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1. Introduction

One of the most frequent and vividly investigated phenomena in different
contexts is that of repetitive structures. In genetics, for instance, one of the less
understood mutations among the genome rearrangements is the duplication of
a segment of a chromosome [17]. In the process of duplication, a stretch of DNA
is duplicated, yielding two or more adjacent copies, also called tandem repeats.
It is commonly asserted that approximately 5% of the genome is involved in
duplications and the distribution of these tandem repeats varies widely along
the chromosomes [22]. An interesting property of tandem repeats is to make a
so-called “phylogenetic analysis” possible, which might be useful in the inves-
tigation of the evolution of species by determining the most likely duplication
history [24]. The detection of these tandem repeats, as well as algorithms for
tandem repeats reconstructing history, have received a great deal of attention
in bioinformatics [1, 2, 21]. Thus, duplicating factors and reducing squares to
one of their halves is an interesting algorithmic problem with some motivation
from bioinformatics. Reductions of squares seems to be of importance in data
compression, where the compressed words have to contain some information
that allows the reconstruction of the original word [9, 10].

Treating chromosomes and genomes as languages raises the possibility that
the structural information contained in biological sequences can be generalized
and investigated by formal language theory methods [20]. Thus, the interpre-
tation of duplication as a formal operation on words has inspired several works
in the area of Formal Languages opened by [4, 23] and continued in a series of
papers, see, e.g., [11, 12] and the references therein. A special type of duplica-
tions inspired by the tandem repeats, known as telomeres, which appear only at
the end of chromosomes, has been considered in [8]. They are considered to be
protective DNA-protein complexes found at the end of eukaryotic chromosomes
which stabilize the linear chromosomal DNA molecule [3, 18]. The length of
telomeric DNA is important for the chromosome stability: the loss of telom-
eric repeat sequences may result in chromosome fusion and lead to chromosome
instability [15]. Thus, in [8], one considers duplications that may only appear
at the ends of the words only, called prefix-suffix duplications. In this context,
the aforementioned work investigates the class of languages that can be defined
by the iteratively application of the prefix-suffix duplication to a word and try
to compare it to other well studied classes of languages. Starting from the
biochemical reality that inspired the definition of this operation in [8], namely
that the telomeres cannot be arbitrarily long, a restricted variant of duplication,
called bounded duplication, was introduced in [6]. In this variant, the length
of the prefix or suffix that is duplicated is bounded by a predefined constant.
In both papers algorithms for computing different measures on these operations
for words and languages are presented.

On the other hand, the inverse operation, namely reducing repetitions, is
very natural. Returning to our source of inspiration, for computing a phy-
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logenetic network (a set of evolutionary relationships between different genes,
chromosomes, genomes, or even species) it is necessary to detect all squares and
compute all possible direct predecessors. But this is just one step, if we want
to compute other possible predecessors, not necessarily direct ones, hence this
process must be iterated. In this paper, we follow the line opened in [13, 14] for
the operations considered in [8] and [6]. We define the unbounded prefix-suffix
square reduction, which is the inverse of the duplication defined in [8] and the
bounded prefix-suffix square reduction, which is the inverse of the duplication
defined in [5, 6]. Our operation can be informally defined as the process of
reducing a square (tandem repeat) to one of its halves, provided that the square
is either a prefix or a suffix of the current word. We consider both variants:
bounded and unbounded as well as, for each of them, the non-iterated and the
iterated cases.

The paper is organized as follows. In Section 2, we recall all concepts and no-
tations we need and give the formal definitions for the unbounded and bounded
prefix-suffix square reductions. Then, in Section 2, we investigate the non-
iterated version of these operations. We show that, in general, the time com-
plexity of the unbounded prefix-suffix square reduction of a language increases
by an n factor in comparison to the complexity of the given language. This
factor is just the bound in the case of bounded prefix-suffix square reduction.
This factor is not necessary for regular languages. As a consequence, the class of
regular languages is closed under unbounded and bounded prefix-suffix square
reduction. On the other hand, there are linear languages such that their un-
bounded prefix-suffix square reduction is not even context-free. Then we show
that the space complexity remain unchanged. The iterated version is then con-
sidered in Section 4. We show that the class of regular languages is still closed
under iterated bounded prefix-suffix square reduction, but the unbounded case
remains open. We also show that there are linear languages such that their
iterated unbounded prefix-suffix square reduction is not context-free and one
cannot algorithmically decide when this holds. Afterwards, we define the prim-
itive prefix-suffix square root of a word w as a word x that can be obtained
from w by iterated prefix-suffix square reductions and is irreducible, i.e., no
further prefix or suffix square reduction can be applied. The primitive prefix-
suffix square root of a language contains all the primitive prefix-suffix square
roots of its words. The language of primitive prefix-suffix square roots over a
given alphabet V is the primitive prefix-suffix square root of V ∗. We prove
that this language is never regular for alphabets with at least two symbols in
the unbounded case, and always regular in the bounded case. The papers ends
with Section 5, containing a brief discussion on some open problems and some
algorithmic aspects.

We close this introduction by stressing that the investigation we pursue here
is not aimed to tackle real biological solutions. The biological phenomenon is
just a source of inspiration for our approach; our approach uses the biological
concepts at a simplified level and only from a theoretical computer science point
of view. Its aim is actually to provide a better understanding of the structural
properties of strings obtained by prefix-suffix square reductions. On the long
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run, such tools might provide the foundations on which applications working
with real data are built.

2. Preliminaries

We assume the reader to be familiar with fundamental concepts of formal
language theory and complexity theory (see, e.g., [19] and [16], respectively).
We start by summarizing the notions used throughout this work. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called a word
over V . The set of all words over V is denoted by V ∗ and the empty word is
denoted by ε; we further let V + = V ∗ \ {ε}. Given a word w over an alphabet
V , we denote by |w| its length, while |w|a denotes the number of occurrences
of the symbol a ∈ V in w. Furthermore, alph(w) denotes the minimal alphabet
W ⊆ V such that w ∈ W ∗, i.e. alph(w) = {a ∈ V | |w|a ̸= 0}. Obviously,

alph(L) =
∪
x∈L

alph(x). If w = xyz for some x, y, z ∈ V ∗, then x, y, z are called

prefix, subword, suffix, respectively, of w. For a word w, w[i..j] denotes the
subword of w starting at position i and ending at position j, 1 ≤ i ≤ j ≤ |w|;
by convention, w[i..j] = ε if i > j. If i = j, then w[i..j] is the i-th symbol of w,
which is simply denoted by w[i].

Given a word x over an alphabet V , we consider the following operations:

• Prefix square reduction, namely <| (x) = {uy | x = uuy for some u ∈ V +}.
The suffix square reduction is defined analogously, i.e., |= (x) = {yu | x =
yuu for some u ∈ V +}.

• Prefix-suffix square reduction, namely <|= (x) =<| (x)∪ |= (x).

The prefix-suffix square reduction is naturally extended to languages L by

<|= (L) =
∪
x∈L

<|= (x). We further define:

<|=0 (x) = {x},
<|=k+1 (x) = <|=k (x)∪ <|= (<|=k (x)), for any k ≥ 0,

<|=∗ (x) =
∪
k≥0

<|=k (x).

Note that the operations <|, |=, and <|= are actually the inverse of the
operations PD (prefix duplication), SD (suffix duplication), and PSD (prefix-
suffix duplication), respectively, introduced in [8]. However, we have preferred
to use <|= instead of PSD−1 for two reasons: (i) the iterated version might lead
to misinterpretations; (ii) the symbol <|= nicely visualizes the operation going
from a square to one of its halves.

We also define a restricted variant of the prefix-suffix square reduction called
bounded prefix-suffix square reduction. Formally, given a word x ∈ V ∗ and a
positive integer p, we define the p-prefix-suffix square reductions by:
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– p-prefix square reduction: p<|(x) = {uy | x = uuy for some u ∈ V +,
|u| ≤ p}.

– p-suffix square reduction: |=p(x) = {yu | x = yuu for some u ∈ V +, |u| ≤
p}.

– p-prefix-suffix square reduction: p<|=p(x) = p<|(x) ∪ |=p(x).

These operations are naturally extended to languages similarly to the unbounded
case. Furthermore, the iterated version of the bounded prefix-suffix square
reduction is defined similarly to the unbounded case. As in the case of the
unbounded square reductions defined above, each form of bounded square re-
duction is actually the inverse of the corresponding form of bounded duplication
introduced in [5].

3. Non-iterated prefix-suffix square reduction

We write L ∈ O(f(n)), if L can be decided in O(f(n)) time.

Theorem 1. Let f(n) be a monotone function such that f(2n) ∈ O(f(n)).
1. If L ∈ O(f(n)), then <|= (L) ∈ O(nf(n)).
2. If L ∈ O(f(n)), then p<|=p(L) ∈ O(pf(n)), for any p ≥ 1.

Proof. 1. It suffices to show that <| (L) ∈ O(nf(n)) holds as |= (L) ∈ O(nf(n))
can be shown analogously. Let w be a word of length n over alph(L). The
following algorithm returns the truth value of w ∈<| (L).

Algorithm 1 .

Input: w ∈ V +, |w| = n.
Output: True, if w ∈<| (L), and False, if w /∈<| (L).
1: for i = 1 to n do
2: if w[1..i]w ∈ L then
3: return True; HALT;
4: end if
5: end for
6: return False

As the condition in line 2 can be checked in O(f(i + n)) time and (by
hypothesis) f(i+n) ≤ f(2n) ∈ O(f(n)), the proof of the first statement is over.

2. The second statement follows similarly: it is sufficient to modify the range
of the loop index i in the first line of Algorithm 1 so that the algorithm iterates
on the interval 1..p.

There are many functions with this property: polynomials, roots, logarithms,
etc. It follows that the class P of polynomially recognizable languages by deter-
ministic Turing machines is closed under unbounded and bounded prefix-suffix
square reductions.
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A natural problem is to identify classes of languages for which the n or p
factor is not needed. To this aim we can prove:

Theorem 2. Let L be a regular language and let A be a deterministic finite
automaton with k states accepting L.
1. The membership problem for <|= (L) lies in O(kn).
2. The membership problem for p<|=p(L) lies in O(kn), for any p ≥ 1.

Proof. 1. As above, it suffices to show that <| (L) ∈ O(kn). Let A =
(Q,V, δ, q1, F ) with Q = {q1, q2, . . . , qk} and w ∈ V ∗, |w| = n. We define the
following arrays:

N [i, j] = δ(qi, w[1..j]), 1 ≤ i ≤ k, 1 ≤ j ≤ n,

R[i, j] = δ(qi, w[j..n]), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

These arrays can be computed in O(kn) time. Indeed, for each 1 ≤ i ≤ k the
values of N [i, j] can be computed in the increasing order of j, while the values
of R[i, j] can be computed in the decreasing order of j. We now claim that
w ∈<| (L) iff one of the following conditions is satisfied:

(i) R[N [N [1, i], i], i+ 1] ∈ F, for some 1 ≤ i ≤ n− 1,

(ii) N [N [1, n], n] = δ(q1, ww) ∈ F.

Indeed, the first item can be rewritten as:

R[N [N [1, i], i], i+ 1] = δ(N [N [1, i], i], w[i+ 1..n]) = δ(δ(N [1, i], w[1..i]),

w[i+ 1..n]) = δ(δ(δ(q1, w[1..i]), w[1..i]), w[i+ 1..n])

= δ(q1, w[1..i]w) ∈ F.

As one can see, the overall time of the algorithm is O(kn).
2. The second assertion can be proved by an easy modification of the above

construction.

The last proof leads to the following statement:

Corollary 1. If L is a regular language, then all languages <|= (L) and p<|=p(L),
p ≥ 1, are also regular.

Note the opposite situations regarding the closure of the class of regular
languages under the two complementary operations PSD , defined in [8], and<|=.
It is obvious that PSD(ab+a) ∩ ab+aab+a = {abnaabna | n ≥ 1}, which is not
regular. In some sense, this result may be explained by the fact that prefix-suffix
duplication “adds” some dependencies, while the prefix-suffix square reduction
“eliminates” such dependencies. However, this intuitive “explanation” does not
hold for other classes of languages. For instance, there are linear languages L
such that <|= (L) is not context-free. Indeed, it suffices to consider the linear
language

L = {anbambambanb | n,m ≥ 1}.
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It is obvious that

<|= (L) ∩ a+ba+ba+b = {anbanbanb | n ≥ 1},

which is not context-free.
However, the situation is different for the bounded prefix-suffix square re-

duction:

Theorem 3. The classes of linear and context-free languages are closed under
bounded prefix-suffix square reduction.

Proof. Let p ≥ 1 and L be a linear or context-free language over an alphabet
V . For each word x ∈ V + of length at most p, we write

xL = L ∩ {xx}V ∗, and Lx = L ∩ V ∗{xx}).

Clearly, both

p<|=p(L) =
∪

x∈V +,|x|≤p

((x \xL) ∪ (Lx/x)),

where the operators \ and / are for the left and right quotient, respectively. The
statement follows now by the closure properties of the two families of languages.

Theorem 4. Let f(n) ≥ log n be a space constructible function.
1. If L ∈ DSPACE(f(n)), then <|= (L) ∈ DSPACE(f(n)) as well.
2. If L ∈ DSPACE(f(n)), then p<|=p(L) ∈ DSPACE(f(n)), for all p ≥ 1.

Proof. We will prove the statement for the unbounded variant only. Let L be a
language accepted by an off-line deterministic Turing machine M in space f(n).
Again, we shall prove that <| (L) ∈ DSPACE(f(n)), the proof for |= (L) ∈
DSPACE(f(n)) being analogous. Assume that M has just one working tape.
Our idea is to implement Algorithm 1 on an off-line Turing machine M ′ with
three working tapes. The first tape of M ′ will simulate the working tape of
M , i.e., the first tape of M ′ will always have the same contents as the working
tape of M , and in any simulation step both machines will read the same symbol
on these tapes. The other two tapes will be used for storing integers in binary
representation. Thus, the second tape of M ′ contains an integer i between 1
and n, while the third tape contains an integer j between 0 and i+n+1, where
n is the length of the input word. The set of states of M ′ contains two copies of
each state of M ; let us say that one copy is red and the other one is green. As
a general rule, green states are used to encode the information that j ≤ i and
red states to encode the information that i < j. The Turing machine M ′ works
on an input w of length n as follows:

• M ′ will store 1 on both its second and third tapes and enters the green
copy of the initial state of M . Being in the green copy of the initial state
of M with i on its second tape and 1 on its third tape, M ′ is going to
simulate the work of M on the input word w[1..i]w inductively as follows.
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• In a green copy of the state q of M with the integers i, j (j ≤ i) on
its second and third tapes, M ′ reads the j-th symbol on its input tape
(which is w[j], provided that j ̸= 0, or the left end marker, otherwise)
and simulates the move of M in the state q by reading the j-th symbol
on its input tape. Remember that the word on its input tape is w[1..i]w,
therefore the symbol read by M is also w[j]. Let us assume that M , being
in state q, reads the symbol a, enters q′, and moves its input head to the
left or right. If M moved its input head to the left, then M ′ changes the
content of the third tape from j to j − 1 and enters a green copy of q′. If
M moved its input head to the right, then M ′ changes the content of the
third tape from j to j + 1 and enters either a green copy of q′, if j ≤ i, or
a red copy of q′, otherwise.

• In a red copy of the state q of M with the integers i, j (j > i) on its second
and third tapes, M ′ reads the (j − i)-th symbol on its input tape (which
is w[j − i], provided that j − i ≤ n, or the right end marker, otherwise)
and simulates the move of M in the state q by reading the j-th symbol
on its input tape. Remember that the current contents of its input tape
is w[1..i]w, therefore the symbol read by M would be also w[j − i]. Let
us assume that M , being in state q, reads the symbol a, enters q′, and
moves its input head to the left or right. If M moved its input head to
the left, then M ′ changes the content of the third tape from j to j−1 and
enters either a green copy of q′, if j ≤ i, or a red copy of q′, otherwise. If
M moved its input head to the right, then M ′ changes the content of the
third tape from j to j + 1 and enters a red copy of q′.

• If M reaches a final state during the above simulations, then M ′ enters a
final state and accepts its input. If M does not accept the input w[1..i]w,
then M ′ increases the value of i, provided that i < n, makes again j = 1,
enters the green copy of the initial state of M and continues with the
simulation of M on the new input w[1..i]w. If i = n, then M ′ halts and
rejects w.

It is clear that M ′ is deterministic and accepts exactly <| (L). Moreover, the
space used on the two extra tapes is at most logn, therefore M ′ decides <| (L)
is O(f(n)) space. By the well-known fact that DSPACE(f(n)) is closed under
union, the proof is complete.

Let L be as usual the complexity class DSPACE(log n); as a direct conse-
quence of this theorem, since the second and third tapes only contain represen-
tations of numbers 1 ≤ i ≤ n, 0 ≤ j ≤ 2n+ 1, thus employing at most O(log n)
space, we state:

Corollary 2. L is closed under bounded and unbounded prefix-suffix square re-
duction.

It is worth mentioning that the proof of Theorem 4 works for the nondeter-
ministic classes as well.
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4. Iterated prefix-suffix square reduction

We do not know whether <|=∗ (L) is still regular, provided that L is regular.
However, we can give an answer for the iterated bounded prefix-suffix square
reduction:

Theorem 5. The class of regular languages is closed under iterated bounded
prefix-suffix square reduction.

Proof. Let A = (Q,V, δ, q0, F ) be a DFA accepting the language L. We set

p<|=p
∗
(L) = L1 ∪ L2, where L1 contains all words of p<|=p

∗
(L) of length at

least 2p, while L2 = p<|=p
∗
(L) \ L1. As L2 is finite and can be effectively

computed, we only have to prove that L1 is regular. To this aim, we construct
a finite automaton with ε-moves A′ = (Q′, V, δ′, q0, {qf}), where qf /∈ Q, as
follows. The set of states Q′ is

Q′ = Q ∪ {qf} ∪ {(q, x) | q ∈ Q, x ∈ V +, |x| = p} ∪
{(x, q) | q ∈ Q, x ∈ V +, |x| = p},

while the transition mapping δ′ is the extension of δ which enables the following
computations in A′. For the sake of simplicity we prefer to explain the compu-
tations of A′ instead of defining the mapping δ′. From these explanations, the
reader may define completely the transition mapping δ′.

1. From its initial state, q0, A
′ may reach by an ε-move any of the states

(q0, x) with x ∈ V +, |x| = p.

2. From a state (q, x), with q ∈ Q, x ∈ V +, |x| = p, the automaton A′

may reach by an ε-move any of the states (s, y) such that there exists
z ∈ V +, |z| ≤ p, with δ(q, z) = s, and x = (zy)[1..p], y = zy′, for some
y′ ∈ V ∗.

3. From a state (q, x), with q ∈ Q, x ∈ V +, |x| = p, the automaton A′ may
also reach the state δ(q, x) by reading x, analogously to the computation
of A by reading x.

4. From any state of Q, by reading a symbol from V , A′ makes the same
move as A does.

5. From any state q of Q, by reading a word x of length p, A′ may reach the
state (x, δ(q, x)) analogously to the computation of A by reading x.

6. From a state (x, q), with q ∈ Q, x ∈ V +, |x| = p, the automaton A′

may reach by an ε-move any of the states (y, s) such that there exists
z ∈ V +, |z| ≤ p, with δ(q, z) = s, and y = (xz)[|xz| − p+ 1..|xz|], x = x′z,
for some x′ ∈ V ∗.

7. From any state (x, q), with q ∈ F , x ∈ V +, |x| = p, by an ε-move, A′ may
reach the final state qf .

Now, the computation of A′ on an input word w of length at least 2p is done
as follows. It starts from its initial state q0 and nondeterministically enters
one of the states (q0, α) with |α| = p. By a series of ε-moves (this series may
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be empty), A′ nondeterministically reaches a state (q, x) such that there exists
β ∈ V ∗, having the prefix α, with δ(q0, β) = q and x ∈ p<|∗(βx). Then A′ reads
x and enters a state s. This means that the following conditions are satisfied:

(i) δ(q0, βx) = s,
(ii) x is a prefix of w of length p,
(iii) x ∈ p<|∗(βx).

Then A′ may read another part, say y, from its input word and enters the
state r. Note that y may be the empty word. Nondeterministically, A′ reads a
segment of length p from its input word, say z, and enters the state (z, δ(r, z)).
Denote t = δ(r, z). By a series of ε-moves (this series may be empty), A′ reaches
a state (v, µ) such that there exists γ ∈ V ∗, having the suffix µ, with δ(t, γ) = v
and z ∈ |=p

∗
(zγ). If v is a final state of A, then A′ reads ε and enters its final

state qf . This means that the following conditions are satisfied:
(i) δ(t, zγ) = v,
(ii) z ∈ |=p

∗
(zγ).

We can see now that if z is not a suffix of w, then the computation gets stuck
before reading the whole input word. Therefore, z must be a suffix of w of
length p. It follows that the input word w can be written as w = xyz, with
|x| = |z| = p, βxyzγ ∈ L, and w ∈ p<|=p(βxyzγ), hence w ∈ L1.

A closer look to the previous proof gives hints to prove the following result:

Theorem 6. The class of linear languages is closed under iterated bounded
prefix-suffix square reduction.

Proof. Let Let G = (N,V, S, P ) be a linear grammar; without loss of generality
we may assume that the rules of P are of the forms:

(i) A → aB,A,B ∈ N, a ∈ V ,
(ii) A → Ba,A,B ∈ N, a ∈ V ,
(iii) A → ε,A ∈ N .

As in the previous proof, we set p<|=p
∗
(L) = L1 ∪ L2, where L1 contains

all words of p<|=p
∗
(L) of length at least 2p, while L2 = p<|=p

∗
(L) \ L1. As

L2 is finite and can be effectively computed, we only have to prove that L1

is linear. We construct the linear grammar G′ = (N ′, V, (ε, S, ε), P ′), where
N ′ = N ∪ {(x,A, y) | A ∈ N, x, y ∈ V ∗, |x| ≤ 2p, |y| ≤ 2p}, and P ′ contains,
besides all the rules of P , the following rules:

1. (x,A, y) → (xa,B, y), if A → aB ∈ P, |xa| ≤ 2p,

2. (x,A, y) → (x,B, ay), if A → Ba ∈ P, |ay| ≤ 2p,

3. (x,A, y) → (u,B, y), if A → aB ∈ P, and u ∈ p<|(xa),
4. (x,A, y) → (x,B, v), if A → Ba ∈ P, and v ∈ |=p(ay),

for all A ∈ N , x, y ∈ V ∗, |x| ≤ 2p, |y| ≤ 2p, and

5. (x,A, y) → xAy,A ∈ N, x, y ∈ V ∗, p ≤ |x|, |y| ≤ 2p.
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It is easy to see that any derivation in G′ starts with a sequence of derivations in
which only rules of the forms 1-4 are applied, hence the sentential form consists
in just one nonterminal of the form (x,A, y) from N ′. After this sequence, the
derivation continues with a rule of the form 5. Now the sentential form is xAy
such that there exist u, v, z ∈ V ∗ with x ∈ p<|∗(u), y ∈ |=p

∗
(v), A −→∗ z and

uzv ∈ L(G). Therefore, L(G′) = L1.

Theorem 7.
1. There are linear languages L such that <|=∗ (L) is not context-free.
2. Given a linear language L one cannot algorithmically decide whether or not
<|=∗ (L) is context-free.

Proof. 1. Let

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

be two Post lists over the alphabet V = {a, b} for some n ≥ 2. We construct
the linear language

L(x, y) = {cai1bai2b . . . aikbcaj1baj2b . . . ajmbcryjm . . . yj2yj1cxik . . . xi2xi1 |
k,m ≥ 1, 1 ≤ i1, i2, . . . , ik ≤ n, 1 ≤ j1, j2, . . . , jm ≤ n, r ≥ 3.}

We consider the language <|=∗ (L) ∩ {c}V +{cr | r ≥ 3}V +{c}. This language
is either empty or infinite. We prove that if this language is not empty, then
it cannot be context-free. The language <|=∗ (L) ∩ {c}V +{cr | r ≥ 3}V +{c} is
actually the set

S = {caj1baj2b . . . ajmbcryjm . . . yj2yj1c | r ≥ 3, and j1, j2, . . . , jm

is a solution of the PCP for x and y}.

It is an easy exercise to prove that this language, if not empty, does not satisfy
the pumping lemma.

2. We take the same linear language L(x, y) as above. Clearly, <|=∗ (L) is
context-free if and only if <|=∗ (L) ∩ {c}V +{cr | r ≥ 3}V +{c} is context-free,
which is equivalent to <|=∗ (L)∩{c}V +{cr | r ≥ 3}V +{c} = ∅. But this holds if
and only if the Post Correspondence Problem for the two lists has no solution,
which is not decidable.

We say that a word z is a primitive prefix-suffix square root of a word x
if z ∈<|=∗ (x) and z is both prefix and suffix square free (it neither starts
nor ends with a square). Denote by <|=

√
x the set of all primitive prefix-suffix

square roots of x. For a language L we write <|=
√
L =

∪
x∈L

<|=
√
x. The primitive

bounded prefix-suffix square root of a word, the set of all primitive bounded
prefix-suffix square roots of a word and of a language are defined analogously.
A natural question concerns the language of primitive prefix-suffix square roots
of all words over a language, that is <|=

√
V ∗.

11



Theorem 8.
1. The language <|=

√
V ∗ is regular if and only if V is a singleton.

2. The language p<|=p
√
V ∗ is regular for any alphabet V .

Proof. 1. Clearly, <|=
√
{a}∗ = {a}, hence it is regular. Assume that V = {a, b}.

We start from the easy fact that each word abanbabamb has a prefix or a suffix
square if and only if at least one of the followings is true:

(i) m = 0, 1,
(ii) n = 1, 2,
(iii) n = m.

It is known that a regular language L ⊆ V ∗ induces on V ∗ the Myhill-Nerode
equivalence relation: x ≡L y if, for all w ∈ V ∗, we have that xw ∈ L if and only
if yw ∈ L. It follows that any two words abanb and abamb, with n,m ≥ 3, n ̸= m
can be distinguished under the Myhill-Nerode equivalence induced by <|=

√
V ∗.

Indeed, for x = abanb, y = abamb, and w = abamb, we have xw ∈ <|=
√
V ∗,

while yw /∈ <|=
√
V ∗. Therefore, by the Myhill-Nerode theorem, <|=

√
V ∗ cannot

be regular.
2. The complement of the language p<|=p

√
V ∗ is the regular language

{xx | 1 ≤ |x| ≤ p}V ∗ ∪ V ∗{xx | 1 ≤ |x| ≤ p},

hence we are done.

5. Discussion and final remarks

As one can see, in the case of non-iterated prefix-suffix square reduction, we
provided a rather complete picture. The situation is quite different in the case
of iterated unbounded prefix-suffix square reduction in the sense that the status
of a few problems remained open:

1. Is the iterated unbounded prefix-suffix square reduction of a regular lan-
guage still regular? Actually, we cannot say whether this language is
recursive.

2. Is the primitive unbounded prefix-suffix square root of a regular language
still regular? We believe that the primitive unbounded prefix-suffix square
root of a regular language is still regular if and only if it is finite.

We have not considered here algorithmic problems like in [8] and [6]. How-
ever, as the operations considered here are the inverses of those in the afore-
mentioned papers, some natural algorithmic problems that could be considered
have already been solved in [8] and [6]. For instance, these problems have al-
ready been solved for prefix-suffix duplication and their solutions are identical
to those for prefix-suffix square reductions:

1. Given two words x and w, does x belong to <|=∗ (w)?
2. Given two words x and w, what is the prefix-suffix square reduction dis-

tance between x and w? The prefix-suffix square reduction distance be-
tween two words is defined as the minimal number of prefix-suffix square
reductions applied to one of the words in order to obtain the other one.

12



It is worth mentioning that Section 4 from [7] deals with several algorith-
mic problems concerning the primitive prefix-suffix square roots of a word. In
that work, the primitive prefix-suffix square roots are called PSD-irreducible
roots. However, there are still some algorithmic problems regarding the primi-
tive prefix-suffix square roots of a word which seem interesting to us:

1. Given a word w, compute the number of all its primitive prefix-suffix
square roots of w. Note that the number of all prefix-suffix square free
factors of a word of length n can be computed in O(n log n) time (see
[7]). It is very likely that the ideas from [7] may be used for solving this
problem.

2. What is the complexity of deciding whether a given word has a unique
primitive prefix-suffix square root, a unique shortest or longest primitive
prefix-suffix square root?

3. Compute the set of all shortest or longest primitive prefix-suffix square
roots of a word. Compute only the cardinal of these sets.
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