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Abstract

In this paper we present multivariate space-time fractional Poisson processes by con-
sidering common random time-changes of a (finite-dimensional) vector of independent
classical (nonfractional) Poisson processes. In some cases we also consider compound
processes. We obtain some equations in terms of some suitable fractional derivatives and
fractional difference operators, which provides the extension of known equations for the
univariate processes.
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1. Introduction

Typically fractional processes are defined by considering some known equations in terms of
suitable fractional derivatives. In this paper we deal with fractional Poisson processes which
are the main examples among counting processes; here we recall the references [4], [5], [11],
[12], [15], and [19] (we also cite [10] and [13] where their representation in terms of randomly
time-changed and subordinated processes was studied in detail). Moreover, as pointed out in
[20], a class of these processes demonstrate the phenomenon of anomalous diffusion (i.e. the
variances of the process increase in time according to a power t¥, with y # 1); this aspect was
also highlighted in [6] where the authors refer to the long-range dependence property (they also
present some applications in ruin theory where the surplus process of an insurance company is
modeled by a compound fractional Poisson process).

The aim of this paper is to present m-variate space-time fractional (possibly compound)
Poisson processes; in this way we generalize some results in the literature for univariate
processes, which can be recovered by setting m = 1. Often closed formulae for fractional
Poisson processes are given in terms of the Mittag-Leffler function, i.e.

r

X
Ea,ﬁ(x) = ; F(ocr——i—,B) (1)

(see, e.g. [18, p. 17]).
We start with the simplest case, i.e. the multivariate version of the space-time fractional
Poisson process in [15]. In particular we consider the time-change approach in terms of the
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692 L. BEGHIN AND C. MACCI

stable subordinator and of its inverse (see [2, Equations (3.18) and (3.1)]; see also [22]). So,
for v € (0, 1), we consider the following processes:

e let {AY(z): t > 0} be the stable subordinator, i.e. the nondecreasing Lévy process with
Laplace transform
E[e A" O] =e™*"" foralls >0

(see, e.g. [1, Example 1.3.18]);
e let {LV(t): t > 0} be the inverse of {A"(¢): t > 0}, i.e. the process defined by

LY (1) =inf{z > 0: A" (2) > 1}.

In what follows we denote the continuous density of L (¢) by f.¢» ), and the continuous density
of AV (¢) by fav(r). Stable subordinators are well studied in the references on Lévy processes
(see, e.g. [1] and [21]); for the inverse of stable subordinators, we recall [7], [13], and [17].

Definition 1. Let {{N;(¢): t > 0}: i € {1, ..., m}} be m independent Poisson processes with
intensities A1, ..., A, > 0, respectively, and set

N(t) = (N1(#), ..., Nu(2)).
Then, for n, v € (0, 1], we consider the m-variate process {N""(¢): t > 0} defined by
NTV(1) := N(AT(L"(1))),

where {N(t): t > 0}, {A"(¢): t > 0}, and {L"(r): t > 0} are three independent processes.
When we consider the cases n = 1 and/or v = 1, we are setting Al(t) = t and/or L1 (1) =1,
respectively; thus, in particular, { N L1(#): t > 0} coincides with {N(¢): t > 0}.

We remark that {{N;""(t): 1 > 0}: i € {1,..., m}} in Definition 1 are conditionally inde-
pendent given {A"(LV(1)): t > 0} (except for the case n = v = 1 where they are independent).

Throughout this paper we deal with m-variate processes and we use the notation a =
(ay, ..., ay) for m-dimensional vectors. For instance, we often write k > 0 where ki, ..., kj,
are nonnegative integers (because we deal with processes with nonnegative integer-valued
components) and 0 = (0, ..., 0) is the null vector. Moreover, we write a < b (or a > b)
to mean that a; < b; (or a; > b;) foralli € {1,...,m}; a < b (or a > b) to mean that
ai <bj(ora; > b;)foralli € {1,...,m}, buta # b. Finally, we remark that the probability
generating functions assume finite values when their arguments u belong to [0, 1] but, in some
cases, the condition u € [0, 1]™ can be neglected or weakened (for instance, when n = 1, this
happens for the probability generating functions in (4) and (5); in the first case the finiteness of
Gi(uy), ..., Gy (uy) is also needed).

Our results mainly concern the state probabilities {{ pZ’”(t): k > 0}: ¢t > 0} defined by

pZ’v(t) =P(N""(t) = k) forallintegerky,...,ky, > 0. 2)

We also consider two generalizations of the process {N7"(¢): ¢t > 0} in Definition 1: we
mean the multivariate space-time fractional compound Poisson process (see Definition 2) and
the multivariate version of the process in [16], where we have a general subordinator associated
to a Bernstein function f in place of the stable subordinator {A"(¢): t > 0} (see Definition 3).
We start with the first generalization.
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Multivariate fractional Poisson processes and compound sums 693

Definition 2. For n, v € (0, 1], let {C™"(¢): t > 0} be defined by
C™(t) = (C]"(t), ..., CkY (1)),

v . .
where C"(1) = Y0, Vi foralli € {1.....m}, and {{¥j:n = 1}:i € (1.....m}} are

m independent sequences of independent and identically distributed positive integer-valued
random variables, independent of {N"-V(¢): t > 0} as in Definition 1.

Obviously, the process {C™V(t): t > 0} in Definition 2 coincides with {N"V(¢): t > 0} in
Definition 1 when all the random variables {{Y,i: n>1}:i € {1,...,m}} are equal to 1; see
also Remark 1 below. In view of what follows it is useful to introduce the following notation.
We start with the state probabilities {{g;"" (t): k > 0}: 1 > 0} defined by

q;z’v(t) =P(C""(t) = k) forallintegerky,...,ky, >0, 3)
the probability mass functions
(7’/ = IP’(Y,’; =j) forallinteger j > 1,ie€{l,...,m}andn > 1
and the probability generating functions
Gi(w) =Y u/gi (e{l,....m}) and GZ'(u;t):= Zu’f' kg (1),
Jj=0 k>0
We remark that

, Cr(AT(LY (LY C
Gl (us; 1) = Eluf A Oy Cn AL ON) = BIEW ] u$r Y]

and

m
Bt un ] = exp(z 2 (Gi(up) — 1)r>;
i=1
thus, by taking into account [2, Equation (3.8)], we obtain

m n
G (i 1) = Ev,l(—@jxi(l - Gl-(ui») t“). @)
i=1
As a particular case, we can consider the probability generating functions

Gn’v(u; t) = Zullq e u}];)lan;V(t)
k>0

and, we have

m m n
G"" (s 1) = E[exp(Z (i — 1)#@“@)))] =E, (—(Z hi(1— ui)) t”); 5)
i=1 i=1
note that both (4) and (5) can be seen as a generalization of [2, Equation (3.20)]. Finally, we
consider the probability mass functions concerning convolutions, i.e.
(ai)jh =P +---+Yi=j) forall j>1,ie{l,...,m}andh > 1.

‘We remark that, since the random variables {{Y’ ,i :n>1}:1 €{l,..., m}}arepositive, we have
(where 1 is the indicator function)

(?)}*0 =1{j=0); ifj <h then (ai)jh =0.
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694 L. BEGHIN AND C. MACCI

Remark 1. Obviously the state probabilities {{g;""(1): k = 0}: ¢ > 0} reduce to {{p;"" (1):
k > 0}: t > 0} when we have a; = 1=y foralli e {1,...,m}.

A further generalization of the process {N7V(¢): t > 0} in Definition 1 is the multivariate
version of the process in [16]. In view of this we recall that, given a nondecreasing Lévy process
(subordinator) {#¢/ (1): t > 0} associated with the Bernstein function f, we have

E[e_“‘”f(t)] =e W forall u,t > 0;

moreover, we have the following integral representation:

fw) = /00(1 —e "pys(dr) forall u >0,
0

where p is the Lévy measure associated with f (we also recall that p ¢ is a nonnegative measure
concentrated on (0, co) such that fooo (r ADpg(dr) < o0).

Definition 3. Let us consider the processes in Definition 1 and an independent subordinator
{(#7(t): t > 0} associated with a Bernstein function f. Then let {N/"V(r): t > 0} be defined
by

NIV(t) i= N(HT (LY (1))

Remark 2. If {#¢/(r): t > 0} is the stable subordinator {A"(¢): ¢ > 0} cited above, we have
(see, e.g. [1, Example 1.3.18])

1
f(uw)y=pu", or equivalently, pr(dr) = T 0 —1(0,00) () dr.

(=) 7]

Obviously, in this case {N/V(): t > 0} in Definition 3 coincides with {N""(¢): t > 0} in
Definition 1.

In what follows all the items concerning the process {N/>"(¢): t > 0} will be a modification
of the ones for {N7V(¢): t > 0} in Definition 1 with f in place of 5; thus, for instance, we set

plV @) = BNF (1) = k) forallinteger ki ...k > 0 ©)
and
G uin) =Y uy - ubm ). (7
k>0

We conclude with the outline of the paper. We start with some preliminaries in Section 2.
The results are presented in Section 3, which is divided into two parts:

(i) the results for the processes in Definitions 1 and 2;
(ii) the results for the process in Definition 3.

Some examples of fractional compound Poisson processes and the generalization of a result
in [3] for the fractional Pélya—Aeppli process are presented in Section 4.
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Multivariate fractional Poisson processes and compound sums 695

2. Preliminaries

We recall some useful special functions. We start with the generalized Mittag-Leffler
function which is defined by

(y) Dyl
E’ = _
s = L e+

(see, e.g. [8, Equation (1.9.1)]), where

: ifj =0,

is the rising factorial, also called Pochhammer symbol (see, e.g. [8, Equation (1.5.5)]). Note
that, we have Eollﬁ, i.e. Eg’ﬂ with y = 1 coincides with E, g in (1).
We also recall the Fox—Wright function (see, e.g. [8, Equation (1.11.14)]) defined by

(al,ot1)..-(ap,ozp)i| _ ]—[lel"(ah +0lhj)z_j
o [<b1’ﬁ1>~--<bq,ﬂq> O L Tt ) ®

under the convergence condition

q P
Y B> > -1 ©)
k=1 h=1

(see, e.g. [8, Equation (1.11.15)]).

We conclude this section with the definitions of two fractional derivatives and of a fractional
difference operator. Firstly, we consider the Caputo fractional derivative of order v € (0, 1],
i.e. CD“Z’+ in [8, Equation (2.4.17)] witha = 0:

1 ! 1 d
_ = f(9)ds ifve ),

af(;) ifv=1.

We also consider the (left-sided) Riemann-Liouville fractional derivative d”/d(—t)" of order
v > 1 (see, e.g. [8, Equation (2.2.4)]) defined by

1 d\" [
( ) / (L ds if v is not integer
13

& T(m—v)\  dr s — pltv=m
f@) = andm = [v]+1, an
d(—t)v v
(—1)v@f(l‘) if v is integer.

Moreover, for n € (0, 1], we consider the (fractional) difference operator (I — B)" in [15].
More precisely, [ is the identity operator, B is the backward shift operator defined by

Bf(k) = f(k—=1) (12)

and, if we consider Newton’s generalized binomial theorem for operators, we have

[— B = —1/"7>B/.
(I-B)'=>( )(j

j=0
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696 L. BEGHIN AND C. MACCI

3. Results

In general we show that the state probabilities (and the probability generating functions)
solve suitable fractional differential equations and we provide some explicit expressions. In
order to have a simpler presentation of the results, throughout this paper we always set

m
s(A) = in,
i=1
where A = (A1, ..., Ay). Moreover, let {B;: i € {1, ..., m}} be the operators defined by
Bifki,....km) = flki, ... ki—1,... kn); (13)

these operators play the role of the operator B in (12) for the m = 1 case.

3.1. Results for the processes in Definitions 1 and 2
The first result shows that the state probabilities {{ pZ‘v(t): k > 0}:1 > 0} in (2) solve
fractional differential equations, and we consider the fractional derivative in (10).

Proposition 1. Forn, v € (0, 1], the state probabilities {{p;’" (t): k > 0}: t > 0} in (2) solve
the following fractional differential equation:

;_ iz MiBi

Dy, pyt () = —(s(x»"( Y

n
) (), pr (1) = L=y

Proof. Firstly, by (5), we have

m n
Dy, G (us 1) = —<Z Ai(1— ui)> G"wn, G 0)=1,

i=1
by [8, Equation (2.4.58)], and, therefore,

m e\
- D Al”t) G (u: 1), G"™"(u;00=1. (14
s(A)

From now on we concentrate our attention on the first equation only (the second one concerning
the ¢ = 0 case trivially holds). Then, if we use the symbol <}~ s, for the sum over all

Dy G (u;1) = —(s(x»"(

Fly...,Fm > 0suchthatry +--- +r, = j, we have
(1 _ Limi kit )n = (n)(—l)j (Z?L] Miti )"
s(A) N s
7)) (_l)l Z ]' ¥, ¥, ri ¥,
i Vovop 101 m =71 m
= (] (s@A)/ - s, 1Tl
Thus,
Dy win =-con ¥ (1) X e
’ i j [T m
im0 M QT ke !
X Zullq-’—rl e ullfr’ln+rmpz’v(t)v
k>0
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Multivariate fractional Poisson processes and compound sums 697

where, for the last factor in the right-hand side, we have

ky+r k n,v k km 1V
Zull 1 umm"rrmpk (t) — Zull ".ummpk_r(t)‘
k>0 k>r

Then (in the next equality we should have r; < ki, ...,r, < kj, but this restriction can be
neglected)

“Dy,.G" (u; 1)

kl m T] (_1)] ]' r Im ,V
= =GO Y uy - uy ;)( )m | D e I IR XY S M O}

j rileery!
k>0 J Flooortmed; m

We conclude the proof noting that, since

. m ]
J! , ,
) e L R O (ZW) P,
Ty €4 r m: i=1
where By, ..., By, are the shift operators in (13), we have
Dy 6 i = — s Ykt 3 () V(S v
B vt 2 ) syt \ &) P
k>0 j=0 i=1
m n
k D icy MiBi :
= —(s)" Y i ubn (1 - #) p (@),
k>0
which yields the desired equation. O

The second result concerns the state probabilities of the fractional compound Poisson
process, i.e. {{q}Z’”(t): k > 0}: ¢t > 0} in (3). More 1precis.ely, we mean the probabilities
{{q,i’v(t): k > 0}: ¢+ > 0} (time fractional case) and{{qZ’ (t): k > 0}: t > 0} (space fractional
case). We show that they solve two fractional differential equations: the first one is a gener-
alization of Proposition 1 with = 1; in the second one we have the fractional derivative

(1n).

Proposition 2. Forv € (0, 1], the state probabilities {{q,i’v(t): k > 0}:t > 0}in(3)solve the
following fractional differential equations:

m ki
1, s ~ 1, 1,
DY gy () = =My " O+ Y M Y @ agt i @®n " (0) =1y
i=1 ji=1

For n € (0, 1], the state probabilities {{qZ’l(t): k > 0}: 1t >0} in (3) solve the following
fractional differential equations:

di/n

—_A\1/n i seees
a-1)
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698 L. BEGHIN AND C. MACCI

Proof. Firstly, by (4), we have

m
DG i) ==Y xi(l = Giw)Ge s n), G’ 0) =1,
i=1
by [8, Equation (2.4.58)], and
di/n

m
mcz’l(u; H=Y al=-Gu)GE ),  GE@;0) =1,

i=1

by [8, Equation (2.2.15)]. In both cases the second equation (concerning the t = 0 case) is
trivial, and therefore we concentrate the attention on the first equation. So, if we compare the
equations above and the ones in the statement of the proposition, we have to check that

= > h(l = Giu)G g (i 1)

i=1
m k,‘
k 1, ~i 1,
SDOUIRNT CRIHECES YD wr; VN
k>0 i=l =l

and

> il = Giui)GE @i 1)

i=1

=Zu’;1~-u’:,;"<s<x>q (r)—ZA Zq,ﬂkl ,,,,, P (z));

k>0 i=1 Ji=1

moreover, after some easy manipulation, the above equalities are equivalent to

Z,\G(u )G (u; t)—Zu .. kmz,\ thqkl 77777 ki (D)

i=1 k>0 i=1 Jji=1
and
m ki
— o ykm . ~i 1,1
2)‘ Giw)GE @iy = u' oy D70 DTl g, O
i=1 k>0 i=1 Jji=

respectively. In the first case, we have

ZAG )G (u: t)—Z/\ Souly yoult g @

i=1 i=1 =1 k=0
m
=D A Z% R e SN O}
i=1 ji>1 k>0

and the desired equality holds because the sums and the factors in the last expression can be
rearranged in a different order and q,gl’v it om (t) = 0 when j; > k;. The other case can
be treated in the same way (we have to consider G n.1 and {{q,’z’1 (t): k > 0}: t > 0} in place of
Gg" and {{g, " (1): k = 0}: 1 > 0)). O

As a special case we give a version of the equations in Proposition 2 for the state probabilities
{ pZ’V(t): k > 0}: t > 0} in (2) for the multivariate fractional Poisson process in Definition 1.
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Multivariate fractional Poisson processes and compound sums 699

The first equation (where n = 1) meets Proposition 1; the second equation (where v = 1)
with n = 1 meets the well-known equations for the nonfractional case (i.e. Proposition 1 with
n=v=1).

Corollary 1. For v € (0, 1], the state probabilities {{p,i’”(t): k> 0}:1>0}in(2) solve the
following fractional differential equations:

i— 1,

m
1, 1, 1 L,
Dy pp” (1) = =sMp O+ Y hipg” i, @ P 0) =Ty,
i=1

For n € (0, 1], the state probabilities {{pZ’l(t): k> 0}:t >0} in (2) solve the following
fractional differential equations:

d'/n 1,1 1,1 S 1,1 1,1
Gk O = OPEO =D Kb, @ PO = T
1=
Proof. The proof is an immediate consequence of Proposition 2 and Remark 1. |

Now we give some expressions of the state probabilities {{ pZ’v(t): k > 0}:1 > 0}in (2).
We start with an implicit expression which generalizes [2, Equation (3.19)] (note that we use
the notation 9, in place of 9/9y,). The most explicit formulae are given in Proposition 4.

Proposition 3. Let n, v € (0, 1] be arbitrarily fixed. Then, for all integer ki, ..., ky, > 0, we
have

m
Pt @) = [(=2i03)M Ey i (=(s))"1Y).
i=1
Proof. By construction, we have

v . Aj ki —Aj
Py ® =E[]_[{—( kz') e W}

1 [m ki y s () AT (LY
— E | |{( rid)Kile s)AT(LY (1)) :
... | !
k! k! i

=A" (»C”(t))i|

then we can conclude by following the same lines of the proof of [2, Equation (3.19)], where
we take into account that E[e S ®MA"(L" )] = £, | (—(s(X))"t") by [2, Equation (3.8)]. [

Proposition 4. Let n, v € (0, 1] be arbitrarily fixed. Then, for all integer ki, ..., ky, > 0, we

have . .
A (—1)kitthm

(st Fhn gyl k!
x3 (=Gs@A)"e")” Tr+1)

pit () =

; (15)
ST+ 1) T — i+ -+ k) + D
or, equivalently,
I
Vo 1 m
p,'z (1) = (sQ)krtthkm  fyl k!
(1, m) (1, D v
R [N (S USSR
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700 L. BEGHIN AND C. MACCI

Proof. Equation (16) follows from (15). In fact, by taking into account (8), it suffices to
multiply the terms of the series in the right-hand side of (15) by I'(r 4+ 1)/r! = 1 (note that
the convergence condition (9) holds because v + n — (7 + 1) > —1). So from now on we can
concentrate our attention on (15) only.

Firstly, we have

Pyt = P({N"*”m =k}n {Z NI (@) = Zlq})

i=1 i=1
m

SN =Zk,~>IP’(ZN;7’V(t) =Zk,~>. (17)
i=1 i=1 i=1 i=1

We start with the conditional probability in (17). We have

= P(N”’”(t) =k

m

m ]P)(NI],U(t) — k)
N () = kl) - v m
Z l ( ) ; IP)(Z::n:l Nin’ (t) = Zi:l kl)

i=1

IP(N”’“(t) =k

and, if we consider the conditional distributions given A7 (L"(¢)), we obtain

iNin'v(’) = ih)
i=1 i=1

" ki iy ki
_ |:1—[ ()»ir') o hir :| <]E|: (S()»)r’;)Z 1 R
o ki. F=AN(LY (1)) (Zi=1 kl)’

kit k)l A

kiloky!  (sQA))kitthm

after some computation, where there is a factor equal to 1 given by

P(N”‘“(t) —k

-1
r=zAv"(aC”(t)):|>

E[(AT (L (1)) Zi=t ki g =S WAL (1)

divided by itself. For the second factor in (17), we consider again the conditional distributions
given A7 (LV(t)) and we have

P(Z N (1) = Zk,») = E[P(Z Ny = Zk,-)
i=1 i=1 i=1 i=1

_ E[ MNZEh ),
Qi ki)!

r=A”(£”(t)):|

)

r=Al (£”(t))i|

then we have

]P’(i N (1) = i ki)
i=1 i=1

_ (=t (@)Y Car+1
C kit k)l S Tr+ D Tr — (k- k) + 1)

by taking into account the known formula for the m = 1 case (see [2, Equation (3.24)], where
the formula is given in terms of a binomial coefficient, with a typographical error; see also [15,
Equation (1.8)]). Finally, (15) can be easily checked. ]
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Multivariate fractional Poisson processes and compound sums 701

Here we present some remarks on Proposition 4. Firstly, (15) with m = 1 meets known
formulae in the literature (see, e.g. [15, Equation (1.8)]). Moreover, for v = 1, we have

vl = M (DR e (s L@ +1)
Pk o (s)kiFRn gt ~ r! Cpr — ki 4+ kn)+ 1)’
ki km ki+-+k
nly _ Mkt (DR (1, m —(s));
P = 4 Tyt gt UL = e k) | TR

both formulae reduce to those in [15, Theorem 2.2] concerning the m = 1 case. Finally, for
n = 1, (15) can be expressed as

P
(s))Yki+Fhkm oyl

Z (=s(A)¥)" r!

ot () =
k Tr+1) (r— (ki 4+ kn))!

r>ky+-+kpy
(because the summands with r < k; + - - - + ky,, are equal to 0), and, therefore,

)\.]]q e )\'ﬁlm (_l)kl"l‘“"'rkm

(sQ)kitthm kil k!
Z (—s(A)eVyrHhitthn (r+ki+--+kn)!
F'wr4+vky 4+ +kp)+1) r!

P (1) =

r>0

_ (kl + e + km)!)\'kl . )\km tU(kl+'“+km)
kilee k! 1 m
(ki + -+ kn + DD (=s Q")
<2
r'Cwr+vky 4+ -+ kp)+1)

r>0

(G e .70 LY T Tty SHURR T g SRR O S8
= W)"ll ce )”m tU 1 )Ev,:;(k1+...+km)+] (_S(X)lv),

the last expression meets [5, Equation (2.5)] concerning the m = 1 case.
In Proposition 5, we compute the covariance

CoV(N (1), Ny (1)
= BN} (ON, " (01— EIN; " OIEIN, (0] for joh € (1,.....m};

note that we take n = 1, otherwise the covariance would not be finite. In what follows we refer to

Z) ;=1<L_ ! ) (18)
v\TI'Qv) vI2)

where, as shown in [3, Subsection 3.1], Z(v) > 0 for v € (0,1] and Z(v) = O if and
only if v = 1. The codifference (X, X») has been studied in the literature (see, e.g. [9,
Equation (1.7)]) when the random variables X and X» have infinite variance and it is known
that it reduces to cov(X1, X») when (X1, X») forms a Gaussian vector (see the displayed
equality just after [9, Equation (1.7)]). So in Proposition 5 we also compute the codifference

. n,v /RY
TN (0), N (1)) = log E[e! ™™ =Ny ()
—1ogE[e™] O] — logE[e= M O] for jh e (l,...,m),
where i is the imaginary unit.
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Proposition 5. Let n, v € (0, 1] be arbitrarily fixed. Then, for j, h € {1, ..., m}, we have

AjtY
1v 1,v J 2v
N."@),N,” () =1ljjmpp—"—— 4+ AjApt"" Z(v),
cov( j ®) h ®)) {j h}F(U 1 jAh )
where Z(v) is as in (18);

T(N]V (@), Ny (0) = Lz log Ev 1 (= (1 =€) + Ap(1 — 7))
—10g Ey1 (=0 (1 = e))") = log Ey 1 (=(hy(1 = eH))"1").

Proof. Firstly, it is useful to recall the following formulae:

v

Akt

——— forallk e {1,..., 19
o+ orall k € { m} (19)

E[N;Y (0] =

(see, e.g. [4, Equation (2.7)]);
E[eN O] = B, (—(\(1 — e)t") forallu e Randk € {1,....m}  (20)

which can be obtained by adapting the computation in [15] for the generating functions.
We start with the j = & case. The formula for the covariance holds noting that

cov(N}’”(t), N}’”(t)) = Var[N}’”(t)]

and by taking into account [4, Equation (2.8)]. The formula for the codifference holds noting
. 7,V n,v
that E[el(Nf (=N; (I))] = 1 and by taking into account (20).
We conclude with the j # h case. Firstly, we have

E[N}Y (N, ()] = EIEIN ()IEIN, ! ()]ls=v] = Ak /0 s? fv(n (s) ds

and, since
oo . !tvk
v ds = ——— forallk >0
/o s* feva(s)ds Tk D) >
by combining [17, Equations (2.4) and (2.7)], we have
1 1 2v
E[N " ()N, ()] = A jrip ——;
IV} ONy 01 = Ao s
then, by taking into account (19), we obtain
242v AjtY At

1,v 1,v 9. _
COVING (0. Ny () = 2k 5 3 o T T s DT+ 1)

2 1
= hjhpt® —
rQv+1) TI2w+1)

2 1
= hjnt? —~
20 2Qv)  V2I2(v)

= )it Z(v)
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Multivariate fractional Poisson processes and compound sums 703

and the formula for the covariance is proved. Furthermore, since we have

STV N ATl a7l N
E[el(Nj (1) Nh (t))]:E[E[elN] (S)]E[eleh (s)]|S:=A”(,CV([))]

_ ]E[exjs(ei—l)ﬂhs(e*i—1)|S:m(£v(l))]

= Eyi (=0 (1 —e) + ap(1 —e ™))",
the formula for the codifference can be easily obtained by taking into account (20). (|

It is known that {C™1(¢): r > 0} and {N""!(¢): t > 0} are Lévy processes and, moreover,
when 1 = 1 their Lévy measures ,oé and 1011\/ are defined by

PE(AL X X Ap) = Y i (A) @1

and
m
PN (AL X X Ap) =Y Ailjieay). (22)

In the next proposition we present the Lévy measures pg and ,01'\7, when n € (0, 1).

Proposition 6. Let n € (0, 1) be arbitrarily fixed. Then we define the Lévy measure ,OZ of
{C1(t): t = 0} by

PE(AL X o X Ap)

F(l—n)Z/ H{

i=1"n;>0

—s(A\)z
{(~1)*n,( )" }l{keA}}erZ' (23)

Moreover the Lévy measure pN of (N"(t): t > 0} is defined by
PR (AL X o X Ap)
_ L+ + o — )
- r'(—n) Z (s()"))kl+"'+km n 1_[ ki

k>0 =1

k.

—— 1 en; }} 24
Proof. Firstly, by [21, Equation (30.8)] and the Lévy measure oy for the stable subordinator
{AY(t): t = 0} in Remark 2, we have
PE(AT X o X Ap)

~ (k z) Yy
= Z/ H{ {( D Tl © M geay)
k>0 i=1"n;>0
Then we easily obtain (23) with some manipulation. Finally, as far as (24) is con(;erned, we have
to consider (23) with 47; = 1=y foralli € {1, ..., m}; therefore, we have (47’);';"” = 1k, =n;)
and we obtain

- 4
T — )2l

)LZ) e—s(X)Z
T(AL X -+ X Ap) = / (’ -~ d
pu (AL X - X Ap) F(l—n),;:) ]_[ Lean [~ d2
A
— it thkn—n—lo—sMz 4, {_ LA }
r(l—mZ/ ﬂk e
which yields (24). O
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704 L. BEGHIN AND C. MACCI

‘We remark that ,oé in (23) meets (21). In fact, if weset I'(1 — 1)/T"'(1 — 1) = 1, we have a
nonnull contribution if and only if (n1, ..., n,) belongs to the set

{((1,0,...,0),...,(0,...,0, D}

thus, (23) yields

1-1— l —s(A
,OZ(A1 XX Ap) = F(] 0 / sz dZZ Z{)\,qk l{k,eA }}

i=1k>1
1
ra-1n (s(x))O ; ;{qk {kieA;}}
=Z)‘izlvi(f\i)-
i=1

Similarly, p}v in (24) meets (22). In fact we have a nonnull contribution if and only if
(k1, ..., ky) belongs to the set {(1,0,...,0),...,(0,...,0, 1)}, and (24) yields

. _ 1 ra-—
Py(AL X - X Ap) = F(l—l)z (s(k))o Ailgeay = Zk 1i1ea;y-

3.2. Results for the process in Definition 3

Here we give a multivariate version of [16, Theorem 2.1, Remark 2.3, and Remark 2.5]. In
particular we recover those results and remarks by setting m = 1. In view of what follows we
consider the analogue of [16, Equation (1.1)], i.e.

P(N' (¢ +dr) — NPL@t) = k)

ki
( (“) ¢ )pf(dr)dt—}—o(dt) fork = 0,

i=1

o0
—/ (]‘[e—*ir>pf(dr)dt+o(dt) fork = 0,
0 Nioy

m )\'.,' 00
l_[ ﬁ /O iz kie_so‘)r,of(dr) dt +o(dt) fork >0,
. Kie

o0
1— / e M p(dr) dt + o(dr) for k = 0,
0

and we consider the function me defined by

}‘:n(x’ u) — \/(\) < —S(X)r Z l_[ ()\4 I/llr) ),Of(dr)

Jj=0 i=1

in particular, we have

fn(2;0) = f “a —eMNprr) = f(s) foru =0,
0
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Multivariate fractional Poisson processes and compound sums 705

and
o
fiGasu) = / (1= e MM pe(dr) = f (1 = up)
0
for the univariate case m = 1.
Proposition 7. Let f be a Bernstein function. Then we have the following results.

(i) The state probabilities {{p,{’l(t): k > 0}:t >0} in (6) solve the following fractional
differential equation:

=Y p (t)]'[ / rXiiie M p (dr) — fsM))p (@),

0<j<k
,1
P,{ ) = 1g=0y.
(ii) The probability generating functions {G*1(-;t): t > 0} in (7) solve the following frac-

tional differential equation:

d ~
0wy ==L w6 @y, Mo =1,

and, therefore, we have G'1(u; t) = e”ﬁ”(}‘;”).

Proof. (i) The initial condition trivially holds. Then, since {N F1(#): t > 0} has independent
increments, by taking into account the distribution of the jumps given above, we have

pila+dn =3 Py =j, N'@+d) - Ny =k — )

0<j<k
e gr)ki—ii
= > 10)( / (l_[ %O—.Jex">pf<dr>dt+o<dr>)
0<j<k i=1 ( [ .]l)

o
+ pk (r)( / e W pe(dryde + o(dt)),
0
and, therefore, we consider a suitable change of summation indices in the last equality

L1 1
plt @ +dn - plt @)
m )\ki—ji

=Y rlto (]‘[ﬁ/ pXizi ki=ide=sMr o - (dr) dr —|—0(dt)>
0<]<k l._l(l_Jl)' 0
— p{ O(f(sQ)) df + o(d0)

m jl
= > (t)(]_[ / iz lfte—“”’pf(dr)dt+o(dz)>

0<1<k
- Pk LO(f () dr + o(dn)).

We conclude by dividing by d¢ and taking the limit as dz goes to 0.
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706 L. BEGHIN AND C. MACCI

(ii) The initial condition trivially holds. Then, if we take into account the differential equation
obtained for the proof of (i), after some manipulation we obtain

d 71 kooke o f
EGf’ @) =y uf' - uy P ®

k>0

_ ki k,
_Zul ...umm

k>0

x ( 3wt <r>1_[ / rXisiiie Mg (dr) — () pf 1<r>>

0<j<k
= —fsONG ;1)
+Zl_[uf‘l( Z P ([)l—[ / Z: lj’e ”O‘)pf(dr)>
k>0i=1 0<j<k

moreover, if we rearrange the summands in a different order, we obtain

%Gf’l(u; N =—fGMW)G ;1)

+2 2 [1w (Pk,@)l_l / P e Wp ()

>0 k>ji=1
= —f(s)G s 1)

+Z/ w(k)l—[(kur) <dr>Zl_[u Pk,

j>0 k>j i=1

( f(s(x>>+2f ‘”‘“Hw” 7(dr )) G (w3 ).

j>=0

N———"

Finally, we can check that (in the first equality we take into account the integral representation

of f)
46w = _</ (1 - e’5<”)pf(dr)
dt 0
[ _”(”1_[ L r) (dr))G“(u 5
j>=0
= _</ ( e~ "s) Z l_[ iu r) ) f(dr)>Gf’1(u; 1)
0 Jj=0i=1
= —fu s WG s 1),
and this completes the proof. O

Remark 3. The equation in Proposition 7(i) can, alternatively, be written as

d
u? o) = —Fui BYpl o),
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Multivariate fractional Poisson processes and compound sums 707

where B = (Bq, ..., By;,). In fact, we have

~ - Ai Bi
—fm(x;B)p,{’1<t)=—/0( *““’Z]"[( ’) )p,«dr)

j>0i=1

AiBi
= —fM)p O+ / *““rZ]"[( ’) pr@dnpl! ()

Jj>0i=1

=> pi! (r)]"[ f rXiziiie=s O cdr) — fsM))py ()

j>=0
=Y (r)]‘[ f PE e 0 g ) — fsApL ().
0<j<k

Remark 4. If we follow the same lines as [ 16, Remark 2.5], for v € (0, 1) the state probabilities
{{ pk’v(t): k > 0}: r > 0} in (6) solve the fractional differential equation

Dot = 3 o (t)]"[ f PZiie 0 (dr) — s 0.

0<j<k
P;{’V(t) = ljk=0),
or, equivalently,
Dy, Pl = —fu; B)pLU (), pl (1) = 1g—oy. (25)

Moreover, the probability generating functions {G/V(:; ): t > 0} in (7) solve the fractional
differential equation

DY.Gwit) = —fu WG 1), GV 0) =1, (26)

and, therefore, we have G/*¥ (u; t) = Ev,l(—t”fn(l; u)).
In particular, considering the Bernstein function f for the stable subordinator {A"(¢): t > 0}
and the corresponding Lévy measure oy (see Remark 2), we have

~ o _ juir)di n 1
. _ s)r § | |
I u)_/o (1 ! )F(l—n) it &

j=0i=1 Ji!
(A”)j’/ S Lo=sOur
— A n_ i=1 Ji—n— d
()"~ —F n);ﬂ r
1 T i —m) 1y ui)7i
= (s(\))"
@) +F( n)X(:, (s (M) izt Ji— 1_! Ji!
Ao\
N1 i
—ee < ( . (21:] )H (sm) )
]> i i=1
CQoL ji—m) (/\ u,>
= A, n —_— N
G g r(=) 1:[ S
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708 L. BEGHIN AND C. MACCI

moreover, if we use the symbol ) Lo jm€ 5;.’ for the sum over all ji, ..., j,; > 0 such that
Jj1+ -+ jm = h (as in the proof of Proposition 1), we obtain

= C(h—n) Dkt (g )
Fuiw = 600" Y m o Y 1‘[,_<m>
J1

h=0 -~ T €8y i=1 Ji!
F(h—n)< S x,-ui>h
— oy T il
@) }g T (—n)h! i;s(x)

o ui !
= (O 1= el
(s(1)) ( ; . (x))
(for the last equality, see, e.g. [23, Equation (15)] witho = —n — 1 and § = 0; in fact ¢ and ¢
in that reference satisfy ¢ = (1 4+ ¢), and, therefore, { = ¢/(1 —¢)and 1 +¢ = 1/(1 —t);
obviously here we consider uy, ..., u, € [0, 1] and, therefore, t = Y /", A;u;/s(A) € [0, 1]).
Thus, (25) meets the equation in the statement of Proposition 1 (with pZ‘v (t) in place of p,{’v (1))
and, similarly, (26) meets (14) (with G™" (u; r) in place of G/¥ (u; 1)).

4. Examples of fractional compound Poisson processes

In this section we study the multivariate fractional version of well-known counting processes
which can be obtained as a particular multivariate space-time fractional compound Poisson
process {C™V(¢): t > 0} as in Definition 2. In particular, the univariate processes (i.e. the
m = 1 case) has been studied in [3, Section 4]. For each example we specify the probability
mass functions {{q~§.: j=>1}:i €{l,...,m}} and the values Ay, ..., A;; we remark that the
values A1, ..., A, 1n Example 1 can be chosen without any restriction.

Example 1. (Multivariate fractional Polya—Aeppli process.) We set
5} =0 —a)"'q forsomed,...,a, € (0,1];

in particular, if @; = 1, we have Cl."’v(t) = Nin’v(t). We recall that in some references the
m = 1 case is presented with p in place of 1 — «; see, e.g. [14, Equation (1.3)].

Example 2. (Multivariate fractional Poisson inverse Gaussian process.) We set

i (i=3/2\( 25 f{( 1 )‘“2_ r i >
qj._< j )(2,51‘—1-1) —2,51‘-}-1 1 and )\.,.—B}((l_’_zﬁl) D),

forsome Elv ﬁlv -~-sEm’ ﬁm > O

Example 3. (Multivariate fractional negative binomial process.) We set

iy 1 —a;)/ ~
q: = —(,—al) and A; = —loga;,
4 jloga;

for some ay, ..., a, € (0,1).

We also present an extension of [3, Proposition 2] concerning Example 1.
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Multivariate fractional Poisson processes and compound sums 709

Proposition 8. We assume the same situation as in Example 1. Then, for v € (0, 1],

m
1 ~ 1
Dia 0 ==& Dy g g, ®

i=1

m
= —sMgy () + Y i +sMA =gy’ oy (1)
i=1
m m kp,
B Z(l B al) Z )\'h Z(l B ah)jh_la‘hq]:;j)m,kh*].hnwkm (t)’
i=1 h=1,h#i  jy=1

" (0) = Loy

forn € (0, 1],

di/m ] " di/m !
n, ~ n,
d(—n) 1/ ® - Z(l - a’)d(_t)l/n D oski 1o (D
i=1
m
N ~ ~ B
=sMgy () =Y Ml +sMA = @)gl oy (@)
i=1
m m ky,
~ ~ i1~ n.l
+Y A=a@) Y oy (=@ @l o),
i=1 h=1,h#i  jp=1

a7 (0) = 1ja—p.

Proof. The initial conditions trivially hold. We start with the proof of the first equation in
the statement. By the first equation in Proposition 2, we have

m

1 ~ |
Dy a0 - Z(l — ;) CD5+qk{,U...,k,~71,...,km ()

i=1

m kp,
=—sMg O+ Y d Yy A =@ angyt ()
h=1 jn=1
m
-y a- ai)[—s(m,i;,“,,,,k,._l,,,,,km (1)

i=1

h=1,h#i  jp=1

ki
~ ','—l"‘ 1,
+)\'i Z(l o ai)j aiqklj{n,ki*l*jiwwkm (t)i|
Ji=1
Moreover, if we split in two parts the sum Z'I;::](l - &h)jh_l&hqlgl’”m K ik (1) O the
right-hand side, i.e. the summand with j, = 1 and the other summands with j, € {2, ..., k},
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after some computation, we obtain

m
1, ~ 1,
Dy a0 =Y (1= @) Dy g ay.p, O

i=1

..........

h=1
m kp,
~ ip—l~ 1,
+ Z)\'h Z(l _ah)jh lahqklj}...,khfjh,...,km (t)
h=1 Jjn=2
m
~ 1
+) sMA =gy’ gy, @
i=1
m m kp
~ ~ o1~ 17
=2 =@ D D (=@ T ey
i=1 h=1,h#i  jp=1
m ki
~\ji~e 1,
o ZAI Z(l o ai)jlaiqklj)-u,kl_l_jian-!km ([)
i=1 Jji=1

Finally, after some other computation (in particular we combine two sums and we consider
Jji€{2,...,ki+1}inplace of j; € {1, ..., k;} in the last sum, with a suitable modification of
the summands), we have

i=1
m
1, ~ ~ 1,
= —sMg (O + Y MG +sMA—@)g” g (0
i=1
m kp
~ Nip—l~ 1,
+ ZAI/L Z(l _ah)Jh lahqklj}--»vkh_jh ----- km (t)
h=1  jy=2
m m kp,
~ ~ =1~ 1,
=2 A=@) Y hy A =a@  Engy , ©
i=1 h=1,h#i  ju=I
m ki+1
~ i~ 1
- Z)\'l Z(l - ai)jl ]aiqklj)---’ki_/l ----- km( )
i=1 Ji=2

.....

can be canceled. The second desired equation can be obtained similarly; we have to consider
the second equation in Proposition 2 (instead of the first one) and we have the same kind of
computation with suitable changes of sign. (|
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comments on the content of [16]. The idea of studying the processes in this paper was inspired
by the communication of Daniela Selch at the European Actuarial Journal (EAJ) Conference
(Vienna, September 10-12, 2014).
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