement now follows by the above argument and by the triangle inequality, as

SD (G,H) ≤
n∑
k=1

SD (Hk−1,Hk)

≤
n∑
k=1

q∑
l=1

SD (Hk,l−1,Hk,l)

≤ qn · (νc + νr ).

Claim 8. P [B wins in H] ≤ qn · ε.
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Proof. Towards a contradiction, assume B wins in game H with probability larger than qn · ε.
Wlog. we assume that B always outputs its forgery after provoking a self-destruct.18 We build
an adversary B′ (using B) that breaks EUF-CMA of SS. Adversary B′ is described below.

Adversary B′:

• Receive the verification key vk from the challenger, sample a random pair
(j∗, i∗)←$ [n]× [q], and return vk to B.

• Upon input the i-th signature query mi, forward this value to the signing oracle
receiving back a signature σi ← Sign(sk ,mi). Return σi to B.

• Upon input a query of the form (j, m̃i,j) answer as follows:

– In case j < j∗, forward m̃i,j to the signing oracle, obtaining σ̃i,j ←
Sign(sk , m̃i), and return σ̃i,j to B.

– In case j = j∗, if i < i∗ forward m̃i,j to the signing oracle, obtaining σ̃i,j ←
Sign(sk , m̃i), and return σ̃i,j to B. Else, return ⊥.

– In case j > j∗ answer with ⊥.

• Whenever B outputs (m∗, σ∗), output (m∗, σ∗).

For the analysis, note that B′ runs in time similar to that of B and asks a total of at most q+qn
signing queries. Moreover, define the event E that B′ guesses correctly the query (j∗, i∗) where
B provokes a self-destruct. Clearly, in case E happens we have that B′ perfectly simulates the
distribution of game H. Hence P [B′ wins] ≥ (qn · ε)/(qn) = ε, a contradiction.

The proof follows by combining the above two claims.

7 The Multi-User Setting

In this section we consider the multi-user setting for all definitions that appear in this paper.
We also provide a complete picture of relationships between all definitions, as shown in Fig. 5
and Fig. 6.

7.1 Multi-User Impersonation

Analogous to the single-user setting, we consider two security definitions corresponding to dif-
ferent adversarial goals.

In the indistinguishability definition for the multi-user setting adversary B now receives
u ≥ 1 key pairs from the challenger and can continuously subvert each user independently. A
formal definition follows.

Definition 17 (Indistinguishability against SAs—Multi-User). Let SS = (KGen, Sign,Vrfy) be
a signature scheme, and A be some class of SAs for SS. We say that SS is u-users indistin-
guishable w.r.t continuous A-SAs if for all PPT adversaries B there exists a negligible function
ν : N→ [0, 1], such that

∣∣P [B wins]− 1
2

∣∣ ≤ ν(κ) in the following game:

1. The challenger samples b←$ {0, 1}, generates (vk i, sk i) ← KGen(1κ) for i ∈ [u] and gives
vk1, . . . , vku to B.

18If not we can always modify B in such a way that it asks one additional query provoking a self-destruct; this
clearly does not decrease B’s advantage.
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2. The adversary B can specify polynomially many queries (adaptively and in an arbitrary
order) of the form (i, Ã) for i ∈ [u].

(a) For each such query, B is given access to an oracle that can be queried polynomially
many times on inputs m ∈M.

(b) The answer to each query m depends on the value of the secret bit b. In particular,
if b = 1, the output is σ ← Sign(sk i,m); if b = 0, the output is σ̃ ← Ã(sk i,m).

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

In the impersonation definition for the multi-user setting adversary B now receives u ≥ 1
key pairs from the challenger and can continuously subvert each user independently; adversary
B is successful if it can impersonate any of the users. A formal definition follows.

Definition 18 (EUF-CMA against SAs—Multi-User). Let SS = (KGen,Sign,Vrfy) be a signa-
ture scheme, and A be some class of SAs for SS. We say that SS is u-users EUF-CMA w.r.t.
continuous A-SAs if for all PPT adversaries B there exists a negligible function ν : N → [0, 1],
such that P [B wins] ≤ ν(κ) in the following game:

1. The challenger generates (vk i, sk i)← KGen(1κ) for i ∈ [u] and gives vk1, . . . , vku to B.

2. Adversary B is given oracle access to Sign(sk i, ·). Upon input query m ∈ M, this oracle
returns σ ← Sign(sk i,m); let Q be the set of all messages queried to this oracle.

3. The adversary B can specify polynomially many queries (adaptively and in an arbitrary
order) of the form (i, Ã) for i ∈ [u].

(a) For each such query, B is given access to an oracle that can be queried polynomially
many times upon inputs m ∈M.

(b) The answer to each query m is σ̃ ← Ã(sk i,m); let Q̃ be the set containing all queried
messages to all oracles.

4. Finally, B outputs a tuple (m∗, σ∗, i∗); we say that B wins iff Vrfy(vk i∗ , (m
∗, σ∗)) = 1 and

m∗ 6∈ Q ∪ Q̃.

7.2 Multi-User Public/Secret Undetectability

In the undetectability definition for the multi-user setting user U now receives u ≥ 1 key pairs
from the challenger (only the verification keys for public undetectability) and is allowed to make
polynomially many signature queries for all users (key pairs). The answer to these queries are
either computed using the real signature algorithm or a subverted algorithm previously chosen
by the challenger possibly depending on the verification keys of the users. A formal definition
follows.

Definition 19 (Public/Secret Undetectability—Multi-User). Let SS = (KGen,Sign,Vrfy) be
a signature scheme, and A be some class of SAs for SS. We say that A is u-users secretly
undetectable w.r.t. SS if for all PPT users U, there exists a negligible function ν : N → [0, 1]
and an efficient challenger such that

∣∣P [U wins]− 1
2

∣∣ ≤ ν(κ) in the following game:

1. The challenger samples b←$ {0, 1}, generates (vk i, sk i) ← KGen(1κ) for i ∈ [u], chooses
Ã← A (possibly depending on vk1, . . . , vku), and gives (vk1, sk1, . . . , vku, sku) to B.
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2. The user U can ask polynomially many queries of the form (i,m), where i ∈ [u] and
m ∈ M. The answer to each query depends on the secret bit b. In particular, if b = 1,
the challenger returns σ ← Sign(sk i,m); if b = 0, the challenger returns σ̃ ← Ã(sk i,m).

3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say that A is u-users publicly undetectable w.r.t. SS if in step 1. of the above game, U
is only given the verification keys of the u-users.

7.3 Impersonation Relations

Theorem 8 formalizes the relations depicted in Fig. 5.

1-IMP

u-IMP

1-IND

u-IND

Figure 5: Diagram of the relationships between the subversion notions considered in this paper.
X → Y means that X implies Y ; X 9 Y indicates a separation between X and Y . The lighter
arrows indicates trivial implications (or implications that follow from Theorem 8). Definition 17
is represented by u-IND and Definition 18 is represented by u-IMP.

Theorem 8. The following relations hold: (i) 1-IND⇒ u-IND, (ii) 1-IMP ; 1-IND, (iii) u-IND
⇒ u-IMP for any EUF-CMA signature scheme, and (iv) 1-IMP ⇒ u-IMP.

Proof. (i) 1-IND ⇒ u-IND. Towards contradiction, consider an adversary B that wins the game
described in Definition 17. We build an adversary B′ that (using B) wins the game described
in Definition 5.

Let G be the game described in Definition 17. Consider the game G0, an identical copy of
game G when b = 0, and consider the game G1 an identical copy of game G when b = 1.

For an index k ∈ [0, u], consider the hybrid game Hk where each oracle corresponding
to query (i, Ã) such that i ≤ k behaves as Ã(sk i, ·) (i.e., as in game G0), while all oracles
corresponding to queries (i, Ã) such that i > k behave as Sign(sk i, ·) (i.e., as in game G1). We
note that H0 ≡ G1 and Hu ≡ G0. By assumption, we know that B can distinguish between
the extreme hybrid games H0 and Hu. So there must exist a pair of hybrids Hi, Hi−1 that B
can distinguish with a non-negligible advantage. We can construct B′ as follows.

Adversary B′:

1. Receive vk∗ from the challenger and sample (vk j , sk j) ← KGen(1κ) for all j ∈
[u] \ {i}. Define vk i = vk∗ and forward (vk1, . . . , vku) to adversary B.

2. Upon input a query (j, Ã) from B, behave as follows.

• If j ≤ i− 1 answer all queries m ∈M as σ̃ ← Ã(sk j ,m);

• if j = i forward all queries m ∈M to the challenger;

• if j ≥ i answer all queries m ∈M as σ ← Sign(sk j ,m).

3. Output whatever B outputs.
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We observe that adversary B′ simulates perfectly the distribution of the games Hi−1 (when
b = 0) and Hi (when b = 1). Since adversary B can distinguish this pair of hybrids with non-
negligible probability it follows that adversary B′ wins in the single-user game with the same
probability.

(ii) 1-IMP ; 1-IND. We sketch a separation for the definitions. Consider SS to be an
EUF-CMA signature scheme with signature size ` bits, and let A be the class of SAs for SS
such that for all Ã ∈ A the output of Ã is 0`. By SS being EUF-CMA, adversary B has only
a negligible probability of winning at the game described in Definition 18. However adversary
B can clearly win the game described in Definition 17, because it is easy for B to distinguish
between real signatures and subverted signatures.

(iii) u-IND ⇒ u-IMP. Consider SS to be an EUF-CMA signature scheme and let A be a
class of SAs for SS. The objective here is to show that if A is u-users indistinguishable w.r.t
continuous SAs (Definition 17) then A is also u-users EUF-CMA w.r.t continuous SA (Defini-
tion 18). We sketch a proof by considering a modified game for Definition 18, where all oracles
behave like the real signing oracle (one oracle for each signing key). Since the class A is u-users
indistinguishable we get that the advantage of any adversary in winning the game of Defini-
tion 18 is negligibly close to the advantage of winning in the modified game. However, since
SS is EUF-CMA no PPT adversary can win the modified game with non-negligible advantage,
and so SS satisfies u-IMP.

(iv) 1-IMP ⇒ u-IMP. Towards contradiction, consider an adversary B that wins the game
described in Definition 18. We build an adversary B′ that (using B) wins the game described
in Definition 6.

Adversary B′:

1. Receive vk∗ from the challenger, sample i∗←$ {1, . . . , u} and (vk i, sk i)← KGen(1κ)
for all i ∈ [u] \ {i∗}. Set vk i∗ := vk∗ and forward (vk1, . . . , vku) to adversary B.

2. Upon each query (i,m), for i ∈ [u] and m ∈ M: If i 6= i∗ reply with σ =
Sign(ski,m), else forward the query to the challenger.

3. Upon each query (i, Ã), with i ∈ [u], behave as follows.

• For each m ∈ M chosen by the adversary B, if i 6= i∗ answer with σ̃ =
Ã(sk j ,m), else forward the query to the challenger.

4. Eventually B outputs a forgery (i′,m′, σ′); adversary B′ outputs (m′, σ′) as its
own forgery.

Adversary B′ is successful if adversary B outputs a forgery for user i∗. Define E, to be the
event that B′ guesses correctly the index i′ = i∗; note that P [E] = 1/u. Therefore adversary B′

has a non-negligible probability of winning at the game described in Definition 6.

7.4 Undetectability Relations

The following theorem (9) formalizes the relations depicted in Fig. 6.

Theorem 9. The following relations hold. (i) u-sUND ⇒ u-pUND, (ii) 1-pUND ; 1-sUND,
(iii) 1-pUND ; u-pUND, and (iv) 1-sUND ; u-sUND.
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1-pUND

u-pUND

1-sUND

u-sUND

Figure 6: Diagram of the relationships between the undetectability notions considered in this
paper. X → Y means that X implies Y ; X 9 Y indicates a separation between X and Y .
The lighter arrows indicates trivial implications (or implications that follow from Theorem 9).
Public undetectability (Definition 19) is represented by u-pUND and the secret undetectability
(Definition 18) is represented by u-sUND.

Proof. (i) u-sUND ⇒ u-pUND. Fix any class A of SAs for SS, and let C∗ be the (efficient)
challenger that exists by the assumption that A is secretly undetectable. We claim that A
is also publicly undetectable for the same choice of the challenger C∗. Towards contradiction,
consider a user U that wins the public undetectability game described in Definition 19 against C∗.
We build a user U′ (using U) that wins the secret undetectability game described in Definition 19
against C∗.

User U′:

1. Receive (vk i, sk i)← KGen(1κ), for i ∈ [u], from the challenger C∗ and forward
it to user U.

2. User U asks polynomially many queries of the type (i,m) which are forwarded
to the challenger C∗.

3. Output whatever U outputs.

We note that the simulation performed by user U′ is perfect, therefore U′ wins the secret
undetectability game with the same probability that user U wins the public undetectability
game.

(ii) 1-pUND ; 1-sUND. We sketch a separation between the definitions. Let SS be a ran-
domized signature scheme, and let SS ′ be its derandomized implementation s.t. sk ′ := (sk , s),
vk ′ := vk , and σ′ := Sign(sk ,m; r′) with r′ := F ′s(m) (for a PRF F ). We note that the only
difference between SS and SS ′ is how the randomness r is computed for the signing algorithm.
Let AFbias be the class of SAs described in Fig. 1. By security of the PRF, and by Theorem 1, a
user U has only a negligible probability of winning at the public undetectability game described
in Definition 7. However, a user U playing the secret undetectability game knows sk ′ = (sk , s)
and thus U can easily distinguish subverted and real signatures by simply re-computing r′ and
re-signing the input message; if both signatures match then with a high probability the target
oracle is the real signining oracle. Notice that the last statement holds no matter how the
subversion algorithm Ã ∈ AFbias is selected by the challenger in the secret undetectability game.

(iii) 1-pUND ; u-pUND. We sketch a separation for the definitions. Consider SS to be a
contrived signature scheme such that the signature of a message m ∈M is σ = Sign(sk ,m; r)||r,
where r←$ {0, 1}κ. Let A = {Ãτ,r̄}τ=0,r̄∈{0,1}κ to be class of SAs for SS described next.

Ãτ,r̄(sk ,m):
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1. If τ = 0 then let r := r̄, else let r←$ {0, 1}κ.

2. Output σ ← Sign(sk ,m; r)||r and update τ = τ + 1.

Clearly, the class A is publicly undetectable for a single user because the output of the
subverted signature algorithm is indistiguishable from that of the real signing algorithm, even
for the first query (when τ = 0). However, the class A is clearly 2-users publicly detectable
since (no matter the strategy of the challenger) it suffices to ask one query for each user and
compare the last κ bits of the signatures to distinguish between real and subverted signatures.

(iv) 1-sUND ; u-sUND. We show a separation between the definitions. Consider SS to be a
randomized, coin-extractable signature scheme, with randomness size of `-bits, where ` = |sk |,
and Acext to be the class of SAs for SS described in Fig. 2. We already showed in Theorem 2
that (for the challenger C∗ that chooses Ã at random from Acext) any PPT user U playing the
secret undetectability game described in Definition 7 has a negligible advantage. Now consider
the same user U playing the 2-users secret undetectability game described in Definition 19; user
U now has 2 key pairs that can be used to detect the attack in the following way.

User U:

1. Receive (vk i, sk i)← KGen(1κ), for i = 1, 2.

2. Fix a message m̄ ∈ M and query (1, m̄) and (2, m̄) to the challenger, that
replies with σ1 and σ2.

3. Use CExt to extract the randomness from σ1 and σ2 to get r1 ← CExt(vk1, m̄, σ1)
and r2 ← CExt(vk2, m̄, σ2).

4. Compute sk1 ⊕ sk2 and return 0 iff the result equals r1 ⊕ r2.

We note that the above detection strategy works regardless what strategy the challenger
uses to select an algorithm from the class Acext. We conclude that user U has an overwhelming
probability of distinguishing between real and subverted signatures.

8 Mounting Multi-User SAs

In this section we extend the attacks of Fig. 1 and Fig. 2 to the multi-user setting.

8.1 Attacking Coin-Injective Schemes (Multi-User Version)

The attack described in Fig. 1 can be extended to the multi-user setting with minor modifica-
tions. We create an SA class AF,ubias from the class AFbias of Fig. 1 by just appending the index j,
that represents each user, to the function g(·) = Sign(sk j ,m)||τ ||j, so that each application of
the random function f(g(·)) remains independent.

The two lemmas below (Lemma 3 and Lemma 4) are needed for the proof of undetectability
in the multi-user setting. The two lemmas combined roughly state that the statistical distance
of a joint distribution of u random variables is at most u times the statistical distance of each
pair of the random variables.

Lemma 3 ([Rey11]). Let X and Y be two random variables over some finite domain, and let
G be a randomized function. Then SD (G(X), G(Y)) ≤ SD (X,Y).
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Lemma 4. Let X and Y be two random variables over some finite domain, and let (X1, . . . ,Xu)
and (Y1, . . . ,Yu) be u independent copies of the random variables X and Y. Then

SD ((X1, . . . ,Xu), (Y1, . . . ,Yu)) ≤ u · SD (X,Y) .

Proof. We prove this lemma by induction. First we consider the basis case where i = 1, which
trivially holds as SD (X1,Y1) ≤ SD (X,Y).

For the induction step we define the random functions G1(·) = (X1, . . . ,Xi−1, ·) and G2(·) =
(·,Yi). We assume that the statement holds up to i− 1 random variables and then we proceed
to show that it also holds for i random variables.

SD ((X1, . . . ,Xi), (Y1, . . . ,Yi))

≤ SD ((X1, . . . ,Xi), (X1, . . . ,Xi−1,Yi)) + SD ((X1, . . . ,Xi−1,Yi), (Y1, . . . ,Yi))

= SD (G1(Xi), G1(Yi)) + SD (G2(X1, . . . ,Xi−1), G2(Y1, . . . ,Yi−1))

≤ SD (X,Y) + SD ((X1, . . . ,Xi−1), (Y, . . . ,Yi−1))

≤ i · SD (X,Y) ,

where the first inequality follows by the triangle inequality, the second inequality follows by
Lemma 3, and the third inequality follows by the induction hypothesis.

The theorem below quantifies the effectiveness of the attack of Fig. 1 in the multi-user
setting.

Theorem 10. Let F : {0, 1}κ × {0, 1}∗ → {0, 1} be a secure PRF. For a randomized, coin-
injective signature scheme SS with randomness space of size ρ = |R|, consider the class of SAs
AF,ubias described above. Then,

(i) AF,ubias is u-users secretly undetectable.

(ii) Each Ã ∈ AF,ubias recovers the signing key of any of the users with probability at least (1 −
(1/2 + εprf)

ρ)`, where ` is the size of the signing key.

Proof. (i) Let G be the game described in Definition 19. Consider the game G0, an identical
copy of game G when b = 0, and consider the game G1, an identical copy of game G when
b = 1. For the first part of the proof the objective is to show that G0 ≈ G1.

Now consider game G′0 an identical copy of game G0 except that G′0 utilizes the distribution
from the random function f (analogous to Eq. (1) in the single user attack) instead of the
distribution from the PRF F (analogous to Eq. (2) in the single user attack).

Claim 9. |P [U wins in G0]− P [U wins in G′0]| ≤ negl(κ).

The above claim follows by a standard reduction argument to the hardness of the PRF F to
distinguishing games G0 and G′0. The proof is similar to the one in Theorem 1 and is therefore
ommited.

Claim 10. |P [U wins in G′0]− P [U wins in G1]| ≤ negl(κ).

Proof. Abusing notation, let us write G′0 and G1 for the distribution of the random variables
corresponding to U’s view in games G′0 and G1 respectively. For an index i ∈ [0, q] consider the
hybrid game Hi that answers the first i signature queries as in game G′0 while all the subsequent
queries are answered as in G1. We note that H0 = G1 and Hq = G′0.
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We claim that for all i ∈ [q], we have SD (Hi−1,Hi) ≤ 2−(ρ+1). To see this, fix some i ∈ [q]
and denote with R1, . . . ,Ru (resp. R̃1, . . . , R̃u) the random variables defined by sampling an
element from R (resp. R̃) uniformly at random. Clearly,

SD (Hi−1,Hi) ≤ SD((R1, . . . ,Ru), (R̃1, . . . , R̃u))

≤ u · SD(R, R̃) (10)

= u · 2−(ρ+1), (11)

where Eq. (10) follows by Lemma 4 and Eq. (11) follows by Eq. (3).
The claim now follows by the triangle inequality, as

SD
(
G1,G

′
0

)
≤

q∑
i=1

SD (Hi−1,Hi) ≤ qu · 2−(ρ+1)

and the last term becomes negligible for u, q = poly(κ) and for ρ large enough.

The two claims above finish the proof of statement (i).

(ii) For the second part of the proof we proceed as in Theorem 1. We note that the specified
class of SAsAF,ubias maintains each application of the random function f independent by appending
the index j, that represents each user, to the function g, obtaining g(·) = Sign(sk j ,m)||τ ||j.
The statement follows.

8.2 Attacking Coin-Extractable Schemes (Multi-User Version)

The attack against coin-extractable schemes described in Fig. 2 becomes easily detectable in
the presence of two or more users (see the proof of Theorem 9, item (iv)). An easy solution is
to modify the SA class such that each algorithm in the class uses a different one-time pad key
for each target user. We describe this class of SAs in Fig 7.

Theorem 11. For a randomized, νext-coin-extractable, signature scheme SS with randomness
space R of size ρ = 2d, consider the class of SAs Aucext described in Fig. 7. Then,

(i) Aucext is u-users secretly undetectable.

(ii) Each Ã ∈ Aucext recovers the signing key of any of the users with probability at least (1 −
νext)

`/d.

Proof. (i) Let G be the game described in Definition 19, where the challenger first generates
all key pairs (vk i, sk i) (for i ∈ [u]) and afterwards selects the algorithm Ã ← Aucext such that
~vk := (vk1, . . . , vku). Consider the game G0, an identical copy of game G when b = 0, and
consider the game G1, an identical copy of game G when b = 1. For the first part of the proof
the objective is to show that G0 ≈ G1.

Claim 11. G0 ≡ G1.

Proof. Abusing notation, let us write G0 and G1 for the distribution of the random variables
corresponding to U’s view in games G0 and G1 respectively. For an index i ∈ [0, q] consider the
hybrid game Hi that answers the first i signature queries as in game G0 while all the subsequent
queries are answered as in G1. We note that H0 ≡ G1 and Hq ≡ G0.
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SA class Aucext

Let SS = (KGen,Sign,Vrfy) be a coin-extractable randomized signature scheme with ran-
domness space R of size ρ = 2d. The class Aucext consists of a set of algorithms
{Ã

~s, ~vk ,~τ
}
~s∈{0,1}`·u, ~vk∈VKu,~τ=0u

, where ` = |sk |, and where each algorithm in the class behaves as

follows:

Ã
~s, ~vk ,~τ

(sk i,m):

• Parse ~s as (s1, . . . , su), ~vk as (vk1, . . . , vku), and ~τ as (τ1, . . . , τu).

• Find the index i such that Vrfy(vk i,m,Sign(sk i,m)) = 1.

• If τi ≥ ` output a real signature σ ← Sign(sk i,m).

• Else,

– For each value j ∈ [d] compute the biased random bit r̃[j] = si[τi + j] ⊕
sk i[τi + j].

– Return the signature σ := Sign(sk i,m; r̃), and update the state τi ← τi+d.

Extracting the signing key. Given as input a vector of signatures ~σ = (σ1, ..., σ`/d) of user
i, represent the trapdoor si as `/d chunks of d bits si = {si,1, . . . , si,`/d}. For each signature
σk ∈ ~σ try to extract the d-bit chunk sk′i,k of the signing key as follows.

• Extract the randomness from the k-th signature r̃ ← CExt(vk i,mk, σk).

• For each value j ∈ [d] compute the secret key bit sk′i,k[j] = r̃[j]⊕ si,k[j].

Return the signing key sk ′i := (sk ′i,k, . . . , sk ′i,`/d).

Figure 7: Attacking coin-extractable schemes in the multi-user setting

We claim that for all i ∈ [q], we have Hi−1 ≡ Hi. To see this, fix some i ∈ [q] and denote
with R1, . . . ,Ru the random variables defined by sampling an element from R uniformly at
random and with R̃1, . . . , R̃u the random variables defined by sampling an element from the
biased distribution R̃ also uniformly at random. It is easy to see that Ri and R̃i, for i ∈ [q], are
identically distributed, as the biased distribution consists of a one-time pad encryption of (part
of) the signing key with a uniform key (a different key for each user). The claim follows.

(ii) For the second part of the proof we note that the attack of Fig. 7 successfully recovers
the biased randomness r̃ of each σi ∈ {σ1, . . . , σ`/d} and computes the chunk skj,i of the signing
key of a user j with probability at least 1− νext. This gives a total probability of recovering an
entire signing key of at least (1− νext)`/d.
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