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Abstract—A full characterization of accessibility is provided the results of this paper, there is mwertible change of state
for nonlinear time-delay systems. It generalizes the rank con-  coordinates which decomposes the system into an observable
dition which is known for weak controllability of linear time-  g,oustem and a non observable one. This contradicts common

delay systems, as well as the celebrated geometric approach . - o . .
for delay—free nonlinear systems and the characterization of beliefs on this matter. Additional assumptions are required [27]

their accessibility. Besides, fundamental results are derived on 0 ensure that such a decomposition still exists.

integrability and basis completion which are of major importance :
for a number of general control problems for nonlinear time The results in the paper feature fundamentals of a novel

delay systems. They are shown to impact preconceived ideas ~aPProach to tackle nonlinear time-delay systems. They include
about canonical forms for nonlinear time—delay systems. useful algebraic results which are independent of any system
dynamics. A basis completion theorem is obtained which
Index Terms—Time-delay systems; accessibility; autonomous may impact future research on time—delay systems. From
element; geomelric approach; nonlinear systems. above, given a set of causal exact one-forms, it is not always
possible to find additional causal exact one-forms to define
I. INTRODUCTION a unimodular matrix. Necessary and sufficient conditions are

derived under which such a transformation exists.
Time-delay systems are modeled by ordinary differential

equations which involve delayed variables [9], [16] and are A_maj(_)r d'ﬁ'.CUIty.'n analyz_lng tlme-dglay systemg IS the'f
.Infinite dimensionality. Thus, in the nonlinear case, integrabil-

typically encountered in biology or biomedical systems [25], g Y results provided by Poincaré Lemma or Frobenius Theorem

telerobotics, teleoperations [12], [15] and in networked contr% . T . .
. ve to be revised. A sequence of finite dimensional systems is
systems. Unfortunately, the theory for such systems is muc

less developed than it is for linear time—delay systems. Evmnroduced and shown to capture major structural properties of

. o . {me—delay systems. Standard tools on those finite dimensional
fundamental properties such as accessibility or observabili ystems become efficient and circumvent this difficult
and related design problems are far from being understood. Y-

A sufficient condition for accessibility of nonlinear time— The outline of the paper is as follows. This introductory sec-

delay systems can be found in [18]. Whether this condition Fson is ended up with a summary of the main results which are

. .. put into perspective with respect to control systems. Section
necessary remains an open problem. Among the contributigns : .
L L Lo . introduces general notations about the class of dynamical
in this paper, a full characterization of accessibility is derived . ! :

: . L systems which are considered. Mathematical tools adapted for
in terms of a necessary and sufficient rank condition fo

i X . o . Infinite dimensional systems are introduced and results on
nonlinear time—delay systems. This result is in the continuatio " . . . : .
. integrability are derived in Section lll. Section IV includes
of the celebrated geometric approach for delay—free systems o - ;
- : — theé characterization of accessibility and the corresponding
the work [10] on accessibility has certainly been the semin " : .
L . ecomposition of systems. Two examples are provided in
paper inspiring the geometric approach that started to

developed by Lobry, Jurdjevic, Sussmann, Hermes Krengr_elz_ction V to illustrate the approach of the paper: the JAK-
Sontag, Brockett in the early 1970's (quoted from [23]). AT signaling pathway Model borrowed from biology, and

the Chained Form Model used in Mechanical Engineering.
Herein it is also proven that any nonlinear time—delagoncluding remarks are found in Section VI.

system can always be decomposed into a non accessible

subsystem and a fully accessible one by means of a bicausal

state transformation. This is far from being obvious as such a

decomposition does not always exist with respect to observ-The main original contributions given in this paper are

ability, as displayed in the following example. Consider  summarized hereafter. Some of them implicate received ideas.

& = 0, i=1,2
y = zi(t)xi(t—1) +zo(t)xa(t — 1). Integrability

SUMMARY OF THE CONTRIBUTIONS

As any time-derivative of the output is zero, for> 0, the The integrability problem of a submodule was addressed
two state variables of the above system can not be estimated2]. The new contributions in that respect are detailed in
independently and the system is not fully observable. FroBection Il as follows:
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Corollary 1 gives an upper bound on the maximum
delay which characterizes these exact differentials after
integration. An algorithm for the computation of a basis
over K (0] for such exact differentials is included, with-
out using any Taylor expansion and thus reducing the
computational complexity.

Theorem 3 solves the integrability problem in the

xz(t +iD), ¢ € [1,p], of the state together with the
first (s + 1)n components of the state of the infinite
dimensional system (1). Whep = 0, the more sim-
ple notationx’; = x{j ; € RV is used, with
X[0] [xly[o],-u,xn,[o]] = x(t) € R" u

[t [0], - -+ 5 Unm, [0]) € IR™, the current values

T = w(t)

of the state and input variables.

most general case whereas in [2] the results were re-,
stricted to the special case of causal right submod-
ules. Note that causal exact forms, may have a non
causal right annihilator as it is the case for instance for
w=d(z1(t)z1(t — 1) + z2(t)z2(t — 1)).

« Itis shown that the exact differentials which characterize
the left annihilator of the given submodule can be com-
puted by referring to a finite dimensional distribution of
proper dimension.

« Theorem 2 in Section Il fully characterizes those closed
bases of exact differentials which can be completed
to get a bicausal change of coordinates, generalizing
preliminary results given in [5]. This last result represents
an important milestone for the study of nonlinear delay
systems since it is not valid in general. A typical counter-
example is given again by defined above.

x(, (=1 = (@"(t +pD —iD), - -a"(t — sD —iD)).
Accordingly, x4 (—i) = X[,5(— i); xjj0)(—1) == x;(t —
iD), anduyg | ( 1) := uy(t — iD) denote respectively
the j—th and é—th components of the current values of
the state and input variables delayed by= iD. When
no confusion is possible the subindex will be omitted so
that x will stand for xp, ,, while x(—i) for xp, 4 ().
ulll .= (u?, a7, -, (T whereul~1! = ¢;
o« K* denotes the field of meromorphic functions
f(x[pys],u%];]jl), with p, s, k,q,7 € IN. The subfieldiC
of IC*, consisting of causal meromorphic functions, is
obtained forp = ¢ = 0.
« Given a function f(xp, 5],u%’;‘]ﬂ), we will denote by
F(=1) = J (% (<D ]y (<)
« d is the standard differential operator;
o § represents the backward time-shift operator:
a(-), f(-) € K*: 6ladf] = a(~1)6df = a(~1)df(~1);
K*(9] is the (left) ring of polynomials ind with coef-
ficients in KC*. Every element ofk*(4] may be writ-
ten asa(d] = 377, ozj()5j_, with a;(-) € K* and
ro = deg(a(d]) the polynomial degree id. Let 8(d] =
Y720 B;(-)87 be an element ok *(4] of polynomial de-
greerg. Then addition and multiplication on this ring are
defined by ([26]):(5]+ 8(6] = Ym0} (o, + 8 )6
and a(3]3(6] = 72 3072 i 35 (—i)07H
Analogously (4] is the (left) ring of polynomials iy
with coefficients infC.
Let for i € [1, j], 7i(xp;) be vector fields defined in an
open set®; C R"+Y. Then A = span{r;(x),i =
1,...,j} represents the distribution generated by the vec-
tor fields 7;(-) and defined onR™(+1), A represents
its involutive closure, that is, for any two vector fields

for

Characterization of Accessibility .

Theorem 5 in Section 1V displays the rank condition which
generalizes the well established full dimensional condition of
the strong accessibility distribution for delay—free nonlinear
systems. It also somehow generalizes the Kalman criterion for
the study of controllability of linear time—invariant systems.

Decomposition with respect to Accessibility

It was easily shown that the decomposition with respect to
observability does not exist for a general nonlinear time-delay
system. Theorem 6 shows that the decomposition with respect
to accessibility is always possible.

Il. NOTATIONS (1), () € A then also the Lie brackelr;, ;] =
. . . Ori . 9T e A ([11]).
Consider the class of nonlinear time-delay systems Ixy 3X[ . .
AN will denote a distribution in
t(t) = F(z(t),z(t— D t—sD !
# ) (w(t),a( honalt=sD) + @) spanc-{ g o o 0](*4)}.
ZZ Gi(a(t), 2(t — D), -, 2(t — sD))uy(t — iD)), o Let Q] = spang. g {wi(x, 5)d).<[0], wj(x, 0)dx(o) }
prdt be a left submodule of rank with w; € KC*(1x™)(4].

Any w(x,0)dxq € (6 can be expressed as
w(x, §)dx() = Zzzl a;(x, 6)w;i(x, 0)dx[. The left clo-
sure of Q(d] is the largest left submodul€,.(é] of
rank j containingQ(d] ([6]). Analogously letA(d] =
spanc-(5{71(x, 9), - - - 7;(x, )} be a right submodule of
rank j with 7; € K*(>1(5]. Any 7(x,§) € A(8] can be
expressed as(x,d) = > 7_, 7(x, d)ai(x, ). The right
closure of A(d] is the largest right submodul&. (] of
rank j containing A(é]. When no confusion is possible
K™ (8] will be used at the place d€*(*1)(§].

where D is a constant delays,l > 0 are integers and the
functions G,;(z(t),---,z(t — sD)), j € [1,m], i € [0,]]

and F(z(t), - -,z(t — sD)) are analytic in their arguments.
Such a class of systems covers the case of constant multiple
commensurate delays as well [9].

General notations valid throughout the paper are as follows.

e x[ = (@"(t +pD), 2" (t — sD)) € RE+s+Hn,
denotes the vector consisting of theyp future values

1A submodule is causal if its generators are causal, that is they do not
depend ont + 4, ¢ > 0.



I1l. RESULTS ONINTEGRABILITY [r5(), ry()]g,, on REHD™ i >0, is defined as
Consider the right submodule i ) T )
Tk . ,Tl . _ ka‘]’rlf‘] -
A(0] = spang- (5 {r1(x,8), - -,7;(x,6)} ) [0, r2()] Z([ b ]E)<x<fj>> 0o (—J)
of rank j, with the polynomial vector r;(x,3)
S (rf(x) T 526" € K**(9]. By assumptionst¢ = 0,

£=0 Ox0)(P) ) _¢ ’ [T]f()? TZQ()] E:(Lr’f(x)ré(x) - Lré(x)rlf(x)) . (5)
V¢ > 0; by conventionr; © =0, V¢ > 0.
Integrating A(d] consists in the computation of a set olRemark.The Generalized Lie derivative as defined by (3) is
n — j exact differentialsd\,(x) = Au(x,d)dx))(p) inde- the Lie derivative ofr(xp, ) along
pendent overlC*(d], which define a basis for the left kernel
of A(4]. (PP (4p), - -, 17(0), PP (1), - 70 (=p), 0)T

Definition 1: The right submoduleA(d] of rank j, given The latter is embedded in
by (2), is p—integrable if there exist — j independent exact 0 ,
differentialsd )\, (x) = A, (x, §)dx)(p), 1 € [1,n — j] such (r (x(p) - @) 0 0 )
App,q =SPancx

, (4)

thatd\,(x) = A,(x,0)dx|(p) lay in the left kernel ofA (4], 0 0
that isd)\,, (x)r;(x, d) = 0, fori € [1, 5] andu € [1,n—j], and 0 0 r’(x(—q) - r'(x(—q))
any other exact differential\(x) € A+(§], can be expressed . . .
Y ) ] P where r'(x) = (ri,---,7}) and ¢ > p. Accordingly,

as linear combination ove£*(d] of suchd\,(x)’s. ; ) , ) :
assuming without loss of generality> [, the Generalized Lie

Definition 2: The right submodule\ (6] of rank j, given by  pracket[r*(-), (-)] ,, is defined starting from the standard
(2), is said to be integrable if there exists some finite integefe Bracket

p such thatA(d] is p—integrable. ) i bps—L

_ _ 0 (s —1) TV (s = 1)

Example 1:Consider for instance (s — k)
1

A(6] = span. g { ( _;f;((22>)5) } T’fE(O)

According to the above definition)(d] is 2-integrable, since
d)\ = d(x1(2)x2(1)) = (x2(1), 21(2)d)dz(2) L A(S]. How to : 0
check the existence of such a solution and how to compuite it, o/ (=) :
is the topic of the present Section. r1(=k) 8 (k)

To this end, the definitions of Generalized Lie derivative,
Generalized Lie Brackét(different definitions can be found min (ki) _
in [8], [22]), Involutivity and Involutive Closure of a right In fact, [r{(-),75(-)]e, = > (Tkﬂ(—j))Tm- d
submodule are introduced next. They represent the nontrivial =0

generalization of the standard definitions used in the delay—

free context, which can be recovered as a special caae-rhe Generalized Lie brackets (4) are associated\fo,

o . : .- défined above. In the special case of causal submodules (which
These definitions play a fundamental role in the integrabili . )
conditions. ead to conside)|y ,1), they have shown to characterize the

0—integrability conditions, that is when the (] is generated
by dA,(x) = Au(x,8)dx), p € [1,n—j] [2]. However, if we
A. Generalized Lie Derivative and Generalized Lie Bracketrefer to the submodulé (6] given by (2), there is no condition
expressed in this framework. To overcome this problem, the
Definition 3: Given the functionr (x(, ) and the submodule following definition of polynomial Lie bracket is required and
elementr(x, §) = ZS: 13 (x)87 € K*7(5), the Generalized Lie a more general definition of Lie bracket is also introduced.
- J=0 , Definition 5: Givenr;(x;s, 5,0) € K*"(8], 7 = 1,2, the Lie
derivative L. 7 (Xjp,s]) IS defined as Bracket[r1(X[s, 4], 0), 2(X[ss 5] O, IS @(ds + 51 + 52 + 1)-
Loy uple of polynomial vectors 2 ;(x, ), defined as

Lon()T(Xpp,s) = Y M7"“*l(x(—l))- (3)

- Oxo(—1 Zeter ‘
== 0 ) ) r12,5 (%, 0) :Z [P0 g By 0T § € [—25,25 + 51+ s2]. (B)
Definition 4: Let ry(x,0) = > ri(x)0? e K*(d], e

7=0 . .
g = 1,2. For anyk,l > 0, the Generalized Lie bracketRecalling that a polynomial vector;(x(,, s,d) acts on a

L ) o ] _function ¢(¢) and denoting its image aR;(x[, q,€) =
2The definitions of Extended Lie derivative and Extended Lie bracket givan- s j " the Pol ial Lie B ket i h defined
in [2], [3] are recovered as a special case when the considered functions%cj:o 1(x)e(—j), the Polynomial Lie Bracket is then define

vectors are causal. as follows:



Definition 6: Given r;(xs, s),0) €
Polynomial Lie Bracke[Rl(x e),r2(

K*(6], i = 1,2, the
9)] is defined as
[Rl(xv 6)3 TQ(Xa 5)] - a’de(X[s 5] E)TQ(X [s2,5] )

S1+s M(SkTQ( ( ) 5)

i 75 Tio)= 1x6551_
TQ(X )| [0j=Ru (x,€) kX::O 8X[0]( )

With some abuse, the Polynomial Lie Bracket and the standawith Bo =
Lie bracket are both denoted hy.]. No confusion is possible,

since in the Polynomial Lie bracket, sorag) will always be
present inside the brackets.

Some Remarks:

« The link between the Lie bracket (6) and the Generalized (©
Lie bracket (4) can be easily established by noting that

settingI(0) = (1,,6%(s+51),

" In5a In)

2(s+s1)—7j s+s
r12,j(x, 6) = 1(4) ([Tl( T |x<2<s+sl>>)

« Standard computations on the Polynomial Lie Bracket

show that

2s+s1+82

Z r12,5(x, 6)€(j).

Jj=—2s

[Rl (Xv 6), TQ(Xv 5)] = (7)

« If the given vectors are independentdoénd of the delay,

one recovers (up te(0)), the standard Lie bracket sinceWith a1 = Ba(L,ofr)

[Ri(x,€), 72(x,0)] = [} (2)e(0), r3(x)] = [r],r5]€(0).

Instead, if delays are presefR:(x, €), r2(x, 0)] immedi-

ately enlightens some important differences with respect
to the delay—free case, such as the loss of validity of the
Straightening Theorem. In fact, since the term depending

Proposition 2: Given for i

7i(X[s,.,s], 6)Bi(X[s,.5], 6), then

- 172! F’i(x[gi7

s]s 5)

[Rl (x,€),72(x, )65 751 = o
[Ri1(x,€),7r2(x,0)]e=p, (x,e)B2 +ra(x, §)ag — ri(x,6)ay

s+s1

9B1(x,6) sk
axw (51 k)5

Ba(x(s1),0
= 62 (Xv 5) |m':f{1 (x,é)(sSl

), a1 2(x(s1),6),

and as

Remark.While the proofs are reported in the Appendix, it is
worth pointing out that the standard properties of Lie brackets

for delay-free systems are recovered. In facty;ifx,d) =
), fori = 1,2, thenR,;(x, ¢) = r9(x)e(0) and

8[R1 (Xa 6)3 TQ(Xa 5)] _ [TO TO] _ —[TO TO]
86(0) 121 — 2>"'1
- 8[R2(Xa 6)3 ! (Xa 5)]
9¢(0) ’

whereas lettingr;(x,d) = r%(z)8i(x), then R;(x,¢)
r9(x)Bi(z)e(0) and

[Ri(x,€),72(x,0)] = [r¥(x)B1(2)e(0),r5(x)B2(z)]
= ([T?v Tg]5261 + TgOZQ — T?Oél) E(O)
andag = B (L o). <

Example 2:Consider fori = 1,2, r;(x, ) given by

nexs) = (1), neo = (7).

x25
x1

on § undergoes a different kind of operation with respecgpen

to the term depending o starting fromr(x, d) and its
corresponding imag®(x, ¢), in general

S1+s
— OR(x[s, 4], €)
(%, 0) |40 =R, 00" # Y 75%()((51),5)
k=0 OX[o) (51 — k)
which yields that in generalr(x,J),r(x,0)] # 0.
For instance, consider(x,J) (xQ -1) . Then
R(x, ) = ("’”2(1‘1)> ¢(0) and
Rx,9rea)] = (7007 20
Accordingly

rixan il ={ () ()}

The Polynomial Lie BrackefR;(x, €), 72(x, d)] has the fol-
lowing properties:

Proposition 1 (Anticommutativity)Assume without loss of
generality,ss > s1, then for any integey,

8[R1 (X7 6)7 T2 (X7 6)] _ 8[R2 (X7 6)7 1 (X7 6)]

§o2—s1+itlil
de(s1 — 7) Oe(s2 +7)

§7(8)

ZCQ(S
x1(1)e(0) [ z2e(—1)
x2e(—1) ) » Rax,6) = ( x1€(0)

Accordingly, sinces; =1, so = s =0,
- x2e(—1)0 €(0)xa(1)0
mﬂ**”“ﬁ”“(muk@>5‘(44nﬁ

()0 (P e
x,0)€(0) + 712.1(x, 8)e(1)

Ritx, )~

)
)

= T12,0(

One can easily verify that

1

0
T1270(X, 5) = — (.CC1> 5 = Z [T{Jrl g]EOKSEJrl
l=—1
5) = —2(1) 5 T2\ 52 - ANy St
T1271(X’ ) - xl(l) + 0 _Z [TlaTQ]EO )
l=—1

which confirms (6).

22(1) — 226
W) o+

Analogously,[Ra(x, €), r1(x, )] = (
) (1) and it is again easily verified that (8) holds true

0
x15



. . A . T k T T
(with the indices exchanged sinee > s5). In fact, that is, recalling tha*a(A () (B(Au(x)) ) ’

QX[ ( k) BX[O](f’L)
a[RQ(X7 E),?”l(X, 6)]5 — (:172(1) —$26) 5
9e(0) —z1(1) » . T T
_ O[Ra(x,6),ma(x,0)] S (225D ) R (x(—k), e(—k)) | §re(x, 6)5% +
= —_ L BX[O]( ’L) q
de(1) i k=0
8[R2(X,E),T’1(X,5)] _ 0 _ 8[R1(X,E),T’2(X,5)] sk ORg(x,€)
(1) 0 = (mld)‘s*_ D¢ (0) 0. +Au(x,6) Z:: T om0 Te(x(51), 6) =
—A#(X, 5)[ q( ) ),Tg(x 5] (12)
B. Involutivity of a right submodule versus its Integrability i _ OAE (x)
Moreover, since),(x) is causal thenW = 0 for
The integrability of a left-submodule of one forms isi € [0,s; — 1]; since A,(x,8)ry(x,6) = 0, then also

sketched in [13] and worked out in [14]. For right submodule$,~7 A% (x)R,(x(—k), e(—k)) = 0, so that fori € [0, s+s1],
to deal with integrability, the involutivity concept has to be

defined. ZRT ))3(A’“( x))"
o . . Ox[0)(—1)
Definition 7: Consider the right submodule
IRy (x(=F), (=F))
A(6] = spany.. ,0), -, ri(x, 6 AR 4 ’ =0.
() =g {16,950 £ M) e ="
of rank j, with 7;(x,8) = z;) ri(X[s,,5)0" and letAq(d] be ¢ foliows, through standard computations, that
its right closure. ThemA(d] is said to be involutive if for any N . T T
pair of indicesi, ¢ € [1, j] the Lie Bracketr;(x,d),7¢(x,8)] = (A (x )" i
satisfies z; kzo 751 = Ry(x(=Fk),e(=Fk)) | o' =

spanc- ) {[ri (x.0), ro(x. 0]} € Ac(d]  (10) 33» )Ry (x,9)
_ (x,8)=—L2 )

Remark Definition 7 includes as a special case the notion of 8 X[oj (51 = 1)

involutivity of a distribution. The main feature is that startingyhich, substituted in (12), leads to

from a given right submodule, its involutivity implies that the

Lie bracket of two of its elements can not be obtained as a Au(x,6)[Ry(x,€),me(x,6)] = 0, Ve.

linear combination of the generators of the given submodu

but it is a linear combination of the generators of its right clo

sure. For finite dimensional systems, distributions are close

51’

€ince the previous relation has to be satisfiede [1,n — j],
an dve, q € [1, 4], then necessarilyA (4] is involutive.

by definition, so there is no such a differenee. Sufficiency. Letw(xs), 6)=(wi (x(s), 5), cwn (ks 0)T
The definition of involutivity of a submodule is crucial forIoe the left annihilator ofry (xs, 5], 9), - ( [sks], 0))- Let
= max{s1, -+, s} and p = ma:c{s (w( ))}, that
the integrability problem, as enlightened in the next theorer@; for k € [1,n — j|, wk(x 5) Ze Ow (X )55_ Set
Theorem 1:The right submodule Q= (0,--+,0,w ( [p}) d[p +,0), Where w?
is preceded bys blocks an setA = Apsits) C
A(] = Spalljcs (g {ri(x,6), -+, rj(x,6)} span{ ax[f](g)a ) 8x[0](7i75)} as
of rank j, is completely O—integrable if and only if it is Ins  * % 0 0
involutive and its left annihilator is causal. 0 r'x) --- ! (x) 0
Proof. Necessity. Assume that there exist- j causal exacta, — span,.. : 0
differentialsd)\; (x) = As(x, §)dx[), independent ovelC*(d] 0 ‘ ) 0
which are inA+(4]. Let p denote the maximum between the (:) 0 r (X(()—Z)) r (Xé—l)) I,
delay in the state variable and the degred.imhen 0
Ao
Au(xp), 0)re(x,0) =0, Yp € [1,n—j], VL€ [1,7] (11) (13)

. I By assumptionv(x, ) is causal and for any two vector fields
The time derivative of (11) alon®(x(s, <, €), YieldsVu € Te € Nioy g = 1,20 > p, Qr, = 0 and Qr1, 7] = 0.

[1,n—j], Vl e [1,]] Moreover, sincei > p, Qm =0, V¢ € [1,n],

A (%, 0) =Ry (x,0)Te(X, ) +A L (X, 8)70(X, 0) [y =Ry (x,e) = 0 Vp € [1,]. It follows that Q[r, m] = 0, since
i i . o(QT o oT o : :

Multiplying on the right by one gets ng)[[()](:i)fp) = Q@mg)[o](iifp) = 0. Analogously, since? is

causal, then for any € [1, 5], ami([goh(ﬁp) Qawiﬁ(ﬂ)) 0,

T T
Zp: <(7X12Rq( (—k), e(—k))) Sirg(x, 8)0%1 which shows thaf)[r, m] =0, so that) L A;. Asa
=0 (=k) consequence, there exist atleastj causal exact differentials,
FA (%, 0)70(X, 6) |50 =Ry (x,6)0° = 0 independent oveiC* which lay in the left annihilator ofA;.

l



It remains to show that there are also— j causal exact span,c((;]{d)\l, -+, d\} must be closed and its right annihi-
differentials, independent ove€*(4], which lay in the left lator must be causal. On the contrary, due to Lemma 3 in the
annihilator of A(]. This follows immediately by noting that Appendix, if spany s {dA1,---,dA;} is closed and its right

if d\1,---,d\,, p < n — j, is a basis forA1(§], then annihilator is causal then one can compute an exact differ-
w(x,d)dxp = Y I ai(x,0)d\; since Q is O-integrable. ential df; independent ovekC(d] of the d\;'s and such that
Since thew;(x, §)dx(q)'s aren — j and by assumption they arespans{dA1, - - -, dAx, df: } is closed and its right annihilator
independent ovelC* (4], then necessarily = n—j;. < Adirect is causal. lterating, one gets the resuilt.

consequence of the proof of Theorem 1 is the definition of an ) . ] )
upper bound on the maximum delay appearing in the exact?) P-integrability: The approach presented in this pa-
differentials which generate a basis for the left annihilator gt€r allows us to state a more general result concerping
A(6]. This is pointed out in the next corollary. integrability. This is done hereafter.

Corollary 1: Let the right submodule Theorem 3:The right submodule

A(0] = spany. g {r1(x, ), -, 7(x,8)} A(0] = spang. g {r1(x,9), -+, 75(x, 6)}

of rank j, with r;(x,6) = ZS: Tﬁ(X[Shs])gl, be completely ©f rankj, is completelyp—integrable if and only if

=
O-integrable. Then the maxir%um delay which characterizégs] = A(x(—p),d) = spanc. g {r1(x(—p), ), -+, r5(x(—p), 6)}
the exact differentials which generate the left annihilator of
A(J] is not greater thans + s. is completely0—integrable.

Proof. The proof of Theorem 1 shows thatdfis the maximum Proof. Assume thatA(d] is completelyp—integrable. Then
between the degree ihand the largest delay affecting the statéhere existn — j independent exact differentialé);(x) =
variables in the left annihilatof2(x;, d) of A(d], then the A;(x,d)dx(p) such thatA(x,d)A(d] = O,with A(x,d) =

exact differentials are affected by a maximum delay which i\7 (x, ), -, Af,j(x, §))T. Consequently, foi € [1, 5],
not greater thap. According to Lemma 4deg(€2(x, 9)) < 8,
whereasp < s + j3, which shows thap < j5 + s. < 6P A(x, 8)ri(x,6) = A(x(—p), §)ri(x(—p), §)s” = 0,

The result stated by Theorem 1, which is itself an importa#tat isA(x(—p), §)A(6] = 0. Noting thaté” A (x, 6)dx(o) (p) =
achievement, plays also a key role in proving a series Af()f(—p),zi)dx[o] proves that\ (4] is O—integrable. Conversely,
fundamental results which are enlightened hereafter. if A(d] is O—integrable, there exist — j exact differentials

1) Bicausal change of coordinates: As already noticed dAi(x) = Ai(x,0)dxo) such thatA(x, 5)A_(5] = 0. As
in the Introduction, a major problem in control theory standd consequence alsa(x,d)A(5]6” = 0, which shows that
in the possibility of describing the given system in somé(x(p),d) = A(d] is p-integrable <
different coordinates which may put in evidence particular
structural properties. In the delay context it is fundamental 3) Smallest O-integrable right submodule containing
to be able to compute bicausal change of coordinates, that4sd): If the given submoduleA(é] is not O-integrable, one

diffeomorphisms which are causal and admit a causal inver§&y be interested in computing the smallesintegrable right
and which are defined as follows: submodule containing it. The following definition needs to be

introduced, which generalizes the notion of involutive closure

Definition 8: Consider a syster in the state coordinates of a distribution to the present context.

x. The mappingzy = ¢(X[)), Wherea € IN and ¢ € L _ _
K, is a local bicausal change of coordinates Ioif there ~ Definition 9: Given the right submodule
exists an intege € IN and a functiom)(zy) € K" such

that, assumingzjq; andx defined fort > —(a + ¢), then A(0] = spanyc. 5y {71(%, 9), - -, 75(x, 6)}

7/)(<P(X[a]), ) w(x[a](_é))) = XJ0] for t > 0. _ ) s . . ]
The next result completely characterizes such a class of cha%éank]' with 7i(x, 6) = E) 7 (X(s;,5))0", et A (0] be its

of coordinates. right closure. Then its involutive closur& (] is the smallest

Theorem 2:Given k functions \;(xa)), i € [1,k], submodule, which containA (] and which is involutive.

whose differentials are independent ovgi(d], there ex-  Accordingly, the following result can be stated.
ist n — k functions 0;(x(5)), 7 € [l,n — k] such that

Theorem 4:Consider the right submodule
spancs{dA, -+, A, db, -+, b1} = spangg {dxo)} 9

if and on_Iy_ if spgn,qé]{d)\l,m,d)\k} is closed and its A(8] = spany. (5 {r1(x, ), -, 75(x, 6)}

right annihilator is causal. As a consequendeg =

(dAT, - '_ad)\fadelTa -+, do}_,)" defines a bicausal changef rank j, and letA(d] be its involutive closure and assume
of coordinates. that the left annihilator ofA(§] is causal. ThemA(d] is the

Proof. If the k exact differentials d\;(x) can be smallest completely—integrable right submodule containing
completed to span alkdxj, over K(é] then necessarily A(9].



IV. ACCESSIBILITY OFNONLINEAR TIME—DELAY 7(x,u,0), let

SYSTEMS
adp(x,u,l)T(xa u, 5) = adp(x,u,e)T(xa u, 5)|E(i):1 (18)
In this Section, the accessibility properties of the given sys- = #(x,u,8) — f(x,u,0)7(x,u,0)

tem are fully characterized in terms of absence of non constant _ ._
autonomous functions. Using an algebraic terminology, tt&d iteratively for anyi > 1:
latter reduces to the accessibility moduke, introduced in i i B
[18] and defined by (21) to be torsion free over the riGg]. 0o 0,1 T (%0 0, 0) = adF(x u,1) (ad e, T(x,1,6))
'I_'his has been worked out in [7] for the special case of lineacordingly, the accessibility submodule generators intro-
time-delay systems. duced in [18], [19], defined (up to the sign) as,
Within the framework of this paper, the following definition [i—1] sy _ - [i—2] s\ - [i—2]
of accessibility is stated. Girr1, (% W5 0) = G (%, W5 0) = (%, 1, 0)gs (%, w5 0)

Definition 10: A system is fully accessible if there doesn'@'€ given by
exist any autonomous function for the system, that is a non o xoalil ) = adi (x.§ 19
constant function\(x) whose time derivative of any order gir (%, 9 Plcu93(%:0) - (19)
along the dynamics of the system, is never affected by tihich implies that they can be expressed in terms of Gen-
control. eralized Lie Brackets. In fact, particularizing to the present

Example 3:Consider the delay—free second order nonline&PS€ Proposition 7 in the Appendix, one gets that if the
systemi (£) = @(t)u(t), i2(t) = u(t) (chained form). It is maximum delay acting on the state variable and the input vari-

well known that such a system is not locally accessible. Tﬁé’le then settingry (x, 4) = ZJ_: ( )87 = Zyi F(x)d7,
To for i <m, andgu(x,0,9) = 37, gﬁ(x, 0)é?, and denoting
1) gh(x,0) with g5 (0), then

which has dimension 1 for any. As a matter of fact, the
functiony = x1(t)— %x%(t) is an autonomous function for the
given system and it is computed starting fréta. Introducing
a delay one, renders the system locally accessible, as shown i
in [4] for the nonlinear systemiyi(t) = x2(t — 1)u(t), _ Fis Fis P v
Z2(t) = wu(t). This is discussed ir(l )Example( 4. U)sirgg) the - Z[FO v G g B e 67
results obtained in this Section, it is shown that the rank
of the accessibility submodule associated to a given delahereasy;;(x,u,d) = adF(xu l)gu(x d) is given by
system, determines the dimension of its accessible subsystem

accessibility distribution associated to it = span

1S

Foeo@(x:8) =D [Fg, g} 1(0)] 5, 0"

p=0

9i(x,0,0) = ad

p=0

m 1—21i—1—
and consequently that of its non accessible part. gir(x, 1, 8) = ga(x,0,5) + Z Z Z
To this end, consider system (1), which, using the notation J=1a=0 p=l
. . . p+is 18 .
introduced in Section Il, reads k ) | ;}(;{Z) [gﬁtz(o) g, q,l(O)}E06[u§q)(—k) (20)
S isi=
. L& . +mi(x,ul =3 §)
X[o] = F(X[S]) =+ Z Z Gji(x[s])uj,[o](—l)- (14)
=0 j=1 WherecO =cd =1landfory>1,q>0 ¢ =c, ;+
andml(x uli=31§) is given by the linear combination,

By applying the differential operataf to both sides of (14),

one gets its differential form representation given by through real coefﬂments of terms of the form

i i1+e iy +L ¢ CTT )
dkjo) = f(X[s), o), 6)dx(0) + &1(X(s), O)dup),  (15) ;[gm 010, 19,0775, (0), 6 g.4(0)) .. ] B0 O };[luju (=in)-
where v
wherev € [2,i—1], j, € [1,m], ¢= > b+ <i—1.
- . 9G =t
f(x,a,0) _Z<8x ol ( +ZZ“J 0 (k) 5 gk(( ))> 6(16) Consider now the accessibility submodul@s of X intro-
=0 j=1 k=0 duced in [18] and defined as:
g1(x,0) =(g11,- -+, 91m), g1 fZsz ok iel,ml. (A7) Ri(x, ul=2 6) = spany (s {g1(x,0) - - - gi(x, uli=2 5)1.
pry (21)

_ _ _ The following result can be easily proven.
We will assume, without loss of generality, that

ranky(5)(g1(x,8)) = m (number of inputs), that is Proposition 3: If for some coefﬂuer_lt a(x, 1_1,_5),
each input acts independently on the system. Staf-+1.j()a(xu,d)€R;, thenVk > 0 there exist coefficients
ing from (14), we can thus considef(x,u,e) = 0Or(x,u,d) such thatg;iri1;(-)ow(x,u,d) € Ri.

F(x)+ Zizo Z;”:l Gji(x)u[o]yj(—i)) €(0). For a given A direct consequence is the following.



Proposition 4:Let k& = ranki()(Rn(x,u,d)) for some
u and set§(d] = spany5{g1(x,6), -, 8n(x,0,6)}. Then
G(9], the involutive closure ofj (5] has dimensiori.

Proof. 3
gi.1(x,u,d)’s, we have thay; ;(x,u,d) € G(4].
Let 7(x,96), be such that for somev(x,u,d) # 0,

7(x,8)a(:) € Rn(x,u,d). Then, for somexi(x, u,§) # 0,
also

(0 nny7) @'(60.6) € Ru(x,w0)  (22)

In fact, sincer(x,d)a = > 1", Zf

(34) in the Appendix,
Z (g)
£=0

m k-+1

3D gin(x1,6)8;.(x,u,6)

v=1 j5=0

=1 ng(X7 u7 5)6]1/, frOm

d;(i w7 7(x,9) al®

ad%’(x,u,l)(TQ) =

which iteratively proves (22) for anyi > 0. Consider
now 71(x,d), such that for somev; # 0, 71(x[q,d)a1 €
Rn(x,u,6). From (35),

m 1(k+1)s
adttl

F(x,u 1)7-1 (X’ 5) = adllc;(ri,O,l)Tl (X’ 5) + Z Z Z
‘1
(40

According to the previous discussion, singgv; € R,, then

there existsa®** # 0, such thatady(, |, 7i(x,d)a*+! =
> Zle gj.v(x,u,8)a; . It follows that, since fori < k&

gi.v(x,u, ) does not depend on§.k[5]1)(—p), for any p

{+p

¢, (q)
g# J Y uj,[O](_

(0)7 T]f«l»lf‘u,—q]Eg

+myp (x, ult 7%, 6)

9 k41 k+1
— ad ol T1(x,0)a =
8u§-7[0]1)(—p) ( ( ) )
(?ad];;(rx ! (x,0) - it oak+1
= 1) + adF(x u, 1)1 (x,9) =)
8““' (_p) 8’&].7[0] (_p)

80[1',,

kf
8“; [0]1) (—p)

that is, using the expression uﬂ’ﬁiml)
1

(23), and settingi ' = %
(=p)

ZZgwx u,0)

v=11=1

T1(x,9), given by

(k+1)s
Y AT 0) s @ adiyy x S)ad
£=0
m k
= giv(x,1,0) 78%’”
T P
which shows that for an appropriate+ 0,
(k+1)s m k
> 19.70), 5,68 => g(x,u,0)ai  (24)

£=0 v=11=1

wheneverr, (x, §) satisfies for some; # 0, 71(x, §)a1 € Ry,.

Setr(x,d) = g1:(x,d). Equation (24) implies that for all

i,7 € [1,m], and for all¢ € [0, (k+ 1)s] and for somes #
Eer

By construction, due to the expression of thé, >_,[q; , 958,68 € R,.. As a consequence, due to the

structure ofgs;(x, u, d), also gz0,i(x,9)5 € R,. lteratively
one gets that each element §{J], the involutive closure of
G(4], post multiplied by an appropriate non zero coefficient is
in R,,. As a consequencg,(5] has rankk. <

Let us now recall that a function(xs) has finite relative
degree k ifvl € [1,m], andVi € [1,k — 1]

L 7 (x uli— ]))\(X[E]) = 07 v.] € [07§+6’L]a vu[’i72]’ (25)
and there exists an indéxe [1,m] such that
Lt et A3

Itimmediately follows that a function\(x) has relative degree
E>0if

# 0 for some j € [0,5+ Bx]. (26)

dA(x) L Ry_1(x, ul*=31 §)
(27)
AN(X) gk o(x,u* 721 §) #£ 0 for some ¢ € [1,m].
The following results gives conditions, which are indepen-
dent of the controk:, for a function to have relative degree
k.

Proposition 5: A function A(x) has relative degreé > 0
if and only if Vi € [1,m],

dA(x)gi(%x,0,0) =0,Vi < k — 1, (28)
and for soméd € [1,m],
dA(X)gri(x,0,6) # 0. (29)

Proof. The proof is immediate if one refers to the
expression of g;;(x,u,0) given by (20). In fact if the
function A(x) has relative degree:, then equation (25)
must be satisfied fori € [1,k — 1]. In particular it
must be satisfied fow = 0, which leads the necessity
of (28). Consequently one also gets that setting =
97— O)gy, 5, 0) g™ 5, 0).9 5 ()]s, B,
with = >, ps, € € [0,7 — po — 1], thend\(x)7 = 0, which
proves, due to (20), that equation (26) is satisfied only if (29)
is satisfied.

Conversely, assume that equation (28) and (29) are satisfied,
then, due to (28) and (20), one gets immediately that (25) is
satisfied fori € [1, k—1], whereas (29) implies that necessarily
(26) must be satisfied, so that the functiafix) has relative
degreek. «

It follows that any non constant autonomous function
A(x(5)) € K has infinite relative degree, so that the following
result is of interest.

Lemma 1:Given the dynamics (14), the relative degree of
a non constant function(x5)) € K is greater tham if and
only if it is infinite.



Proof. Of course if the relative degree is infinite it is greater Proposition 6: Assume that the syster, given by (14),
thann. The converse follows immediately by noting that bys not accessiblei.e., rank R,(x,u,d) = k < n, then the
assumption\(xj5) L R, (x,u*~2,4) and thatvs > 1, there following facts hold true:
exists a coefficientys such thatg, 5 (x, u"#=24 §ag e _

Rn(x,ul*=2 §), Vj € [1,m]. < i) The systenm® possesses — k independent (ovelC(4])
autonomous exact differentials.

The following result gives a criterion to test the accessibility _
of a given system. ii) A canonical basis fog;- is defined fori > 0 as follows.
Let d\o(x[o]) be such thatspan{dXo(xp])} = Gy,

Theorem 5:The dynamics (14) is locally accessible if and with rank (do) = o = po — p—1.

only if the following equivalent statements hold true: Let dh(xy) ¢ G, with rank(d\) =
o R,(x,ul”2 §) is torsion free overC(d], m = p1 — 2p + p-1, be such that
o ranky(s Rn(x, u"2,§) = n for someu"~2], span{do(x(o)), dAo(x(o)(—1)), A1 (x))} = G1-
o dim G(5) = n. More generally, let d\(xy)) ¢ Gi-,, with
rank (d)\l) = Wi = pP; — 2p1‘,1 + pi—2 be such that
Proof. Of course if R, (x,ul”=2,4) is torsion free over span{d\, (xg1 (=), i € [0,4], 5 € [0,i — p]} = G+
K(4], then there is no nonzero element which annihilates
R (x,ul"=2l§), that isrankyc(s) Rn (x, ul"=2/,6) = n. Con- i) Let 7 represent the maximum degree dnand 5 the
sequently, there cannot exist any function with infinite relative maximum delay inz in R, (x,u,d). Then3~y < 54kl
degree,dim G(§) = n and the given system is accessible. ~ such that any other autonomous functibfx) satisfies

As for the converse, assume th@&,(x,ul”=2 ) is not
torsion free overk(6]. Then rankgs R, (x,u*=2,4) =
k < n for all possible choices oful*~2l. According
to Proposition 4,G(8] the involutive closure ofG(§] =

dA(x) € spanys{dAo(x), -, dA\y(x)}

spany s {g1(x, 0), 82(x,0,6), - -, 8n(x,0,4)} has rankk, so that is G, characterizes completely all the independent
that there exist: — k exact differentials in the left annihilator, autonomous functions af.

independent ovefC(d]. Due to Proposition 5 the correspondingi3 . ) . . _
functions have infinite relative degree. roof. i) is a direct consequence of Proposition 4. ii) is a direct

consequence of Lemma 2 in the Appendix, whére= G; is
causal by assumption, thus ensuring that the left annihilator is

) N ) ~ causal also. Finally, iii) is a direct consequence of Lemma 4
A. A Canonical decomposition with respect to accessibility jn the Appendix.«

Theorem 5, gives a criterion to test accessibility of a
given system. Ifranky(s Ra(x,u,8) < n the system is Theorem 6:Consider the continuous—time system (14). Let
not accessible and there exist— k independent functions 7 be the smallest index such that any autonomous func-
©1(x), -, pn_k(x) Which are characterized by an infinitetion A(x) associated to the given system, satisfig¢x) €
relative degree. spany s {dXo(X[0)), - - -, dAy(x(y)) } Where

We are thus interested in characterizing the non accessible ~
part of the system, that is defining a bicausal change epan{dX(x)} = Gy
coordinates which decomposes in the new coordinates tbﬁan{d)\o,d)\o(x(—l)),d)\l(x)} — g‘ll, dA1(xq1)) gg‘ol
given system into two parts, one of which represents the non
accessible subsystem.

ConsiderG(é] = span o] {g1(x,6), -+, 8n(x,0,0)} and, span{dX;(x(—j)),i € [0,7],7 € [0,y —1]} = g_#,

since the elements of the submodule are by construction )\ (xp,1) & G+
causal, consider foi > 0, the sequence of distributions gl =1
Gi = Glosos Csan{ o_ ... 9 }defined
o el = P G Dy (=i — ) then

g'(xp) o glxw) 0 0 1) 3dA,+1(x) such that
Gi=span| 0 ,

; 0 g“(x% (=) - g (x(—1)) 0 dzy (o) dAo(x(0))
) dzjg) = . = : = T'(x, 0)dxo

where ¢ represents the maximum degree dnand s the dzy41,0] dAy (x[))
maximum delay inz which are present in the; ;'s. G; is dzy12,0] dAy11(x)
a distribution inﬂ%ﬁ(sﬂ'“) as well as its involutive closure
Gi. Let pi = rank(g;), with p_, = ns. The following result defines a bicausal change of coordinates.

can be stated. 2.) In the above defined coordinateg) = ¢(x) such that



dzjo) = T'(x, §)dx|o) the system reads

Zij = filees s 2y.08)
Zypro) = Syr(zs), s Zy0s) (30)
Zyi2j0) = [fye2(2) + G i(2)u;,0)(—1)
i=0 j=1
Moreover the dynamics associated te, - - - z,41)7 repre-
sents the largest non accessible dynamics.
Proof. By constructionspancsj{dAo(x), - -, dAy(x)} is
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V. EXAMPLES
The JAK-STAT signaling pathway Model

In Biology, the JAnus Kinase-Signal Transducer and Activa-
tor of Transcription (JAK-STAT) signaling pathway transmits
information from outside a cell, through the cell membrane,
to cause DNA transcription in the cell. The dynamic model of
the JAK-STAT given in [25] is considered hereafter.

A kinase is a type of enzyme which enables phosphory-
lation, i.e. the transfer of phosphate groups a specific sub-
strate (here STAT-5). In the state model belaw, stands
for the unphosphorylated monomeric STAT-5 ang for the

closed and its right annihilator is causal so that, according ldosphorylated monomeric STAT-5. This transfer occurs under

Theorem 2, it is possible to compue, ;1 (x) such that

dz1 o] dXo(x[0))

Zj] = : = : =T(x,0)dxjq (31)
dzy41,[0) Ay (X[))
d27+27[0] d)\,y+1 (X)

is a bicausal change of coordinates.

Consider);(x) for i € [0,~]. By construction,
d)\i(x)glyj(xa 5) = Oa 1€ [Oa 7]

Consequently ifa is the maximum delay in\;(x), that is
A = )\i(X[a]), then

. L ON(X(a])
Ai(xp) = Y ool

- pt 8)([0] (_]) F(X(_]))a

i€[0,7].

Let d\i(x) = Ay(x, §)dx(g), then

d)\z (X) = A; (X7 5)dX[O] + A (X7 5)d5{[()]
= AZ (X7 5)dX[O] + A; (X7 6)f(x, u, 5)dX[O] = F(X7 5)dX[O] . (32)

By assumption, for any: > 1 and anyj € [1,m],
Ai(x, 6)gr.j(x,1,6) = 0
so that derivating both sides, one g&fs > 1, j € [1,m],

0= As(x, 0)gn.j(x,1,6) + Ai(x, 8)gr.j(x,1,0) =
Ai(x,0)gr,j(x,u,8) + Ay (x,8) f(x, 1, §)gr j(x, u, ). (33)

It follows that for anyk > 1 and anyj € [1,m], by
considering thatl\;(x) is given by (32), then, due to (33),

T(x,8)gr,;(x,u,0) =
Ai(x, 8)gi,j(x, 1, 8) + Ai(x,8) f(x, 1, 0) g, ;(x,u,8) = 0

As a consequencé); € span (s {dAo(X[o)), = 5 ANy (X[4)) }

for any i € [0,v]. Accordingly in the coordinates (31) thewhere oy =

system necessarily reads (30).

<

the control actionu which denotes the amount of activated
Epo-receptors. In addition;s represents the phosphorylated
dimeric STAT-5 in the cytoplasm while, is the phosphory-
lated dimeric STAT-5 in the nucleus. All together, the STAT-5
cycling model can be described as follows:

.3'617[0] = —klxly[o]u —+ 2]€4.§C37[0](—1)
.3'627[0] = klxly[o]u — k2$§7[0] + 2I€/3.CC37[0]
Fafo) = —hars o)+ ka3 (0)/2 — ki o)
Eaj0) = ksws o) — kazs o)(—1)

The differential representation of the model
d)'([o] = f(X, u, 5)dX[O] + g1 (X, 5)dU[0]

is characterized by

—k1ug) 0 2k 0
o kl’M[O] —2]€2.§C27[0] 2I€é 0
f(xa u, 5) - O k2$27[0] —kg _ ké O ’
0 0 ks — ks O
—k111 jo]
g1(x,6) = k11,0
0
0

Consequently, denoting for simplicity; o) by z;, then

0
z3(—1 -2
QQ(X, u, 5) = g1 (X, 5)2]€4% — 1 kleZClZCQ
1
0
. . 1
G, 0,8) = —go(x,u,0) (:Clch + 2122 B 2k4$3( ))
r1xro X1
2k40
4I€2£C2 + 2I€é
+91 (X, 5)0&0 + —2I€2£C2 - kg - ké kleZClZCQ
ks — k40
3 .
ga(x,w,6) = > gi(x,ul f)as(x, 1, 6)

=1

ke (2250 — 2500 e (- 1)
1

whereas they;’s, i € [1, 3] are appropriate coefficients. Since

rank(R,) = 3, the system is not completely accessible. One

gets thatA(xp)) = 21 + z2 + 23 + 2z4. Of course any
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linear delay—free basis completion will satisfy the bicausality6] G. Conte, A.M. PerdorThe disturbance decoupling problem for systems

condition. So we can take

1 0 00
01 00
=10 0 1 00
1 1 2 2
In these new coordinates the system reads

Zrjo) = —kizojup) + 2kazs jo)(—1)
Zo0] = klzl,[o]u[o] — kQZ;[O] + 2/€/3237[0]
Gy = —kazs o)+ k223 0)/2 — Khz3 0
2‘547[0] - O

The Chained Form Model

Example 4:Consider the two dimensional system

) Uuio]»

where a delay is introduced amn. It is easily verified that the

. N
X[O]—Q(X[l])u[o]_< 27[011( )

presence of the delay renders the system fully accessible,[la}?

opposite to the delay—free case ([1], [21], [24]).

(71

(8]

9]

[20]

[11]
[12]

[13]

[14]

[15]

[16]

In fact, through straightforward computations one has thaig;

n(x,8) = (502,[0}1(—1)) ga(xou,6) = (U[m(—l())—umﬁ),

which shows thatR,, has full rank for up(—1) and

[19]

different from zero. An extensive discussion on this topic cd@ol

be found in [4], [17].

VI. CONCLUSIONS

[21]

[22]

A full characterization of accessibility was derived for
nonlinear time-delay systems. In addition, it has been showdl
that it is always possible to decompose any system within

this class into an autonomous or non accessible subsystem
and an accessible one. Such a decomposition is not always

possible with respect to observability. One mathematical k‘fﬁ/s]

tool is provided by thébasis completionmesult. The so-called

geometric approach is successfully extended and adapted for
this class of nonlinear time-delay systems. Technical resu
on integrability are interesting by their own as they impa

4

numerous potential future results in the theory of nonlinear

time-delay control systems.
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APPENDIX PROOFS AND USEFULLEMMAS

Proof of Proposition 1Assumej > 0. From the expression
of [Rq(x,€),r;i(x,d)] one gets that

delay systems Proc. of 53rd IEEE CDC, Los Angeles, USA, pp.475-

480, 2014.

8[RQ(X5 6),T1'(X, 5)] _ - l+5 L U434
o) Al
D[R, (x, €),74(x, 0)] H

> [y rt] 6t

E:*Si

Oe(si +J)



-
ré,r

If s; > sq, [rl, v ], = 0 for € € [—s;,—s4 + j), which
proves (8) withi = 2 andg = 1. If 5; < 54 then (8) follows,
with ¢ = 1 and ¢ = 2, by considering that foj < s, — s;,
[rit7 1], = 0 for £ € [—sq, —s; — j), while for s; +j > s,
then[ {1l =0 for £ € [~s;, —s, + j). The casej < 0
can be recovered in the same way.

Proof of Proposition 2. Let 74(xs,,4,9) =
7i(X[s;,5],0)Bi(X[s;,60,0), @ = 1,2, Since s; > 5 and
Rl(x 6) > - orl( x)B1(x(=4), e(=4)),

[Rl (X, 6)7 T2 (X, 6)] = [Rl (X, 6)7 T2 (X, 6)]52 (X(El), 6)

+72 (X, 6)/82 | z[g] =Ry (x,€) 6§1

[Rl (X, E)7r2 (X, 6)] T2 (X, 6)|i[0]:ﬁl (x,€) 5%

51+s s 87’( )
- Z 251 j))mﬁm(x(ﬁ)ﬁ)
k=0 j=0
31+s s
1), €=)) ok i
_;) 2; 8XO jl 2 (),

so that (9) follows by noting that
[Rl (Xv 6), TQ(Xv 5)]5517§1 [Rl (Xv 6), TQ(Xv 5)] |€:[31 (x,€)

0B (x )
—r(x,6 Bt A .5).
e )kZ:OaX[O](Sl_k) ralx(ea). )

Proposition 7: Given 71 (X[, ¢, 8) = >_;_o 71 (X[p,s)° and

the dynamics (14), Ietgw(x O 5) = ad‘}(lol)glj(x 5).
Then for any: > 1, 7;(x,u,d) = ad;(x u 1)’7'1()( J), can be

computed by considering;(x, §) = Z”*p F(x)8!, so that

Fl;, = F(x). More precisely the following relations hold true:

i.) Givenry = 71(Xpp,0), @ = a(x,u,d),

k

0 1) (71 (%, B)0) Z(’;)mH(x,u,&)am (34)
7=0

i) 7i(x,u,0) = ads, 71(x,0) is given by

F(x u,l)

9

. m i—21—1—
ad o 1)T1(%0) = Tio(x, ) + J; Z

=1
S S A 05 3
+m;(x, ul' =31 §)
wherec) = ¢ = 1, and forp > 1, ¢ > 0, ¢, =
chytef
Tio(x,0) = ad?(;oyl)ﬁ(x, 9)

v[FéiS’ Tlg]Eis]Eo 55 (36)

SiF
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and m; (x, ul'=3l §) is given by the linear combination,
through real coefficients, of terms of the form

Z[ E;. E05[H u(gu)

14

i+

i1+4
gl"u Jv

9pir2 (0)5 -+ g7, (0)

12

ell,ml,g= > lp+pr <i—1.
k=1

wherev € [2,i—1], j
Proof. i) Let us preliminary note that by definition
d

adp(. a1 (T1(x, 0)a(x,u,6)) = 5 (fia) —
= 7a(x,u, §)a(x,u,d) + 71(x,0)c

f(xa u, 5)72105
(37)
The proof is iterative. Assume that it is true for 1, we will

verify it for k. In fact, using (37), and dropping for simplicity
the dependence from, u andJd,

k—1 E_1 )
adp(,yuyl) Z ( ] )fk] a(J)
7=0

k—1 ) )
) (Fisira® + 5y a9)

>

=0

ad%(~,u,1)(%1a)

k—1
J
the results sincé(k;.l) + (k*i)) )

j—

which proves
(5)aD, for j € [1,k —1],

ii.) According to (7) withr(x, €) = F(x4)e(0),
2s+p 2s
adpieony(Xps),0) = D > 17, #]E,0
j=—2s5£4=0
Since onlyr) = F(x) # 0, then introducingFy;(x,6) =
SSHP F(x)!, one gets that Y2 ({7 #H]g, =

[Fés, 7] g, Iteratively (36) follows.

Set nowry(z,e) = Y - IZJ 0g1 LUy j0](—7)€(0) and let
adF(xOl) 1 —Tl 0( [p’LS 5) Then

adp(x,u,l)Tl (x,6) =

—7'20+Zzzglw7—lEo5uu ( ]+€)

v=1 /(=0 j=—p

m 2s 2s—/
—7'20+E

5euu, [0] (_])

J+E ~0
E E (91, T1] Bo

v=1 /(=0 j=—p—~

With the introduced notation, for some fixgdand v:

2s
TN
adF'(x,O,l) Z [g{u aTlg]EO(SE =

3s

>

£=0

Jj+e

92 v ]E055+ Z[glu ) T E ]EO(SE (38)

(0), 7
The proof of ii) is by induction. Assume that the expression of
(%, 1, 0) = ad’;;}u ,y71(x,8) s given by ii) fork =i — 1,
then we will prove that is verified also fot = 4. In fact,
through standard computation one gets

7i(x,1,0) = adp(x,u,1)Ti—1(X, 0, 0) = adp(x,u,1)Ti-1,0(X, 0)+
3 (e efadroeny (91500, 71 gley8") ulfy (=k)+
> (12 elon i (0), 7 ol ;,qg}”(—k)

+adpx,u,1)Mi—1(X, 1, )

where the summations are meant with respect to the indices

' (1, k, 2, 7,q). The result follows after standard computations
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by noting that is a unimodular causal matrix. LetT!(x,d) =

(p1(x,6), -, pu(x,0)), set p' = [p},_4.y, -, p,] and
adF(x,u,1) (Z[gl’f;g( ) A q]E[)sz) u§.q[)0](—k) = denote by p(x,d) = S ;_ p'6’. Let, without loss of
¢ ’ generality,p(x, ) be charactenzed by the minimal degree
R which can be attained by post multiplication by a unimodular
adp(x,0,1) (Z[gﬁfge(o)anluq]Eo#) “g?[)o](—k) causal matrix. In fact, ifp(x,d) = p(x,9d)q(x,0), with
¢ , deg(p(x,6)) < deg(p(x,d)) and g(x,d) unimodular, then it
+ terms in m;(.,0), [ A(x)
) ) ) would be sufficient to take as new bagis_ where
using equation (38), by recalling that! = cfhl + w(x,0)
C%Z 1 and that((; 21)5; (Ez) _ 121) a(md n(;))ting that ©(X:6) = q(x,d)w(x,d). In fact, one has that
adp(x,u,1yMi—1(X, 1, 0) leads to terms im;(x, u, §), < Ax) \ . _ (1 0 Ax) \ - .
(ates) 708 = (0 gty ) (ulorgy ) 700 907" 000
The following results hold true. _ (L 0 0 _ (0
gresutshod e, = (0 aten) (ien) = (1)
Lemma 2:Consider the distributior\; defined by (13), and _ S
let p; = dim(A;) with p_; = ns. Then Consider now for¢ > 0, the sequence of distributions
B Ay = A+ defined as
(i) If dA(x) is such thatspan{d\(x)} = Aj,, then S )
span{dA(x), dA(x(~1))} C A, p P 0
(i) A canonical basis fo; is defined fori > 0 as follows. A 0 -
Pick dXo(x[o]) such thatspan{d)\o( o)} = Ag, with ¢= span R s » (40)
B COR A COR
rank d()‘o) Ho = po — p-1- 0o .. 0 . 0 I

At step ¢ < i pick dX(xp) such that
span{d\(xpx) (—4)), k € [0,4],5 € [0,£ — k]} = A} and denote byA o, with £ > 0, the distribution obtained from

and d\i(xp) ¢ AL, with rank d(\) = p = A, by eliminating the firstt columns, that is
Di _2[)1'71 +pi72_ )pl ps 0
4{ _— ... " —_—
Proof. The proof of (i) can be easily carned outA _ P(=1 _ ] P(=1 _O
by considering, fori > 1, on ReGH+s+i+l) AW ¢,0=spanl 0 o o
o . . pS —
span{ 0x10)(5)’ ? 9% (o) ( i— s)} j =1,2, defined as 0 .0 .. 0 I a1)
Al(.ljl — (A61> + span {ﬁ} , By assumption
(2) 0 0 Ai(xa 5)13()(’ 5) = Oa 1€ [13 n-— k]
AFl = A +span<{ ——~ _ .
i—1(—1) 0x[01(5) wi(x,0)p(x,0) = [0---1---0], ¢€[lk]

G - — ~() Let 7 be the maximum delay im\;(x,d) i € [1,n — k]
By constructionA; ¢ A~ i J= (11’)2 fo th_aiAi - _Afl’ and w;(x,6) = S7_,wad', i € [1,k]. Then we have that
]__21’ 2 and_consequentl;&i (A" =4, andA_i 2 d\Aj =0, whereaswo, wy, - - -, wj]A; # 0. More precisely
(Al(;)l)l = A (1) 1t follows that anydy(x(;—1)) € A, by constructionw,p® = I, whereagwo, w1, - - -, w;]Ajo = 0.
satisfies alsalp(x(;_1]) € A de(x;—1))(—1) € Af.

We first prove that there exists @) (x(s)) € Aj;, with
a < j, which is independent of the\;'s i € [1,n — k]
over K(d]. Assume that it is not true, then there must exist
k extended Lie brackets such thml p,’fq JEp, = Tog(x) +
1‘)0( X)apq(x )ax[ (Wlth ig > kg > 1) Where Tog(x) =

Lemma 3:Given n — k independent functions\;(x(q), TPl (=) € Ajo, ¢ € [1,k]. Furthermore the
l 0'q ax[o( ) J0»
€ [1,n — k], such thatspancs{dA1, -, d\,—r} is C|033d k x k matrix g = [y, - - -, cor] is of full rank.
and its right annihilator is causal, there existsd@ (x(5)) )
independent of thel\;(x(,))’s i € [1,n — k] over k(0] and Cons_|der now _AJ'“ and correspondmgly Aj+10.
such thatspancs {dA1, -+, d\u_y, d81} is closed and its Accordingly, consider the & extended Lie brackets

Due to the previous result the proof €f) is immediate<

A. Basis Completion

igtl  kgtl .
right annihilator is causal. P, Py )B4 4 € [1,K]. By construction
Proof. By assumptionspanycsj{dA1, - -+, d\,—x} is closed i 41 Pk B 0 T 0
and its right annihilator is causal, so that according to TheoreLﬂl Pug 1B = T1g(x) + (p (X)) 14(%) dxo)
13 in [20], it is possible to compute, using Smith decomposi- (42)
tion, wl(x,6) = (WT(x,6), -, wl(x,8))T causal such thatJr i ))T 9 P 1)))T 9 (1))
settingd\(x) = A(x, 6§)dx[g) then p(x %) pr{x o (—1) @og(X

(x,6) )
(w(x, 5)> =T(x,0) (39) wherer ,(x) = Zer (Terl !(x (—l)))T% € Ajiro
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In fact, if (42) were not satisfied then dAi(x)'s. Since spany s{dAi,- -+, dAn—g, w1dX[], wrdX[] }
forms a basis ovelR™ then

igtl | kg+1 _
[plq » Py, ]Ekq+1 qu(X) ek k
VRN 0T 9 o (xa) = V3 (%, 0)dA; (x(a7) + ) vil(x, 6)w;(x, 6)dx (o)
(60" o+ (P x=0) = ) (1) 2 2
9 9 o
= (r(x))" oy ¢ e (ﬁ))T—axm] = Y@/ x)8dxg = O(x, )dxq.

j=0
against the assumption ef— k independent exact differentials Sincedd: (xi-) A« — 0. where asif: (xi- A, £ 0. then
in the left kernel ofp(x, ¢). lterating the reasoning one gets 1(xi@)Ag0 ' 1(xia) 85 70,

that for any/5 = 0, O(x1al; O)P(%, 6) = 1%, 0), -, v, )] = ©°8° £0.
ig+B | kg _ . . .
o ?plqu+ﬁ]Ekq+B = 78¢(%) which proves that/;(x,§) = v?(x). Assuming without loss
B B—v of generalityr; = v # 0, then
S G 1) g (8 7)) 5 443) 1
b b 0x (o) (1) d\y d\y
— NP (s T o A r o -0 A
and 7 4(x) = 3275 (7777 (x(=1)) " o=y € Aitso: ok n—k
. N ) *[o) d91 _ S T wldx 0
Since by assumptiop’ = 0 for [ > s, one gets that as soon as =lo o I o0 [0]
1 tB k48 - B wadXjo] wadX (o]
kqg+08 > s+1, [plq D Py, =0V, vg € In—k+1,n]. 00 0 1 _
Furthermore, sincey , € Ajg, then necessarily there exists :
an index! < s such thatré“ =0, Vi > 0. As a consequence, widx ] widx(o)
there exists an index < s, such that for any € [3, s], and )
Vig,vg € [n—k+1,n], which shows that
0 4 T o (d)\,{a Tt d)\gfkv de,{? (WQdX[O])Ta Tt (Wkdx[o])T )T
iqt o
O - [plq ,p52+0]E0 = Z (p9 ’Y(X)) O[’Yle(X(_o—i_'y))aX . . . . .
— [0] can be taken as a new basis being linked through a uni-

R (44) modular causal matrix to the old basis. As a consequence
Consider now the distributiom\; obtained by combining spany (s {dA1, -+, d\,_x, df1 } is closed and its right anni-

linearly the columns ofA; through the matrix hilator is causal«
ao .o a5+] O
|0 " : : ) o
=10 o ao(—s—4) 0 B. Properties of the Left Annihilator of a Module
0 Ins Lemma 4:Consider the matrix
that isA; = Aja. By construction we have that (X5, 6) = (11 (X[p,g]s 0)s -+ 5 75 (X, 6))-
130 - 139 0--- 0 _ . )
Let 5 = deg(I'(xp,q,0)). The left annihilatorQ(x; o), 0)
A —span | O e : (45) satisfies the following relations
o P(-) - () | | .
R ) deg(Q(xpp,a1,6) < J [deg(T'(x. 6))]

i) p, o can be chosen to be < s+ deg(Q(x,9)), p < p.

Sincespan A; = span A;, through the sequence of distribu-~
tions A, we can recover the functions, i € [1,n — k]. As

a consequence we get that(x, §)p(x,6) =0, i € [1,n— k. Proof. Without loss of generality, assume that the figst
Since the functions\,(x(,]) are linearly independent, therefows of I'(xj, ;}, d) are linearly independent ovet (é]. Then
must necessarily exist @(x, §) = S a,;(x)é’ such that  2(X[z,a), §) Must satisfy

onsequently, if’(x, ¢) is causal, theffi}(x, d) is also causal.

0

B(x,8) = p(x, )a(x,8) = Y §'(x)d', (46)

=0

O, 3)T(x.) = [ x,0). 9a(x.0) (1105} ) =0

) _ .. wherel'; (x, d) is aj x j full rank matrix, accordingly’z (x, 0)
where by constructiod < s. This leads to a contradiction

since by assumptiop(x, §) was of minimal degree obtainable'> g (n —7) x j matrix, (x,0) is a(n — j) x j matrix
through unimodular and causal transformation, and any ott#? Qp(x,6) is a (n — j) x (n —j) matrix. Letrg, =
transformation cannot attain a smaller degree, thus proving tes(21(x,9)), ro, = deg(Q2(x,6)), rr, = deg(I'1(x,9)),
existence oflf, (x5)), which is independent ove (6] of the rr, = deg(I'2(x,d)). Then we have thaty, +rr, = rao,+rr,.



