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Abstract

The features of turbulence modulation produced by a heavy loaded suspension of small solid

particles or liquid droplets are discussed by using a physically-based regularisation of particle-fluid

interactions. The approach allows a robust description of the small scale properties of the system

exploiting the convergence of the statistics with respect to the regularisation parameter. It is

shown that sub-Kolmogorov particles/droplets modify the energy spectrum leading to a scaling

law, E(k) ∝ k−4, that emerges at small scales where the particle forcing balances the viscous

dissipation. This regime is confirmed by Direct Numerical Simulation data of a particle-laden

statistically steady homogeneous shear flow, demonstrating the ability of the regularised model to

capture the relevant small-scale physics. The energy budget in spectral space, extended to account

for the inter-phase momentum exchange, highlights how the particle provide an energy sink in the

production range that turns into a source at small scales. Overall, the dissipative fluid-particle

interaction is found to stall the energy cascade processes typical of Newtonian turbulent flows. In

terms of particle statistics, clustering at small scale is depleted, with potential consequences for

collision models.
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Particle laden turbulent flows are central in many physical and technological contexts. In

astrophysics [1, 2] the turbulence is known to influence the aggregation of dust particles in

protoplanetary (accretion) disks, see [3–5] and reference therein. Similarly, in warm clouds,

the turbulence controls the growth by condensation of small droplets [6], and ultimately

speeds-up rain formation [7, 8]. In the combustion of liquid fuels [9, 10], the turbulence

determines the effectiveness of atomisation, evaporation and mixing [11]. All these exam-

ples show that turbulence strongly interacts with the transported phase. Less understood

is the reciprocal effect expected on the basis of the action-reaction principle by which the

transported phase alters the turbulence. An extreme example of this reciprocal effect arises

in the environmental context, where small active organisms such as plankton [12] or bacte-

ria [13] induce small-scale chaotic flows which affects the chemical and the biological activity.

Significant alteration of the turbulent flow is also found in bubbly grid-generated flows, [14].

In general, significant back reaction effects are expected in all the other contexts mentioned

above. Concerning in particular technological applications, in a typical diesel engine, see

e.g. [15], the mass of fluid injected per cycle per cylinder in the form of small droplets is

about 3 × 10−4 kg. Considering a four stroke, 2.5 litre engine with 4 cylinders, back of the

envelope calculations immediately give a mass loading of about φ ≃ 0.4 and a volume frac-

tion of the order of φv ≃ 6 × 10−3. In modern common-rail injection systems the diameter

of the droplets is about dp ≃ 0.1−10µm whilst the Kolmogorov scale in a combustion cham-

ber can be estimated on the order of η ≃ 30µm. According to the accepted classification,

see [16, 17], the suspension must then be considered dilute (no direct interaction among

droplets) even though the inter-phase momentum coupling is particularly significant.

Among the different regimes of a particle laden flow [18], the present Communication

addresses conditions like those mentioned above where i) the dimensions of the single sus-

pended particle are much smaller than the relevant macroscopic scale of the turbulent flow,

dp/η ≪ 1; ii) the particles are extremely diluted with negligible direct particle-particle in-

teraction, i.e. the volume fraction is small; iii) the mass loading of the suspension (particle

to fluid mass ratio) is significant, φ = mp/mf = O(1), implying that a considerable particle-

induced force is exerted on the flow. In these conditions, beside turbulence-induced particle

clustering already observed at small mass loading [19–25], new phenomena associated to

turbulence modulation are expected, defining a still poorly understood realm of multiphase

turbulence. In particular, the standard Kolmogorov-like paradigm [26], which assumes that

the turbulence is forced at large scales and eventually dissipated at small scales with a
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universal direct energy cascade [27] emerging in the inertial range, is expected to fail.

In the new conditions the particle population forces the fluid across the entire range of

available scales, posing several new questions concerning the structure and the dynamics of

turbulence under significant back-reaction effects. The first class of questions is method-

ological: how can the effect of many sub-Kolmogorov particles be modelled in a physically

consistent manner in Direct Numerical Simulations (DNS)? Is a numerical simulation which

truly couples the discrete, point-like phase with a continuum fluid feasible with the present

state-of-the-art numerical tools? Can the coupling be made realistic yet affordable from

the computational point of view? Are the singularities arising from the coupling amenable

of rigorous treatment? As will be shown, answers to these methodological issues can be

found in the context of a newly designed inter-phase momentum coupling strategy, the Ex-

act Regularised Point Particle approach (ERPP) [28]. The second family of questions, is

more physical: what are the effects of the back-reaction on the turbulence dynamics? How

the disperse phase affects the energy cascade processes and, in turns, the energy spectrum?

What is the resulting effect of the coupling on the particle population? Can we trust the nu-

merical predictions, particularly at small scales, where most of the particle-fluid interaction

is expected to occur?

This Communication provides an answer to all these questions, discussing the results of

new simulations based on the ERPP approach that are free of the bias that hampers other

available techniques aimed at realising the particle-fluid interaction. Among others, the

crucial advancements over the present state-of-the-art concern: a) a physically-based, grid-

independent regularisation of the singular response of point-like particles; b) the possibility

to take a weak limit for the statistics with the regularisation parameter approaching zero;

c) the ability to exactly remove from the field the unphysical self-induction velocity of each

single particle in the calculation of the hydrodynamic force; d) the recovery of the exact

momentum balance in the force coupling of each particle with the fluid; e) the convergence

of the coupling scheme also when a fixed number of particles, independent of grid size, is

considered.

In order to address these issues in the cleanest form, the flow should be as simple as

possible. Traditionally homogeneous and isotropic turbulence is the elective choice. How-

ever it requires an external forcing acting at large scales to provide the energy dissipated

by viscosity. Although this is not an issue for classical Newtonian turbulence, the external

forcing introduces undesired features in the context of particle laden flows in presence of
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back-reaction. The reason is that, as shown below, the particle forms long clusters spanning

the entire range of scales, up to the integral scale. The external forcing interferes with the

large scales of the clusters and their back-reaction on the fluid, thereby introducing dynam-

ical artefacts. A flow able to self-sustain the turbulence with no artificial external forcing

which still retains a substantial simplicity, e.g. statistical spatial homogeneity and station-

arity, is the homogeneous shear flow, where a linear average shear is enforced on turbulence

fluctuations. The flow presents a pseudo-cyclic behaviour with recurrent fluctuations in the

turbulent kinetic energy and the enstrophy. Such state is stationary in the sense that the

pseudo-cyclic oscillations repeat themselves indefinitely and yields ensemble averages which

are time independent, see e.g. [29–31]. The homogeneous shear flow, described in detail in

the Supplemental Material (SM, [32], see also [29, 30, 33]), will be exploited below to discuss

generic features of particles laden flows under strong loading.

When dp ≪ η, the carrier flow is described by the incompressible Navier-Stokes equations

∇ · u = 0

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u+ F

(1)

where

F(x, t) = −
Np
∑

p=1

Dp(t)δ [x− xp(t)] (2)

is the (singular) field representing the back-reaction of the point-like particles on the flow. In

equation (2), Np denotes the number of particles, Dp the hydrodynamic force acting on the

p-th particle and the Dirac delta function localises the force at the particle position xp(t).

Clearly equations (1-2) need to be regularised to be amenable to numerical treatment.

In the classical Particle in Cell approach, see e.g. [34], the singularity is removed averaging

the feedback on the computational cell, giving rice to several drawbacks, see e.g. [18, 35, 36].

Typically, convergence can be achieved only at constant number of particles per computa-

tional cell, implying that the number of particles should increase (at constant mass loading)

as the grid size is reduced. Additionally, the particles are affected by their own self-induced

disturbance, which introduces errors in the hydrodynamics force. This source of error gets

more and more pronounced as the number of particles per cell is reduced, as always happens

under grid refinement. These drawbacks do not affect the ERPP method where the Dirac

delta function is regularised in a physically consistent manner. The disturbance due to each
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point-like particle is evaluated in a closed analytical form exploiting the exact solution of a

local unsteady Stokes problem and the viscosity of the fluid naturally takes care of regular-

ising the fluid response to the particle forcing. In turbulence, when dp ≪ η, is natural to

set the regularisation length on the order of the Kolmogorov length-scales η or below. The

singular forcing (2) is effectively replaced by its (exact) regularised counterpart,

FR(x, t) = −
Np
∑

p=1

Dp(t− εR)g [x− xp(t− εR), εR] , (3)

where the Gaussian function g consistently emerges from the small scale diffusion of the

particle disturbance field described by the unsteady Stokes operator [28]. The spatial cut-

off scale σR =
√
2νεR is directly related to the diffusion time-scale εR which represent the

typical time needed by the singular vorticity produced by the particle at time t − εR to

spread over the resolved length scale at time t, see [28] and Supplemental Material [32].

The dispersed particles follow Newton’s equations,

dxp

d t
= vp

dvp

d t
=

Dp

mp
=

u
∣

∣

xp
− vp

τp
,

(4)

where xp and vp, p = 1, . . . , Np, are the particle positions and velocities, respectively,

mp is the particle mass and, in the conditions considered here, Dp reduces to the Stokes

drag [37, 38] proportional to the fluid-particle relative velocity with u
∣

∣

xp
the fluid velocity at

the particle position. In the jargon of particle laden flows, such relative velocity is sometimes

called the slip velocity. Since the particle modifies the fluid velocity, care should be taken

not to contaminate u
∣

∣

xp
with the particle self-disturbance. Otherwise, at decreasing the

grid size, the spurious contribution would dominate the overall particle-fluid interaction.

The Stokes number, Stη = τp/τη, where τη is the Kolmogorov time scale of the turbulence

and τp = (ρp/ρ)d
2
p/(18ν) is the Stokes relaxation time, is a central control parameter which,

e.g., determines the intensity of particle clustering, that is the trend to segregate [6, 7, 19,

20, 23, 24, 35] in long, tiny structures.

Figure 1 shows a slice of an instantaneous configuration of particle distribution and

feedback force field in a turbulent homogeneous shear flow. The turbulence, at Reλ =

λurms/ν = 80, with λ = urms

√

ν/ǫ and urms =
√

〈(u− ū)2〉, Stη = 1 and φ = 0.4, is

sustained by a constant mean shear S = dUx/dy, see Supplemental Material [32] for details.
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The energy is extracted from the mean flow by the Reynolds shear stresses −〈u v〉 which force

the turbulent fluctuations at scales larger than the shear scale LS =
√

ǫ/S3 [39]. Typical of

unitary Stokes number flows, the disperse phase forms elongated clusters, apparent in the

plot. They are oriented by the mean flow which imprints on them a strong anisotropy. The

clusters span a range of scales from their width, of the order of the dissipative scale, up to

their length, comparable with the integral scale of the flow [24, 35]. The force feedback FR

is strongly correlated with the clusters and affect the same range of scales. This kind of

distributed, effective field differs substantially from the classical Kolmogorov scenario where

the forcing is designed to prevent the flow from dissipating, it is confined to the large scales

to avoid contamination of the cascade and is assumed to be statistically independent of the

flow.

It is instrumental to look at the flow in spectral space where, adopting index notation, the

interphase momentum coupling is described by the Fourier transform F of the correlation

Ψij(k) = F〈FR,i(x) uj(x+r)〉 between the back-reaction and the fluid velocity. The quantity

Ψ(k) =
∫

Ω
Ψii(k) k

2dΩ, where the integral is taken over the solid angle Ω in wavenumber

FIG. 1. Snapshot of the instantaneous particle configuration (scatter plot) and of the force feedback

field, ‖FR‖ exerted by the particles on the fluid (contour plot). The slice in the x− y plane is few

Kolmogorov-lengths thick. The mean flow U(y) = S y is from left to right. The computational box

is 4π× 2π× 2π. Data at Reλ = 80; Taylor micro-scale λ/η = 15, integral scale L0 = u3rms/ǫ = 60η

where η is the Kolmogorov scale. The box size in Kolmogorov units is 280× 140 × 140.
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space and k2 = k · k, forces the equation for the turbulence spectrum E(k) according to

∂E(k)

∂t
= T (k) + P (k)−D(k) + Ψ(k) (5)

where E(k) =
∫

Ω
Eii(k) k

2dΩ and Eij(k) = F〈ui(x) uj(x + r)〉. Equation (5) is the ex-

tension to particle laden flows of the classical equation for the spectral balance of turbu-

lent kinetic energy, sometimes called the Kolmogorov-Onsager-von Weizsäcker-Heisenberg

equation [27, 40]. In equation (5) the energy transfer term T (k) is defined as T (k) =
∫

Ω
ıkjTj(k) k

2dΩ where the Fourier transform of the triple correlation function is Tj(k) =

F〈ui(x)ui(x+ r)uj(x)−ui(x+ r)ui(x)uj(x+ r)〉. The non-linear triadic interactions among

different Fourier modes conserves energy,
∫∞

0
T (k) dk = 0, and ultimately originate the en-

ergy cascade. P (k) = −SEuv(k) is the production of turbulent kinetic energy at wavenum-

ber k where Euv = E12(k) is the energy cospectrum and D(k) = 2νk2E(k) the dissipation

spectrum. Note that once integrated across the entire range of wavenumbers the energy

cospectrum returns the Reynolds shear stresses −〈u v〉 =
∫∞

0
Euv(k) dk, and the dissipation

spectrum gives the viscous dissipation ǫ =
∫∞

0
D(k) dk. In statistically steady conditions

the time derivative of the energy spectrum vanishes.

Concerning eq. (5), one of the simulative issues with particle laden flows in the two

coupling regime, is the sensitivity of small scale observables to the numerical implementation

of the particle feedback. The approach here proposed allows for obtaining a clean asymptotic

also for small scale observables. This is achieved in the limit σR → 0, where the limit is

to be understood in the weak sense, i.e. first the statistics is acquired as a function of the

regularisation parameter and only after the limit is taken on the averages. This process is

illustrated in figure 2 where turbulent kinetic energy spectra are shown for the same particle

population and two different Reynolds number at decreasing σR/η. Apparently the data

nicely collapse and a well defined energy distribution emerges at decreasing σR. This is

expected at large scales which soon become independent of the regularisation parameter. A

new feature emerges at small scales (large wavenumber) where a well definite scaling range

eventually appears at kη ≃ 1. The right panel shows the compensated plot, k4E(k) vs kη.

About one decade of k−4 scaling is detected for the smallest σR/η we have considered. The

scaling range approximately extend from about kλη ≃ 0.45, which is order of the Taylor

micro-scale where the dissipation spectrum peaks, to the cut-off kσR ≃ 1 corresponding

to kη ≃ 4. We may note that data in absence of particle feedback show a completely

different trend, consistently with the behaviour expected in the dissipation range. This
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result shows that the regularisation procedure we have put forward can be used to obtain

physically significant and numerically convergent information on the small scale statistics

of the system. Indeed, by reducing σR at given turbulence intensity, we can approach any

given small scale in the system. This is important in view of taking into account interactions

between particles, such as collisions, lubrication effects, short range attraction or repulsion

between particles, e.g. Van der Walls forces, which arise at the inner length scale dp of the

particles.

For comparison, the right panel of figure 2 reports the compensated spectra obtained

with the PIC approach operated in the same conditions, namely Reλ = 55 and σR/η = 0.5.

Mass loading φ = 0.4 and Stokes number Stη = 1 fix the number of particles Np = 595520,

corresponding to few particles per cell, namely Np/Nc ≃ 0.04 where Nc is the number of

computational cells. The PIC approach is reasonably able to describe the behaviour of

the compensated spectrum at kη ≃ 1 where a glimpse of a short plateau seems to appear.

FIG. 2. Left panel: energy spectra E(k) in Kolmogorov unitis versus normalised wave number

kη. Right panel: compensated energy spectra k4 E(k) v.s. kη, here E(k) is in arbitrary units to

collapse the scaling plateau. Data at Reλ = 55: σR/η = 1 (▽); σR/η = 0.5 (�); σR/η = 0.25 (△).

For the three cases the resolution of the DNS is 192× 96× 96; 384× 192× 192 and 768× 384× 384

Fourier modes. Data at Reλ = 80: σR/η = 0.6 (⋄); σR/η = 0.4 (©). For the two cases DNS

resolution is 768 × 384 × 384 and 1024 × 512 × 512 Fourier modes respectively. In all cases the

computational box is 4π × 2π × 2π with a regularisation length-scale σR = ∆ where ∆ is the grid

spacing in physical space. The solid line corresponds to the scaling law E(k) ∝ k−4 and the dashed

lines reports data for the uncoupled case (no back-reaction on the fluid). In the right panel data

at Reλ = 55 obtained with the PIC approach (+ symbols) have been reported for comparison.
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However, at smaller scales, the trend reveals a clear departure from the k−4 scaling law. The

reason is that the high wave number modes are badly behaved due to the non-smooth and

grid dependent numerical feedback field, see e.g. [35]. This hampers reaching progressively

smaller and smaller scales. The behaviour gets worser and worser when finer grids are used

(data not shown).

The spectral budget, eq. (5), is shown in figure 3. The main panel focuses on the range

of wave-numbers where the k−4-scaling is observed (see the inset for a global view). The

production P (k) and the transfer term T (k) vanish where kη ≃ 1, showing that the dominant

balance is between the inter-phase coupling Ψ(k) – the only energy source present at those

scales in absence of the energy transfer – and the viscous dissipationD(k). The back-reaction

has overwhelmed the inertial transfer and stalled the energy cascade, right panel with the

comparison of the energy transfer with, T (k), and without, T (k)φ=0, coupling. The reduced

transfer is replaced by the energy injected by the particles which, in turn, drain from the

large scales the energy P (k) extracts from the mean flow. The overall effect of the mass

loading on the production P (k) is shown in figure 4 in comparison with the uncoupled case,

see e.g. [35, 41]. As a consequence, the energy feeding the cascade is reduced by the amount

FIG. 3. Left panel: scale-by-scale energy budget (5) in spectral space for the case at Reλ = 80,

Stη = 1 and φ = 0.8. Transfer T (k), (⋄); production P (k), (�); dissipation D(k), (△); inter-

phase coupling Ψ(k), (©). Main panel: close up view of the range of scales where the scaling

law E(k) ∝ k−4 is measured, see figure 2. Inset: representation of the budget in the whole range

of scales. Right panel: the transfer term T (k)φ=0 in the uncoupled case (⊲) is compared against

T (k) in the coupled case. The asterisk denotes normalisation with respect Kolmogorov units, i.e.

T ∗ = T/ (νǫ)3/4, P ∗ = P/ (νǫ)3/4, D∗ = T/ (νǫ)3/4, Ψ∗ = Ψ/ (νǫ)3/4.
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drained by the disperse phase. The balance between energy intercepted by the particles at

large scales and the energy released at small scales is negative,
∫ ∞

0

Ψ(k) dk = −ǫe < 0

implying a dissipative effect of the particles. Considering the overall budget, including fluid

and particles, −S〈u v〉 = ǫ+ ǫe, the energy produced by the Reynolds stresses is turned into

the sum of viscous dissipation and the extra-dissipation due to the particles, ǫe. In other

words, the disperse phase provides an alternative dissipation channel.

The data just discussed show that the k−4 scaling range corresponds to the region where

Ψ(k) ≃ D(k). Note that in a periodic box any term in eq. (5), defined as the Fourier trans-

form of the relevant correlation, can be replaced by the average product of the corresponding

Fourier coefficients, e.g. Ψ(k) = 〈F̂R,i(k)û
∗
i (k)〉. In order to get a deeper insight into the ori-

gin of the new scaling law, it is useful to consider the spectrum of the particle back-reaction

field F (k) = 〈F̂R,i(k)F̂
∗
R,i(k)〉. Figure 4 shows F (k) for the case at Reλ = 55 and σR/η = 0.25,

which is the case with the largest separation between Kolmogorov and regularisation scale

we have considered. In the range of wavenumbers centred at kη ≃ 1 which are not yet

FIG. 4. Left panel: production P (k) in Kolmogorov units versus normalised wavenumber for cases

at Reλ = 80 and Stη = 1; uncoupled case (solid line); φ = 0.2 (�); φ = 0.4 (△); φ = 0.8 (©).

Right panel: data at Reλ = 55 for σR/η = 0.25. Inter-phase coupling Ψ(k), (©), spectrum of

the particle back-reaction field F (k) (△) and
√

F (k)E(k) (�) in spectral space. The solid line

denote the k−2 scaling law. Inset: same data of the main panel in a lin-lin plot. The asterisk

denotes normalisation with respect Kolmogorov units, i.e. Ψ∗ = Ψ/ (νǫ)3/4, F ∗ = F/ (νǫ)3/4,

E∗ = E/ (νǫ)3/4, The spectrum of the particle back-reaction field F (k) (△) is in arbitrary units to

be compared with the other terms in the budget.
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affected by the regularisation, i.e. kσR < 1, F (k) ≃ F̂ 2
0 is roughly constant. This result is

somehow expected since the field FR,i(x, t) is the superposition of Gaussians with variances

still significantly smaller than the considered scales, see eq. (3). The Fourier transform reads

F̂R,i = −
Np
∑

p=1

Dp,i(t − εR)e
− 1

2
k2σ2

R e−ıkjxp,j(t−εR) which, apart from the phase, is proportional

to e−1/2k2σ2

R , hence almost constant for kσR < 1. The inter-phase momentum coupling Ψ(k)

is also reported in the figure in comparison with the estimate
√

F (k)E(k) (squares). The

data show that, where F (k) ≃ F̂ 2
0 , Ψ(k) closely matches the curve

√

F (k)E(k). It follows

that Ψ(k) ∼
√

F (k)E(k) ∼ F̂0

√

E(k). Then, given the observed k−4 scaling for the spec-

trum, we infer Ψ(k) ∝ k−2, as confirmed by the collapse of the data represented by circles

(Ψ), squares (
√

F (k)E(k)) and solid line (k−2). In other words, at these scales, the Fourier

transform of velocity and backreaction are found to be uncorrelated. This suggests that

a purely dimensional argument can be put forward: neglecting force-velocity correlations

in the Fourier modes at small scales, assuming Ψ(k) ∼ F̂0 û, and introducing the ansatz

û ∝ kα/2, the balance of backreaction Ψ(k) and dissipation D(k) = 2νk2E(k) ∼ k2ûα leads

to the observed scaling law E(k) ∝ k−4.

From previous studies in the one-way-coupling regime it is well known that clustering

peaks at Stη = O(1) [19, 42]. Clustering is also observed in the two way coupling regime. It

is however substantially reduced by the back reaction, as measured by the radial distribution

function (RDF, see [43]) of the particles shown in figure 5. Clustering increases the overall

probability that particles could collide. Beside clustering, the collision frequency is deter-

mined by the mean relative velocity of close particles - a further crucial small scale property

of the system that needs accurate modelling. Technically, the relevant statistical quantity is

the average longitudinal velocity difference between two particles Q00 = 〈δv‖(r)|δv‖(r) < 0〉
where the average is conditioned to negative relative velocity δv‖ [44], right panel of figure 5.

The collision probability is proportional to the product g00 ×Q00, [42] evaluated at contact

(r = dp). This object is reported in the inset of the right panel of the figure as a function of

separation. The present data show that, in the relevant range of scales below η, the two-way

coupling may deplete the collision frequency since the decrease of the clustering intensity

prevails on the slight increase of the relative velocity.

In conclusion the present Communication highlights new features of turbulence in highly

loaded suspensions of tiny, heavy particles. The particles are found to drain energy from

the carrier flow at the large scales and release it back at the small scales. It follows that,
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in this kind of multiphase flows, turbulent fluctuations are unusually forced in the dissi-

pative range. The back-reaction stalls the energy cascade and enforces a newly observed

E(k) ∝ k−4 scaling law for the energy spectrum at scales order of η, where the particle-

injected energy is immediately dissipated by viscosity. Noteworthy, small scale clustering

is depleted by the particle-fluid interaction while the relative particle velocity is slightly

modified. Consequently, the collision probability turns out to be reduced. In more general

terms, it has been shown that the coupling strategy described in the Communication pro-

vides a viable technique to robustly evaluate small scale statistics in highly loaded particle

laden flows. The approach, relying on a physical regularisation of the singular force feed-

back, provides convergent result with respect to the regularisation parameter allowing a safe

evaluation of central observables for heavy loaded dilute suspensions. The approach can be

easily extended to turbulent flow laden with micro-bubbles and to wall bounded flows.

The research received funding from the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no.

[339446]. Support from PRACE, projects FP7 RI-283493 and grant no. 2014112647, is

FIG. 5. Left panel: Radial distribution function vs. separation r/η. Data at Reλ = 55, Stη = 1,

φ = 0.4: σR/η = 1 (▽); σR/η = 0.5 (�). For comparison: data in uncoupled conditions (solid

line). Right panel: Normalised particle pair relative velocity vs. separation r/η. Inset: product

g00 × Q00 proportional to the collision rate vs. separation. Data at Reλ = 55, Stη = 1, φ = 0.4:

σR/η = 1 (▽); σR/η = 0.5 (�). For comparison: data in uncoupled conditions (solid line).
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