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Abstract. We consider families up of solutions to the problem
⎧
⎨

⎩

−Δu = up in Ω
u > 0 in Ω
u = 0 on ∂Ω

, (Ep)

where p > 1 and Ω is a smooth bounded domain of R
2. Under the

condition

p

∫

Ω

|∇up|2 dx → β ∈ R as p → +∞ (F)

we give a complete description of the asymptotic behavior of up as p →
+∞.
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1. Introduction

We consider the Lane–Emden Dirichlet problem
{−Δu = |u|p−1u in Ω,

u = 0 on ∂Ω (1.1)

where p > 1 and Ω ⊂ R
2 is a smooth bounded domain.

The aim of this paper was to provide a precise description of the as-
ymptotic behavior, as p → +∞, of positive solutions of (1.1) under a uniform
bound of their energy, namely we consider any family (up) of positive solu-
tions to (1.1) satisfying the condition

p

∫

Ω

|∇up|2 dx → β ∈ R, as p → +∞. (1.2)

Research partially supported by: PRIN 201274FYK7 005 Grant, INDAM-GNAMPA and
Fondi Avvio alla Ricerca Sapienza 2015.
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Before stating our results let us review some known ones. The first papers
performing an asymptotic analysis of (1.1), as p → +∞, are [12,13] where the
authors prove a 1-point concentration phenomenon for least energy (hence
positive) solutions to (1.1) and derive some asymptotic estimates. Note that
least energy solutions (up) of the 2-dimensional Lane–Emden problem satisfy
the condition

p

∫

Ω

|∇up|2 dx → 8πe ∈ R, as p → +∞, (1.3)

which is a particular case of (1.2). Later, Adimurthi and Grossi [1] identified
a limit problem by showing that suitable scalings of the least energy solutions
(up) converge in C2

loc(R
2) to a regular solution U of the Liouville problem
{−ΔU = eU in R

2
∫

R2 eU dx = 8π.
(1.4)

They also showed that ‖up‖∞ converges to
√

e as p → +∞, as it had been
previously conjectured. Note that solutions to (1.1), satisfying (1.2) do not
blow up as p → +∞ (unlike the higher dimensional case when p approaches
the critical exponent). Concerning general positive solutions (i.e. not neces-
sarily with least energy) a first asymptotic analysis was carried out in [5]
(see also [6]) showing that, under the condition (1.2), all solutions (up) con-
centrate at a finite number of points in Ω̄. Moreover, for each concentration
point, there exists at least a sequence of points converging to it such that
suitable scalings of (up) about these points converge to the regular bubble U
satisfying (1.4). In all the introduction we briefly indicate these sequences of
points as concentrating sequences and refer to Sect. 2 and to Proposition 2.2
for their precise definition. Let us observe that this result holds even for sign
changing solutions and can be also obtained substituting (1.2) by a uniform
bound on the Morse index of the solutions (up) (see [4]). This first general
result has been also exploited in [5] to study the asymptotic behavior of some
families (vp) of sign changing solutions in symmetric domains, proving that
suitable scalings of the positive parts (v+

p ) converge to the function U in (1.4)
while suitable scalings and translations of the negative parts (v−

p ) converge
to a singular radial solution of

{−ΔV = eV + Hδ0 in R
2

∫

R2 eV dx < +∞,
(1.5)

where H is a suitable constant and δ0 is the Dirac measure concentrated at
the origin. A similar result had been previously shown in [8] in the case of
nodal radial solutions in the ball. Thus the limit profile of these sign-changing
solutions looks like a superposition of two bubbles, related to different limit
problems, one coming from the concentration of the positive parts and an-
other coming from the concentration of the negative parts, both at the same
point.

As far as positive solutions are concerned, in [5] a few consequences were
derived by the main theorem, but we were not able to characterize completely
the asymptotic profile. In particular it was not clear whether there could be
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Asymptotic profile of positive solutions

more than one concentrating sequence approaching each concentration point,
namely a bubble tower profile.

In this paper we complete the asymptotic analysis of positive solutions
started in [5]. More precisely, by the general result of [5] and the new ones
proved here, we obtain the following:

Theorem 1.1. Let (up) be a family of positive solutions to (1.1) satisfying
(1.2).

Then there exists a finite set of points S = {x1, . . . , xk} ∈ Ω, k ∈ N\{0}
such that, up to sequences, (up) satisfies the following properties:

(i)
√

pup → 0 in C2
loc(Ω̄\S) as p → +∞;

(ii)

pup(x) → 8π

k∑

i=1

miG(x, xi) in C2
loc(Ω̄\S) as p → +∞,

where mi := limp→+∞ ‖up‖L∞(Bδ(xi))
, for δ > 0 sufficiently small and G

is the Green’s function of −Δ in Ω under Dirichlet boundary conditions;
(iii)

p

∫

Ω

|∇up(x)|2 dx → 8π

k∑

i=1

m2
i as p → +∞; (1.6)

(iv) the concentration points xi, i = 1, . . . , k, satisfy

mi∇xH(xi, xi) +
∑

� �=i

m�∇xG(xi, x�) = 0, (1.7)

where

H(x, y) = G(x, y) +
log(|x − y|)

2π
(1.8)

is the regular part of the Green’s function G;
(v)

mi ≥ √
e, ∀ i = 1, . . . , k.

Note that in particular we get

lim
p→+∞ ‖up‖∞ ≥ √

e

and by (1.2) and (1.6) it follows that

β = 8π

k∑

i=1

m2
i ≥ k 8πe

so that the number of concentration points k is estimated by

k ≤
[

β

8πe

]

.

The existence of the set of points S satisfying (i) was already proved
in [5], while the statements (ii)–(v) are the new contributions of this paper.
To prove them we start from the asymptotic analysis performed in [5] (see
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Sect. 2) and then we follow some arguments used in [14] to study the as-
ymptotic behavior of solutions of a fourth-order biharmonic equation in R

4.
Even though in the introduction of [14] it is observed that some estimates
also apply to the second-order case, the passage to second-order equations is
not straightforward; moreover, the proofs of several formulas with full details
must be given.

Let us point out that as a byproduct of our proof we get that all the
concentration points of positive solutions to (1.1) are simple (and isolated)
in the sense that there is no more than one concentrating sequences of points
converging at the same point. Indeed the number k of concentration points in
Theorem 1.1 coincides with the maximal number of concentrating sequences
of points (see Proposition 5.1 in Sect. 5). Moreover, unlike the case of sign-
changing solutions the only limit profiles obtained by scaling the positive
solutions are the regular bubbles U while the singular Liouville problem in
R

2 is not involved.

Remark 1.2. As observed before, for least energy solutions the limit (1.3)
holds so that Theorem 1.1 implies that k = 1, which was known from [13],
and that limp→+∞ ‖up‖∞ =

√
e, which was already proved in [1].

We conjecture that for any family of positive solutions up satisfying
(1.2) the following should hold:

mi =
√

e, ∀ i = 1, . . . , k, (1.9)

and so in particular that limp→+∞ ‖up‖∞ =
√

e.
Note that if (1.9) held true we would have a quantization of the energy,

namely the limit energy level β in (1.2) would be exactly

β = k 8πe, k ∈ N\{0}.

Hence, for p large, positive solutions (up) to (1.1) could exist only at levels
of energy p

∫

Ω
|∇up|2dx close to a multiple of 8πe. Therefore, for positive

solutions of Lane–Emden problems in dimension two the constant 8πe would
play the same role as the Sobolev constant S in dimension higher than or
equal to 3.

We recall that concentrating positive solutions satisfying (1.9) have been
constructed in [7] for non simply connected domains.

The outline of the paper is the following: in Sect. 2 we recall preliminary
results. In Sect. 3 we show that the concentration points cannot belong to the
boundary of Ω. In Sect. 4 we analyze the rescaling around the local maxima
of up. In Sect. 5 we conclude the proof of Theorem 1.1.

2. Preliminary results

We start by recalling the classical Pohozaev identity.
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Lemma 2.1 (Pohozaev identity [10,11]). Let A ⊂ R
2 be a smooth bounded

domain, u ∈ C2(Ā) a solution of −Δu = f(u) and F (u) =
∫ u

0
f(t)dt. Then

2
∫

A

F (u)dx =
∫

∂A

F (u(x))〈x − y, ν(x)〉dsx − 1
2

∫

∂A

|∇u(x)|2〈x − y, ν(x)〉dsx

+
∫

∂A

〈x − y,∇u(x)〉〈∇u(x), ν(x)〉dsx, (2.1)

where ν(x) denotes the outer normal at ∂A at x, and y ∈ R
2.

Assuming that ∂Ω ∈ C2, we consider the Green’s function of −Δ on Ω
under Dirichlet boundary conditions, namely the function G which satisfies
for any y ∈ Ω

{−ΔxG(x, y) = δy(x) x ∈ Ω
G(x, y) = 0 x ∈ ∂Ω,

(2.2)

where δy is the Dirac mass supported in y.
We denote by H(x, y) the regular part of G, namely

H(x, y) = G(x, y) +
1
2π

log |x − y|, (2.3)

which satisfies, for all y ∈ Ω:
{−ΔxH(x, y) = 0 x ∈ Ω

H(x, y) = 1
2π log |x − y| x ∈ ∂Ω.

(2.4)

We recall that H is a smooth function in Ω × Ω, G and H are symmetric in
x and y. Moreover by the comparison principle

1
2π

log |x − y| < H(x, y) ≤ C ∀x, y ∈ Ω, (2.5)

from which

G(x, y) > 0 ∀x, y ∈ Ω, (2.6)

and there exists Cδ > 0 such that

G(x, y) ≤ Cδ ∀ |x − y| ≥ δ > 0. (2.7)

One can also prove that (see for instance [3, Lemma A.2])
∂H

∂νx
(x, y) =

1
2π

∂

∂νx
(log |x − y|) + O(1), ∀x ∈ ∂Ω, ∀ y ∈ Ω

from which
∣
∣
∣
∣
∂G

∂νx
(x, y)

∣
∣
∣
∣ ≤ C, ∀x ∈ ∂Ω, ∀ y ∈ Ω. (2.8)

Moreover (see for instance [2]), one also has

|∇xG(x, y)| ≤ C

|x − y| ∀x, y ∈ Ω, x �= y. (2.9)

Next we recall results already known about the asymptotic behavior
of a general family (up) of nontrivial solutions of (1.1), even sign-changing,
satisfying the condition (1.2). This part is mainly based on some of the results
contained in [5], plus smaller additions or minor improvements.
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In [12] it has been proved that for any family (up) of nontrivial solutions
of (1.1) the following lower bound holds:

lim inf
p→+∞ p

∫

Ω

|∇up|2dx ≥ 8πe, (2.10)

which implies that the constant β in (1.2) satisfies β ≥ 8πe.
If we denote by Ep the energy functional associated with (1.1), i.e.

Ep(u) :=
1
2
‖∇u‖2

2 − 1
p + 1

‖u‖p+1
p+1, u ∈ H1

0 (Ω),

since for a solution u of (1.1)

Ep(u) =
(

1
2

− 1
p + 1

)

‖∇u‖2
2 =

(
1
2

− 1
p + 1

)

‖u‖p+1
p+1, (2.11)

then (1.2) and (2.10) are equivalent to lower bounds for the limit of the energy
Ep or for the Lp+1-norm, namely

lim
p→+∞ 2pEp(up) = lim

p→+∞ p

∫

Ω

|up|p+1 dx = lim
p→+∞ p

∫

Ω

|∇up|2 dx = β ≥ 8πe;

we will use all these equivalent formulations in the sequel.
Observe that by the assumption in (1.2) we have that

Ep(up) → 0, ‖∇up‖2 → 0, as p → +∞
so in particular up → 0 a.e. as p → +∞.
On the other side it is known that the solutions up do not vanish as p → +∞
and that they do not blow-up, unlike the higher dimensional case. Indeed the
following results hold:

Proposition 2.2. Let (up) be a family of solutions to (1.1) satisfying (1.2).
Then

(i) (No vanishing).

‖up‖p−1
∞ ≥ λ1, for all p > 1

where λ1 = λ1(Ω)(>0) is the first eigenvalue of the operator −Δ in
H1

0 (Ω).
(ii) (Existence of the first bubble).

Let (x+
p ) ⊂ Ω be such that up(x+

p ) = ‖up‖∞. Let us set

μ+
p :=

(
p|up(x+

p )|p−1
)− 1

2 (2.12)

and for x ∈ Ω̃+
p := {x ∈ R

2 : x+
p + μ+

p x ∈ Ω}
v+

p (x) :=
p

up(x+
p )

(up(x+
p + μ+

p x) − up(x+
p )). (2.13)

Then μ+
p → 0 as p → +∞ and

v+
p −→ U in C2

loc(R
2) as p → +∞,

where

U(x) = log
(

1
1 + 1

8 |x|2
)2

(2.14)
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is the solution of −ΔU = eU in R
2, U ≤ 0, U(0) = 0 and

∫

R2 eU = 8π.
Moreover,

lim inf
p→+∞ ‖up‖∞ ≥ 1. (2.15)

(iii) (No blow-up). There exists C > 0 such that

‖up‖∞ ≤ C, for p sufficiently large. (2.16)

(iv) There exist constants c, C > 0, such that for all p sufficiently large we
have

c ≤ p

∫

Ω

|up(x)|p dx ≤ C. (2.17)

(v)
√

pup ⇀ 0 in H1
0 (Ω) as p → +∞.

Proof. The statements (i) and (iii) have been first proved for positive solu-
tions in [12], while (ii) is essentially proved in [1] (see also [6]). Assertion (iv)
follows easily from (iii), by Hölder inequality and (2.10) and (2.11). The proof
of (v) is given in [5] or [6]. �

We now recall an important result about the asymptotic behavior of
solutions to (1.1) satisfying (1.2) which has been proved in [5]. It is the
starting point for the proof of Theorem 1.1.

In order to state it (see Proposition 2.4 below) we need to introduce
some notations. Given a family (up) of solutions of (1.1) and assuming that
there exists n ∈ N\{0} families of points (xi,p), i = 1, . . . , n in Ω such that

p|up(xi,p)|p−1 → +∞ as p → +∞, (2.18)

we define the parameters μi,p by

μ−2
i,p = p|up(xi,p)|p−1, for all i = 1, . . . , n. (2.19)

By (2.18) it is clear that μi,p → 0 as p → +∞ and that

lim inf
p→+∞ |up(xi,p)| ≥ 1. (2.20)

Then we define the concentration set

S =
{

lim
p→+∞ xi,p, i = 1, . . . , n

}

⊂ Ω̄ (2.21)

and the function

Rn,p(x) = min
i=1,...,n

|x − xi,p|, ∀x ∈ Ω. (2.22)

Finally, we introduce the following properties:
(Pn

1 ) For any i, j ∈ {1, . . . , n}, i �= j,

lim
p→+∞

|xi,p − xj,p|
μi,p

= +∞.

(Pn
2 ) For any i = 1, . . . , n, for x ∈ Ω̃i,p := {x ∈ R

2 : xi,p + μi,px ∈ Ω}
vi,p(x) :=

p

up(xi,p)
(up(xi,p + μi,px) − up(xi,p)) −→ U(x) (2.23)

in C2
loc(R

2) as p → +∞, where U is the same function in (2.14).
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(Pn
3 ) There exists C > 0 such that

pRn,p(x)2|up(x)|p−1 ≤ C

for all p > 1 and all x ∈ Ω.
(Pn

4 ) There exists C > 0 such that

pRn,p(x)|∇up(x)| ≤ C

for all p > 1 and all x ∈ Ω.

Lemma 2.3 [5, Lemma 2.1-(iii)]. If there exists n ∈ N\{0} such that the prop-
erties (Pn

1 ) and (Pn
2 ) hold for families (xi,p)i=1,...,n of points satisfying (2.18),

then

p

∫

Ω

|∇up|2 dx ≥ 8π

n∑

i=1

α2
i + op(1) as p → +∞,

where αi := lim infp→+∞ |up(xi,p)| (
(2.20)

≥ 1).

Next result shows that the solutions concentrate at a finite number of points
and also establish the existence of a maximal number of “bubbles”.

Proposition 2.4 ([5, Proposition 2.2], [6, Theorem 2.3]). Let (up) be a family
of solutions to (1.1) and assume that (1.2) holds. Then there exist k ∈ N\{0}
and k families of points (xi,p) in Ω, i = 1, . . . , k such that, after passing to
a sequence, (Pk

1 ), (Pk
2 ), and (Pk

3 ) hold. Moreover x1,p = x+
p and, given any

family of points xk+1,p, it is impossible to extract a new sequence from the
previous one such that (Pk+1

1 ), (Pk+1
2 ), and (Pk+1

3 ) hold with the sequences
(xi,p), i = 1, . . . , k + 1. At last, we have

√
pup → 0 in C2

loc(Ω̄\S) as p → +∞. (2.24)

Moreover, there exists v ∈ C2(Ω̄\S) such that

pup → v in C2
loc(Ω̄\S) as p → +∞, (2.25)

and (Pk
4 ) holds.

In the rest of this section we derive some consequences of Proposition 2.4.

Remark 2.5. Under the assumptions of Proposition 2.4 we have
dist(xi,p, ∂Ω)

μi,p
−→

p→+∞ +∞ for all i ∈ {1, . . . , k}.

Corollary 2.6. Let K ⊂ Ω̄\S be a compact set. Then

lim
p→+∞ ‖p|up(x)|p‖L∞(K) = lim

p→+∞ ‖p|up|p+1‖L∞(K) = 0 (2.26)

and so

lim
p→+∞ p

∫

K

|up(x)|p dx = lim
p→+∞ p

∫

K

|up(x)|p+1 dx = 0. (2.27)

Moreover,

lim
p→+∞ ‖p|∇up(x)|2‖L∞(K) = 0 (2.28)
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and so

lim
p→+∞ p

∫

K

|∇up(x)|2 dx = 0. (2.29)

Proof. If K is a compact subset of Ω̄\S by (Pk
3 ) we have that there exists

CK > 0 such that

p|up(x)|p−1 ≤ CK , for all x ∈ K. (2.30)

As a consequence for x ∈ K

p|up(x)|p+1 ≤ ‖up‖∞p|up(x)|p
Proposition 2.2-(iii)

≤ C p|up(x)|p
(2.30)

≤ CK up(x) → 0

(2.31)

uniformly as p → +∞ by (2.24).
The proof of (2.28) follows similarly by using (Pk

4 ) instead of (Pk
3 ). �

For a family of points (xp) ⊂ Ω we denote by μ(xp) the numbers defined by

[μ(xp)]
−2 := p|up(xp)|p−1. (2.32)

Proposition 2.7 [5, Proposition 2.5]. Let (xp) ⊂ Ω be a family of points such
that p|up(xp)|p−1 → +∞ and let μ(xp) be as in (2.32). Let i ∈ {1, . . . , k}
such that Rk,p(xp) = |xi,p − xp|, up to a sequence, then

lim sup
p→+∞

μi,p

μ(xp)
≤ 1.

Next result characterizes in different ways the concentration set S.

Proposition 2.8 [6, Proposition 2.9]. Let (up) be a family of solutions to (1.1)
satisfying (1.2). Then the following holds:

(i)

S=

{

x ∈ Ω : ∀ r0 > 0, ∀ p0 > 1, ∃ p>p0 s.t. p

∫

Br0 (x)∩Ω

|up(x)|p+1 dx≥1

}

;

(ii)

S=
{

x ∈ Ω :
∃ a sequence (upn

) ⊂ (up) and a sequence of points xpn
→x,

s.t. pn|upn
(xpn

)| → +∞ as pn → +∞
}

.

3. No concentration at the boundary

Let k ∈ N\{0} be as in Proposition 2.4 the maximal number of families of
points (xi,p) ⊂ Ω, i = 1, . . . , k which up to a sequence satisfy (Pk

1 ) (Pk
2 ) and

(Pk
3 ). In (2.21) we have also defined

S =
{

lim
p→+∞ xi,p, i = 1, . . . , k

}

⊂ Ω,

for which the characterization in Proposition 2.8 holds.
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We denote by N ∈ N\{0} the number of points in S. Hence N ≤ k,
moreover, without loss of generality we can relabel the sequences of points
xi,p, i = 1, . . . , k, and assume that

xj,p → xj , ∀j = 1, . . . , N and S = {x1, x2, . . . , xN}. (3.1)

Lemma 3.1. There exists γj > 0, j = 1, . . . , N , such that

lim
p→+∞ pup =

N∑

j=1

γjG(·, xj) in C2
loc(Ω̄\S).

Moreover

γj = lim
δ→0

lim
p→+∞ p

∫

Bδ(xj)∩Ω

up(x)p dx, (3.2)

where Bδ(xj) is the ball of center at xj and radius δ > 0.

Proof. Since the xj ’s are isolated, there exists r > 0 such that Br(xi) ∩
Br(xj) = ∅. Let δ ∈ (0, r), then by the Green representation formula

pup(x) = p

∫

Ω

G(x, y)up(y)p dy

= p

N∑

j=1

∫

Bδ(xj)∩Ω

G(x, y)up(y)p dy

+ p

∫

Ω\∪jBδ(xj)

G(x, y)up(y)p dy

(2.6)−(2.7)−(2.27)
= p

N∑

j=1

∫

Bδ(xj)∩Ω

G(x, y)up(y)p dy + op(1).

Furthermore, by the continuity of G(x, ·) in Ω̄\{x} and by Proposition 2.2-
(iv) we obtain

lim
p→+∞ pup(x) =

N∑

j=1

γjG(x, xj),

where

γj = lim
δ→0

lim
p→+∞ p

∫

Bδ(xj)∩Ω

up(x)p dx.

Last we show that γj > 0.
Since xj,p → xj as p → +∞ then B δ

2
(xj,p) ⊂ Bδ(xj) for p large and so,

since up > 0

p

∫

Bδ(xj)∩Ω

up(x)p dx ≥ p

∫

B δ
2
(xj,p)∩Ω

up(x)p dx

= up(xj,p)
∫

B δ
2μj,p

(0)∩Ω̃j,p

(

1 +
vj,p(x)

p

)p

dx,
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where the last equality is obtained by scaling around xj,p, where vj,p are
defined in (2.23) and Ω̃j,p = {x ∈ R

2 : xi,p +μi,px ∈ Ω}. Passing to the limit
as p → +∞, since B δ

2μj,p

(0)∩ Ω̃j,p → R
2 and (PN

2 ) holds, by Fatou’s Lemma
we get

lim
p

p

∫

Bδ(xj)∩Ω

up(x)p dx ≥ lim inf
p

up(xj,p)
∫

R2
eU(x) dx ≥ 8π > 0,

having used that lim infp up(xj,p) ≥ 1 (see (2.20)). �

Next we show that there is no boundary blow-up:

Proposition 3.2.

S ∩ ∂Ω = ∅.

Proof. We argue by contradiction. Suppose that xi ∈ S ∩ ∂Ω, for some i =
{1, . . . , N}. Choose r > 0 such that S∩Br(xi) = {xi}. By the characterization
of S in Proposition 2.8(i), we have that for all δ < r, for all p0 > 1 there
exists p > p0 such that

p

∫

Ω∩Bδ(xi)

up(x)p+1 dx ≥ 1. (3.3)

Let yp := xi + ρp,δν(xi), where

ρp,δ :=

∫

∂Ω∩Bδ(xi)

(
∂up(x)

∂ν

)2

〈x − xi, ν(x)〉dsx

∫

∂Ω∩Bδ(xi)

(
∂up(x)

∂ν

)2

〈ν(xi), ν(x)〉dsx

and δ � r such that 1
2 ≤ 〈ν(xi), ν(x)〉 ≤ 1, for x ∈ ∂Ω ∩ Bδ(xi). With this

choice of δ we have

|ρp,δ| ≤ 2δ. (3.4)

Moreover, it is easy to see that the choice of yp implies
∫

∂Ω∩Bδ(xi)

(
∂up(x)

∂ν

)2

〈x − yp, ν(x)〉dsx = 0. (3.5)

Applying the local Pohozaev identity (2.1) in the set Ω∩Bδ(xi) with y = yp,

using (3.5), the boundary condition up = 0 on ∂Ω (so that
∣
∣
∣
∂up

∂ν

∣
∣
∣ = |∇up| on

∂Ω) we obtain
2p2

p + 1

∫

Ω∩Bδ(xi)
up(x)

p+1 dx =
p2

2

∫

∂Ω∩Bδ(xi)
|∇up(x)|2〈x − yp, ν(x)〉dsx

− 1

2

∫

Ω∩∂Bδ(xi)
|p∇up(x)|2〈x − yp, ν(x)〉dsx

+

∫

Ω∩∂Bδ(xi)
〈x − yp, p∇up(x)〉〈p∇up(x), ν(x)〉dsx

+
p2

(p + 1)

∫

Ω∩∂Bδ(xi)
up(x)

p+1〈x − yp, ν(x)〉dsx

(3.5)
= − 1

2

∫

Ω∩∂Bδ(xi)
|p∇up(x)|2〈x − yp, ν(x)〉dsx
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+

∫

Ω∩∂Bδ(xi)
〈x − yp, p∇up(x)〉〈p∇up(x), ν(x)〉dsx

+
p2

(p + 1)

∫

Ω∩∂Bδ(xi)
up(x)

p+1〈x − yp, ν(x)〉dsx.

(3.6)

Next we show that the three terms in the right-hand side are O(δ2).
By Lemma 3.1 we have in particular that pup → ∑N

j=1 γjG(·, xj) in
C2

loc(Ω ∩ Br(xi)\{xi}). Hence it is easy to see that for x ∈ Ω ∩ Br(xi)\{xi},
since xi ∈ ∂Ω:

N∑

j=1

γjG(x, xj) = γiG(x, xi) + O(1)
(2.2)
= O(1);

N∑

j=1

γj∇xG(x, xj) = γi∇xG(x, xi) + O(1)

G is symm
= γi∇yG(x, y)|y=xi

+ O(1)

G≡0 on ∂Ω= γi
∂G(x, xi)

∂ν
+ O(1)

(2.8)
= O(1). (3.7)

So, by the uniform convergence of pup and its derivative on compact sets, it
follows that

−1
2

∫

Ω∩∂Bδ(xi)

|p∇up(x)|2〈x − yp, ν(x)〉dsx

(3.7)
= O(1)

∫

Ω∩∂Bδ(xi)

〈x − yp, ν(x)〉dsx = O(δ2);
∫

Ω∩∂Bδ(xi)

〈x − yp, p∇up(x)〉〈p∇up(x), ν(x)〉dsx

(3.7)
= O(1)

∫

Ω∩∂Bδ(xi)

|x − yp|dsx = O(δ2);

p2

p + 1

∣
∣
∣
∣
∣

∫

Ω∩∂Bδ(xi)

up(x)p+1〈x − yp, ν(x)〉dsx

∣
∣
∣
∣
∣

≤ p

p + 1
‖pup+1

p ‖L∞(Ω̄∩∂Bδ(xi))

∫

Ω∩∂Bδ(xi)

|〈x − yp, ν(x)〉| dsx

(2.26)
= op(1)O(δ2);

where in all the three cases for the last equality we have also used the estimate
in (3.4). As a consequence, by (3.6),

lim
δ→0

lim
p→+∞

p2

p + 1

∫

Ω∩Bδ(xi)

up(x)p+1 dx = 0,

a contradiction to (3.3). �
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4. Scaling around local maxima

By Proposition 3.2 it follows that there exists r > 0 such that

B4r(xi) ∩ B4r(xj) = ∅, B4r(xi) ⊂ Ω, for all i = 1, . . . , N, i �= j.

(4.1)

Lemma 4.1. Let N ∈ N\{0} be as in (3.1) and let r > 0 be as in (4.1). Let
us define yj,p ∈ B2r(xj), j = 1, . . . , N such that

up(yj,p) = max
B2r(xj)

up(x). (4.2)

Then, for any j = 1, . . . , N and as p → +∞ :
(i)

εj,p :=
[
pup(yj,p)p−1

]−1/2 → 0.

(ii)

yj,p → xj .

(iii)

|yi,p − yj,p|
εj,p

→ +∞ for any i = 1, . . . , N, i �= j.

(iv) Defining:

wj,p(y) :=
p

up(yj,p)
(up(yj,p + εj,py) − up(yj,p)), y ∈ Ωj,p :=

Ω − yj,p

εj,p
,

(4.3)

then

wj,p −→ U in C2
loc(R

2) (4.4)

with U as in (2.14).
(v)

lim inf
p

p

∫

Br(xj)

up(x)p+1 dx ≥ 8π · lim inf
p

up(yj,p)2 (>8π). (4.5)

(vi)

lim inf
p

p

∫

Br(yj,p)

up(x)p dx ≥ 8π · lim inf
p

up(yj,p).

Remark 4.2. (iii) and (iv) are, respectively, properties (PN
1 ) and (PN

2 ) for
the families of points yj,p, j = 1, . . . , N . Moreover, by (i) we get

lim inf
p→+∞ up(yj,p) ≥ 1 (4.6)

and by (ii) we deduce that for any δ ∈ (0, 2r) there exists pδ > 1 such that

yj,p ∈ Bδ(xj), for p ≥ pδ. (4.7)

Proof. (i) Let j ∈ {1, . . . , N}, by (3.1) xj,p → xj as p → +∞ and so
xj,p ∈ Br(xj) for p large. The assertion then follows observing that by
definition up(yj,p) ≥ up(xj,p) and that (2.18) holds for xj,p.
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(ii) We know that xj,p → xj as p → +∞, so without loss of generality we
may assume that Rk,p(yj,p) = |xj,p − yj,p| and so (Pk

3 ) may be written
as |xj,p−yj,p|

εj,p
≤ C, from which by (i) the conclusion follows.

(iii) Just observing that by construction |yi,p − yj,p| ≥ 6r if i �= j.
(iv) First we prove that for any R > 0 there exists pR > 1 such that

BR(0) ⊂ B 2r
εj,p

(
xj − yj,p

εj,p

)

⊂ Ωj,p for p ≥ pR. (4.8)

Indeed using (ii) and (i) we get, respectively, that yj,p ∈ Br(xj) and
Rεj,p < r for p large. As a consequence BRεj,p

(yj,p) ⊂ B2r(xj) ⊂ Ω for p
large, which gives (4.8) by scaling back.

Observe that by (4.8) and the arbitrariness of R it follows that the set
Ωj,p → R

2 as p → +∞.
Moreover, let us fix R > 0 and let pR be as in (4.8); then for p ≥ pR the

function wj,p satisfies
{

−Δwj,p(y) =
(

up(yj,p+εj,py)
up(yj,p)

)p

, y ∈ BR(0)
wj,p(0) = 0

and by the first inclusion in (4.8) and the definition of yj,p we have

up(yj,p + εj,py) ≤ up(yj,p), for any y ∈ BR(0), for p ≥ pR.

This implies both

wj,p(y) ≤ 0, y ∈ BR(0) (4.9)

and

| − Δwj,p(y)| ≤ 1, y ∈ BR(0), (4.10)

for p ≥ pR. From (4.9) and (4.10), arguing as in the proof of Proposition 2.4,
it follows that, for any R > 0, wj,p is uniformly bounded in BR(0), for
p ≥ pR. By standard elliptic regularity theory we have that wj,p is bounded
in C2,α

loc (R2). Thus by Arzela–Ascoli Theorem and a diagonal process on R →
+∞, after passing to a subsequence, wj,p →p v in C2

loc(R
2) and it is easy to

see that v satisfies
⎧
⎪⎪⎨

⎪⎪⎩

−Δv = ev in R
2

v ≤ 0 in R
2

v(0) = 0∫

R2 ev < ∞;

hence v = U where U is the function in (2.14).
(v) and (vi) Using (4.7) we have that yj,p ∈ B r

2
(xj) for large p and so

B r
2
(yj,p) ⊂ Br(xj) ⊂ Ω for p large, namely, by scaling

B r
2εj,p

(0) ⊂ Ωj,p, for p large (4.11)
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and

p

∫

Br(xj)

up(x)p+1 dx ≥ p

∫

B r
2
(yj,p)

up(x)p+1 dx

= up(yj,p)2
∫

B r
2εj,p

(0)

(

1 +
wj,p(y)

p

)p+1

dy.

Passing to the limit as p → +∞, by (i), (iv) and Fatou’s Lemma

lim inf
p

p

∫

Br(xj)

up(x)p+1 dx ≥ lim inf
p

p

∫

B r
2
(yj,p)

up(x)p+1 dx

≥ lim inf
p

up(yj,p)2
∫

R2
eU(y) dy

= 8π · lim inf
p

up(yj,p)2,

which gives (v); moreover, by the previous relation

lim inf
p

up(yj,p) p

∫

Br(yj,p)

up(x)p dx
(4.7)

≥ lim inf
p

p

∫

Br(yj,p)

up(x)p+1 dx

≥ lim inf
p

p

∫

B r
2
(yj,p)

up(x)p+1 dx

≥ 8π · lim inf
p

up(yj,p)2.

�

Proposition 4.3. Let r > 0 be as in (4.1) and define, for j = 1, . . . , N :

βj,p :=
p

up(yj,p)

∫

Br(yj,p)

up(x)p dx. (4.12)

Then,

lim
p→+∞ βj,p = 8π. (4.13)

Proof. Fix j ∈ {1, . . . , N}. By Lemma 4.1(vi) we already know that

lim
p→+∞ βj,p ≥ 8π,

so we have to prove only the opposite inequality:

lim
p→+∞ βj,p ≤ 8π. (4.14)

For δ ∈ (0, r), by (4.1)

Bδ(xj) ⊂ Ω, (4.15)

and we define

αj,p(δ) :=
p

up(yj,p)

∫

Bδ(xj)

up(x)p dx. (4.16)

In order to prove (4.14) it is sufficient to show that

lim
δ→0

lim
p→+∞ αj,p(δ) ≤ 8π. (4.17)
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Indeed (4.14) follows from (4.17) and observing that

βj,p = αj,p(δ) +
p

up(yj,p)

∫

Br(yj,p)\Bδ(xj)

up(x)p dx = αj,p(δ) + op(1).

(4.18)

(4.18) can be proved observing that yj,p ∈ B2r(xj), then Br(yj,p)\Bδ(xj) ⊂
B3r(xj)\Bδ(xj) ⊂ Ω̄\S and we know that for any compact subset of Ω̄\S the
limit (2.27) holds and lim infp up(yj,p) ≥ 1 by (4.6).
In the rest of the proof we show (4.17).

By Lemma 3.1 we have that pup →∑N
j=1 γjG(·, xj) in C2

loc(Br(xi)\{xi}).
Moreover, it is easy to see that for x ∈ Br(xi)\{xi}

N∑

j=1

γjG(x, xj) = γiG(x, xi) + O(1);

N∑

j=1

γj∇G(x, xj) = γi∇G(x, xi) + O(1). (4.19)

Furthermore, G(x, xi) = 1
2π log 1

|x−xi| + H(x, xi) by (2.3), so that, by the

regularity of H, if δ ∈ (0, r) is small enough and x ∈ Bδ(xi)\{xi}, then

G(x, xi) =
1
2π

log
1

|x − xi| + O(1);

∇G(x, xi) = − 1
2π

x − xi

|x − xi|2 + O(1). (4.20)

Applying the local Pohozaev identity (2.1) in the set Bδ(xi) with y = xi we
obtain (observe that if ν(x) is the outer unitary normal vector to ∂Bδ(xi) in
x then 〈x − xi, ν(x)〉 = |x − xi| = δ)

2p2

p + 1

∫

Bδ(xi)

up(x)p+1 dx = −δ

2

∫

∂Bδ(xi)

|p∇up(x)|2 dsx

+ δ

∫

∂Bδ(xi)

〈p∇up(x), ν(x)〉2 dsx

+
p2

p + 1
δ

∫

∂Bδ(xi)

up(x)p+1 dsx. (4.21)

Next we analyze the behavior of the three terms in the right-hand side of
(4.1).
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By the uniform convergence of the derivative of pup on compact sets
combined with (4.19) and (4.20), passing to the limit we have

−δ

2

∫

∂Bδ(xi)

|p∇up(x)|2 dsx

−→
p→+∞ −δ

2

∫

∂Bδ(xi)

(

−γi
1
2π

x − xi

|x − xi|2 + O(1)
)2

dsx = − γ2
i

4π
+ O(δ);

δ

∫

∂Bδ(xi)

〈p∇up(x), ν(x)〉2 dsx

−→
p→+∞ δ

∫

∂Bδ(xi)

(

−γi
1
2π

〈x − xi, ν(x)〉
|x − xi|2 + O(1)

)2

dsx =
γ2

i

2π
+ O(δ)

and also

p2

p + 1
δ

∫

∂Bδ(xi)

up(x)p+1 dsx ≤ 2πp

p + 1
δ2‖pup+1

p ‖L∞(∂Bδ(xi))
(2.26)
= op(1)O(δ2).

So by (4.21) and recalling the definition of αj,p

αj,p(δ)up(yj,p)2
(4.16)
= up(yj,p) p

∫

Bδ(xj)

up(x)p dx

≥ p

∫

Bδ(xj)

up(x)p+1 dx
(4.21)
=

γ2
j

8π
+ O(δ) + op(1),

(4.22)

but

γj
(3.2)−(4.15)

= lim
δ→0

lim
p→+∞ p

∫

Bδ(xj)

u(x)p dx
(4.16)
= lim

δ→0
lim

p→+∞ αj,p(δ)up(yj,p).

(4.23)

Combining (4.22) and (4.23) we get (4.17). �

We conclude this section by deriving a decay estimate for the rescaled
function wj,p(y) defined in (4.3) for y ∈ Ωj,p, for any j = 1, . . . , N .
First recall that for any R > 0 there exists pR > 1 such that

BR(0) ⊂ B r
εj,p

(0) ⊂ B 2r
εj,p

(
xj − yj,p

εj,p

)

⊂ Ωj,p for p ≥ pR (4.24)

(indeed using (4.7) we have that yj,p ∈ Br(xj) and so Br(yj,p) ⊂ B2r(xj) ⊂ Ω
for p large). Then by definition, for p ≥ pR

0 ≤
(

1 +
wj,p(z)

p

)

≤ 1, for any z ∈ B 2r
εj,p

(
xj − yj,p

εj,p

)

. (4.25)

Moreover, observe that βj,p defined in (4.12) can be now rewritten as

βj,p =
∫

B r
εj,p

(0)

(

1 +
wj,p(z)

p

)p

dz, for p ≥ pR. (4.26)
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Last, we recall that by Proposition 2.2(iv) and (4.6) we have that
∫

Ωj,p

(

1 +
wj,p(z)

p

)p

dz =
p

up(yj,p)

∫

Ω

up(x)p dx = O(1). (4.27)

Lemma 4.4. For any ε > 0, there exist Rε > 1 and pε > 1 such that

wj,p(y) ≤
(

βj,p

2π
− ε

)

log
1
|y| + Cε, ∀j = 1, . . . , N (4.28)

for some Cε > 0 and βj,p as in Proposition 4.3, provided 2Rε ≤ |y| ≤ r
εj,p

and p ≥ pε.

Proof. Given ε > 0, we can choose Rε > 1 such that
∫

BRε (0)

eU(z) dz > 8π − ε.

The function wj,p is well defined in BRε
(0) for p large by (4.24), moreover by

Fatou’s lemma and (4.4)

lim inf
p→+∞

∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz ≥
∫

BRε (0)

eU(z) dz,

namely for pε > 1 sufficiently large
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz > 8π − ε for all p ≥ pε. (4.29)

Let 2Rε ≤ |y| ≤ r
εj,p

. Observe that when |z| ≥ 2r
εj,p

then 2|y| ≤ |z|; hence

2
3

=
|z|

|z| + |z|
2

≤ |z|
|z| + |y| ≤ |z|

|y − z| ≤ |z|
|z| − |y| ≤ |z|

|z| − |z|
2

= 2,

which implies

log
2
3

≤ log
|z|

|y − z| ≤ log 2 (4.30)

and so
∫

{|z|≥ 2r
εj,p

}∩Ωj,p

log
|z|

|y − z|
(

1 +
wj,p(z)

p

)p

dz

(4.30)
= O(1)

∫

Ωj,p

(

1 +
wj,p(z)

p

)p

dz
(4.27)
= O(1). (4.31)

By (1.1) and the Green’s function representation we have that for any y ∈
Ωj,p

up(εj,py + yj,p) =
∫

Ω

G(εj,py + yj,p, x)up(x)p dx

= ε2
j,p

∫

Ωj,p

G(εj,py + yj,p, εj,pz + yj,p)up(εj,pz + yj,p)p dz

=
up(yj,p)

p

∫

Ωj,p

G(εj,py + yj,p, εj,pz + yj,p)
(

1 +
wj,p(z)

p

)p

dz,
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namely

wj,p(y) = −p +
∫

Ωj,p

G(εj,py + yj,p, εj,pz + yj,p)
(

1 +
wj,p(z)

p

)p

dz.

(4.32)

As a consequence

wj,p(y) = wj,p(y) − wj,p(0)
(4.32)
=

∫

Ωj,p

[G(εj,py + yj,p, εj,pz + yj,p) − G(yj,p, εj,pz + yj,p)]

×
(

1 +
wj,p(z)

p

)p

dz

(2.3)
=

1
2π

∫

Ωj,p

log
|z|

|y − z|
(

1 +
wj,p(z)

p

)p

dz

+
∫

Ωj,p

[H(εj,py + yj,p, εj,pz + yj,p) − H(yj,p, εj,pz + yj,p)]

×
(

1 +
wj,p(z)

p

)p

dz

(4.27)
=

1
2π

∫

Ωj,p

log
|z|

|y − z|
(

1 +
wj,p(z)

p

)p

dz + O(1)

(4.31)
=

1
2π

∫

{|z|≤ 2r
εj,p

}
log

|z|
|y − z|

(

1 +
wj,p(z)

p

)p

dz + O(1), (4.33)

since H is Lipschitz continuous and |εj,py| ≤ r. Next, let us divide the last
integral of (4.33) in the following way:

wj,p(y)
(4.33)
=

1
2π

∫

{|z|≤Rε}
log

|z|
|y − z|

(

1 +
wj,p(z)

p

)p

dz

+
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≤2|y−z|}
log

|z|
|y − z|

(

1 +
wj,p(z)

p

)p

dz

+
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≥2|y−z|}
log |z|

(

1 +
wj,p(z)

p

)p

dz

+
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≥2|y−z|}
log

1
|y − z|

(

1 +
wj,p(z)

p

)p

dz

+O(1)
= I + II + III + IV + O(1). (4.34)

In order to estimate the first integral in the right-hand side of (4.34) we
observe that if |z| ≤ Rε, then 2|z| ≤ |y| and so

|z|
|y − z| ≤ |z|

|y| − |z| ≤ |z|
|y| − |y|

2

≤ 2Rε

|y| ;
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therefore,

I =
1
2π

∫

{|z|≤Rε}
log

|z|
|y − z|

(

1 +
wj,p(z)

p

)p

dz

≤ 1
2π

log
2Rε

|y|
∫

{|z|≤Rε}

(

1 +
wj,p(z)

p

)p

dz. (4.35)

Next, the second term in (4.34) can be trivially estimated as

II =
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≤2|y−z|}
log

|z|
|y − z|

(

1 +
wj,p(z)

p

)p

dz

≤ 1
2π

log 2
∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≤2|y−z|}

(

1 +
wj,p(z)

p

)p

dz

(4.26)

≤ 1
2π

log 2

[

βj,p −
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz

+
∫

{ r
εj,p

≤|z|≤ 2r
εj,p

}

(

1 +
wj,p(z)

p

)p

dz

]

(4.6)

≤ 1
2π

log 2

[

βj,p −
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz

+ p

∫

{r≤|x−yj,p|≤2r}
up(x)p dx

]

≤ 1
2π

log 2

[

βj,p −
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz + ε

]

, (4.36)

where in the last inequality we have used that since yj,p → xj , then for p

large {r ≤ |x − yj,p| ≤ 2r} ⊂ K := { r
2 ≤ |x − xj | ≤ 3r} ⊂ Ω\S and compact

and so

p

∫

r≤|x−yj,p|≤2r

up(x)p dx ≤ p

∫

K

up(x)p dx
(2.27)

≤ ε, for large p. (4.37)

To deal with the third integral in the right-hand side of (4.34) we notice
that if |z| ≥ 2|y − z|, then

|z| ≥ 2|y − z| ≥ 2|z| − 2|y| and so |z| ≤ 2|y|;
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hence

III =
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≥2|y−z|}
log |z|

(

1 +
wj,p(z)

p

)p

dz

≤ 1
2π

log(2|y|)
∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≥2|y−z|}

(

1 +
wj,p(z)

p

)p

dz

(4.26)

≤ 1
2π

log(2|y|)
[

βj,p −
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz

+
∫

{ r
εj,p

≤|z|≤ 2r
εj,p

}

(

1 +
wj,p(z)

p

)p

dz

]

(4.37)

≤ 1
2π

log(2|y|)
[

βj,p −
∫

BRε (0)

(

1 +
wj,p(z)

p

)p

dz + ε

]

.

(4.38)

Finally we estimate the fourth integral. Observe that for any y ∈ {2Rε ≤
|y| ≤ r

εj,p
} one has the inclusion

{

Rε ≤ |z| ≤ 2r

εj,p
, |y − z| ≤ 1

}

⊂ B r
εj,p

+1(0)

and that, since for p large enough Br+εj,p
(yj) ⊂ B2r(xj), then by scaling,

also

B r
εj,p

+1(0) ⊂ B 2r
εj,p

(
xj − yj,p

εj,p

)

,

so that, as a consequence, the estimate in (4.25) holds for z ∈ {Rε ≤ |z| ≤
2r

εj,p
, |y − z| ≤ 1}. Hence

IV =
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|z|≥2|y−z|}
log

1
|y − z|

(

1 +
wj,p(z)

p

)p

dz

=
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{|y−z|≤1}
log

1
|y − z|

(

1 +
wj,p(z)

p

)p

dz

+
1
2π

∫

{Rε≤|z|≤ 2r
εj,p

}∩{2≤2|y−z|≤|z|}
log

1
|y − z|

(

1 +
wj,p(z)

p

)p

dz

(4.25)

≤ 1
2π

∫

{|y−z|≤1}
log

1
|y − z| dz = O(1), (4.39)

where we have also used that log t ≤ 0 if t ≤ 1.
At last, substituting (4.35), (4.36), (4.38), (4.39) into (4.34), using (4.29),

that 2Rε

|y| ≤ 1 and observing that, by Proposition 4.3, |βj,p − 8π| < ε for p

Author's personal copy



F. De Marchis et al.

large, we obtain the thesis, indeed:

wj,p(y) ≤ 1
2π

log
2Rε

|y| (8π − ε)

+
1
2π

log 2 (βj,p − (8π − ε)+ε)

+
1
2π

log(2|y|) (βj,p − (8π − ε)+ε) + O(1)

≤ 1
2π

(βj,p − 2(βj,p − 8π) − 3ε) log
1
|y| + O(1)

≤
(

βj,p

2π
− ε

)

log
1
|y| + O(1). (4.40)

�

5. Conclusion of the proof of Theorem 1.1

Let r > 0 be as in (4.1) and let yj,p for j = 1, . . . , N be the local maxima of
up as in (4.2). Let us define

mj := lim
p→+∞ up(yp,j) = lim

p→+∞ ‖up(x)‖L∞(B2r(xj))
, for j = 1, . . . , N

(5.1)

(observe that (2.16) implies that mj < +∞ for any j = 1, . . . , N).

Proposition 5.1. One has

γj = 8π · mj (5.2)

(γj defined by Lemma 3.1);

lim
p→+∞ p

∫

Ω

|∇up|2 = 8π

N∑

j=1

m2
j ; (5.3)

N = k, (5.4)

where k is the integer in Proposition 2.4.

Proof. We prove (5.2). From the expression of γj given by Lemma 3.1 com-
bined with Proposition 3.2 and the results in (4.18), we have

γj = lim
δ→0

lim
p→+∞ p

∫

Bδ(xj)

u(x)p dx = lim
δ→0

lim
p→+∞ αj,p(δ)up(yj,p)

(4.18)
= lim

p→+∞ βj,pup(yj,p) = 8π · mj ,

where the last equality follows from Proposition 4.3.
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Next we prove (5.3). Observe that

p

∫

Ω

|∇up|2 = p

∫

Ω

up(x)p+1 dx

=
N∑

j=1

p

∫

Br(xj)

up(x)p+1 dx + p

∫

Ω\∪N
j=1Br(xj)

up(x)p+1 dx

(2.27)
=

N∑

j=1

p

∫

Br(xj)

up(x)p+1 dx + op(1). (5.5)

Moreover

p

∫

Br(xj)

up(x)p+1 dx = p

∫

B r
2
(yj,p)

up(x)p+1 dx + op(1), (5.6)

since for p large enough B r
3
(xj) ⊂ B r

2
(yj,p) ⊂ Br(xj) so that

p

∫

Br(xj)\B r
2
(yj,p)

up(x)p+1 dx ≤ p

∫

{ r
3 <|x−xj |<r}

up(x)p+1 dx
(2.27)
= op(1).

Let us consider the remaining term in the right-hand side of (5.6). We want
to rescale up around the maximum point yj,p defining wj,p as in (4.3) and
then pass to the limit.
Observe that, since by definition wj,p ≤ 0, then

0 ≤
(

1+
wj,p(z)

p

)p+1

=e
(p+1) log

(
1+

wj,p(z)
p

)

≤e(p+1)
wj,p(z)

p =ewj,p(z) ≤ C
1

|z|3 ,

(5.7)

where the last inequality is due to the combination of Lemma 4.4 and Propo-
sition 4.3, so that it holds provided 2Rε ≤ |z| ≤ r

εj,p
and p is sufficiently

large. Instead, when |z| ≤ 2Rε, then by (4.24) and (4.25) for p sufficiently
large

0 ≤
(

1 +
wj,p(z)

p

)p+1

≤ 1, for |z| ≤ 2Rε. (5.8)

Thanks to (5.7) and (5.8) we can apply the dominated convergence theorem
deducing that

p

up(yj,p)2

∫

B r
2
(yj,p)

up(x)p+1 dx =
∫

B r
2εj,p

(0)

(

1 +
wj,p(z)

p

)p+1

dz

−→
p→+∞

∫

R2
eU(z) dz = 8π. (5.9)

Substituting (5.9) into (5.6), we then have

p

∫

Br(xj)

up(x)p+1 dx = (8π + op(1)) m2
j + op(1). (5.10)

By substituting (5.10) into (5.5) we get (5.3). Finally we show (5.4). We have
defined N ∈ N\{0} to be the number of points in the concentration set S;

Author's personal copy



F. De Marchis et al.

hence N ≤ k. Recall that in (3.1) without loss of generality we have relabeled
the sequences of points xi,p, i = 1, . . . , k, in such a way that

xj,p → xj , ∀ j = 1, . . . , N and S = {x1, x2, . . . , xN}
and without loss of generality we may also assume that

Rk,p(yj,p) = |xj,p − yj,p|.
Then Proposition 2.7 applied to the family yj,p implies that lim supp→+∞

μj,p

εj,p

≤ 1, but, by the definition of yj,p as a maximum of up on B2r(xj) and the
fact that xj,p → xj , we also have that μj,p

εj,p
≥ 1 for p large. As a consequence

lim
p→+∞ up(xj,p) = lim

p→+∞ up(yj,p) = mj , ∀j = 1, . . . , N. (5.11)

Assume now by contradiction that N < k. Since, by Proposition 2.4, (Pk
1 )

and (Pk
2 ) hold, then Lemma 2.3 applies and so we have

lim
p→+∞ p

∫

Ω

|∇up|2 dx ≥ 8π

k∑

i=1

lim
p

(up(xi,p))
2

(5.11)
= 8π

N∑

j=1

m2
j + 8π

k∑

i=N+1

lim
p

(up(xi,p))
2

(2.20)

≥ 8π
N∑

j=1

m2
j + 8π > 8π

N∑

j=1

m2
j .

which contradicts (5.3) and this concludes the proof. �

By the results in Sect. 3 and (5.4) in Proposition 5.1 we have that S =
{x1, x2, . . . , xk} ⊂ Ω. We now locate the concentration points xi, i = 1, . . . , k.

Proposition 5.2. The concentration points xi, i = 1, . . . , k, satisfy (1.7),
namely

mi∇xH(xi, xi) +
∑

� �=i

m�∇xG(xi, x�) = 0.

Proof. Let δ > 0 be small enough so that Bδ(xi) ⊂ Ω and Bδ(xi)∩Bδ(xj) = ∅,
i �= j. Clearly it is enough to prove the identity for i = 1.

Multiplying equation (1.1) by ∂up

∂xj
, for j = 1, 2, and integrating on

Bδ(x1) we have that

−
∫

Bδ(x1)

Δu
∂u

∂xj
dx =

∫

Bδ(x1)

|u|p−1u
∂u

∂xj
dx =

1
p + 1

∫

Bδ(x1)

∂

∂xj
|u|p+1 dx

=
1

p + 1

∫

∂Bδ(x1)

|u|p+1νj dsx, (5.12)

where νj are the components of the outer normal at ∂Bδ(x1).
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For the first term
∫

Bδ(x1)

Δu
∂u

∂xj
dx

=
∫

Bδ(x1)

∑

h

∂2u

∂x2
h

∂u

∂xj
dx

=
∫

Bδ(x1)

∑

h

∂

∂xh

(
∂u

∂xj

∂u

∂xh

)

dx −
∫

Bδ(x1)

∑

h

(
∂2u

∂xh∂xj

∂u

∂xh

)

dx

=
∫

∂Bδ(x1)

∑

h

(
∂u

∂xj

∂u

∂xh

)

νh dsx − 1
2

∫

Bδ(x1)

∂

∂xj

(
∑

h

(
∂u

∂xh

)2
)

dx

=
∫

∂Bδ(x1)

∂u

∂xj

∂u

∂ν
dsx − 1

2

∫

∂Bδ(x1)

|∇u|2νj dsx. (5.13)

Hence, combining (5.12) with (5.13) and multiplying by p2 we get:

p2

p + 1

∫

∂Bδ(x1)

|up|p+1νj dsx + p2

∫

∂Bδ(x1)

∂up

∂xj

∂up

∂ν
dsx

− p2

2

∫

∂Bδ(x1)

|∇up|2νj dsx = 0. (5.14)

The first term of (5.14) can be estimated as follows:
∣
∣
∣
∣
∣

p2

p + 1

∫

∂Bδ(x1)

|up|p+1νj dsx

∣
∣
∣
∣
∣
≤ p

p + 1
2πδ‖pup+1

p ‖L∞(∂Bδ(x1))
(2.26)−→

p→+∞ 0,

so letting p → +∞ in (5.14) we get, for j = 1, 2,
∫

∂Bδ(x1)

∂

∂xj

(
N∑

i=1

miG(x, xi)

)
∂

∂ν

(
N∑

i=1

miG(x, xi)

)

dsx

− 1
2

∫

∂Bδ(x1)

∣
∣
∣
∣
∣
∇
(

N∑

i=1

miG(x, xi)

)∣
∣
∣
∣
∣

2

νj dsx = 0,

where we have used Theorem 1.1(ii) (which holds by virtue of Lemma 3.1
and Proposition 5.1).

Computing the last integral as in [9, pp. 511–512] we obtain

−m1

⎡

⎣m1
∂

∂xj
H(x∗

j,r, x1) +
∑

� �=1

m�
∂

∂xj
G(x∗

j,r, x�)

⎤

⎦+ oδ(1) = 0 for j = 1, 2,

where x∗
j,r → x1 as δ → 0, j = 1, 2. Hence passing to the limit as δ → 0 we

derive the desired relations

m1
∂

∂xj
H(x1, x1) +

∑

� �=1

m�
∂

∂xj
G(x1, x�) = 0 for j = 1, 2.

�

We now estimate from below the numbers mj , j = 1, . . . , N , in (5.1) and so
the L∞-norm of up. We will need the following result:
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Lemma 5.3 [12, Lemma 2.1]. Let B ⊂ R
2 be a smooth bounded domain. Then

for every p > 1 there exists Dp > 0 such that

‖v‖Lp+1(B) ≤ Dp(p + 1)1/2‖∇v‖L2(B), ∀v ∈ H1
0 (B). (5.15)

Moreover,

lim
p→+∞ Dp =

1
(8πe)1/2

. (5.16)

Proposition 5.4. We have

mj ≥ √
e, ∀j = 1, . . . , N

and hence

lim
p→+∞ ‖up‖∞ ≥ √

e.

Proof. Let r be as in (4.1). Let us take χ ∈ C2([0, 2r)), χ(s) = 1 for s ∈ [0, r),
χ(s) = 0 for s ∈ [34r, 2r) and consider the cut-off function χj(x) := χ(|x−xj |).
Then ũp,j := upχj ∈ H1

0 (B2r(xj)) and satisfies

p

∫

B2r(xj)

|∇ũp,j |2 dx = p

∫

Br(xj)

|∇up|2 dx + p

∫

{r≤|x−xj |≤ 3
4 r}

|∇up|2χ2
j dx

+ p

∫

{r≤|x−xj |≤ 3
4 r}

u2
p|∇χj |2 dx

+ 2p

∫

{r≤|x−xj |≤ 3
4 r}

up〈∇up,∇χj〉χj dx

(2.24)
= p

∫

Br(xj)

|∇up|2 dx + op(1). (5.17)

Moreover,

p

∫

B2r(xj)

ũp+1
p,j dx = p

∫

Br(xj)

up+1
p dx + p

∫

{r≤|x−xj |≤ 3
4 r}

up+1
p χp+1

j dx

(2.26)
= p

∫

Br(xj)

up+1
p dx + op(1). (5.18)

By (5.17) and (5.18), applying (5.15) to ũp,j and using (5.16), we then get

p

∫

Br(xj)

|∇up|2 dx
(5.17)
= p

∫

B2r(xj)

|∇ũp,j |2 dx + op(1)

(5.15)

≥ p

(p + 1)p
2

p+1 D2
p

[

p

∫

B2r(xj)

ũp+1
p,j dx

] 2
p+1

+ op(1)

(5.16)
= (8πe + op(1))

[

p

∫

B2r(xj)

ũp+1
p,j dx

] 2
p+1

+ op(1)

(5.18)
= (8πe + op(1))

[

p

∫

Br(xj)

up+1
p dx + op(1)

] 2
p+1

+ op(1)

= 8πe + op(1), (5.19)
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where in the last line we have used that c ≤ p
∫

Br(xj)
up+1

p dx ≤ C, which
follows by the assumption on the energy bound (1.2) and from (4.5). Finally,
observe that integrating by parts and using the Eq. (1.1) we also have

p

∫

Br(xj)

|∇up|2 dx = p

∫

Br(xj)

up+1
p dx − p

∫

∂Br(xj)

up
∂up

∂ν

(2.24)
= p

∫

Br(xj)

up+1
p dx + op(1)

as in (5.6)
= p

∫

B r
2
(yj,p)

up(x)p+1 dx + op(1)

(4.3)
= up(yj,p)2

∫

B r
2εj,p

(0)

(

1 +
wj,p(z)

p

)p+1

dz

(∗)
= up(yj,p)2

(

op(1) +
∫

R2
eU(z) dz

)

= up(yj,p)2 8π + op(1), (5.20)

where (∗) follows by the dominated convergence theorem in the same way as
in (5.9). Putting together (5.19) and (5.20) we get the conclusion. �

Proof of Theorem 1.1. The statements of Theorem 1.1 have been proved in
the various propositions obtained so far. In particular (i) is the statement
(2.24) in Proposition 2.4, (ii) derives from Lemma 3.1 and (5.2) and (5.4)
of Proposition 5.1. The energy limit (iii) is claim (5.3) in Proposition 5.1,
together with (5.4). The statement (iv) is the assertion of Proposition 5.2
and (v) is proved in Proposition 5.4. �
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Università degli Studi della Campania “Luigi Vanvitelli”
V.le Lincoln 5
81100 Caserta
Italy
e-mail: isabella.ianni@unina2.it

Author's personal copy


	Asymptotic profile of positive solutions of Lane--Emden problems in dimension two
	Abstract
	1. Introduction
	2. Preliminary results
	3. No concentration at the boundary
	4. Scaling around local maxima
	5. Conclusion of the proof of Theorem ??
	References




