
© The Author 2016. Published by Oxford University Press on behalf of The British Computer Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

Advance Access publication on 5 December 2016 doi:10.1093/comjnl/bxw080

Semantic Subtyping for Objects
and Classes

ORNELA DARDHA
1, DANIELE GORLA

2*
AND DANIELE VARACCA

3

1University of Glasgow, Glasgow, UK
2Department of Computer Science, Universita degli Studi di Roma La Sapienza, Computer science,

Roma, Italy
3LACL, Université Paris Est - Créteil, Paris, France
*Corresponding author: daniele.gorla@uniroma1.it

In this paper, we propose an integration of structural subtyping with boolean connectives and semantic
subtyping to define a Java-like programming language that exploits the benefits of both techniques.
Semantic subtyping is an approach for defining subtyping relation based on set-theoretic models, rather
than syntactic rules. On the one hand, this approach involves some non-trivial mathematical machinery
in the background. On the other hand, final users of the language need not know this machinery and
the resulting subtyping relation is very powerful and intuitive. While semantic subtyping is naturally
linked to the structural one, we show how our framework can also accommodate the nominal subtyp-

ing. Several examples show the expressivity and the practical advantages of our proposal.

Keywords: semantic subtyping; object-oriented languages; type theory; Featherweight Java;
nominal and structural subtyping

Received 21 December 2015; revised 16 July 2016; editorial decision 25 September 2016
Handling editor: Mariangiola Dezani-Ciancaglini

1. INTRODUCTION

A type system for a programming language is a set of deduc-
tion rules that enable type derivations for the terms of the lan-
guage. The subtyping relation on types is a key notion as
type systems often depend on it.
There are two main approaches for defining the subtyping

relation: the syntactic approach and the semantic one. The syn-
tactic approach is more common; it is defined by means of a
formal system of deduction rules. One proceeds as follows:
first define the language, then the set of syntactic types and
finally the subtyping relation by deduction rules. In the seman-
tic approach, instead, one starts from a model of the language
and an interpretation of types as subsets of this model; the sub-
typing relation is then defined as inclusion of sets denoting
types. This approach has received less attention than the syn-
tactic one because it is more technical: it is not trivial to define
the interpretation of types as subsets of a model, or to define a
model at all. However, the semantic approach presents several
advantages: it allows a natural definition of boolean operators
and the meaning of types is more intuitive for the programmer,
who does not need to know the theory behind the curtain (as
usual in sophisticated programming environments).

The first use of the semantic approach goes back to two
decades ago [1, 2]. More recently, Hosoya and Pierce [3, 4]
have adopted this approach to define XDuce, an XML-
oriented language which transforms XML documents into
other XML documents, satisfying certain properties.
Subtyping relation is established as inclusion of sets of
values, the latter being fragments of XML documents. The
type system contains booleans, products and recursive types.
There are no function types and terms in the language.
Benzaken et al. [5–7] extend the XDuce with first-class
functions and arrow types defining a higher-order language,
named  Duce, and adopting the semantic approach to sub-
typing. The starting point of their framework is a higher-order
l-calculus with pairs and projections. The set of types is
extended with intersection, union and negation types inter-
preted in a set-theoretic way. More recently the type system
of  Duce was also extended to include polymorphism [8].
This approach can also be applied to π-calculus [9].

Castagna et al. [10] defined the p language, a variant of the
asynchronous π-calculus where channel types are augmented
with boolean connectives.
Amadio and Cardelli [11] define subtyping for recursive

types for the λ-calculus. Types are interpreted as collections
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of values and subtyping corresponds to subcollections. They
introduce the notion of bottom and top types. Types are
partially ordered by using the inclusion relation and every
type t is in relation of subtyping with bottom and top, as the
intuition conveys. In this work, Amadio and Cardelli extend
this ordering to recursive types: if one assumes that the inclu-
sion of recursive variables implies inclusion of the bodies of
recursive types, one can deduce the inclusion of recursive
types themselves. They show that subtyping in the presence
of recursive types is decidable, but did not provide a com-
plexity analysis. Later on Kozen et al. [12] show that the type
inclusion problem is solvable in time ( )O n2 . They reduce the
problem to the emptiness problem for automata.
Aiken and Wimmers [13] present an algorithm for solving

systems of type inclusion constraints, where the type lan-
guage includes 0 and 1, being the least and universal types,
respectively, intersection and union types, function types,
pairs and recursive types. This algorithm stands at the basis
of an inclusion-based type inference system for the λ-calculus
with constants.
Ancona and Lagorio [14] study the subtyping relation for

infinite types defined coinductive by using union and object
type constructors. Types are interpreted as sets of values, by
exploiting the notions of membership and contractive deriva-
tions. Subtyping is defined coinductively and is shown to be
sound w.r.t. set inclusion of values. This technique eliminates
the circularity and the need for a bootstrap model. This differs
from our work in both the interpretation of types and the def-
inition of subtyping. A recent alternative semantic approach
to subtyping for record types is by Ancona and Corradi [15],
who concentrate on the use of coinductively defined types to
model cyclic record values.
Bonsangue et al. [16] develop a coalgebraic approach to

coinductive types. The paper defines a set-theoretic interpret-
ation of coinductive types with union types, and defines the
semantic subtyping relation as inclusion of maximal traces,
which is syntactic unfoldings of type definitions. Moreover, a
technique is proposed to define subtyping as inclusion of
merely finite traces. The technique proposed in this work is
completely different from ours. In addition, our approach
based on set-inclusion of values is applied to a specific frame-
work, that of an object-oriented language. Other relevant
related works on coinductive definitions of subtyping are [17,
18] and the recent survey [19].
Finally, semantic subtyping is adopted in a flow-typing cal-

culus [20]. Flow-typing allows a variable to have different
types in different parts of a program and thus is more flexible
than the standard static typing. Type systems for flow-typing
incorporate intersection, union and negation types in order to
typecheck terms, like for example, if-then-else statements.
Consequently, semantic subtyping is naturally defined on top
of these systems.
Contributions. In the present paper, we address the seman-

tic subtyping approach (Section 3) by applying it to an

object-oriented core language; the result will be an object-
oriented system with boolean connectives and structural sub-
typing. To this aim, we use the syntax of Featherweight Java
(FJ) [21], which is a functional fragment of Java (Section 2).
We give the syntax of types (Section 2.1) and terms (Section
2.2), and the operational semantics (Section 6) of our calcu-
lus. We define a type system (Section 4) that uses a subtyping
relation, as we discuss in the following, and prove its safety
by the usual subject reduction (theorem 2, Section 7) and pro-
gress (theorem 3, Section 7).
From a technical point of view, the development is not triv-

ial. It follows [7], but with the difference that we do not have
higher-order values. Therefore, we cannot directly reuse their
results. Instead, we define and construct from scratch the
semantic model, called bootstrap model (Section 3.3), which
induces the subtyping relation used in the type system of our
language. We prove some important theoretical results
regarding this model (the details are given in the Appendix).
After having built the bootstrap model and defined the sub-
typing relation it induces, we define a new and more natural
interpretation of types, as sets of (pseudo-)values (Section 5).
The reason is that we want to have an interpretation of types
that relies on the calculus used, rather than on a mathematical
model, like the bootstrap model. We then study the subtyping
relation it induces and give our main contribution: the
bootstrap model and the interpretation of types as sets of
(pseudo-) values induce the same subtyping relation (theorem
1, Section 5.1). The mathematical technicalities in the frame-
work are not simple, but they are transparent to the final user.
Thus, the overhead is hidden to the programmer. Incidentally,
the full development of the theory of semantic subtyping is
the main contribution of this paper w.r.t. the extended abstract
[22]; in particular, Section 3 was only sketched in loc.cit.,
whereas here we provide full details and proofs of our results.
The benefits of our approach reside in that the programmer

now has a language with an easy-to-write and very expressive
set of types. Indeed, standard programming features in Java
can be easily programmed in our framework (Sections 8.1,
8.3). Moreover, there are several benefits that make semantic
subtyping very appealing in an object-oriented setting. For
example, it allows us to easily handle powerful boolean type
constructors (Section 2.1) and model both structural and
nominal subtyping (Section 8.4).
The importance, both from the theoretical and the practical

side, of boolean type constructors is widely known in several
settings, e.g. in the λ-calculus. Below, we show two examples
where the advantages of using boolean connectives in an
object-oriented language become apparent.
Boolean constructors for modelling multi-methods. FJ [21]

is a core language, so several features of full Java are not
included in it; in particular, an important missing feature is
the possibility of overloading methods, both in the same class
or along the class hierarchy. By using boolean constructors,
the type of an overloaded method can be expressed in a very
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compact and elegant way, and this modelling comes for free
after having defined the semantic subtyping machinery.
Actually, what we are going to model is not Java’s overload-
ing (where the static type of the argument is considered for
resolving method invocations) but multimethods (where the
dynamic type is considered). To be precise, we implement the
form of multi-methods used, e.g. in [23, 24]; according to
[25], this form of multi-methods is ‘very clean and easy to
understand […] it would be the best solution for a brand new
language’.
As an example, consider the following class declarations:1

{
¼

( ){¼}
}

{
¼

( ){¼}
}

A Object

length s

B A

length n

class extends

int string

class extends

int int

As expected, method length of A has type string int.
However, such a method in B has type

(  ) (  )string int int int ,2 which can be simplified as
( ) string int int.

The use of negation types. Negation types are used by the
compiler for typechecking terms of a language. They allow a
clear definition of a type-case constructor, and more generally
of pattern matching. But negation types could also be used
directly by the programmer, even though their use is not of
primary importance for programming usual tasks.
As an example, suppose we want to represent an inhabit-

ant of Christiania, that does not want to use money and
does not want to deal with anything that can be given a
price. In this scenario, we have a collection of objects,
some of which may have a getValue method that tells their
value in €. We want to implement a class Hippy which has
a method barter that is intended to be applied only to
objects that do not have the method getValue. This is very
difficult to represent in a language with not only nominal
subtyping; but also in a language with structural subtyping,
it is not clear how to express the fact that a method is not
present. In our framework, we offer an elegant solution by
assigning to objects that have the method getValue the type
denoted by

[  ]getValue void real:

Within the class Hippy, we can now define a method with
signature

([  ] )barter getValue xvoid void real:

that takes in input only objects x that do not have a price, i.e.
a method named getValue. One could argue that it is difficult
to statically know that an object does not have method
getValue and thus no reasonable application of method barter
can be well typed. However, it is not difficult to explicitly
build a collection of objects that do not have method
getValue, by dynamically checking the presence of the
method. This is possible thanks to the instanceof construction
(described in Section 8.3). Method barter can now be applied
to any object of that list, and the application will be well
typed.
In the case of a language with nominal subtyping, one can

enforce the policy that objects with a price implement the
interface ValuedObject. Then, the method barter would take
as input only objects of typeValuedObject .
While the example is quite simple, it should exemplify

those situations in which we want to statically refer to a por-
tion of a given class hierarchy and exclude the remainder.
The approach we propose is more elegant and straightforward
than possible solutions offered by current object-oriented
paradigms.
Structural subtyping: An orthogonal issue, typical of

object-oriented languages, is the nominal vs. structural sub-
typing question. In a language where subtyping is nominal, A
is a subtype of B if and only if it is declared to be so, mean-
ing if class A extends (or implements) class (or interface) B;
these relations must be defined by the programmer and are
based on the names of classes and interfaces declared. Java/
C++/C# programmers are used to nominal subtyping, but
other languages [26–32] are based on the structural approach.
In the latter, subtyping relation is established only by analyz-
ing the structure of a class, i.e. its fields and methods: the
structural type of (the instances of) a class A is a subtype of
the structural type of (the instances of) a class B if and only if
the fields and methods of A are a superset of the fields and
methods of B, and their types in A are subtypes of their types
in B (indeed, for fields we do not need type invariance
because fields are immutable, since we are considering FJ
that is functional). Even though the syntactic subtyping is
more naturally linked to the nominal one, the former can also
be adapted to support the structural one, as shown in [27, 29].
In this paper, we follow the reverse direction and give

another contribution. The definition of structural subtyping as
set inclusion perfectly fits with the definition of semantic sub-
typing. However, with minor modifications, it is also possible
to include in the framework the choice of using nominal sub-
typing without changing the underlying theory. It is not our
aim to enter into the nominal vs. structural type question;
both can be found in the literature (actually, structural typing
is less used in real programming languages) and have their
benefits. Thus, we take a neutral position on this aspect and
allow them both in our setting; so, programmers can decide,
from case to case, the kind of subtyping that better copes
with their needs.

1Here and in the rest of the paper we use ‘…’ to avoid writing the useless
part of a class, e.g. constructors or irrelevant fields/methods.

2To be precise, the actual type is  ((  )  ) (  )string int int int int
but   string int string, where ≃ denotes Ç£ £-1 and£ is the (seman-
tic) subtyping relation.
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2. THE CALCULUS

In this section, we present the syntax of the calculus, starting
with the types and then moving to the language terms, which
are substantially the ones in FJ.

2.1. Types

Our types are defined by properly restricting the type terms
inductively defined by the following grammar:



t a m

a t a a a a
m a a m m m m

 
 

=

= [ ] ( )
=  ( )

~
∣
∣ ∣ ∣ ∣ -

∣ ∣ -

Type term

l Object type type

Method type type

::

:: 0 :

:;

DEFINITION 1. (Types). The set of types, denoted by  , is the
largest set of well-formed regular trees produced by the syn-
tax of type terms, where regular means that the tree has a
finite number of non-isomorphic subtrees and well-formed
means that the binary relation ▹ defined as

t t t t t t t t  ▹ ▹ ▹1 2 1 1 2 2

does not contain infinite chains.

Types can be of two kinds: α-types (used for declaring
fields and, in particular, objects) and μ-types (used for declar-
ing methods). Arrow types are needed to type the methods of
our calculus. Since our language is first-order and methods
are not first-class values, arrow types are introduced by a sep-
arate syntactic category, ranged over by μ. Indeed, even if
later on we shall given an interpretation to arrow-types as sets
of (pseudo-)values, this will be only a technical device to let
our typing machinery work; no object will ever use methods
as values (as customary in the OO paradigm).
Type 0 denotes the empty type. Type  denotes the basic

types: integers, booleans, void, etc.3 Type t[ ]
~
l: is a record

type, denoted with ρ, where t
~
l: indicates the sequence

t t¼l l: , , :k k1 1 , for some ³k 0. Labels l range over an infin-
ite countable set . When necessary, we will write a record
type as a m[ ]~~a m: , : to emphasize the fields of the record,
denoted by the labels a , and the methods of the record,
denoted by ~m . Given a type r a m= [ ]~~a m: , : , r ( )ai is the
type assigned to the field ai and r ( )mj is the type assigned to
the method mj. In each record type ¹a ai j for ¹i j and

¹m mh k for ¹h k. To simplify the presentation, we are
modelling a form of multi-methods where at most one defin-
ition for every method name is present in every class.

However, the general form of multi-methods can be recov-
ered by exploiting the simple encoding of Section 8.2.
The boolean connectives  and  have their intuitive set-

theoretic meaning. We use 1 to denote the type 0 that corre-
sponds to the universal type. We use the abbreviation a a¢⧹
to denote a a  ¢ and a a ¢ to denote a a (  ¢). The
same holds for the μ-types.
Notice that every finite tree obtained by the grammar of

types is both regular and well-formed; so, it is a type.
Problems can arise with infinite trees; this leads us to restrict
ourselves to the regular and the well-formed ones. Indeed,
since we want our types to be usable in practice, we restrict
ourselves to regular trees that can be easily written down in a
finite way, e.g. by using recursive type equations. Moreover,
as we want types to denote sets, we impose some restrictions
to avoid ill-formed types. For example, the solution to
a a a= contains no information about the set denoted by
α; or a a= does not admit any solution. Such situations
are problematic when we define the model. To rule them out,
we only consider infinite trees whose branches always contain
an atom, where atoms are the basic types , the record types

t[ ]
~
l: and the arrow types a a . This intuition is what the
definition of relation ▹ formalizes. Since such a relation is
strongly normalizing, it provides us with an induction prin-
ciple on the set of types that we will use throughout the paper
without any further reference to relation ▹. The restriction to
well-formed types is required to avoid meaningless types; the
same choice is used in [7] and in [33], where the same notion
is called contractiveness.
In this paper, we express regular trees as the solution of

recursive type definitions; this is in line with the aims of our
work, that is lying down the theoretical basis for the system
proposed. In a concrete implementation, we should replace
this approach with a syntactic construct, like aXrec . .

2.2. Terms

The syntax of our calculus is based on FJ [21] rather than, for
example, the object-oriented calculus in [34], because of the
widespread diffusion of Java. There is a correspondence
between FJ and the pure functional fragment of Java, in a
sense that any program in FJ is an executable program in
Java. Our syntax is essentially the same as [21], apart from
the absence of the cast construct, that we left out for the sake
of simplicity: it is orthogonal to the aims of the current work
and it can be added to the language without any major issue.
Moreover, differently from FJ, we have complex types asso-
ciated to field and method declarations, whereas in FJ every-
thing is associated to class names. This is necessary because
we deal with types resulting from the boolean combination of
basic types. However, we shall show in Section 8.4 that com-
plex types can be assigned symbolic names, to ease
programming.

3The type void is different from 0 since the former is inhabited by only
one value, whereas the latter is not inhabited by any value.
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We assume a countable set of names, among which there
are some key names: Object that indicates the root class, this
that indicates the current object, and super that indicates the
parent object. We will use the letters ¼A B C, , , for indicat-
ing classes, ¼a b, , for fields, ¼m n, , for methods and

¼x y z, , , for variables.  will denote the set of constants of
the language and we will use the meta-variable c to range
over . Generally, to make examples clearer, we will use
mnemonic names to indicate classes, methods, etc.; for
example, Point, print, etc.
The syntax of the language is given by the following

grammar:

a

a
a a

= { }

= ( ) { ( ) = }
= ( ) { }
= ( ) ( )

~

~

~
~



 

∣ ∣ ∣ ∣

Class declaration L C C a K M

Constructor K C x x a x

Method declaration M m x e

Expressions e x c e a e m e C e

class extends

super this

return

new

:: ; ;

:: ; . ;

:: ;

:: . .

A program is a pair ( )L e, consisting of a sequence of class
declarations L , inducing a class hierarchy (as specified by the
inheritance relation), and an expression e, that has to be eval-
uated therein. A class declaration L provides the name of the
class, the name of the parent class it extends, its fields (each
equipped with a type specification), the constructor K and its
method declarations M. The constructor initializes the fields
of the object by assigning values to the fields inherited by the
super-class and to the fields declared in the present class. A
method is declared by specifying the return type, the name of
the method, the formal parameter (made up by a type specifi-
cation given to a symbolic name) and a return expression, i.e.
the body of the method. To increase readability of our theor-
etical development, we use unary methods. This does not
compromise the expressivity of the language: passing tuples
of arguments can be modelled by passing an object that
instantiates a class, defined in an ad hoc way by having as
fields all the needed arguments. Finally, expressions e are
variables, constants, field accesses, method invocations and
object creations.
In this work, we assume that L is well-defined, in the sense

that ‘it is not possible that a class A extends a class B and
class B extends class A’, or ‘a constructor called B cannot be
declared in a class A’ and other obvious rules like these. All
these kinds of checks could be carried out in the type system,
but we prefer to assume them and focus our attention on the
new features of our framework. The same sanity checks are
assumed also in FJ [21].
To conclude, we want to remark that we could easily add

the rnd construct of  Duce to the syntax of our expressions.
Precisely, a( )rnd returns a value of type α; this could be
used to model nondeterministic methods and, in particular,
user inputs. This addition would not change the theory we are
going to develop.

3. SEMANTIC SUBTYPING

Having defined the raw syntax, the next step is to introduce
the typing rules, which typically involve a subsumption rule
that uses a notion of subtyping. It is therefore necessary to
define subtyping. As we have already said, in the semantic
approach t1 is a subtype of t2 if all the t1-values are also
t2-values, i.e. if the set of (well-typed) values of type t1 is a
subset of the set of (well-typed) values of type t2. However,
in this way, subtyping is defined by relying on the notion of
well-typed values; hence, we need the typing relation to
determine typing judgements for values; but the typing rules
use the subtyping relation which we are going to define (in
the so-called ‘subsumption’ rule). So, there is a circularity.
To break this circle, we follow the path of [7] and adapt it to
our framework.
The idea is to first interpret types as subsets of some

abstract ‘model’ and then establish subtyping as set-inclusion.
By using this abstract notion of subtyping, we can then define
the typing rules. Having now a notion of well-typed values,
we can define the ‘real’ interpretation of types as sets of
values. This interpretation can be used to define another
notion of subtyping. But if the abstract model is chosen care-
fully, then the real subtyping relation coincides with the
abstract one, and the circle is closed.
A model consists of a set D and an interpretation function

  ( )  D_ :D . Such a function should interpret boolean
connectives in the expected way (conjunction corresponds to
intersection and negation corresponds to complement—see
Definition 2) and should capture the meaning of type con-
structors (see Definitions 3, 4 and 5). Notice that, given an
intuitive meaning of types, there may be several models
(defined in Definition 6) that satisfy this requirement, and it is
not guaranteed that they all induce the same subtyping rela-
tion, nor that the induced subtyping is decidable. Aiming at a
decidable subtyping, we shall only consider models for which
values are finite trees (as defined in Section 3.2).
Then, we only need one model that respects the intuitive

meaning of type constructors and boolean connectives, and
whose values are finite trees. We shall construct such a model
in Section 3.3 and call it the bootstrap model. Then, set inclu-
sion in the bootstrap model induces a (decidable) subtyping
relation,   t t t t£ Í   ⟺1 2 1 2 , to be used for typing
terms and breaking circularity.

3.1. Set-theoretic interpretations and models

First of all, any set-theoretic interpretation must respect the
set-theoretic meaning of the boolean constructors; this is for-
malized in the following definition.

DEFINITION 2. (Set-theoretic interpretation). A set-theoretic
interpretation of types in  is given by a set D and a function
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  ( ) · D: such that, for any t t t Î, ,1 2 , the following
hold:

Çt t t t t t = Æ = =           ⧹D0 1 2 1 2

Notice that the above definition implies t t = 1 2

Èt t   1 2 , t t t t=     ⧹ ⧹1 2 1 2 and =  D1 . Every set-
theoretic interpretation   ( ) · D: induces a binary rela-
tion £ Í

2 defined as follows: t t t t£ Í    ⟺1 2 1 2 .
This relation is the semantic subtyping relation. Thanks to
negation, the problem of deciding the subtyping between two
types is reduced to the problem of identifying the empty sets,
that is: t tÍ   ⟺1 2 Çt t t t= Æ ( )=       ⧹ ⟺ ⧹D1 2 1 2

t t Æ = Æ ⟺ 1 2 .
Next, we are going to define the requirements for a set-

theoretic interpretation to correctly represent the meaning of
the type constructors. First, we require that, for every basic
type , there is a set of values Val ( Í ) for that type.
Conversely, we also require that every sets of basic values
correspond to a basic type. In particular, for every constant c,
there is a basic type c such that  = { }Val cc ; so, the set of
constants that inhabit the basic type c is composed only by
the singleton constant c. For example, 1 is the type that con-
tains only 1 as value. By using union, we can then combine
these types to obtain fine-grained type specification: e.g.
   1 2 3 can be used to declare that a field can only be
assigned values 1, 2 or 3.
For a record type r t= [ ]

~
l: , the intuition is that it should

represent all objects that, in the field li, have values of
type ti, and that may have other fields as well. Formally
it should be the set of relations Í ´R D such that

t" Î " (( ) Î  Î ) d D i l d R d. ,i i . Also, the record type
[ ]a: 0 should be interpreted as the empty set, as our intuition
suggests that no object of this type can be instantiated. Thus,
we add the requirement that ( ) Ê { }dom R l .

DEFINITION 3. Given a record type t[ ]
~
l: , we define t[ ]

~ l:
as:

t
t

[ ] = { Í ( ´ ) ( ) Ê { }
" Î " (( ) Î  Î )}

~ 
 

∣l R D dom R l

d D i l d R d

:

. ,i i

Now we move to arrow types. For a type a a1 2, the
intuition is that it should represent the set of functions f such
that a a" Î ( Î  ( ) Î )   d D d f d. 1 2 . We consider binary
relations instead of functions because this simplifies the
equations satisfied by the types and can be used also to model
nondeterministic methods (this is similar to [7]); such a fea-
ture would arise e.g. in an extension of the language with
side effects. Before defining the interpretation of an arrow
type, we introduce the notion of type error: it is not possible
to invoke an arbitrary method on an arbitrary argument.

Said differently, this notion is used to avoid that the
invocation of any well-typed method on any well-typed
argument, is itself well-typed. To assure this, we will use Ω
as a special element to denote this type error. So, we will
interpret a type a a1 2 as the set of binary relations

Í ´ WQ D D (where = {W}WD D ), such that
a a"( ¢) Î ( Î  ¢ Î )   q q Q q q, . 1 2 .

DEFINITION 4. Let D be a set and X, Y subsets of D, then we
define:

 = { Í ´ "( ¢) Î ( Î  ¢ Î )}W ∣X Y Q D D q q Q q X q Y, .

Let us now show how Ω is needed to model this kind of
type error. If we replace WD with D in the definition above,
then X Y would always be a subset of D D. By apply-
ing Definition 4, D D is interpreted as the set of relations

Í ´Q D DD such that "( ¢) Î ( Î  ¢ Î )q q Q q D q D, .D .
For every relation Q of X Y with ÍX Y D, , it is easy to
see that for all pairs ( ¢) Îq q Q, , it holds that
Î Í  ¢ Î Íq X D q Y D. Namely, every pair in Q belongs

also to QD. This would imply that any arrow type would be a
subtype of 1 1. Then, by using the subsumption rule, the
invocation of any well-typed method on any well-typed argu-
ment would be well-typed, violating the type-safety property
of the calculus. With the definition given above, we have

 Í X Y D D if and only if ÍD X , because of contra-
variance of arrow types.
At this point, we can give the formal definition of an

extensional interpretation associated with a set-theoretic
interpretation.

DEFINITION 5. (Extensional interpretation). Let
  ( ) · D: be a set-theoretic interpretation of  . We

define its associated extensional interpretation as the set-
theoretic interpretation   ( )  ( )D_ : (where

     = ( ´ ) ( ´ ))WD D D D such that:


 


 






t t
a a a a

( )= Í

([ ])= [ ] Í ( ´ )
(  )=  Í ( ´ )

~ ~

W

 
   

Val

l l D

D D

: :

1 2 1 2

For a set-theoretic interpretation  · to be a model, we will
require it to behave the same way as its extensional interpret-
ation, as far as subtyping is concerned.

DEFINITION 6. (Model). A set-theoretic interpretation
  ( ) · D: is a model if it induces the same subtyping

relation as its associated extensional interpretation:

  t t t t t t" Î Í ( ) Í ( )   ⟺, .1 2 1 2 1 2
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The observation we have done before on the problem of
emptiness permits us to write the condition on types given in
the definition of model as:

 t t t" Î = Æ ( ) = Æ  ⟺.

3.2. Well-founded model

Among all possible models, we focus our attention to those
that capture a very important property, namely that values
are finite m-ary trees whose leaves are constants. For example,
let us consider the recursive type a a= [ ]a : . Intuitively, a
value u has this type if and only if it is an object ( ¢)C unew ,
where ¢u has also type α; hence, ¢u should be of the form

( )C unew , where u has again type α; and so on. Thus, such a
value would be an infinite tree ( ( ( )))C C Cnew new new ,
that is excluded since values are the result of some non

diverging computation based on the strict call-by-value evalu-
ation strategy. Furthermore, notice that the syntax of our calcu-
lus rules out a class declaration like

{

() { = }
}

C B

C a
C a

class extends

this this
;

. ;

In particular, the form of constructors that we assume (the
same as in [21]) requires a value for every field of the class
(see the comment to rule (class) from Table 1 later on) and
this is not the case here. Finally, since we are working with a
functional fragment of Java, no assignment will eventually
assign this to a. As a consequence, values cannot be cyclic
(in the sense that they have pointers to themselves) and the
type a a= [ ]a : cannot contain values. Clearly this does not

TABLE 1. Typing rules.

Typing Expressions:


 


 

a
a

( ) ( )
G

( )
G( ) =
G

a a a
a

G £
G

subsum const
c

var
x

x: :
e

e
c

:

:
1 1 2

2




 


a
a

a a a
a

( )
G [ ]
G

( )
G [  ] G

G ( )
-field

e a

e a
m inv

e m e

e m e

: :

. :

: : :

. :
2 1 2 1 1

2 1 2





a m a a a

a
( )

( ) = [ ] G ¢ ¢ £

G ( ) ¢

~ ~~~

a a m t¢ = [ ¢ ]   [ ]
~~~

Î






⋀ ≄

new

type C a m e

C enew

: , : :

:

a m l 0: , : :i I i i

TypingMethod Declarations:




a a
a a

( )
( )

( ){ }
-m decl

x type C e

m x e

this

return

: , : :

C

1 2

2 1

Typing Class Declarations:




a m a a

a
( )

( ) = [ ¢ ¢ ] = ( ¢ ¢ ){ ( ¢) = }

{ }

~ ~

~
~

~

~~ ~~


class
type D a m K C x x x a x M

C D a K M

super this

class extends

: , : , ; . C

Typing Programs:

 


a
( )

( )


prog

L e

L e

:

,
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imply that all recursive types are trivial. In Section 8.1 we
will see that it is possible to satisfy the property we have just
introduced and still use recursive types, e.g. to create lists.
We now formalize the intuition above, i.e. that values are

finite m-ary trees whose leaves are constants.

DEFINITION 7. (Structural interpretation). A set-theoretic
interpretation   ( ) · D: is structural if:

•  ( ´ ) ÍD Df , where  ( )·f denotes the finite
powerset;

• for any t, it holds that  t[ ] Í ( ´ )
~ l D: f ;

• the binary relation on  ( ´ ) ´D Df defined as
{( ) ¼ ( )} l d l d d, , , ,n n i1 1 , for Î { ¼ }i n1, , , does
not admit infinite descending chains.

DEFINITION 8. (Well-founded model). A model
  ( ) · D: is well-founded if it induces the same subtyp-

ing relation as a structural set-theoretic interpretation.

3.3. Bootstrap model

Now that we have all the necessary ingredients, we have to
show that a well-founded model exists, and use it as the boot-
strap model. In order to achieve this, we need some prelimin-
ary notions, which will also be used later on in our formal
development. As already mentioned earlier, there are three
kinds of atomic types: basic types ( )basic , record types ( )rec
and functional types ( )fun . We use basic, rec and fun for
basic, record and functional types, respectively. We use  to
indicate the set of atomic types and we let t range over this
set. Then,    = basic rec fun.

DEFINITION 9. (Finitely extensional interpretation). A set-
theoretic interpretation   ( ) · D: is finitely extensional
if the following hold:

• =D Df

•  Ç= ( ) t t D, for every atomic type t,

where for every set D, we let  Df be
    ( ´ ) ( ´ )WD D Df f and f is the powerset of
finite subsets.

By a simple induction on types, it is easy to prove that, in
every finitely extensional interpretation   ( ) · D: , it
holds that  Çt t= ( )  D, for every type t Î . The
advantage of the above definition is that it easily permits us
to construct a model, by exploiting the following lemma.

LEMMA 1. Every finitely extensional interpretation is a
model.

Proof . (Sketch). The proof follows the same lines as [7]. In
order to show that a finitely extensional interpretation is a
model we need to identify the empty sets of a set-theoretic
interpretation and its associated extensional one. Namely,
  Çt t( ) = Æ ( ) = Æ⟺ D . The proof is completed by
using a series of equivalences starting from the predicate
 Çt( ) = ÆD . The details of such equivalences are the
same as in [7]. □

We are now ready to construct a structural and finitely
extensional interpretation, which will be used in the
remainder of our work as the bootstrap model. To construct
such a model, let us define a set  such that  = f .
This means that  is the solution of the
equation         = ( ´ ) ( ´ )Wf f , where again
f denotes the powerset of finite subsets. Hence, by construc-
tion, it turns out that  is the set of finite terms generated by
the following grammar:

= {( ) ¼ ( )} {( ¢) ¼ ( ¢)}
¢ = W

∣ ∣
∣

d c l d l d d d d d

d d

:: , , , , , , , ,

::

We now define a set-theoretic interpretation

t t= { Î }  ∣d d:

Here, judgement t¢d : is inductively defined on the lexico-
graphic order of the pairs tá ¢ ñd , , by exploiting the inductive
structure of the elements of  and the induction principle for
types. Its defining clauses are the following ones (it is
assumed to be false in every non-depicted case):

 

¢ ¢ ¢ ¢

¢

¢ ¢ ¢ ¢ ¢

t t

t

a a a a
t t t t

t t



Î
{( ) ¼ ( )} [ ¼ ] { ¼ }

Í{ ¼ }

" ( =  )

{( ) ¼ ( )}  " (  )

c c Val

l d l d l l l l

l l

i j l l d

d d d d i d d

d d d
d d

: iff

, , , , : : , , : iff , ,

, , and

, . :

, , , , : iff . : :

: iff : and :
: iff not :

n n m n m

n

i j i j

n n i i

1 1 1 1 1

1

1 1

1 2 1 2

Notice that this induction is well-founded since d is finite and
τ is well-formed.

PROPOSITION 1.  _ is a structural and finitely extensional
interpretation; thus, it is a well-founded model.

Proof. The set-theoretic interpretation t = { Î  ∣d
t}d : is constructed in a way such that  Çt t= ( )  ;

this fact, together with  = f , entails that it is finitely
extensional (see Definition 9). Hence, by Lemma 1 it is a model.
Moreover, it is easy to see that it is structural, hence it is a well-
founded model (see Definition 8). □
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4. THE TYPE SYSTEM

The type system for our language uses the subtyping relation
just defined to derive typing judgements of the form

 tG e: . In particular, this means to use £ in the sub-
sumption rule. In the following we just write£ instead of £ .
Let us assume a sequence of class declarations L . First of

all, we have to determine the (structural) type of every class
C in L . To this aim, we have to take into account the inherit-
ance relation specified in the class declarations in L . We write
‘ Îa C’ to mean that there is a field declaration of name a in
class C within the hierarchy L . Similarly, we write ‘ Îa C
with type α’ to also specify the declared type α. Similar nota-
tions also hold for method names m.

DEFINITION 10.
• ( ) = [ ]type Object ;
• r( ) =type C , provided that:

• C extends D in L ;
• r( ) = ¢type D ;
• for any field name a

• if r¢ ( )a is undefined and Ïa C , then r ( )a is
undefined;

• if r¢ ( )a is undefined and Îa C with type a,
then r a( ) = a ;

• if r¢ ( )a is defined and Ïa C , then r r( ) = ¢( )a a ;
• if r¢ ( )a is defined, Îa C with type a and
a r £ ¢( )a , then r a( ) = a .

We assume that all the fields defined in r¢ and not
declared in C appear at the beginning of ρ, having
the same order as in r¢; the fields declared in C
then follow, respecting their declaration order in C.

• for any method name m:

• if r¢ ( )m is undefined and Ïm C , then r ( )m is
undefined;

• if r¢ ( )m is undefined and Îm C with type
a a ¢, then r a a( ) =  ¢m ;

• if r¢ ( )m is defined and Ïm C , then
r r( ) = ¢( )m m ;

• if r a a¢ ( ) =  ¢=⋀m i
n

i i1 , Îm C with type
a a ¢ and m a a =  ¢ a a(( )=⋀ ⧹i

n
i1

a r¢) £ ¢ ( )mi , then r m( ) =m .

• ( )type C is undefined, otherwise.

Definition 10 inductively defines the partial function
( )type C on the class hierarchy L (of course this induction is

well founded since L is finite); when defined, it returns a
record type ρ. In particular, the type of a method is a boolean
combination of arrow types declared in the current and in the
parent classes. This follows the same lines as [7] in order to
deal with habitability of types. The condition r r( ) £ ¢( )m m
imposed in the method declaration is mandatory to assure that

the type of C is a subtype of the type of D; without such a
condition, it would be possible to have a class whose type is
not a subtype of the parent class. If it were the case, type
soundness would fail, as the following example shows:

{
¼

( ) { }
() { ( )}

}

{
¼

( ){ ´ - }
() { ()}

}

C Object

m x x

F m

D C

m x x

G F

class extends

real real return

real return this

class extends

compl int return

real return this. 3

1

.

As usual £ £int real compl. At run time, the function G
returns a complex number, instead of a real one. The example
shows that, when the method m is overloaded, we have to be
sure that the return type is a subtype of the original type.
Otherwise, due to the dynamic instantiation of this, there
may be a type error. A similar argument justifies the condi-
tion a r £ ¢( )a imposed for calculating function type for
field names.
Let us now consider the typing rules given in Table 1. We

assume Γ to be a typing environment, i.e. a finite sequence of
α-type assignments to variables. Most rules are very intuitive.
Rule (subsum) permits to derive for an expression e of type
a1 also a type a2, if a1 is a subtype of a2. Notice that, for the
moment, the subtyping relation used in this rule is the one
induced by the bootstrap model. In rule (const), we assign
type c to the constant c; if c belongs to a larger basic type
, then by subsumption we can also assign to c such a larger
type. Rule (var) derives that x has type α, if x is assigned
type α in Γ.
Rule (field) states that, if an expression e has type a[ ]a : ,

we can access the field a of e and the type of the expression
e a. is α. Rule (m-inv) states that, if an expression e2 is of type

a a[  ]m : 1 2 and an expression e1 is of type a1, we can
invoke method m of e2 with argument e1 and the type of the
expression ( )e m e.2 1 is a2. Notice that in these two rules
the record types are singletons, as it is enough that inside the
record type there is just the field or the method that we want
to access or invoke. If the record type is more specific (hav-
ing other fields or methods), we can still get the singleton
record by using the subsumption rule. The rules m-inv models
methods as invariant in their arguments. This is not restrict-
ive, as we can always use subsumption to promote the type
of the argument to match the declared type of the method.
For rule (new), an object creation can be typed by record-

ing the actual type of the arguments passed to the constructor,
since we are confining ourselves to the functional fragment of
the language. Of course, if we move to the setting where
fields can be modified, it is unsound to record the actual type
of the initial values, since during the computation a field
could be updated with values of its declared type. Moreover,
like in [7], we can extend the type of the object by adding
any record type that cannot be assigned to it, as long as this
does not lead to a contradiction (i.e. a type semantically
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equivalent to 0). This possibility of adding negative record
types is not really necessary for programming purposes: it is
only needed to ensure that every non-zero type has at least
one value of that type. In particular, we want that the union
of a type τ and its negation t gives 1. For this to be the
case we want that the union of the interpretation of τ and the
interpretation of t gives . By adding the negative record
types, rule (new) permits us to have typing derivations also
for types of the form t . This property guarantees that the
interpretation of types as sets of values induces the same sub-
typing relation as the bootstrap model and will be used when
proving that the interpretation of types as sets of values is a
set-theoretic interpretation.
Finally, rule (m-decl) checks when a method declaration is

acceptable for a class C; this can only happen if ( )type C is
defined. Rules (class) and (prog) check when a class declar-
ation and a program are well-typed and are similar to the
ones in FJ. In particular, notice that rule (class) imposes that
every field declared in the class and every field inherited from
the super-class has an assignment in the constructor: this
comes from the fact that the sequences of types a¢

~
and a in

the constructor declaration are those occurring in the type of
the super-class and in the class declaration, respectively.
Similarly to [7, 10], the type checking relation is decidable.

5. TYPES AS SETS OF (PSEUDO-)VALUES

Having defined the type system for our language, we are now
ready to give an interpretation of types as sets of values. To
close the circle, the first thing to do is to define values in our
calculus. As usual, values are the results of (well-typed) com-
putations, given by a small step operational semantics that we
are going to introduce in the next section; so, values are those
expressions that cannot be reduced further. Formally, they are
produced by the following grammar:

= ( )∣u c C unew::

that is, values are constants or objects initialized by passing
values to their constructor.
However, as the classes in L are finite, with these values

we are able to inhabit just a finite number of record types.
Also, since we have not higher-order values, the μ-types
would not be inhabited. This is a major technical difference
w.r.t. [7]. In order to overcome this issue, we define pseudo-
values, that are only used for interpreting types and deciding
the subtyping relation.
In order to define the set of pseudo-values in our calculus,

we want to be independent of the classes declared by a pro-
grammer in L . Hence, we assume that, for every well-formed
record type ρ, there exists a class name rC such that ( )rtype C
is defined to be ρ. It is important to also notice that in this

way we inhabit only the ‘well-defined’ record types, that is
only those that can instantiate (and create an object of) a class
corresponding to the record we are dealing with. For
example, ( )[ ] ·Cnew a:0 does not create any object, as no value
of type 0 exists (thus, it is impossible to instantiate a class of
type [ ]a 0: ).
In order to inhabit method types, we add to the syntax of

values an abstraction construct l r( )x e.m, that intuitively speci-
fies the argument x and the body e of a method m in a record
ρ (that will be inhabited through class rC ).
Formally, pseudo-values are produced by the following

grammar:

l= r( )∣v u x e:: .m,

Since abstractions are not part of our original syntax, we also
need to add the following typing rule for them:




( )

m a a a a
r a a a a

 = (  ¢) (  ¢)
( ) = (  ¢) " Î G ¢

l mG r

Î Î

Î

( )

⋀ ⋀ ˆ ˆ ≄
⋀

abstr
m i I x e

0

. , : :

x e. :

i I i i j J j j

i I i i i i

m,

Rule (abstr) states that an abstraction l r( )x e.m, related to
method m in the class typed by ρ is of type μ, with

( )m a a a a = (  ¢)  ¢Î Î⋀ ⋀ ˆ ˆ ≄ 0i I i i j J j j . The posi-
tive part of the conjunction in μ comes from the ‘real’ types
of method m given by the function ()type , whereas the nega-
tive part of the conjunction follows the same intuition as the
rule (new) given in the previous section.
It is worth noting that not all values and pseudo-values can

be typed. For example, there exists no type that can be
assigned to ()[ ]Cnew x int: , ( )[ ]Cnew 1, 2x int: , [ ]Cnew x int:

( )‘foo’ , where [ ]C x int: is the name of a class with a field x of
type int; a similar situation arises for l a a( [  ])x y.m m, : ,
l( [ ])x x.m, and l( [  ])x x.m m int string, : . Hence, in what follows, we
shall only consider typeable values and pseudo-values; in par-
ticular, let  denote the set of typeable pseudo-values. Then,
the interpretation of a type τ as a set of pseudo-values is

 t t= { Î }  ∣v v:

From now on, we shall simply call pseudo-values the type-
able pseudo-values.

5.1. Closing the circle

As we already discussed, the bootstrap model  · induces the
following subtyping relation:

  t t t t£ Í   ⟺1 2 1 2

In the typing rules for our language, we used £ to derive
typing judgements of the form  tG e: . Similarly, the typ-
ing judgements for the language allow us to define a new
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natural set-theoretic interpretation of types, the one based on
(pseudo-)values t  , and then a new (‘real’) subtyping
relation:

  t t t t£ Í   ⟺1 2 1 2

The new relation £ might in principle be different from £ .
However, since the definitions of the model, of the language
and of the typing rules have been carefully chosen, the two
subtyping relations coincide, as Theorem 1 shows. Because
of this result, from now on we shall be sloppy and avoid the
subscripts  and  in  , £ and £ ; we shall simply write
⊢ and£.

THEOREM 1. The bootstrap model  · induces the same sub-
typing relation as  · .

The proof of this theorem is the main technical challenge
in every paper on semantic subtyping. It requires a lot of
work that, partly, mimics what is done, e.g. in [7]. All details
adapted to our framework are in the Appendix.

6. THE OPERATIONAL SEMANTICS

The operational semantics for our language is defined through
the reduction rules in Table 2; these are essentially the same
as in FJ. There are only two notable differences: we do not
need to define an ad hoc function to extract the fields of an
object, but we simply use function type already defined; func-
tion body also depends on the (type of the) method argument,
necessary for finding the appropriate declaration when we
have multi-methods.
We fix the set of class declarations L and define the oper-

ational semantics as a binary relation on the expressions of the
calculus  ¢e e , called reduction relation. The axiom for field
access (f-ax) states that, if we try to access the i-th field of an
object, we just return the i-th argument passed to the

constructor of that object. We have used the premise
a m( ) = [ ]~~type C a m: , : as we want all the fields of the object

instantiating class C: function ( )type C provides them in the
right order (i.e. the order in which the constructor of class C
expects them to be). The axiom for method invocation (m-ax)
tries to match the argument of a method in the current class
and, if a proper type match is not found, it looks up in the hier-
archy; these tasks are carried out by function body, whose def-
inition is the following (the cases must be considered in order):


l a a

a( ) =

ì

í

ïïïïï

î

ïïïïï

¢ ( )
{ }

( ) 
body m u C

x e C m x

e u

body m u D C D L

UNDEF

return
, ,

. if contains

and : ,

, , if extends in ,
otherwise.

Function ( )body m u C, , controls whether method m is
declared in class C and if argument u passed to m has the
appropriate type, viz. the type of the formal argument of the
method. Otherwise, the parent class of C is checked. If meth-
od look-up does not give any result, function ( )body m u C, ,
is not defined. Notice that method resolution is performed at
runtime, by keeping into account the dynamic type of the
argument; hence, multimethods are supported, differently
from what happens in Java, where overloading resolution is
performed at compile time by keeping into account the static
type of the argument. We choose the first way because, in our
view, is more intuitive. A more traditional modelling of over-
loading is possible and easy to model.
Moreover, as already noted in Section 2.1, we use simpli-

fied multi-methods, where at most one declaration for every
method name is present in every class. This simplifies the
definition of functions body and type. However, richer forms
of multi-methods can be assumed in our framework, at the
price of complicating the definitions of such functions. In par-
ticular, function body can be rendered in the general setting
by following [35]. In our view, a better alternative is the
encoding of the more general setting provided in Section 8.2.

TABLE 2. Operational semantics.

a m l
( )

( ) = [ ]
( ( )) 

( )
( ) =

( ( )) ( )  [ ]

~~

( )  
- -f ax

type C a m

C u a u
m ax

body m u C x e

C u m u enew new

: , :

.

, , .

. ,i i
u

x
C unew

this

( )
¢  

¢ ( )   ( )
( )

¢  

( ¢)  ( )
( )

 ¢

 ¢
- - -m red

e e

e m e e m e
m red

e e

e m e e m e
f red

e e

e a e a. . . . . .
1 2

( )
 ¢

( ¼ ¼ )  ( ¼ ¢ ¼ )
-n red

e e

C e e e C e e enew new, , , , , , , ,
i i

i k i k1 1
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To complete the definition of the operational semantics, we
need the structural rules (f-red), (m-red1), (m-red2) and
(n-red), to transform the target of a method invocation or of a
field access into a value.

7. SOUNDNESS OF THE TYPE SYSTEM

Theorem 1 does not automatically imply that the definitions
put forward in Section 3, 4 and 5 are ‘valid’ in any formal
sense, only that they are mutually coherent. To complete the
theoretical treatment, we need to check type soundness, stated
by the following theorems. We proceed in the standard way,
by stating the theorems of subject reduction and progress,
that can be proved by exploiting a few auxiliary lemmata.

LEMMA 2 If D is an ancestor of C in the class hierarchy,
then ( ) £ ( )type C type D .

Proof. By induction on the distance between C and D. The
base case is trivial. For the inductive case, we have that C
extends ¢C that has D as one of its ancestors. By inductive
hypothesis, ( ¢) £ ( )type C type D ; thus, it suffices to prove
that ( ) £ ( ¢)type C type C . This easily follows from the defin-
ition of function type. □

LEMMA 3 (Strengthening). Let G1 and G2 by type environ-
ments, such that (G) Í (G )dom dom1 2 and, for every
Î (G) G ( ) £ G ( )x dom x x:1 2 1 . If  aG e :1 then  aG e :2 .

Proof. By induction on the derivation tree for  aG e :1 . □

LEMMA 4 (Substitution). If  aG e : , with aG = G¢ ¢x, :
and  aG¢ ¢ ¢e : , then  aG¢ [ ]

¢
e :e

x .

Proof. By induction on the structure of e. For the base case,
let us first assume that e = x; in this case, the thesis trivially
follows by the facts that a a= ¢ and [ ] = ¢¢

e ee
x . On the con-

trary, if ¹e x, then [ ] =
¢

e ee
x and the thesis holds. For the

inductive step, let us consider the possible forms of e:

e = e″.a: by the typing rule for field access, we have
that  aG  [ ]e a: : . By inductive hypothesis,
¢  aG [ ] [ ]

¢
e a: :e

x and hence  aG¢ (  )[ ]
¢

e a. :e
x ,

since ¹a x .
e = e1.m(e2): by the typing rule for method invoca-

tion, we have that  a aG [  ]ˆe m: :1 and
 aG ˆe :2 . By inductive hypothesis,

 a aG¢ [ ] [  ]
¢ ˆe m: :e

x1 and  aG¢ [ ]
¢ ˆe :e

x2 ;
hence  aG¢ ( ( ))[ ]

¢
e m e. :e

x1 2 , since ¹m x.
e = ( )C enew : by the typing rule for object creation,

we have that a m( ) = [ ]~~type C a m: , : ,  aG ¢
~

e : ,

for a a¢ £
~

, and a a m t = [ ¢ ] [ ]
~~~

⋀ ≄a m l 0: , : :i i i .

By inductive hypothesis,  aG¢ [ ] ¢
~¢

e :e
x ; hence

 aG¢ ( ( ))[ ]
¢

C enew :e
x , since ¹C x. □

THEOREM 2 (Subject reduction). If  ae : and  ¢e e , then
 a¢e : .

Proof. The proof is by induction on the derivation for
 ¢e e . There are the following base cases:

• = ( ( ))e C u anew . and ¢ =e ui, where
a m( ) = [ ]~~type C a m: , : and =a ai. By the typing

rule for field access, we have that  a( ) [ ]C u anew : : .

By the typing rule for new,  ( )C unew :
a m t [ ¢ ] [ ]

~~~
⋀a m l: , : :j j j , for a a¢ £

~
. By

subsumption, the two typing judgements for

( )C unew are compatible only if a m [ ¢ ]~~
a m: , :

t a[ ] £ [ ]
~⋀ l a: :j j j , i.e. a a¢ £i . Thus,  a¢ ¢e : i and,

again by subsumption,  a¢e : , as desired.
• = ( ( )) ( )e C u m unew . and ¢ =  [ ]( )e e ,u

x
C unew

this ,
where l( ) = body m u C x e, , . . Since e is typeable, it
must be that  a a( ) [  ] ˆC u mnew : : and  âu : .
The first typing judgement entails that
 a( ) ¢C unew : , for a a a a[  ] ³ ¢ = [ 

~
ˆm a: : ,

m t ] [ ]
~~ ⋀ ≄m l 0: :j j j ; moreover, ( ) =type C

a m[ ¢ ]~~
a m: , : and  a

~
u : , for a a £ ¢

~~
. Second,

let =C D Dextends0 1 extends extends...
=D Objectn be the path in the class hierarchy from

C to Object, for some ³n 0. Now,
l( ) = body m u C x e, , . entails that there exists

Î { ¼ - }i n0, , 1 such that Di contains the method
definition a a( ){ }ˆm x ereturni i , for  âu : i;
moreover, Di is the class closest to C in the
hierarchy that satisfies this fact. By typeability, it holds
that  a a( ){ }ˆm x ereturnD i ii and, hence,

a a( ) ˆx type D ethis: , : :i i i. Since a¢ £ ( )type C ,
by Lemmas 2 and 4 applied to this and to x, we have
that  a [ ]( )e , :u

x
C u

i
new

this . To conclude, it suf-
fices to show that a a£i . This fact holds because
a a a¢ £ [  ]ˆm : and the μ for m contains the con-
junct a a a a( ) -ˆ ⧹ ˆ ⧹ ⧹ ˆ...i i i1 0 , where a aˆj j is the
type declared for m in Dj.

For the inductive step, we reason by case analysis on
the last rule used in the inference. We have four possible
cases:

• =e e a.1 , e e1 2 and ¢ =e e a.2 . By the typing rule for
field access,  a[ ]e a: :1 , for some α, and, by induc-
tion,  a[ ]e a: :2 . Again by the typing rule for field
access,  a¢e : .

• = ( )e e m u.1 , e e1 2 and ¢ = ( )e e m u.2 . By the typing
rule for method invocation,  a a[  ]ˆe m: :1 and
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 âu : . By induction,  a a[  ]ˆe m: :2 . Again by
the typing rule for method invocation,  a¢e : .

• = ( )e e m e.0 1 , e e1 2 and ¢ = ( )e e m e.0 2 . By the typ-
ing rule for method invocation,  a a[  ]ˆe m: :0 and
 âe :1 . By induction,  âe :2 . Again by the typing
rule for method invocation,  a¢e : .

• = ( ¼ ¼ )e C e e enew , , , ,i k1 ,  ¢e ei i and
¢ = ( ¼ ¢ ¼ )e C e e enew , , , ,i k1 . By the typing rule for

new,  ae :i i. By induction,  a¢e :i i. Again by the
typing rule for new,  a¢e : . □

THEOREM 3 (Progress). If  ae : and e is a closed expres-
sion, then e is a value or there exists ¢e such that  ¢e e .

Proof. The proof is by induction on the structure of e. Since
e is closed, the only possible base case is when e is a basic
value, and in this case the claim trivially holds. For the
inductive step, we reason by case analysis on the form of e.

• =e e a.0 . By the typing rule for field access,
 a[ ]e a: :0 ; by induction, either e0 is a value (and in
this case it must be = ( )e C unew0 , for some C and
u) or  ¢e e0 0, for some ¢e0. In the second case, we eas-
ily conclude that  ¢e e , by letting ¢ = ¢e e a.0 . In the
first case, by the typing rule for new,

 a m t ( ) [ ¢ ] [ ]
~~~

 ⋀C u a m lnew : : , : :j j j , where

a m( ) = [ ]~~type C a m: , : ,  a¢
~

u : and a a¢ £
~

.
Moreover, a m t a [ ¢ ] [ ] £ [ ]

~~~
⋀a m l a: , : : :j j j

implies that there exists i such that =a ai; thus,
 ¢e e , where ¢ =e ui.

• = ( )e e m e.0 1 . By the typing rule for method invoca-
tion,  a a[  ]ˆe m: :0 . Like in the previous case, the
interesting part is when e0 is a value (in particular,

= ( )e C unew0 , for some C and u); with a similar rea-

soning, we can say that a m( ) = [ ]~~type C a m: , : , that

 a¢
~

u : for a a¢ £
~

, that  âe :1 and =m mi, for

some i.
Let us first consider the case when e1 is not a value.
By induction, there exists a ¢e1 such that  ¢e e1 1 ;
hence,  ¢e e , by letting ¢ = ( ¢)e e m e.0 1 .
So, let us now assume that =e u1 . By definition of
function type, it must be that m a a = (  )ˆi

0 0

a a a a a a(  ) £ (  ) = ¢( )= =⋀ ˆ ⧹ ˆ ⋀ ˆ mi
n i i

i
n i i

1
0

1 ,
where C extends D in L and a( ) = ¢type D . Also, by
subtyping, m a a£ ˆi . It now suffices to prove that

l( ) = body m u C x e, , . , for some e and x. First,
notice that C cannot be Object, otherwise  ae : could
not hold for any α. Then, we work by a second induc-
tion over the distance between D and Object in the
class hierarchy defined by L . The base case is when D
is Object: then, a a a¢ ( ) = ˆmi

0 0 and, hence,
a a£ˆ ˆ 0. By subsumption,  âu : 0 and hence

l( ) = body m u C x e, , . , where C contains the method
declaration a a( ){ }ˆm x ereturn0 0 . For the inductive
step, if a¢ ( ) = m 0 1, we work like in the case
when =D Object ; otherwise, by (second) induction,
we know that l( ) = body m u D x e, , . . If C does not
contain any declaration for method m, this suffices
to conclude; otherwise, let a a( ){ }ˆ ‴m x ereturn0 0

be such a declaration. If  âu : 0, then
l( ) = ‴body m u D x e, , . ; otherwise, ( )=body m u D, ,

l x e. . This suffices to conclude.
• = ( )e C enew . If e is a sequence of values, then e is

a value. Otherwise, there is an i such that ei is not a
value; by induction, we have that  ¢e ei i and
hence we conclude by letting ¢ =e Cnew
( ¼ ¢ ¼e e, , ,i1 )e, k . □

8. DISCUSSION ON THE CALCULUS

8.1. Recursive class definitions

It is possible to write recursive class definitions by assuming a
special basic value null and a corresponding basic type unit,
having null as its only value. In Java, it is assumed that null
belongs to every class type; here, because of the complex types
we are working with (mainly, because of negations), this assump-
tion is not valid. This, however, enables us to specify when a field
can/cannot be null; this is similar to what happens in database
systems. In particular, lists of integers can now be defined as:

a
a




= {

( )
( ( ) ){ = = }

¼
}

L intList Object

val
succ

intList x y val x succ y

class extends
int

unit

int unit this this

;
;

, . ; .

intList

where α is the regular tree representing the solution of the
recursive type equation

a a = [ ( )]val succint unit: , :

Now, we can create the list á ñ1, 2 as the value
( ( ))intList intListnew new null1, 2, .

8.2. Implementing standard multi-methods

Usually in object oriented languages, multi-methods can be
defined within a single class. For simplicity, we have defined
a language where at most one definition can be given for a
method name in a class. It is however possible to partially
encode multi-methods by adding one auxiliary subclass for
every method definition. For instance, suppose we want to
define a multi-method m twice within class A:
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a a
a a

{
¼

( ¢ ){ }

( ¢ ){ }
}

A B

m x e

m x e

class extends

return

return
1 1 1

2 2 2

We then replace it with the following declarations:

a a a a

{
¼

( ¢ ){ }
}

{

( ¢ ){ }
}

A B

m x e

A A

m x e

class extends

return

class extends

return

1 1

1 1 1 2 2 2

Introducing subclasses is something that must be done with
care. Indeed, it is not guaranteed, in general, that the restric-
tions for the definition of function type (see Definition 10) are
always satisfied. So, in principle, the encoding described
above could turn a class hierarchy where the function type is
well-defined into a hierarchy where it is not. However, this
situation never arises if different bodies of a multi-method are
defined for inputs of mutually disjoint types, as we normally
do. Also, it is not difficult to add to the language a typecase
construct, similar to the one of Duce, that would allow
more expressivity. We did not pursue this approach in the
present paper to simplify the presentation.

8.3. Implementing typical Java-like constructs

We now briefly show how we can implement in our frame-
work traditional programming constructs like if-then-else,
(a structural form of) instanceof and exceptions. Other con-
structs, like sequential composition and loops, can also be
defined.
The expression e e eif then else1 2 can be implemented by

adding to the program the class definition (using the standard
multi-methods described in Section 8.2):

a
a

{
({ } ){ }
({ } ){ }

}

Test Object

m x e

m x e

class extends

true return

false return
1

2

where { }true and { }false are the singleton types containing
only values true and false, respectively, and α is the type of
e1 and e2. Then, e e eif then else1 2 can be simulated by
( ()) ( )Test m enew . . Notice that this term typechecks, since
test has type a a[ ({ }  ) ({ }  )]m true false:

a a[ ({ } { })  ] [  ]m mtrue false bool: : . Indeed,
in [7] it is proved that a a a a(  ) (  )1 2

a a a( ) 1 2 and, trivially, { } { } true false bool.

The construct ae instanceof checks whether e is typeable
at α and can be implemented in a way similar to the if-then-
else:

a
a

a
a





{
( ){ }
( ){ }

( ){ }
( ){ }

}

a

a

a

a



InstOf Object

m x

m x

m x

m x

class extends

bool return true

bool return false

bool return true

bool return false
k

k

1

1

k

k

1

1

where a a¼, , k1 are the types occurring as arguments of an
instanceof in the program. Then, ae instanceof can be simu-
lated by ( ()) ( )aInstOf m enew . .
Finally, a( ) ¢e x etry catch evaluates e and, if an excep-

tion of type α is raised during the evaluation, expression ¢e is
evaluated. First of all, we assume that every exception is an
object of a subclass of class Exception that, in turn, extends
Object . Second, every method that can raise an exception of
type α must specify this fact in the return type (this resembles
the use of the throws keyword in Java); in particular, if mʼs
type is a a1 2 and it can raise exceptions of type α, it
should be declared as

a a a( ) ( ){¼}m x2 1

Indeed, every statement ethrow within m will be translated
in our framework as ereturn . Third, we can translate

a( ) ¢e x etry catch as

a= ( ( ) ¢ )x e x e xlet in if instanceof then else

Here, we assume a standard construct =y e elet in1 2; it can
be implemented in our framework as

( )let ethis. 1

once we have added to the class the method

a a( ){ }let y ereturn2 1 2

where a1 and a2 are the types of e1 and e2, respectively.

8.4. Nominal subtyping vs. Structural subtyping

Semantic subtyping is a powerful typing discipline, but expli-
citly annotating programs with structural types could be too
cumbersome for programmers. Thus, we can introduce
aliases. We could write
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¢ = {

( )
( ( ) ){ =

= }
¼

}

L intList Object

val
intList succ

intList x intList y val x

succ y

class extends
int

unit

int unit this

this

;
;

, . ;

.

intList

instead of LintList in Section 8.1. Any sequence of class
declarations written in this extended syntax can be then com-
piled into the standard syntax in two steps:

• First, extract from the sequence of class declarations a
system of (mutually recursive) type declarations; in
doing this, every class name should be considered as a
type identifier. Then, solve such a system of equations.

• Second, replace every occurrence of every class name
occurring in a type position (i.e. not in a class header
nor as the name of a constructor) with the correspond-
ing solution of the system.

For example, the system of equations (actually, made up
of only one equation) associated with ¢LintList is

= [ ( )]intList val succ intListint unit: , : ; if we assume
that α denotes the solution of such an equation, the class dec-
laration resulting at the end of the compilation is exactly
LintList in Section 8.1.
But nominal types can be more powerful than just short-

hands. When using structural subtyping, we can interchange-
ably use two different classes having the very same structure
but different names. However, there can be programming
scenarios where also the name of the class (and not only its
structure) could be needed. A typical example is the use of
exceptions, where one usually extends class Exception with-
out changing its structure. In such cases, nominal subtyping
can be used to enforce a stricter discipline. Another sensible
use of nominal types is for expressing design intent. Here, the
classical example is

{ ()} { ()}Shape draw Cowboy drawclass boolean class boolean

where the two classes have different semantics even though
equal structural types, and freely mixing Cowboy and Shape
objects would not be semantically correct.
We can integrate this form of nominal subtyping in our

semantic framework. To do that, we add to each class a hid-
den field that represents all the nominal hierarchy that can be
generated by that class. If we want to be nominal, we will
consider also this hidden field while checking subtyping. In
practice, the (semantic) ‘nominal’ type of a class is the set of
qualified names of all its subclasses; this will enable us to say
that C is a ‘nominal’ subtype of D if and only if Cʼs sub-
classes form a subset of Dʼs ones. Notice that working with

subsets is the key feature of our semantic approach to subtyp-
ing. This is the reason why we need types as sets and, e.g.
cannot simply add to objects a field with the class they are
instance of.
Let us denote with CN the (countable) set of class names.

An element of CN* can be thought of as a partially qualified
name of a class—fully qualified if it starts with Object. We
consider now sets of qualified names, ranged over by X Y Z, , .
They will be used as types, the subtyping being defined as set
inclusion. For each class C, we consider the type

*

*
=

ì

í

ïïïï

î
ïïïï

= ¼ ³ = =
Î " Î { ¼ - }

Î ( { ¼ })

ü

ý

ïïïï

þ
ïïïï

+

⧹
X

s C C k C Object C C

s s CN i k C C

s CN C C

extends

& 0 & &

: & 0, , 1 .

& , ,
C

k k

i i

k

1 0 0

1 2 1

2 0

Following the above intuition, XC contains the fully qualified
class names of all the potential subclasses of C. Finally, we
choose a special reserved name name that cannot occur in
the program. This will be the name of the ‘hidden’ nominal
field. For example, take a standard example of Java inherit-
ance, where class Object is extended by class Point that is in
turn extended by classes ColPoint, of coloured points, and
GeomPoint, of geometrical points. We can say, e.g. that the
third class is a (nominal) subtype of the second one by noting
that:

= {

¼

¼¼

¼

¼¼
¼

}

= {

¼

¼¼
}

X Object Point

Object Point ColPoint
Object Point ColPoint Pixel

Object Point ColPoint DPoint

Object Point GeomPoint
Object Point GeomPoint Circle

Object Point GeomPoint Line

X Object Point ColPoint

Object Point ColPoint Pixel

Object Point ColPoint DPoint

. ,
. . ,

. . . ,

. . .3 ,
,
. . ,

. . . ,

. . . ,
,

. . ,
. . . ,

. . .3 ,

Point

ColPoint

Indeed, ÍX XColPoint Point.
Now, given a sequence of class declarations L , we denote

with ( )L name the sequence obtained by adding to every class
declaration for class C in L the field declaration

X nameC

It is easy to verify the following desirable facts
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• C is a sub-class of D if and only if
( ) £ ( )( ) ( ) type C type DL Lname name ;

• For every C, it holds that ( ) £ ( )( ) type C type CL Lname ;
• If ( ) ( ) type C type DL L but ¹C D, then

( ) ¹ ( )( ) ( ) type C type DL Lname name .

where the subscript to the function type specifies the declara-
tions in which the function is calculated.
By the way, notice that here we are working with infinite

sets. But these sets have always a finite representation that
makes the subtyping still decidable. Indeed, every set XC can
be represented by the fully qualified name of C and C is a
subclass of D if and only if XD is a prefix of XC.
It remains to describe how we can use nominal subtyping

in place of the structural one. We propose two ways. In
declaring a class or a field, or in the return type of a method,
we could add the keyword nominal, to indicate to the com-
piler that nominal subtyping should always be used with it.
However, the only place where subtyping is used is in func-
tion body, i.e. when deciding which body of an overloaded
method we have to activate on a given sequence of actual
values. Therefore, we could be even more flexible, and use
the keyword nominal in method declarations, to specify
which method arguments have to be checked nominally and
which ones structurally. For example, consider the following
class declaration:

{ ¼
( ){ }

}

A Object

m C x C y

class extends

int nominal return, 0;

Here, every invocation of method m will check the type of
the first argument structurally and the type of the second one
nominally. This is a mechanism akin to the notion of brand
in Strongtalk [36]. Thus, if we consider the following class
declarations

{ } { }C Object D Objectclass extends class extends

the expressions

( ()) ( () ())A m C Cnew new new. ,

( ()) ( () ())A m D Cnew new new. ,

( ()) ( () ())A m Object Cnew new new. ,

typecheck, whereas

( ()) ( () ())
( ()) ( () ())
A m C D

A m C Object

new new new

new new new

. ,

. ,

do not.

In practice, for each sequence of class declarations L , the
compiler will build the types both for L and for ( )L name, and
will decide which one to use according the presence or not of
the keyword nominal.

9. CONCLUSIONS AND FUTURE WORK

We have presented a Java-like programming framework that
integrates structural subtyping, boolean connectives and
semantic subtyping to exploit and combine the benefits of such
approaches. There is still work to do in this research line.
This paper lays out the foundations for a concrete imple-

mentation of our framework. First of all, a concrete imple-
mentation calls for algorithms to decide the subtyping
relation; then, decidability of subtyping is exploited to define
a typechecking algorithm for our type system. This can be
achieved by adding algorithms similar to those in [7]. These
are intermediate steps towards a prototype programming
environment where writing and evaluating the performances
of code written in the new formalism. Of course, extending a
real language as Java with structural types and multi-methods
is far from being a simple task: this would imply major modi-
fications of the Java Virtual Machine (which is quite a com-
plex architecture) and would pose non-trivial efficiency and
legacy code issues. Our present paper lays the foundations of
the typing mechanisms, but deliberately neglects many other
important problems that would arise in practice when trying
to implement the proposed extension.
Another direction for future research is the enhancement of

the language considered. For example, one can consider the
extension of FJ with assignments; this is an important aspect
because mutable values are crucial for modelling the heap, a
key feature in object-oriented programming. We think that hav-
ing a state would complicate the issue of typing, because of the
difference between the declared and the actual type of an object.
Some ideas on how to implement the mutable state can come
from the choices made in the implementation of Duce.
Another possibility for enhancing the language is the intro-

duction of higher-order values, in the same vein as the Scala
programming language [37]; since the framework of [7] is
designed for a higher-order language, the theoretical machinery
developed therein should be adaptable to the new formalism.
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APPENDIX: TECHNICAL PROOFS FOR CLOSING
THE CIRCLE

The appendix is fully devoted to prove the main theoretical
result of this paper, namely Theorem 1. To this aim, we first
give the definition of disjunctive normal form (DNF), which
gives us a systematic and uniform way of writing types; this
will then facilitate the presentation of our theoretical develop-
ment. Then, we show that  · is a set-theoretic interpretation;
this fact will allow us to use standard set-theoretic equalities
when working with such an interpretation. Finally, using these
notions and results, we shall prove that  £ = £ .
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APPENDIX A. DNFS FOR TYPES

A DNF is based on the notion of atomic types, which are the
most basic form of types. Recall from Section 3.3 that there
are three kinds of atomic types basic, rec and fun such that
   = basic rec fun. In order for a DNF to be useful, we
rely on the fact that every type can be decomposed as a DNF
and, conversely, that every DNF corresponds to one precise
type.

DEFINITION 11. A DNF d is a finite set of pairs of finite sets
of atoms, namely an element of    ( )( ) ´ ( )f f f .

Next, we give the definition of the set-theoretic interpret-
ation of a DNF d .

DEFINITION 12. If   ( ) · D: is an arbitrary set-
theoretic interpretation and d a DNF, we define d  as:

Çd =
æ

è
ççç ( )

ö

ø
÷÷÷÷d( )Î Î Î

     ⋃ ⋂ ⋂ ⧹t D t
P N t P t N,

The set-theoretic interpretation separates the ‘positive’ (P)
and the ‘negative’ (N) parts of the DNF d . By using standard
set-theoretic equalities, we obtain:

Ç Ç

Ç

æ

è
ççç ( )

ö

ø
÷÷÷÷
=

æ

è
ççç

ö

ø
÷÷÷÷

=
æ

è
ççç

ö

ø
÷÷÷÷
=

æ

è
ççç

ö

ø
÷÷÷÷

d
d

d d

( )Î
Î Î ( )Î Î Î

( )Î Î Î ( )Î Î Î

       

       

⋃ ⋂ ⋂ ⧹ ⋃ ⋂ ⋂

⋃ ⋂ ⋃ ⋃ ⋂ ⧹ ⋃

t D t t t

t t t t

P N
t P t N P N t P t N

P N t P t N P N t P t N

,
,

, ,

In what follows, we shall usually use the latter expression for
d . Since an empty intersection is D and an empty union is
∅, we have that d Í  D.

By following [7], we can prove, by construction, that for
each t Î , it is possible to compute a DNF  t( ) such
that t t= ( )   , for every set-theoretic interpretation
 · . In order to construct the DNF  t( ), we associate with
function  a second function  ¢, both mutually defined as
follows:




  
 




 


 

Ç

Ç Ç

t t t t
t t

t t t
t

t t








( ) = Æ
( ) = {({ } Æ)}

( ) = ( ) ( )

( ) = ¢( )

¢ ( ) = {(Æ Æ)}
¢( ) = {(Æ { })}

¢( ) = {( ) ( ) Î ¢( )

( ) Î ¢( )}
¢ ( ) = ( )

∣

t t

t t

P P N N P N

P N

0

0

,

,

,

, , ,

,

1 2 1 2

1 2 1 2 1 2 1 1 1

2 2 2

It can be checked by induction over τ that
 t t t= ( ) = ¢( )     ⧹D .

Note that the inverse is also true: for every DNF d , there is
a type τ such that t d=   , for every set-theoretic interpret-
ation  · : it suffices to consider ( )d( )Î Î Î⋁ ⋀ ⧹⋁t tP N t P t N, .
Hence, from now on we will interchangeably use the notions
of type and DNF.

APPENDIX B. TYPES AS SETS OF PSEUDO-VALUES

In this section, we focus on the interpretation of types as
sets of pseudo-values and we will show that this interpret-
ation is set-theoretic. We state that a (pseudo-)value v
and an atomic type t are compatible if they are of the same
kind.

We will use the bootstrap model constructed in Section
3.3, namely     ( ) · : , and we write £ to indicate the
subtyping relation induced by this model. Similarly, we write
≃ to denote the corresponding equivalence relation, namely

 t t t tÍ    ⟺1 2 1 2 and  t tÍ   2 1 .

LEMMA 5.  = Æ 0 .

Proof. It suffices to prove that  t t⟹ ≄v 0: , for every
pseudo-value v. We reason by case analysis on v. The cases
to consider are when v is a constant, an object creation or an
abstraction; in all cases the result trivially follows. □

LEMMA 6. If t t£1 2 then  t tÍ   1 2 . Thus, if t t1 2 then

 t t=   1 2 .

Proof. Follows immediately by the subsumption rule. □

LEMMA 7.   Çt t t t =     1 2 1 2 .

Proof. By Lemma 6, we have that  t t t Í   i1 2 , for
Î { }i 1, 2 ; this implies that   Çt t t t Í     1 2 1 2 .
For the opposite inclusion, first observe that, if
 Çt t = Æ   1 2 , then the inclusion trivially holds. So, let

us assume that there exists  Çt tÎ    v 1 2 , i.e.  tv: 1 and
 tv: 2. Without loss of generality, we can assume that such
type derivations both end with an instance of (const)/(new)/
(abstr) followed by an instance of (subsum) (such an instance
may also be useless, in the sense that it assigns the type in the
premise also to the conclusion).
We now reason on the possible kind of v:

v= c: In this case, the only possible typing axiom used
to type c is (const) and it states that  c : c; hence,
the only way to infer t1 and t2 for c is when  t£c 1

and  t£c 2, i.e.  t t£c 1 2. Hence,  t tv : 1 2,
as desired.
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= ( )v C unew : Here, the typing rule used is (new), with
a m( ) = [ ]~~type C a m: , : ,  aG ¢ u : , for a a¢ £ , and

a a m t ¢ = [ ¢ ] [ ]
~~~

= ¼
⋀ ≄a m l 0: , : :

i n
i i1

1

a a m t ¢ = [ ¢ ] [ ]
~~~

= + ¼ ¢
⋀ ≄a m l 0: , : :

i n n
i i2

1

Moreover, a t¢ £1 1 and a t¢ £2 2. Let us now define a¢
as follows:

a a m t ¢ = [ ¢ ] [ ]
~~~

= ¼ ¢
⋀a m l: , : :

i n
i i

1

Trivially, a a a¢ ¢ ¢ ≄ 01 2 and a a t t ¢ ¢ £1 2 1 2.
We can now use rules (new) and (subsum) to deduce
 t t( )C unew : 1 2.
l= r( )v x e.m, : Similarly, the typing rule used is (abstr),

with r a a( ) = (  ¢)Î⋀m i I i i , a a ¢x e: :i i , for all
Îi I , and

m a a a a = (  ¢) (  ¢)
Î{ ¼ } Î{ + ¼ }

⋀ ⋀ ≄ 0
i n

i i
j n m

j j1
1, , 1, ,

m a a a a = (  ¢) (  ¢)
Î{ ¼ } Î{ + ¼ }

⋀ ⋀ ≄ 0
i n

i i
j m h

j j2
1, , 1, ,

Moreover, m t£1 1 and m t£2 2. Let us now define μ

as follows:

m a a a a = (  ¢) (  ¢)
Î{ ¼ } Î{ + ¼ }

⋀ ⋀
i n

i i
j n h

j j
1, , 1, ,

Trivially, m m m ≄ 01 2 and m m t t £1 2 1 2;
by rule (abstr) and (subsum), l t tr( )x e. :m, 1 2. □

LEMMA 8.  t t =   ⧹ .

Proof. Trivially, we have t t   0; by Lemmas 7, 6
and 5,    Çt t t t  = = = Æ       0 . It then
remains to prove that  Èt t =    , i.e.

  t t" Î ( ) ( )v v v. : or :

To this aim, let us define   t t t= { Î }∣T v v: or :v .
If we now prove that =Tv , for every Îv , we have done.
Indeed, for every Îv , it holds that t Î = Tv and this
may hold either because  tv : or because  tv : .
Trivially, Tv is closed under . Moreover, by (subsum),

 =v 0: 1 and hence Î T0 v. Now, let t1 and t2 belong to
Tv. If  t tv : 1 2, then trivially t t Î Tv1 2 . Otherwise, by
(subsum),  tv : 1 and  tv : 2. Since t1 and t2 belong to Tv,
then  tv : 1 and  tv : 2. Then, Lemma 7 entails
 t t  v : 1 2 and t t t t    ( )1 2 1 2 . By
Lemma 6,  t t ( )v: 1 2 ; so, t t ( ) Î Tv1 2 . By closure

under , this entails that t t Î Tv1 2 . Finally, closure under
 easily follows from closure under and.

We now show that =Tv , i.e. that, for every t Î , it
holds that t Î Tv. For what we have just shown, we can only
consider the case when τ is an atomic type t. There are two
cases to consider:

(1) Let us first assume that v and t are not compatible
and prove that  v t: . Since Îv , it is typeable
and, hence, there exists a type derivation for v.
Without loss of generality, such a derivation ends
with a (possible useless) instance of (subsum) pre-
ceded by an instance of (const)/(new)/(abstr),
according to the kind of v; the latter yields  t¢v : .
By definition of the typing rules, t¢ is

• a basic type, if v is a constant;
• a record type in conjunction with some negated

record types, if v is an object creation;
• a conjunction of arrow types and of negated arrow

types, if v is an abstraction.

In the first case, t¢ Í  . Since t is not compatible
with v, it cannot be a basic type; hence,

  Í  ⧹t . Thus,  Ê t and, consequently,
t ¢ £ t . By (subsum), we easily conclude that
 v t: . In the second and third case, we reason in a
similar way but we replace  with   ( ´ )f and
  ( ´ )Wf , respectively.

(2) Let us then assume that v and t are compatible and
reason on the kind of v:

=v c: by (const),  c : c. By definition,
  ( ) = = { }Val cc c

; hence,  £ tc or  £ tc ,
according to whether Î ( )c t or not. By rule (sub-
sum),  c t: or  c t: .
= ( )v C unew : in this case, a m= [ ]~~t a m: , : . By rule
(new) and (subsum),  v t: if a m( ) £ [ ]~~type C a m: , :
(indeed, since v belongs to  , it must be typeable
and, hence,  a¢

~
u : , where a¢ is the sequence of

types of the fields in C). Otherwise, since ( )type C
a m[ ]~~a m: , : , we have that ( )type C
a m[ ]~~ ≄a m 0: , : . Hence, we can use the latter

type in (abstr) and then (subsum) to infer that
 v t: .
l= r( )v x e.m, : in this case, a a=  ¢t . By rule (abstr)

and (subsum),  v t: if r a a( ) = (  ¢) £Î⋀m i I i i

a a ¢ (indeed, since v belongs to  , it must be type-
able and, hence, for all Îi I , it holds that

a a ¢x e: :i i ). Otherwise, we reason like in the previ-
ous case with type a a a a (  ¢) (  ¢)Î⋀i I i i . □

LEMMA 9.   Èt t t t =     1 2 1 2 .

Proof. By Lemmas 8, 7 and 6, we have that
  t t t t t     = (( ) ( )) = ( Ç     ⧹1 2 1 2 1
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       Çt t t t ) = (( ) ( )) = ( ( È       ⧹ ⧹ ⧹ ⧹ ⧹2 1 2 1

  Èt t t)) =     2 1 2 . □

PROPOSITION 2.  · is a set-theoretic interpretation.

Proof. By Lemma 5, 7 and 8. □

APPENDIX C. CLOSING THE CIRCLE

We are now ready to prove Theorem 1. To this aim, we first
need a preliminary technical lemma on the bootstrap model.

LEMMA 10. Let

r r= {( ¢ ) ¼ ( ¢ )} Î r rÎ Î ⋀ ⧹ ⋁d l d l d: , , :n n P N1 1 . Then,

r r

r r

Î
é

ë

ê
ê
ê
¢ (  ¢) (  ¢) ¼ ¢

(  ¢) (  ¢)
ù

û

ú
ú
ú

r r

r r

Î Î

Î Î












⋀ ⧹ ⋁

⋀ ⧹ ⋁

d l l l l

l l

: , , :
P N

n

P
n

N
n

1 1 1

where

r r r

r r r

 =
ì
í
ïï
îïï

( ) Î ( )

 =
ì
í
ïï
îïï

( ) Î ( ) Í { ¢ ¼ ¢}

l
l if l dom

otherwise

l l if l dom l l

otherwise

1

, ,
0

n1

and r( )dom denotes { ¼ }l l, , m1 whenever
r t t= [ ¼ ]l l: , , :m m1 1 .

Proof. Because the bootstrap model is set-theoretic (see
Proposition 1), we have that

r r r r=
r r r rÎ Î Î Î









    ⋀ ⧹ ⋁ ⋂ ⧹ ⋃

P N P N

and hence

• for all r Î P, it holds that rÎ  d ; and
• for all r Î N , it holds that rÏ  d .

From the first item, rÎ  d if and only if
r( ) Í { ¢ ¼ ¢}dom l l, , n1 , and, for all rÎ ( )l dom , it holds that
rÎ ( ) d li , where ¢ =l li . Thus, for every = ¼i n1, , , we

have that

( )r r rÎ ¢ =  ¢ =
æ

è
çççç

 ¢
ö

ø
÷÷÷÷÷( )r r r rÎ ¢ Î Î Î

   











⋂ ⋂ ⋀d l l li

P l dom
i

P
i

P
i

: i

Similarly, from the second item, rÏ  d if and only if
either r( ) { ¢ ¼ ¢}dom l l, , n1 or there exists rÎ ( )l dom such
that ¢ =l li but rÏ ( ) d li . Thus, for every = ¼i n1, , , we
have that

( ) ( )r r rÏ ¢ =  ¢ =  ¢
( ) { }r r r

r
Î ¢ Î Í ¢¼ ¢ Î

Î
     ⋃ ⋃ ⋁d l l li

N l dom l l
i

N
i N i

: , ,i n1

So, we have proved that rÎ (  ¢)rÎ⋀ ⧹d li P i

r(  ¢)rÎ ⋁ lN i , for every = ¼i n1, , . This entails the
thesis. □

Notice that, in the definition of r  l, the condition
r( ) Í { ¢ ¼ ¢}dom l l, , n1 would be redundant, since it follows by

the fact that r Î P and rÎ rÎ  ⋂d P . By contrast, there may
be a r Î N such that r( ) { ¢ ¼ ¢}dom l l, , n1 (and this is the
reason for d not being in r ) but with some r¢ Î ( )l domi . We
cannot consider such a ρ in the overall union for di because, in
principle, it could be rÎ ( ¢) d li i . This is the reason for having
the condition r( ) Í { ¢ ¼ ¢}dom l l, , n1 in the latter union of the
proof and, consequently, in the definition of r  l.

Proof of Theorem 1. It suffices to prove, for every τ, that

t t= Æ = Æ   ⟺ .

Indeed, t t£1 2 if and only if t tÍ   1 2 and this holds if and
only if t t t t= = Æ     ⧹ ⧹1 2 1 2 . And similarly for  · and

£ , thanks to Proposition 2.
() Because of Proposition 1, we have that t = Æ  if and

only if t  0. Thus, we can easily conclude by lemmata 6
and 5.
() We prove the contrapositive, i.e.

t tÎ ¹ Æ   ⟹d

The proof is by structural induction on Îd D. Notice that this
induction can be done because the bootstrap model is structural
(see Proposition 1); indeed, by using the relation, we have
that the induction is mathematically well-founded.
We have three cases for d, viz. whether it belongs to , to

  ( ´ )Wf or to   ( ´ )f :

Îd : then Îd Val , for some ; hence,
   t( ) = { } Í ( )dd that implies  t£d (because
 · is well-founded); moreover,  d : d , by rule
(const). We can conclude that  td : , by using rule
(subsum). Hence, tÎ  d .
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  Î ( ´ )Wd f : then, = {( ¢) ¼ ( ¢)}d d d d d, , , ,n n1 1 ,
and it belongs to the set

     


(Ç

Ç

t ( ´ ) = ( ´ )

æ

è
çççç

ö

ø
÷÷÷÷

ö

ø
÷÷÷÷÷

t
W

( )Î ( )
W

Î Î

 

   

⋃

⋂ ⧹ ⋃t t

f
P N

f

t P t N

,

Thus, we can write


t t=

t( )Î ( )
( )⋁

P N
P N

,
,

where, for every pair  t( ) Î ( )P N, , we have that
a a a a= {  ¢ ¼  ¢}P , , n n1 1 , Ç a= { +N nfun 1

a a a¢ ¼  ¢ }+ , ,n m m1 and

t a a a a=
æ

è
ççç  ¢

ö

ø
÷÷÷÷

æ

è
çççç

 ¢
ö

ø
÷÷÷÷÷

( )
= ¼ = + ¼
⋀ ⧹ ⋁P N

i n
i i

j n m
j j,

1 1

Hence, there exists t( ) ≄ 0P N, , since by hypothesis
t ≄ 0. Moreover,   t t= t( )Î ( ) ( )   ⋃ P N P N, , . To
conclude the desired t ¹ Æ  , it suffices to prove
that t ¹ Æ( ) P N, . Since t( ) ≄ 0P N, , by rule (abstr)
we can conclude if we find a proper l r( )x e.m, such
that r a a( ) = (  ¢)=⋀m i n i i1 ,.., , and, for all =i
¼ n1, , , it holds that a a ¢x e: :i i . It can be easily

verified that a possible choice is to have r = [m :
a a(  ¢)]= ¼⋀i n i i1, , and = ( ) ( )re C m xnew . ;

indeed, a a a(  ¢) ( )= ¼ = ¼⋀ ⋁i n i i i n i1, , 1, ,

a( ¢)= ¼⋀i n i1, , .

  Î ( ´ )d f : thus, = {( ¢ ) ¼ ( ¢ )}d l d l d, , , ,n n1 1 ,
and it belongs to the set

     


Ç

Ç

t ( ´ ) =
æ

è
çççç

( ´ )

æ

è
çççç

ö

ø
÷÷÷÷

ö

ø
÷÷÷÷÷

t( )Î ( )

Î Î

 

   

⋃

⋂ ⧹ ⋃t t

f
P N

f

t P t N

,

Hence, we can find a pair  t( ) Î ( )P N, such that
  ( )ÇÎ ( ´ ) Î Î   ⋂ ⧹⋃d L t tf t P t N . Notice that,

if t is an atom different from a record type, then
   Ç( ´ ) = Æ tf (recall that  · is structural).
Thus, it suffices to consider ÍP rec; so, we have

r rÎ
r rÎ Î

   ⋂ ⧹ ⋃d
P N

Because of Lemma 10, {( ¢ ) ¼ ( ¢ )}Îl d l d, , , ,n n1 1

t t[ ¢ ¼ ¢ ] l l: , , :n n1 1 , where t r= (  ¢)rÎ⋀ ⧹li P i

r(  ¢)rÎ⋁ lN i . By definition of the bootstrap model,
this means that, for every = ¼i n1, , , it holds that

tÎ  di i . We can now use the inductive hypothesis
applied to the latter judgements and obtain that

 t t¹ Æ ¼ ¹ Æ   , , n1 ; consequently, also

t t[ ¢ ¼ ¢ ] ¹ Æ l l: , , :n n1 1 . To conclude, we use
Lemma 9 and obtain that  t t t[ ¢ ¼ ¢ ] Í   l l: , , :n n1 1 ,
because τ is a disjunction of types (  t( )Î ( )⋃ P N, ) and
we took one of its disjuncts (P,N). □
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