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Abstract

The aim of this dissertation is to investigate the optimal portfolio selection problem for

a risk-averse investor who wants to ameliorate the risk of extreme adverse events which

cause unexpected large losses. Instead of referring to the modern portfolio theory (MPT),

this thesis builds upon the foundations of Extreme Value Theory and focusses upon solving

the optimisation problem minimizing quantile-based risk measures.

This choice is justified by the fact that the two main assumptions of the mean-variance

approach, normally distributed returns and the use of variance as risk measure, could

underestimate the extremes in presence of heavy-tailed distributions, consequently leading

to an optimistic asset allocation. We take into account the potential heavy-tailedness in

portfolio choice applying EVT for modelling the tails of the returns and focus on quantile-

based risk measures (Value at risk and Expected shortfall), which are more appropriate for

safety-first investors whose primary goal is to guard against the occurrence of unexpected

large losses. We also believe that this approach better reflects the risk-based framework

introduced by the new regulatory requirements for banking and insurance sectors.

The identified optimal portfolio is then compared with the one obtained under the

classical MPT framework. Furthermore, an analysis to quantify and to understand how

the extremal dependence between markets can impact the asset allocation problem is also

performed. For this purpose two extremal dependence measures χ̄ and χ from Multivari-

ate EVT are introduced. Intuitively, the fact that the securities can exhibit asymptotic

independence or asymptotic dependence, means that tail diversification and a reduction

of portfolio extreme risk can better be achieved by holding pairs of assets that are asymp-

totically independent.

The methodology proposed in this thesis is applied to the construction of portfolios

of major international equity indices satisfying downside risk requirements of different

tightness. Measures of extremal dependence are used to refine intuition about resulting

portfolio allocations as well as separately analysing each chosen index (right and left) tails.
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Chapter 1

Motivation and background

The problem of portfolio optimisation has always been a topic of strong interest for in-

vestors and fund managers, and the need to create resilient portfolios, reducing the impact

of extreme adverse events, is a growing concern given the financial crises suffered in recent

decades. The new risk-based solvency requirements for the banking and insurance sectors

further motivates the search for more appropriate methodologies to cope with rare events

which cause heavy losses. This thesis presents a possible approach to tackling the problem

of optimal portfolio choice: it is based on the theoretical foundations of Extreme Value

Theory (see for example Embrechts et al., 1997; McNeil, 1999; McNeil et al., 2015) and

the use of tail risk measures.

1.1 Introduction

In recent years, several crises have affected financial markets, causing significant global

economic instabilities: for example the 1987 stock market crash was a major systemic

shock, with the S&P 500 stock market index falling about 20 percent on a single day

(October 19th, known as Black Monday); then the Asian financial crisis triggered in July

1997, the hedge-fund crisis during 1997-1998 and the credit crisis beginning in 2007. This

has led to numerous criticisms regarding the existing risk management systems and has

also shown how inadequately the regulatory framework performed in times of crisis.

Thus, the problem of properly managing risks that includes forecasting in order to prevent

negative events to severely impact against one’s own investments or capital, has become

a major concern for both financial institutions and regulators. In this context, the study

of extreme events, like the above-mentioned episodes, clearly plays an important role and

has received much attention in the last few decades being at the centre of investors’ and

risk managers’ interest.
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Motivation and background

Extreme Value Theory1 provides the solid mathematical and probabilistic fundamentals,

essential in order to build statistical models describing such risky events.

1.2 Insurance industry: Risk management and

CAT risks

Assessing the probability of rare events at the tails of the distributions, is an important

issue not only in the risk management of financial portfolios. Indeed, EVT is well es-

tablished and has been widely used in many fields of modern science: from engineering,

hydrology, climate and weather, to computer science and telecommunications; moreover

another natural application is in the insurance industry, where dealing with uncertainty

and risks is the core business.

It is fundamental that the insurers comprehensively understand the risks of catastro-

phe, whether it is a man-made, a natural disaster or a pandemic2, in order to better

manage and consequently spreading these large-scale risks; this would bring an important

benefit to the society as a whole as argued by Biffis (2013) as well. Comprehensive un-

derstanding means: first of all defining appropriate and advanced mathematical models

to compute the risks of catastrophes, improving the ones currently in place, and EVT is

an important tool to be considered; secondly, using the models as mysterious black boxes

should be avoided if possible, being able to critically interpret their results.

This is not usually a trivial task for several reasons. By definition, large dataset

on catastrophic losses are not available, consequently sophisticated estimation techniques

are undermined by small sample sizes. In this situation, Bayesian techniques can help

with reducing the statistical uncertainty about both parameter and capital estimates, in

situations where observed data are insufficient to accurately estimate the tail behaviour

of the loss distribution. However, this stream of literature does not fall within our current

research scope.

A further complicating feature of extreme events, not promoting a deep and easy com-

prehension, is their complexity. Indeed, they are characterised by both complex dynamics

and consequences, that systematically interweave throughout different insurance lines of

business. Much attention has been focused on these aspects since the introduction of the

new risk-based and market consistent regulatory framework known as Solvency II (SII).

1Henceforth often abbreviated as EVT.
2Later, we will examine which are the main perils considered in the modelling of catastrophe risk within

the Solvency II framework.
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1.2. Insurance: Risk management and CAT risks

1.2.1 Solvency II overview

“Solvency II is not just about Capital. It is a change of Behaviour.”

(Thomas Steffen, Former Chairman of CEIOPS)

Solvency II is an EU legislative programme, implemented in all 28 Member States, includ-

ing the UK, on 1st January 2016. It introduces for the first time a harmonised, sound,

robust, EU-wide insurance regulatory regime. The Solvency II Directive was adopted

in November 2009, and amended by Directive 2014/51/EU of the European Parliament

and of the Council of 16 April 2014 (the so-called Omnibus II Directive). The legislation

replaces 14 EU insurance and reinsurance directives, commonly known as “Solvency I”.

Throughout its 40 years of existence, the “Solvency I” regime showed structural weak-

nesses, as already pointed out before.

It was not risk-sensitive, and a number of key risks, including market, credit and opera-

tional risks were either not captured at all in capital requirements or were not properly

taken into account. This lack of risk sensitivity had the following consequences:

• Risks: Owing to its simplistic model, Solvency I did not lead to an accurate assessment

of each risk an insurer were exposed to;

• Supervision: It did not ensure accurate and timely intervention by supervisors;

• Capital allocation: It did not entail an optimal allocation of capital, i.e. an

allocation which is efficient in terms of risk and return for shareholders.

Example 1.1. Consider the Italian insurance market as an example. The capital require-

ment, known as solvency margin, for the life insurance business was simply determined

as the sum of a percentage (a) of the mathematical reserves3 plus a percentage (b) of the

capital sum at risk (only when positive)4, being each component conveniently amended

to take into account reinsurance cessions. The formula changes based on the investment

risk, mortality and expense risk affecting a particular type of product: for the traditional

life insurance business a=4% and b=0.3% (except for term insurance where a is reduced

to 0.1% when the contract duration is less than 3 years or to 0.15% when the contract

length is less than 5 years); for linked life insurance business where the company en-

tirely bears an investment risk a=4%, whereas when the company bears no investment

risk must be either 1% if the contract duration is greater than 5 years or 0% otherwise

(b always equals 0.3%). Without going too much into details, in the non-life insurance

instead, the solvency margin was calculated taking the greater between a proportion of

3The mathematical reserves are defined as the provision made by an insurer to cover liabilities (excluding
liabilities which have fallen due) arising under or in connection with life insurance business. In the
calculation, no negative value for the mathematical reserve can be used under any policy.

4The capital sum at risk is defined as the benefit amounts payable as a consequence of the happening
of the contingency covered by the policy contract, less the mathematical reserve in respect of the relevant
contract. This value is positive only for life insurance policies including the death benefit. The percentage
considered is b=0.30% of the gross capital sum at risk before deduction for reinsurance cessions.
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Motivation and background

written premiums and a proportion of the average claim paid over the previous 3 fiscal

years (7 years for hail insurance), always conveniently considering the reinsurance ces-

sions. Clearly in this setting: the P&C5 risk capital calculation, took into account only

the insurance sale or claims paid for the company as a whole, not differentiating between

lines of business; moreover the rates applied were not related to the type of product and

did not consequently reflect the actual riskiness of the business6; moreover, no market risk

were considered; the life risk capital to be hold, being proportional to the mathematical

reserves and to the capital sum at risk, was higher for larger companies, whereas it is well

known that the size is an advantage in terms of ability of diversifying the business and

holding more stable portfolios7.

The Solvency II framework, like the Basel framework for banks, proposes to remedy

these shortcomings. The new standards have been set up aiming at ensuring the safety

and solvency of insurance companies. We can summarise the key objectives of Solvency

II as follows:

• Greater risk awareness: Risk is central in both governance and operations;

• Improved consumer protections: It will ensure a uniform and enhanced level of

policyholder protection across the EU. A more robust system will give policyholders

greater confidence in the products of insurers;

• Modernised supervision: The “Supervisory Review Process” will shift supervisors’

focus from compliance monitoring and capital to evaluating insurers’ risk profiles and

the quality of their risk management and governance systems;

• Deepened EU market integration: Through the harmonisation of supervisory

regimes;

• Increased international competitiveness of EU insurers.

The introduction of the new solvency regime brought a big change in the everyday oper-

ating and mindset of insurers: important investments have been made in order to enhance

the way of identification, measuring, reporting, managing and monitoring risks.

In general, we can talk about revolutionary change in the “risk management frame-

work” or “risk management system”. Such important investments in firms’ IT systems,

data quality8, and methodologies to measure/aggregate Risk-Adjusted Capital clearly led

5Property and Casualty insurance.
6They were also based on studies referred to an insurance market scenario that has clearly become

obsolete by now.
7Large companies are managed by teams of professionals in different fields, each one in charge of a

specific area and presumably they have been well selected, despite the wide range of activities. Portfolio
stability in terms of clients turnover as they more easily build customer loyalty; this means having the
possibility to rely upon claim history per policyholder and so better managing the risks on an individual
basis.

8The amount of data needed for Solvency II calculations is much greater than under the current regime.
At a basic level, more data requires more validation and could increase the chance of data errors. Processes
for collecting, checking and storing data will need to be more robust.
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1.2. Insurance: Risk management and CAT risks

insurance business to become more expensive, regulated and volatile than it used to be.

Market consistency increased firms’ balance sheet volatility, depending on market condi-

tions, thus reducing the predictability of profitability, dividends and, ultimately, share-

holders’ returns. Therefore, Solvency II is not just about capital. It is a comprehensive

programme of regulatory requirements for insurers, covering authorisation, corporate gov-

ernance, supervisory reporting, public disclosure and risk assessment and management,

as well as solvency and reserving.

The SII programme is divided into three areas, known as pillars:

Figure 1.1: Solvency II pillars.

Pillar 1 sets out quantitative requirements, including the rules to value assets and

liabilities (in particular, technical provisions), to calculate capital requirements and to

identify eligible own funds to cover those requirements;

Pillar 2 sets out requirements for risk management, governance, as well as the details

of the supervisory process with competent authorities; this will ensure that the regulatory

framework is combined with each undertaking’s own risk-management system and informs

business decisions. An insurer must undertake an Own Risk and Solvency Assessment

(ORSA), i.e. an internal risk assessment process that aims to ensure senior management

have conducted a review of risks and that the insurer holds sufficient capital against those

risks;

Pillar 3 addresses transparency, reporting to supervisory authorities and disclosure to

the public, thereby enhancing market discipline and increasing comparability, leading to

more competition.

Capital requirements under Solvency II are forward-looking and economic, i.e. they are
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Motivation and background

tailored to the specific risks borne by each insurer, allowing an optimal allocation of capital

across the EU. They are defined along a two-step ladder, including the solvency capital

requirements (SCR) and the minimum capital requirements (MCR), in order to trigger

proportionate and timely supervisory intervention.

1.2.2 Solvency Capital Requirement (SCR) calculation and

catastrophe risks

The Solvency Capital Requirement (SCR) should reflect a level of eligible own funds that

enables insurance and reinsurance undertakings to absorb significant losses and that gives

reasonable assurance to policyholders and beneficiaries that payments will be made as

they fall due. The SCR, according to the new regulatory regime, is determined as the

economic capital to be held by insurance and reinsurance undertakings in order to en-

sure that ruin occurs no more often than once every 200 years9. It can be calculated

using either a standard formula; a bespoke internal model that has been approved by the

insurer’s supervisor; or a mixture of both (partial internal model - IM -). The SCR stan-

dard formula, as the name suggests, is not “firm” specific and employs a formulaic factor

based calculation10. It aims at achieving the right balance between risk-sensitivity and

practicality. Moreover, both the use of undertaking-specific parameters (USPs), where ap-

propriate, and standardised simplifications for small and medium-sized enterprises (SMEs)

are allowed. The partial or full internal model, specific to individual firm and risk profile,

requires the Regulator pre-approval and must be widely used and play an important part

in firm’s system of governance. A simulation-based IM aims to produce a distribution of

the basic own funds over one year and then calculate the SCR from that.

The standard formula, characterised by a “modular” architecture, calculates capital

requirements by risk type and then aggregate them with a diversification adjustment and

using a correlation matrix provided by the supervisor. The modular structure is showed in

figure 1.2. It is important to clarify that both SCR calculation methods (standard formula

and internal model - whether full or partial -) take at least six specified risk modules into

account, those highlighted in the red boxes.

The European Parliament defines catastrophe risk as “the risk of loss, or of adverse

change in the value of insurance liabilities, resulting from significant uncertainty of pricing

and provisioning assumptions related to extreme or exceptional events”.

9The SCR shall correspond to the Value-at-Risk (VaR) of the basic own funds of an insurance or
reinsurance undertaking subject to a confidence level of 99.5% over a one-year period. Essentially, the
basic own funds are defined as the excess of assets over liabilities, under specific valuation rules (in
particular market-consistency, meaning that for insurance liabilities, requires a best estimate - defined as
the expected present value of future cash flows under Solvency II - plus a risk margin calculated using a
cost-of-capital approach).

10The calculation is calibrated to seek to ensure a 99.5% confidence level over a 1 year period which is
said to equate to a BBB rating.
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1.2. Insurance: Risk management and CAT risks

Figure 1.2: Standard formula modular structure.

As we can see in the image 1.2, the catastrophe risk is included in the life, non-life and

health modules of the Standard formula. The life catastrophe risk sub-module captures

the risk stemming from extreme death events that are not sufficiently captured by the

mortality risk sub-module (e.g. a contagious disease process or a pandemic can affect

many persons simultaneously, nullifying the usual assumption of independence among

persons.). The non-life catastrophe risk sub-module is essentially split into three separate

and independent sub-sub-modules that cover catastrophe risk related to natural perils

(e.g. earthquake, flood, hail, subsidence, and wind storm -winter storm-), risk related to

man-made events (e.g. fire, explosion and acts of terror) and other catastrophe events.

Lastly, the health catastrophe risk sub-module is based on three standardized scenarios

(mass accident, accident concentration and pandemic) to apply across all countries for

medical expense plus accident and sickness products.

Considering the central role played by risk management and assessment, the extreme

events and catastrophe risk within Solvency II, we believe that the methodology and tools

presented in this thesis are versatile, naturally reflecting the mindset introduced with

the new regulatory framework. These are essential for modelling (for instance in case

7



Motivation and background

an internal model approach is chosen) or for analyses purposes in order to report to the

management on a continuous basis.

1.3 Portfolio selection

One of the classic questions of finance-portfolio theory is the following: how can we identify

the optimal portfolio given a set of available assets? This is obviously an interesting

problem, to investors in general (individuals, financial institutions and so on) as well

as to academics. The concepts of portfolio optimisation and diversification have been

instrumental in the development and understanding of financial markets and financial

decision making.

The optimal portfolio choice problem was firstly addressed by Markowitz (1952) in his

landmark paper, “Portfolio selection”, that appeared in the March issue of the Journal

of finance, in which he defined a mean-variance model, assuming normally distributed

returns and using variance as a risk measure.

However, it is now almost universally accepted that the distribution of financial assets

return is actually skewed and fat-tailed (following for example research by Mandelbrot,

1963). Therefore, although the assumption of normality makes calculations easier, it

underweights extreme events, and might lead to an optimistic asset allocation. For this

reason many studies were conducted exploring the non-normality of assets returns and

suggesting alternative approaches.

1.3.1 Modern portfolio theory

When Markovitz published his paper on portfolio selection in 1952 he provided the foun-

dation for modern portfolio theory (MPT) as a mathematical problem, being awarded the

Alfred Nobel Memorial Prize in Economic Sciences in 1990.

The specific problem addressed by Markowitz was how to construct an efficient port-

folio from a collection of risky assets. First, he quantified return and risk of a security,

using the statistical measures of its expected return and standard deviation. Second, he

suggested that investors should consider return and risk together, and determine the allo-

cation of funds among investment alternatives on the basis of their return-risk trade-off.

The idea was revolutionary at that time. First of all because it introduced the important

principle of portfolio diversification: a portfolio’s riskiness depends on the correlations

of its constituents, not only on the average riskiness of its separate securities. Through

diversification, risk can be reduced (but not generally eliminated) without changing the

expected portfolio return. Secondly, it formulated the financial decision-making process as

an optimisation problem: the so-called mean-variance optimisation (MVO) suggests that

8



1.3. Portfolio selection

among the infinite number of portfolios that achieve a particular return objective, the

investor should choose the portfolio that has the smallest variance. All other portfolios

are “inefficient” because they have a higher variance and, therefore, higher risk11.

Our intention in this section and Chapter 2, where we present the methodology in

detail, is not to provide a complete survey of MVO, its extensions and related areas, but

to give a brief overview of the problem, useful to understand the motivation behind our

approach and which drawbacks in the Markowitz model we are able to overcome within

our framework. For complete surveys please refer to Steinbach (2001), Rubinstein (2002),

Fabozzi et al. (2007), and Markowitz (2014).

1.3.2 MPT’s underlying assumptions

An important aspect of pareto-optimal (efficient) portfolios is that each determines a

Von Neumann-Morgenstern utility function12 (Von Neumann and Morgenstern, 1953) for

which it maximizes the expected utility of the return on investment.

This allowed Markowitz (1959) to interpret his approach by the theory of rational be-

haviour under uncertainty: in chaps. 6 and 13, he assumes that the investor should

act to maximize expected utility, and proposes mean-variance analysis as an approxima-

tion to the maximization of expected utility. Tobin (1958) notes that the mean variance

framework is a special case of so-called expected utility maximization where investors are

assumed to have quadratic utility or returns distributions are jointly normal.

a) Normally distributed returns.

As already mentioned, the seminal work of Markowitz made explicit the trade-off of risk

and reward13 in the context of a portfolio of financial assets and MPT argues that investors

can benefit from diversification by investing in financial assets with lower correlations. As-

suming that the financial returns are subject to joint normal distribution, the dependence

between financial returns is fully described by the linear correlation coefficient and efficient

portfolios are obtained via the traditional MVO program (we refer the reader to Section

2.2 of Chapter 2 for details on the model).

However, empirical studies find that the assumption of normality of financial returns

11MVO is used both for constructing portfolios of individual assets (asset level) and for asset allocation
(asset class level).

12For introductions to utility theory see for example Ingersoll (1987) or Huang and Litzenberger (1988).
13Financial theory has long recognized the interaction of risk and reward. Others such as Sharpe (1964),

Lintner (1965), and Ross (1976), have used equilibrium arguments to develop asset pricing models such
as the capital asset pricing model (CAPM) and the arbitrage pricing theory (APT), relating the expected
return of an asset to other risk factors. Specifically, risk based asset pricing models explain the expected
excess return in terms of factors and the size of risk, measured by the covariance between the individual
return and the factor return. A common theme of these models is the assumption of normally distributed
returns. Even the classic Black and Scholes option pricing theory (Black and Scholes, 1973) assumes that
the return distribution of the underlying asset is normal.
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distribution is not hold, exhibiting fat tail and asymmetry that cannot be described by

their mean-variances alone. Mandelbrot (1963) strongly rejected normality as a distri-

butional model for asset returns, conjecturing that financial return processes behave like

non-Gaussian stable processes. The latter are commonly referred to as “stable Paretian”

distributions or “Levy stable” distributions14. While there have been several studies in

the 1960s that have extended Mandelbrot’s investigation of financial return processes, the

most notable is Fama (1963) and Fama (1965). Fama’s and others work led to a consolida-

tion of the stable Paretian hypothesis. In the 1970s, however, closer empirical examination

of the “stability” of fitted stable Paretian distributions also produced evidence that was

not consistent with the stable Paretian hypothesis. Specifically, it was often reported that

fitted characteristic exponents (or tail-indices) did not remain constant under temporal

aggregation. Partly in response to these empirical “inconsistencies” various alternatives

to the stable law were proposed in the literature, including the fat-tailed distributions in

the domain of attraction of a stable Paretian law, finite mixtures of normal distributions,

the Student t-distribution, and the hyperbolic distribution.

Stylized Facts. Although statistical properties of prices of stocks and commodities

and market indexes have been studied using data from various markets and instruments

for more than half a century, the availability of large data sets of high-frequency price

series and the application of computer-intensive methods for analysing their properties

have opened new horizons to researchers in empirical finance in the last decade and have

contributed to the consolidation of a data-based approach in financial modelling.

The study of these new data sets has led to the settlement of some old disputes

regarding the nature of the data: if one examines the properties of financial time series

from a statistical point of view, the seemingly random variations of asset prices do share

some quite non-trivial statistical properties.

Such properties, common across many instruments, markets and time periods, has

been observed by independent studies and classified as “stylized empirical facts” (Cont,

2001); being obtained by taking a common denominator among the properties observed

in studies of different markets and instruments, one gains in generality but, at the same

time, tends to lose in precision of the statements that can be made about asset returns.

Indeed, stylized facts are usually formulated in terms of qualitative properties15:

14Stable Paretian is used to emphasize that the tails of the non-Gaussian stable density have Pareto
power-type decay. “Levy stable” is used in recognition of the seminal work of Paul Levy’s introduction
and characterization of the class of non-Gaussian stable laws.

15We list only the stylized facts that are more related to our purpose: point out the insufficiency of the
normal distribution for modelling the marginal distribution of asset returns and their heavy-tailed and
asymmetric character. Other properties common to a wide set of financial asset are: Intermittency, Slow
decay of autocorrelation in absolute or squared returns, Leverage effect, Volume/volatility correlation,
Asymmetry in time scales (see Cont, 2001).
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• Absence of autocorrelations: (linear) autocorrelations of asset returns are often

insignificant, except for very small intraday time scales (' 20 minutes) for which

microstructure effects come into play;

• Heavy tails: the (unconditional) distribution of returns seems to display a power-

law or Pareto-like tail, with a tail index which is finite, higher than two and less than

five for most data sets studied. In particular this excludes stable laws with infinite

variance and the normal distribution. However the precise form of the tails is difficult

to determine;

• Gain/loss asymmetry: one observes large drawdowns in stock prices and stock

index values but not equally large upward movements16;

• Aggregational Gaussianity: as one increases the time scale ∆t over which returns

are calculated, their distribution looks more and more like a normal distribution. In

particular, the shape of the distribution is not the same at different time scales;

• Volatility clustering: different measures of volatility display a positive autocor-

relation over several days, which quantifies the fact that high-volatility events tend to

cluster in time;

• Conditional heavy tails: even after correcting returns for volatility clustering (e.g.

via GARCH-type models), the residual time series still exhibit heavy tails. However,

the tails are less heavy than in the unconditional distribution.

In many instances, the tails of the return distribution significantly affect portfolio

performance (see, for example, Jobst and Zenios, 2001). Harvey and Siddique (2000)

show that skew in stock returns can be relevant in portfolio selection. Others studies find

evidence of time-varying skewness (Harvey and Siddique, 1999) and time-varying kurtosis

(Jondeau and Rockinger, 2003; Brooks et al., 2005). According to the statistical properties

characterising financial returns, as presented before, the departures from normality have

been examined using the skewness (the third moment of distribution) and the kurtosis

(the fourth moment of distribution).

One can summarize the empirical results by saying that the distribution of financial

returns tends to be asymmetric (usually negatively skewed), sharp peaked and heavy

tailed. Specifically, negative skewness indicates a higher probability of negative returns,

that is, the market gives higher probability to decreases than increases in asset pricing; the

property of excess kurtosis of financial returns, implies that extreme market movements,

in either directions, will occur with greater frequency in practice than would be predicted

by the normal distribution.

For example, a 5% daily loss is observed to occur in equity markets approximately once

every two years, while if returns were normally distributed, such a change would be

16This property is not true for exchange rates where there is a higher symmetry in up/down moves.
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expected only once in every one thousand years, given the estimated return variances

(Johansen and Sornette, 1999).

Figures 1.3 and 1.4 illustrate this concepts for the S&P500 and NASDAQ indices.

Both the collection of images clearly show, via the quantile-quantile (QQ) plot17 and the

plot of the empirical histogram with the normal density function, that the distribution

tails of the S&P500 and NASDAQ are heavier than the tails of the normal distribution.

Moreover, in 1.4a and 1.4b the distributions are distinctly Leptokurtic18.

(a) NASDAQ (b) S&P500

Figure 1.3: Quantile-quantile (QQ) plots for both the equity index returns: NASDAQ
in (a) and S&P500 in (b). The figures display a quantile-quantile plot of the sample
quantiles (abscissa) versus theoretical quantiles from a normal distribution (ordinate).

17A QQ plot is a graphical check to verify if two distributions are of the same type. Two random
variables X and Y are said to be of the same type if their distributions are the same up to a change in

location and scale, that is X
def
= aY + b for some a a ∈ R+, b ∈ R. Since the QQ plot plots quantiles of two

distributions, if they are of the same type, the plot should be linear. In this case we are checking whether
the empirical distribution of the two equity index returns and the hypothesized normal distribution are of
the same type.

18The distribution of the financial return series are characterized not only by heavy tails, but also by a
high peakedness at the center.
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(a) NASDAQ

(b) S&P500

Figure 1.4: Empirical distribution of the S&P500 and NASDAQ index returns both
versus the normal density function (red line in (a) and blue line in (b)), plus a focus on
the left tail in (a) and a focus on the right tail in (b).
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Min Max Mean St Dev Skewness Kurtosis

S&P 500 -20.47 9.10 0.045 1.02 -1.51 33.22

NASDAQ -11.35 14.17 0.050 1.28 -0.10 11.88

Table 1.1: Descriptive statistics for simple daily returns (as %) of the financial assets:
the S&P 500 index and the NASDAQ composite index. Price indices on the period:
2/1/1980-14/5/2002.

The time series considered starts on the 2nd January 1980 and ends on 14th May

2002 (data source: Datastream) and the corresponding empirical statistics of the two

equity index returns can be found in Table 1.1. We refer to the definition of kurtosis

(often referred to as “excess kurtosis”) that implies a kurtosis of zero for the standard

normal distribution. Therefore, positive kurtosis indicates a “heavy-tailed” distribution

and negative kurtosis indicates a “light tailed” distribution.

Consequently, the normality assumption for the financial returns is no longer suitable

and can largely lead to misleading results. The implication that returns of financial

assets have a heavy-tailed distribution may be profound to a risk manager in a financial

institution who still relies on the classical normality assumption for the modelling of

financial returns distribution.

Indeed, in presence of fat-tailed asset returns, this assumption will lead to a systematic

underestimate of the true riskiness of a portfolio, where risk is measured as the likelihood

of achieving a loss greater than some threshold. Therefore, it is clearly vital to specify

the distribution of asset returns for risk management, financial forecasting and optimal

asset allocation purposes as we have seen that a failure may lead to biased results and,

consequently, to wrong decisions.

The identification of the most suitable and accurate distribution to fit financial returns

data is still topic of ongoing research. There are dozens of parametric models proposed

in the literature, but from the empirical features described above, one can conclude that,

in order for a parametric model to successfully reproduce all the above properties of the

marginal distributions it must have at least four parameters: a location parameter, a

scale (volatility) parameter, a parameter describing the decay of the tails and eventually

an asymmetry parameter allowing the left and right tails to have different behaviours.

Student t distributions have been used to explain the leptokurtic behaviour but have

failed to explain the time varying volatility and the skewness (Kon, 1984; Blattberg and

Gonedes, 1974). Among the well-known candidates we can also find the generalized hy-

perbolic distributions (Prause, 1999; Eberlein et al., 1998; Bibby and Srensen, 2003),

14



1.3. Portfolio selection

and the stable Paretian distributions (Rachev and Mittnik, 2000; Rachev et al., 1998).

The Autoregressive Conditional Heteroskedastic (ARCH) model proposed by Engle (1982)

provides a simple framework to explain the time varying (conditional) volatility. After-

wards, Bollerslev (1986) proposed a GARCH model, which is an extension to the ARCH

model. Many other extensions of the ARCH model have been suggested to explain other

features such as leverage effect. Even though these models typically assume a normal

distribution for the innovation, they are able to generate data with unconditionally fat

tails, heavier than what an i.i.d. normal distribution would suggest. The kurtosis im-

plied by these models using a conditional normal distribution, however, does not match

the large kurtosis found in the return series. The observation that GARCH models with

normal disturbances cannot generate sufficient leptokurtosis to replicate that observed in

actual data was in part the motivation for the study of Bollerslev (1987). He proposed a

more general model that allowed the innovation to have a standardized t-distribution, so

that extreme values, occurring more often than under the normality assumption, may be

accommodated. This model has the appeal of a finite variance with fat tails.

Recently, it has been proposed that the classes of generalized extreme value distri-

butions and generalized Pareto distributions (see for example Diebold et al., 2000; Bali,

2003; Rocco, 2014) provide a more robust modelling of financial returns distribution. We

refer to the latter stream of literature to provide the foundations of our project. For a

detailed overview of the related work, please see Section 2.1 in Chapter 2.

b) Portfolio Riskiness: variance as proxy for risk.

The second central moment of returns, has been the subject of a large literature in finance:

from risk based asset pricing models, explaining the expected excess return in terms of

factors and the size of risk, to derivative pricing, for example (Black and Scholes, 1973)

introduced the well known formula for option pricing, where the volatility is the key input

variable.

As described earlier, variance of returns has been widely used as a proxy for risk

in financial returns: in particular, it is the key risk measure used in the mean variance

approach to identify the optimal portfolio an investor would hold according to his risk

aversion. However, it is well known that variance has been criticized because it is a

symmetric measure and treats downside risk and upside risk in the same way, while the

investors generally dislike deviations below the mean and like deviations above the mean

(Post and Vliet, 2004).

Downside risk is the financial risk of experiencing unexpected losses associated with

an investment project and the magnitude of these losses. Risk includes the chance that a

security increases or decreases in value unexpectedly. However, most people are concerned

with the possibility of an unexpected decline - which is indeed known as downside risk.
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As early as Roy (1952), who assumed that an investor’s goal was to minimize his/her

risk, economists have recognized that investors care differently about downside losses than

they care about upside gains. Recently, Ang et al. (2006) in their article show that the

cross-section of stock returns reflects a premium for bearing downside risk. Investors who

are sensitive to downside losses, relative to upside gains, require a premium for holding

assets that covary strongly with the market when the market declines. Hence, in an

economy with agents placing greater emphasis on downside risk than upside gains, assets

with high sensitivities to downside market movements have high average returns. The

general, and quite intuitive, idea behind downside risk is that the left hand side of a

return distribution involves risk while the right hand side contains the better investment

opportunities.

“It was understood that risk relates to an unfortunate event occurring, so for

an investment this corresponds to a low, or even negative, return. Thus getting

returns in the lower tail of the return distribution constitutes this “downside

risk”. However, it is not easy to get a simple measure of this risk.”

(Quoted from Granger, 2009)

In addition, the variance measures the spread of the distribution around the mean and

so, by definition, it concerns the central part of the distribution rather than focussing on

the more extreme values that represent the financial risk hidden in the tails (in particular

we care more about the left one). Clearly, considering all the evidence in support of the

importance of including the modelling of extremal events we discussed earlier, this is not

a desirable feature.

All the arguments presented are powerful reasons for replacing variance. Therefore,

some authors introduced several downside risk measures in their optimization program.

First Markowitz (1959) advocates substituting the variance with semi-variance instead,

that is a measure of the dispersion of the data that fall below the mean (or a target value)

always calculated as an average of the squared deviation of values lower than the mean19.

Other examples are Roy (1952) and Arzac and Bawa (1977) who consider Value at Risk

and refer to the so called safety first principle20.

Incorporating skewness, heavy-tailedness and tail-risk measures.

We rely on the foundation introduced by the safety first criterion to develop our model.

Moreover, following the reasoning presented in the whole section, we go beyond the clas-

19In order to put the accent on returns below the mean, semi-variance is defined as

σ̃X = E[(X − EX)1[X<EX]]
2

20Please, refer to Section 2.1 in Chapter 2 for further details.
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sical MVO and its assumptions using extreme value theory to reproduce the fact that the

returns are heavy-tailed (instead of assuming normality) and employing quantile-based

risk measures (instead of the “symmetric” variance).

The methodology implemented will allow us to embody the risk preferences of an investor

representing the asymmetric treatment of upside and downside risk. This behavioural

profile has been observed in several studies. Furthermore, the application of tail risk

measures will reflect the impelling need of properly managing and considering also the ex-

treme events. This characterises risk managers’ mindset within the new solvency regime,

thinking beyond what is expected on average.

1.4 Measuring Extreme Risks

The main task of risk management is to try to assess and quantify risks. There is a con-

siderable interest, both from a theoretical and a practical point of view, in a quantitative

assessment of the risk involved in a financial position. Ideally, the best and most informa-

tive risk measure for the returns of some financial security would be looking at the whole

tail of their distribution. However, the return distribution generally is:

(a) unknown: what we observe in the market are the return time series and so the

realisations of the random variable that produced those values; however, we do not

know the exact distribution the data were drawn from;

(b) difficult to handle: considering the whole distribution contains, in a certain sense,

too much information. A tractable risk measure should be a synthesis of the data

that characterise the precise distribution.

If the financial position is described by the resulting discounted net worth at the end of a

given period X(ω) when the scenario ω ∈ Ω is realised, where X : Ω→ R is a real-valued

function on some set Ω of possible scenarios, then a quantitative measure of risk is given

by a mapping ρ from a certain space X of functions X ∈ X on Ω to the real line. The

discounted net worth corresponds to the profit and losses of the position (P&L).

Definition 1.1 (Risk measure). Let (Ω;F ;P) be an atomless probability space. Through-

out, all random variables are defined on (Ω;F ;P) and all probability measures are defined

on (Ω;F). Let L0 be the space of all random variables, L1 = {X ∈ L0 | ‖X‖1 = E(|X|) <
+∞} the subspace of all integrable random variables and L∞ the set of all (essentially)

bounded random variables21.

A risk measure ρ is a real-valued function that associates to a risk in a set X a real number

ρ : X → R, where X ⊆ L0 22.

21For further details please refer to Embrechts et al. (2015b); Pesenti et al. (2016) and to Chapter 6 of
McNeil et al. (2005).

22X typically contains L∞, and is closed under addition and positive scaler multiplication.
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Throughout this thesis we assume that the argument of ρ represents a financial loss.

We list below some risk measure’s properties for X,Y ∈ X :

(i) Monotonicity: ρ(X) ≤ ρ(Y ) if X ≤ Y ;

(ii) Translation-invariance: ρ(X + c) = ρ(X) + c, ∀c ∈ R;

(iii) Positive homogeneity: ρ(λX) = λρ(X), ∀λ > 0;

(iv) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

(v) Convexity: ρ((1− ω)X + ωY ) ≤ (1− ω)ρ(X) + ωρ(Y ), ω ∈ [0, 1];

(vi) Law-invariance: ρ(X) = ρ(Y ) if X and Y have the same distribution FX = FY ;

Definition 1.2 (Monetary Risk measure). A monetary risk measure is a risk measure

satisfying (i) and (ii).

In order to tackle the second point (b), several risk measures have been adopted during

the last decades. First of all the variance (or alternatively standard deviation) that we

have widely reviewed in the previous sections.

Later, in the early 1990s, a number of financial institutions (J.P. Morgan, Bankers Trust,...)

proposed a new risk measure to quantify by a single number the firms aggregate exposure

to market risk. This is commonly known as value at risk (VaR).

1.4.1 Value at Risk

The value at risk has become the benchmark risk measure in today’s financial world being

used not only for market risk calculation but, for example, also for credit, operational,

liquidity, and legal risk estimate.

VaR (at the confidence level α) is defined as the loss of a financial position over a fixed

time horizon ∆ that would be exceeded with small probability (1− α).

Definition 1.3 (Value-at-Risk). VaR at level α ∈ (0, 1) of a loss variable L, VaRα :

L0 → R, is defined as the α-quantile of the loss distribution:

VaRα(L) = qα(L) = inf{l ∈ R : P (L ≤ l) ≥ α}, L ∈ L0. (1.1)

Looking at the rigorous mathematical definition, we can intuitively understand that

the VaR, from a statistical point of view, is nothing more than a quantile (usually a high

quantile of level α, typically above the 95th percentile) of the loss distribution (L[t;t+∆]
23)

related to the financial position held.

Practitioners in risk management are often concerned with the so called profit and

loss (P&L) distribution, that is the distribution of the change in value of the financial

position over a given holding period (i.e. −L[t;t+∆] the loss random variable). However, in

23We denote the value of a portfolio at time t by V (t) and assume that the rv V (t) is observable at time
t. For a given time horizon ∆, such as 1 or 10 days, the loss of the portfolio over the period [t, t + ∆] is
given by L[t;t+∆] = −[V (t+ ∆)− V (t)].
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risk management we are mainly concerned with the probability of observing large losses

and hence with the upper tail of the loss distribution. Thus, we often drop the P from

P&L, both in notation and language, and we refer to the loss distribution instead. It is a

standard convention in statistics to present results on tail estimation for the upper tail of

distributions. Moreover, actuarial risk theory is a theory of positive rvs. Hence our focus

on loss distributions facilitates the application of techniques from these fields as well.

Because of its intuitive appeal and simplicity, it comes as no surprise that VaR has

become the standard risk measure used around the world today: it is at the core of

international regulation in both banking (BCBS, 2012, 2013) and insurance (European

Parliament , 2009b) sectors. The two regulatory frameworks respectively go under the

names of Basel (I, II, III) and Solvency II. An excellent historic overview of Basel Com-

mittee’s24 working can be found in Tarullo et al. (2008). Whereas, for a broader overview

on Solvency II see Sandström (2010) and refer to SCOR (2008) for a presentation of the

main issues both from a methodological and a more practical point of view.

Despite its simplicity and good attitude towards the tail of the distribution rather than

focussing on the central part, (Artzner et al., 1997, 1999) have criticized VaR as a measure

of risk on two grounds. Firstly, they showed that VaR is not necessarily subadditive so

that, in their terminology, is not a coherent risk measure.

Definition 1.4 (Coherent Risk measure). A risk measure satisfying the four axioms of

monotonicity (i), translation invariance (ii), positive homogeneity (iii), and subadditivity

(iv) is called coherent.

There are cases where a portfolio can be split into sub-portfolios such that the sum of

the VaR corresponding to the sub-portfolios is smaller than the VaR of the total portfolio.

This does not properly reflect the notion of diversification and may cause problems if the

risk-management system of a financial institution is based on VaR-limits for individual

books. Moreover, another critical aspect is that VaR does not give any information about

the potential size of the loss that exceeds it. Two distributions may have the same VaR

yet be dramatically different in the tail.

1.4.2 Expected shortfall

Acerbi and Tasche (2002) proposed the use of expected shortfall (ES) instead of VaR.

Expected shortfall is the expected size of a loss given that it exceeds VaR, and it so takes

into account the whole tail of the distribution and, moreover, it fulfils the properties re-

quired by a coherent risk measure according to Artzner et al. definition. In particular,

see the paper of Embrechts et al. (2015b), where the authors offer seven proofs of the

24 The complete name is Basel Committee on Banking Supervision (BCBS).
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subadditivity of ES, each revealing an important property of ES (such as its dual repre-

sentation, optimization properties, continuity, consistency with convex order, and natural

estimators).

Definition 1.5 (Expected Shortfall, Acerbi and Tasche 2002). The Expected Short-

fall (ES) at level α ∈ (0, 1) of a loss variable L, ESα : L0 → R ∪ {+∞}, is defined as:

ESα(L) =
1

1− α

ˆ 1

α
qu(L) du =

1

1− α

ˆ 1

α
VaRu(L) du, L ∈ L0. (1.2)

Theorem 1.1. For p ∈ (0, 1), ESα(L) is subadditive on L0. That is,

ESα(X + Y ) ≤ ESα(X) + ESα(Y ) (1.3)

for all X,Y ∈ L0 and p ∈ (0, 1)

Remark 1.1. In practice ESα(L) is only used on L1, but (1.3) is trivially true if the

right-hand side is infinite; this is reflected in the R ∪ {+∞} above in the definition 1.5 of

ESα(L)25.

In the expression 1.2, instead of fixing a particular confidence level α, we average VaRα

over all levels u ≥ α and thus “look further into the tail” of the loss distribution. ESα

depends only on the distribution of L and ESα ≥ VaRα.

Remark 1.2. For continuous loss distributions an even more intuitive expression can be

derived which shows that expected shortfall can be interpreted as the expected loss that is

incurred in the event that VaR is exceeded. For FL continuous, the definition of Expected

Shortfall is equivalent to

ESα(L) = E[L | L > VaRα], (1.4)

hence its name.

This measure has been independently studied by Rockafellar and Uryasev (2000, 2002)

under the name conditional Value-at-Risk (CVaR); in particular, in these papers they

showed that expected shortfall can be obtained as the value of a convex optimization

problem.

Throughout the literature there is no unanimity when it comes to definitions and no-

tation for specific risk measures. Indeed, there are actually a number of variants on the

expected shortfall risk measure with multiple names: for example tail conditional expecta-

tion (TCE), worst conditional expectation (WCE) and the already mentioned conditional

25An important part of the early literature considers risk measures defined on L∞; however, insurance
and financial portfolios are primarily exposed to unbounded risks. Embrechts et al. (2015b) shows that
subadditivity of ESα(L) on L∞ directly implies the case of L0.
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VaR (CVaR)26. However, for continuous loss distributions they all coincide. A wide dis-

cussion regarding different existing notions of expected shortfall and their relationship are

presented in the paper of Acerbi and Tasche (2002). One problem with tail risk measures

like VaR, TCE, and WCE, when applied to discontinuous distributions, may be their

sensitivity to small changes in the confidence level α. In other words, they are not in

general continuous with respect to the confidence level α. In contrast, ESα is continuous

with respect to α. Hence, regardless of the underlying distributions, one can be sure that

the risk measured by ESα will not change dramatically when there is a switch in the

confidence level by, say, some base points.

Figure 1.5: An example of a loss distribution with the 95% VaR marked as a vertical
line; the mean of the loss rv is shown with a dotted line and the alternative risk measure
ES at the 95% confidence level is marked with a dashed line.

1.4.3 Risk measure’s properties

Considering the obvious central role played by tail risk measures within the solvency

regime and as an integral part of risk management, the study of their properties have

been the focus of both academic and practitioners communities.

The notion of convex measure of risk is an extension of the concept of coherent risk

measure, and its analysis in the context of risk management and mathematical finance

began with Föllmer and Schied (2002) (see also Frittelli and Gianin, 2002).

26As showed in (Artzner et al., 1999), proposition 5.1, we have the inequality TCEα ≤ WCEα. The
identification of TCE and WCE is to a certain degree a temptation though the authors actually did their
best to warn the reader. WCE is in fact coherent but very useful only in a theoretical setting since
it requires the knowledge of the whole underlying probability space while TCE lends itself naturally to
practical applications but it is not in general coherent.
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Definition 1.6 (Convex Risk measure). A convex risk measure is a risk measure

fulfilling the axioms of monotonicity (i), translation invariance (ii) and convexity (v).

Afterwards, another relevant concept subject of study was the relation between the

risk measure’s property of ranking risks and stochastic dominance. Although a financial

risk, often modelled by a probability distribution, cannot be characterized by a single

number, sometimes one needs to assign a number to a risk position: the ranking of risks is

an example. Risk measures are suitable for such purpose being risk quantitative tools that

map risks to numbers. We are aware that there is a long tradition of decision theory, which

uses stochastic orderings to formulate some favourable properties of risks. In this context,

Bäuerle and Müller (2006) studied in general the problem of consistency of risk measures

with stochastic orders. In particular, they say that a risk measure ρ is consistent with a

stochastic order �, if considering two risks such that X � Y , this implies ρ(X) 6 ρ(Y ).

They found out that monotone27 law-invariant risk measures are consistent with first order

stochastic dominance (�st or usual stochastic order), while convexity28 of a law-invariant

risk measure implies consistency with respect to convex order (�cx, the converse statement

is not true). Moreover, they also proved that law-invariant risk measures, having both

the monotonicity and convexity property, are consistent with respect to increasing convex

order (�icx, also knowns as stop-loss order in actuarial science). It is easy to translate the

last result into one for the increasing concave ordering (�icv, also known as second order

stochastic dominance (SSD)) because of the the following equivalence: X �icv Y holds

if and only if −X �icx −Y . The finding regarding the convex ordering is particularly

relevant because it is often used in the actuarial sciences to compare risks, and it is

related to notions of risk aversion. It has the intuitively appealing meaning that any risk

averse decision maker prefers the risk which is smaller in this ordering. Therefore, this

consistency is an important property a risk measure should have. We refer the reader to

the section 2 of their paper to recall some basic definitions and results from the theory of

stochastic orders.

1.4.4 Estimation and Robustness

The issue regarding the lack of knowledge concerning the distribution of returns, we

identified at the beginning of the current section 1.4 (a), leaves us with the problem of

how actually computing the risk measures described so far. Therefore, always within the

context of discussing desirable properties risk measures should satisfy, a wide literature ac-

knowledged the need of their estimation from historical and/or simulated data via reliable

27That is satisfying the property of monotonicity.
28We would like to highlight to the reader that this means satisfying the property of convexity; it is

clearly different from referring to a “convex risk measure” because, as defined by Föllmer and Schied
(2002), it would require to satisfy also the properties of monotonicity and translation invariance.
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estimators.

A whole industry of papers on estimating VaR and/or ES has emerged, and this un-

der a wide variety of model assumptions on the underlying P&L process (Lt)t. McNeil

et al. (2015, 2005) contains a summary of results stressing the more statistical issues. An-

other excellent companion text, that has more an econometric point of view, is Danielsson

(2011). Extreme Value Theory (EVT) methodology is for instance presented in McNeil

and Frey (2000). The recent paper of Chavez-Demoulin et al. (2015) use EVT in com-

bination with generalized additive models in order to model VaR for Operational Risk

based on covariates, while Chavez-Demoulin et al. (2014) propose a nonparametric exten-

sion of the classical Peaks-Over-Threshold method from Extreme Value Theory to fit the

time varying volatility in situations where the stationarity assumption may be violated

by erratic changes of regime.

Another important issue when proceeding with risk measures estimation is robustness,

namely whether risk measure estimates remain relatively insensitive to small perturbation

in the underlying model and/or data changes ‘(Hampel, 1971; Huber and Ronchetti, 2009).

Without robustness (defined in an appropriate sense), results may not not meaningful,

since then small measurement errors in the loss distribution can have a huge impact

on the estimate of the risk measure. The importance of robustness properties of risk

measures has only fairly recently become a focal point of regulatory attention. By now,

numerous academic as well as applied papers address the topic. Conflicting views typically

result from different notions of robustness. Huber and Ronchetti (2009) have a pure

statistical approach and robustness mainly concerns so-called distributional (or Hampel-

Huber) robustness: what are the consequences when the shape of the actual underlying

distribution deviates slightly from the assumed model? Hansen and Sargent (2008) is

characterised by an economics decision making approach, the emphasis lies more on robust

control, in particular, how should agents cope with fear of model misspecification. Finally,

an area of research that also uses the term robustness is the field of Robust Optimization

as, for instance, summarised in Ben-Tal et al. (2009). The main point is that, in some form

or another, robustness lies at the core of financial and insurance risk management. Since

law-invariant risk measures are a specific type of statistical functionals, their robustness

properties are already extensively studied in the statistical literature. Robustness of risk

measures is the focus of a growing academic literature Cont et al. (2010), Bellini et al.

(2014), Kiesel et al. (2016) Kou et al. (2013), Krätschmer et al. (2014) and Embrechts

et al. (2015a).

It is often argued in the literature that quantile-based risk measures such as VaR are

more robust when compared to mean-based risk measures such as ES when the notion of

robustness used is Hampel’s (Hampel, 1971; Huber and Ronchetti, 2009). These type of

arguments can be found for instance in Cont et al. (2010), Kou et al. (2013), Kou and
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Peng (2014) and Emmer et al. (2015). In particular, the former authors showed that, in

general, quantile estimators are robust with respect to the weak topology, and coherent

distortion estimators are not robust in the same sense; this is consistent with Hampel’s

notion of robustness for L-statistics, as discussed in Huber and Ronchetti (2009)29. Kou

et al. (2013) state that “Coherent risk measures are not robust”, they showed that VaR

is more robust compared to ES, and this was with respect to a small change in the data

by using tools, such as influence functions and breakdown points; see, also Kou and Peng

(2014), for similar results with respect to Hampel’s notion of robustness.

Therefore, with reference to the weak topology, most of the common risk measures

(variance, expected shortfall, expectiles, and mean) are discontinuous (Kiesel et al., 2012).

One possible approach to overcome this conflict between robustness and risk ranking

consistency, is to use other metrics for the analysis of robustness that lead to less restrictive

definitions. In this context, for instance Cambou and Filipović (2015) find out that “ES

is robust, and VaR is non-robust based on the notion of φ-divergence”. Krätschmer et al.

(2012, 2014), instead, argue that Hampel’s classical notion of quantitative robustness is not

suitable for risk measurement, and they propose and analyse a refined notion of robustness

that applies to tail-dependent law-invariant convex risk measures on Orliz spaces. Using a

different definition, they introduce a continuous scale of robustness and thus introducing

an index of quantitative robustness. Moreover, mean, VaR, and Expected Shortfall are

robust with respect to a stronger notion of convergence (metric) that is the Wasserstein

distance (see for example Emmer et al., 2015; Kiesel et al., 2012) and Bellini et al. (2014)

show that Expectiles are Lipschitz-continuous with respect to the Wasserstein distance

with constant K = max{α/(1− α); (1− α)/α}, which implies continuity with respect to

the Wasserstein distance.

Another relevant approach is the one followed in Pesenti et al. (2016) that consists

in relaxing the requirement that risk measures has to be robust on the whole space of

integrable random variables. Conducting an analysis of regions on which (low-invariant

convex) risk measures are robust, is reasonable because, as Cont et al. (2010) observed,

“this case is not generally interesting in econometric or financial applications since requir-

ing robustness against all perturbations of the model is quite restrictive”.

With reference to research related to risk aggregation, Embrechts et al. (2015a) show

that VaR is less robust compared to ES with respect to dependence uncertainty in aggre-

29As highlighted in Embrechts et al. (2015a), the qualitative robustness of a statistical estimator, as in
Hampel (1971), is equivalent to the continuity of the corresponding risk measure at the true distribution,
with respect to the weak topology. In general, to analyse statistical robustness of a given risk measure,
one typically studies continuity properties of that risk measure in a given metric d, say. Hence we say that
a law-invariant risk measure ρ is d-robust at a distribution F if d(Fn, F )→ 0 implies that ρ(Xn)→ ρ(X),
where Xn ∼ Fn, n = 1, 2, . . . and X ∼ F . For example, the Lévy distance is used in Cont et al. (2010)
and note that the Lévy distance metrizes the weak topology on the set of distributions. A law-invariant
risk measure is said to be robust in Hampel’s sense if it is continuous with respect to convergence in
distribution.
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gation. The authors introduce a notion of aggregation-robustness, under which ES and

other spectral risk measures are robust. They also show that VaR generally exhibits a

larger dependence-uncertainty spread compared to ES. Robustness is studied in the con-

text of risk aggregation also in Pesenti et al. (2016), where a risk measure is applied on

an aggregation function of a random vector (risk factors), this composition is defined as

aggregation measure. Their findings generalise the results on aggregation robustness in

Embrechts et al. (2015a) to the class of law-invariant convex risk measures with uncer-

tainty in the marginal distributions, including, as a special case, the aggregation via the

ordinary sum. In particular, they show that in order to have robustness of aggregation

measures, it is sufficient that the margins of the vector of risk factors belong to uniformly

integrable sets and that the aggregation function is Lipschitz continuous in the tail. It is

relevant that there are no constraints required on the risk factors’ dependence structure.

In contrast, Value at Risk, that is a non-convex risk measure, requires restrictions on

the possible dependence structures of the input vectors, in order to be robust in a risk

aggregation context .

One more important contribution is the introduction of a concept of robustness into

the problem of risk sharing among agents, this insight is presented in the academic paper

of Embrechts et al. (2016).

From a more practical point of view, Emmer et al. (2015) point out that the concept

of robustness used in Cont et al. (2010) is potentially more intuitive because it takes

the estimation procedure into account. Robustness is meant as the sensitivity of the

risk measure estimate to the addition of a new data point to the data set used for the

estimation procedure. It turns out that for the same risk measure the estimation method

can have a significant impact on the sensitivity. For instance, the risk measure estimate

can react in a completely different way on an additional data point if we fit a parametric

model instead of using the empirical loss distribution30.

Thus, robustness in the sense of Cont et al. (2010) relates more to sensitivity to outliers

in the data sample than to mere measurement errors. However, in finance and insurance,

large values do occur and are not outliers or measurement errors, extreme values often

occur as part of the data-generating process. In particular, in (re)insurance, one could

argue that large claims are actually more accurately monitored than small ones, and their

values better estimated. Hence the question of robustness in the sense of Cont et al.

(2010) may not be so relevant in this context.

Finally, note that in practice, the estimation of ES will often be based on larger sub

samples than the estimation of VaR. For instance, when using simulation iterations, ES

is estimated over the whole observations simulated for the tail, while the VaR estimate is

30The authors conclude that “. . .historical Value-at-Risk, while failing to be subadditive, leads to a
more robust procedure than alternatives such as Expected Shortfall”.
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based on a small neighbourhood of the order statistic.

“This new look at robustness will then help us to bring the argument against

coherent risk measures back into perspective: robustness is not lost entirely,

but only to some degree when VaR is replaced by a coherent risk measure,

such as ES.”

(Krätschmer et al. (2014))

Given the overview of the recent literature on robustness of risk measure we can under-

stand that the discussion is not yet closed: robustness can be interpreted in several ways

and it is not clear what kind of robustness the Basel Committee has in mind (Embrechts

and Hofert, 2014).

1.4.5 Robust Backtesting of Risk Measures: Elicitability

The question 8 of BCBS (2012) concerns possible regulatory regime switch for market risk

management from VaR to ES and the issue of “robust backtesting”. Replacing VaR by ES

in Basel is under current discussion, and in particular Under the Fundamental Review of

the Trading Book (FRTB) capital charges for the trading book are based on the coherent

expected shortfall (ES) risk measure, which show greater sensitivity to tail risk31.

An interesting criterion when estimating a risk measure is elicitability, introduced by

Osband (1985) and Lambert et al. (2008), then by Gneiting (2011). In the latter paper,

the author offers a theory to assess the quality of statistical forecasts introducing the

notion of elicitability. For ease of discussion, we will refer to a forecast as elicitable if

it is “properly” backtestable. We are not presenting its rigorous definition here, thus

for the precise mathematical meaning of “properly” we refer to the latter paper and the

references therein. An elicitable risk measure is a statistic of a P&L distribution that can

be represented as the solution of a forecasting-error minimization problem. Intuitively,

elicitability of a functional (risk measure) of probability distributions may be interpreted

as the property that the functional can be estimated by generalised regression. Another

feature, that makes elicitability a relevant property for a risk measure, is that we can use

consistent scoring functions to compare series of forecasts obtained by different modelling

approaches and obtain objective guidance on the approach that gives the best forecasting

performance (see Gneiting, 2011, for a detailed discussion).

It is shown that in general, VaR is elicitable whereas ES is not, leading to less straight-

forward backtesting methods (note that in Gneiting, 2011, ES is actually referred to as

Conditional Value-at-Risk, CVaR; see also Bellini and Bignozzi, 2015; Ziegel, 2016). In

Section 3.4 the author states that: “This negative result may challenge the use of the

31 As a result of the Fundamental Review of the Trading Book (BCBS, 2013) a 10-day ES at the 97.5%
level will be the main measure of risk for setting trading book capital under Basel III (BCBS, 2016).
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CVaR functional as a predictive measure of risk, and may provide a partial explanation

for the lack of literature on the evaluation of CVaR forecasts, as opposed to quantile or

VaR forecasts”. These findings gave rise to a rich debate on the subject.

Although Gneiting (2011) suggested that the lack of elicitability of ES called into

question our ability to backtest ES and its use in risk management, a consensus is now

emerging that the problem of comparing the forecasting performance of different estima-

tion methods is distinct from the problem of addressing whether a single series of ex ante

ES estimates is consistent with a series of ex post realizations of P&L, and that there are

reasonable approaches to the latter (Kratz et al., 2016). For instance, Acerbi and Székely

(2014) recently pointed out that elicitability (or lack of elicitability) is not relevant for

backtesting of risk measures but rather for comparing the forecast performance of different

estimation methods.

However, it should be noted that ES satisfies more general notions of elicitability,

namely conditional elicitability or joint elicitability. Alternatively, ES is also said to be

“2nd order” elicitable. This concept was introduced by Emmer et al. (2015)32 and offers

a way of splitting a forecasting method into two component methods involving elicitable

statistics and separately backtesting and comparing their forecast performances. Since

ES is the expected loss conditional on exceedance of VaR, we can first backtest VaR using

an appropriate consistent scoring function and then, treating VaR as a fixed constant, we

can backtest ES using the squared error scoring function for an elicitable mean.

Other recent contributions are: Fissler and Ziegel (2016) show that VaR and ES are

jointly elicitable in the sense that they jointly minimize an appropriate bi-dimensional

scoring function, allowing the comparison of different forecasting methods that give es-

timates of both VaR and ES; Acerbi and Székely (2016) introduce a new concept of

backtestability satisfied in particular by expected shortfall; another recent paper on the

subject is also Davis (2016).

With a view on the feasibility of backtesting, in recent studies Bellini and Bignozzi

(2015) and Ziegel (2016) suggest Expectiles as law-invariant, coherent (i.e. subadditive)

and elicitable alternatives to Expected Shortfall33. In particular in Bellini and Bignozzi

(2015), it is shown that, under a slight modification of elicitability, the only elicitable

and coherent risk measures are the expectiles. However, while Expectiles indeed have a

number of attractive features, their underlying concept is less intuitive than the concepts

for VaR or ES. In addition, Expectiles are not comonotonically additive which implies that

in applications they may fail to detect risk concentrations due to non-linear dependencies

(Emmer et al., 2015).

32In particular, they showed that for continuous distributions with finite means, ES is conditionally
elicitable; moreover, for distributions with finite second moments, the variance is conditionally elicitable.

33See Gneiting (2011): for distributions with finite means, Expectiles are elicitable.
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1.4.6 Comparison: What is the best risk measure in prac-

tice?

The extensive debate on desirable properties of regulatory risk measures, in particular

VaR and ES, is summarized in the academic papers Embrechts et al. (2014) and Emmer

et al. (2015)34. Both risk measures are used in industry and regulation; VaR more in

banking, ES more in insurance, the latter especially under the Swiss Solvency Test35.

Summarising what we have presented so far, we compare and contrast both risk mea-

sures on the basis of four broadly defined criteria: (C1) Existence; (C2) Ease of accurate

statistical estimation; (C3) Subadditivity, and (C4) Robust forecasting/backtesting and

risk measure’s robustness.

Clearly, concerning (C1), V aRα(L), when properly defined, always exists. For ESα(L)

to exist, one needs E(L) < ∞. The latter condition may seem reasonable, see however

the discussion on Operational Risk in McNeil et al. (2005) Section 10.1.4 and see also

Chavez-Demoulin et al. (2015).

Regarding (C2), and this especially for α close to 1 corresponding to values typical

for financial and insurance regulation, both measures are difficult to estimate with great

statistical accuracy. Of course, confidence intervals around ES are often much larger than

corresponding ones around VaR. One needs an excellent fit for 1 − FL(x), x large, that

is the tail of the distribution. EVT, as summarized in McNeil et al. (2005) Chapter

7, comes in as a useful tool. EVT cannot be the absolute cure for solving such high-

quantile estimation problems, but it offers, more importantly, guidance on the kind of

questions from industry and regulation which are beyond the boundaries of sufficiently

precise estimation.

With regard to (C3), we already discussed the fact that in general VaR is not sub-

additive whereas ES is the convex risk measure used most widely in the practice of risk

management. The debate for the lack of proper aggregation has been ongoing within

academia since VaR was introduced around 1994. This very important property tips

the balance clearly in favour of ES. More importantly, thinking in ES-terms makes risk

managers concentrate more on the “what-if” question, whereas the VaR has been heavily

criticized as it only looks at the frequency of extremal losses but not at the severity.

With reference to (C4), backtesting models to data and sensitivity of risk measures

to underlying model deviations and/or data changes, remain crucial features throughout

finance. The notions of elicitability and robustness add new aspects to this discussion.

We have seen that the literature discussing these two characteristics is still developing.

34Refer to BCBS (2014) and IAIS (2014) instead for contributions from the regulators of the banking
and insurance, respectively. See also BCBS (2016) for a recent discussion concerning market risk under
Basel III and Sandström (2010) for an overview in the context of Solvency II.

35 ES at the 99% level for annual losses is the primary risk measure in the Swiss Solvency Test (SST).
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The major findings are the followings. The Value at Risk is elicitable and robust. The

fact that VaR does not cover tail risks “beyond” VaR is a more serious deficiency although

ironically it makes VaR a risk measure that is more robust than the others. ES makes

good for the lack of subadditivity and sensitivity for tail risk of VaR but has recently be

found to be not elicitable and not robust in the sense of Cont et al. (2010).

However, all is not lost. Concerning its weaknesses in backtesting procedures, there

is a recent stream of literature that pointed out that lack of elicitability is not relevant

for backtesting of risk measures but rather for comparing the forecast performance of

different estimation methods. Moreover, ES satisfies more general notions of elicitability,

namely conditional elicitability and there are a number of feasible approaches available

to the backtesting of ES (e.g. based on distribution forecasts, linear approximation of ES

with VaR at different confidence levels, or directly with Monte-Carlo tests). It must be

conceded that to reach the same level of certainty more validation data is required for ES

than for VaR. Regarding the question of robustness there are conflicting views that typi-

cally arise from different notions robustness itself. When robustness is to be interpreted

in a precise statistical sense, like in Huber and Ronchetti (2009) or Hampel (1971), there

is a conflict between robustness of a risk measurement procedure and the subadditivity of

the risk measure and Expected Shortfall is not robust. This conclusion seems in line with

the results replacing elicitability by robustness. However, Expected Shortfall is robust

with respect to a stronger notion metric namely the Wasserstein distance. In addition,

researches related to risk aggregation, show that VaR is less robust compared to ES with

respect to dependence uncertainty in aggregation.

The above publications and discussions show that there is no widely accepted concept

of risk measure that satisfies the various stakeholders involved. Clearly, when looking at

the discussion in order to make the international banking and insurance world a safer

place for all involved, a whole new field of research is opening up. At this moment, it is

difficult to identify the right approach.

ES seems the best for use in practice, despite some caveats with regard to its estimation

and backtesting, which can be carefully mitigated. As argued also by Emmer et al. (2015)

there is not currently sufficient evidence to justify an all-inclusive replacement of ES by

its recent competitor Expectile. Nonetheless, it is certainly worthwhile to keep in mind

Expectiles as an alternatives to ES and VaR in specific applications. Whereas there is

a tendency to move from VaR to ES, for a while both risk measures will coexist for

regulatory purposes.

Building on these reasons, for the purpose of this thesis we adopt both VaR and ES

as risk measures in our model. This will allow us to compare their performance within

our framework.
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1.5 Organization of the thesis

The thesis is divided into two main parts: the first part (Chapter 1) widely discuss the

purpose of this research, providing a complete overview of the motivation and key aspects

of the theme. The first chapter offers an extensive discussion of the importance of the

topic in the context of financial and insurance applications, including the current capital

modelling framework, as well as an introduction to risk measures and a recap on standard

portfolio selection theory. The second part, represents the core of our work, which is

structured in 3 chapters (Chapters 2, 3, and 4) devoted to providing details regarding the

methodology of the empirical study and ultimately giving a presentation of the empirical

results. Thus, the rest of the dissertation is structured as follows:

Chapter 2 is dedicated to presenting the core methodology of our work. We begin by

reviewing the fundamentals of Markowitz’s MVO approach; useful to introduce our

optimal portfolio allocation problem and to understand how we overcame the two main

MPT’s assumptions. We then introduce extreme value theory (EVT), providing an

overview of its role in risk management (RM), as a method for modelling and measur-

ing extreme risks. The main theoretical results of the so called “threshold exceedances

approach”, upon which we build our model, are presented in detail. All of the pre-

liminaries are employed to build and formally define the optimal portfolio selection

problem. Finally, we discuss several practical but crucial aspects characterising the

EVT modelling implementation;

Chapter 3: is devoted to the presentation of a multivariate framework for studying the

dependence among rare events in finance, suitable when asset returns consist of more

than one component, as in the case of a portfolio. We aim at performing an analysis

to identify the correct extremal dependence structure of the portfolio’s constituents

and to understand how this may impact the optimal asset allocation problem. For

this purpose two measures from multivariate EVT are introduced χ̄ and χ, and their

estimation and statistical inference via the Hill estimator is discussed;

Chapter 4: This final chapter outlines the application of the methodology presented in

Chapters 2 and 3 to a portfolio of international equity market indices, leading up to

the concluding section 4.6 . In particular, in the empirical application we consider the

equity indices of twelve large capitalization international markets. Thomson Reuters

Datastream is the data source and the time series of the total market indices cover

the period from 02-Jan-1980 to 30-Aug-2016. The portfolio optimisation is performed

considering the market equity indices of the Group of Five G-5 countries: France,

Germany, Japan, the United Kingdom, and the United States.
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Conference presentations

The material discussed in this thesis, with slight variations, has been presented throughout

the last academic year at the following international Conferences:

• Astin Colloquium 2016 of the International Actuarial Association (IAA), held in

Lisbon (Portugal) between 31th May 2016 and 3rd June 2016. Organisation: the

Portuguese Institute of Actuaries (IAP) and the ASTIN Section of the IAA;

• Invited speaker at the 5thIberian Congress of Actuaries 2016, Lisbon (Portugal),

6th − 7th June 2016. Organisation: the Portuguese Institute of Actuaries (IAP) and

the the Spanish Institute of Actuaries (IAE);

• 3rd European Actuarial Journal Conference 2016, held in Lyon (France) in

September 5th−8th, 2016. Organisation: Institut de Science Financière et d’Assurance

(ISFA, Universitò Lyon 1) and Institut des Actuaires (IA).
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Chapter 2

Portfolio optimisation using EVT

This chapter is dedicated to presenting the core methodology of our work. In a world

where the new regulatory framework of financial sectors (banking and insurance) require

a proper understanding of managing risks, and give importance to extreme adverse events,

this thesis focusses upon solving the optimal selection problem in a consistent manner.

2.1 Introduction

The question of properly modelling key aspects of real-world optimum portfolio choice

problems of individuals and institutions, has always been an important focus for the

academic research as well as practitioners’ interest, whose earning depends on the outcome

of their investment decisions.

The modern portfolio selection theory can be traced back to the seminal work by

Markowitz, and his mean-variance formulation clearly had far-reaching impact on finance.

It changed the focus of investment analysis away from individual security selection toward

the concept of diversification and the impact of individual securities on a portfolio’s risk-

return characteristics. Markowitz claims that an investor who wants to decide how to

allocate funds among various assets should act maximising expected portfolio return while

minimising portfolio risk, measured using the variance operator. Moreover, for investors

willing to assume normally distributed returns, he showed that solving the asset allocation

problem was as straightforward as solving a system of linear equations (see Section 2.2).

Markowitz’s famous paper is usually the only contribution many of us might recognise.

Actually, many years later, comparing Roy’s paper (Roy, 1952) to his own, Markowitz

(1999) writes “On the basis of Markowitz (1952), I am often called the father of modern

portfolio theory (MPT), but Roy (1952) can claim an equal share of this honour”.

Roy claims that most firms are primarily concerned with avoiding possible disaster,

and thus define the so called principle of Safety First which asserts that “it is reasonable,
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and probable in practice, that an individual will seek to reduce as far as is possible the

chance of a catastrophe occurring1”. This concept was introduced by Roy (1952) and

then further developed by Arzac and Bawa (1977).

To optimally allocate wealth among assets, a safety-first firm defines a threshold d,

below which the portfolio wealth is considered to be a disaster. In this framework, while

Markowitz is concerned about the variability of a portfolio, Roy is rather interested in

avoiding extreme losses through minimizing the disaster probability.

The safety-first criterion was originally stated in terms of securing a minimal return

level with a high probability. The impractical original problem, was made operational by

Roy himself through the use of Bienaymé-Tchebycheff inequality to derive an upper bound

for the disaster probability, and then solves a surrogate problem of the original safety-first

formulation by minimizing this upper bound under a single-period setting. However, the

problem is that while this bound is robust, it is also a highly inaccurate estimate of the

downside risk.

Contrary to the Markowitz’s approach, concentrating on the first and second order

central moments, Roy’s safety-first principle is concerned more about the extreme events

with significant magnitude that clearly lies in the tail of the probability distribution.

When tackling the portfolio selection problems under the safety-first principle, almost all

the works in the literature deviate from the original conceptual framework set by Roy

that consist in minimizing the disaster probability, while subject to a budget constraint

and a mean constraint.

The first approximation approach is to replace the disaster probability by its upper

bound as Roy does himself. The second approximation approach in the literature of the

safety-first principle is to remove the mean constraint, while keeping the disaster proba-

bility as the objective to be minimized. A possible reason to ignore the mean constraint

could be due to the fact that Roy does not mention it explicitly in his paper; many authors

argue, however, that Roy does it implicitly in the article2. Roy is, without doubt, the

father of using a probability objective or probability constraint in asset allocation.

In this thesis we develop a methodology that is consistent with the safety-first invest-

ment strategy just presented. We have several motives for this research approach. First,

we believe portfolio selection with limited downside risk to be a practical problem. Even

if agents are endowed with standard concave utility functions such that to a first order

approximation they would be mean-variance optimisers, practical circumstances often im-

pose constraints that elicit asymmetric treatment of upside potential and downside risk.

1Such a principle has been applied to the theory of risk in insurance companies. See Cramér (1930).
2In Roy (1952) on p.434, the author states that “If in default of minimizing P (ξ ≤ d), we operate

on σ2/(m − d)2 , this is equivalent to maximizing (m − d)/σ . . . ”, where, in terms of Roy’s notations, ξ
is the final wealth, σ2 is its variance and m its expected value, while d is the preselected disaster level.
Mathematically, the two expressions are equivalent if and only if m > d. Thus, the mean constraint
(m > d) is indeed included in Roy’s original safety-first principle.
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2.1. Introduction

For instance, prudential regulation of banks and insurance companies request to those

institutions to calculate their capital requirements using quantile-based or mean-based

risk measures, like VaR and ES respectively. Likewise, pension funds are often required

by law to structure their investment portfolio such that the risk of underfunding is kept

very low, e.g. equity investment may be capped. Second, there is a wealth of experimental

evidence for loss aversion (see for instance Knetsch and Thaler, 1990). Other evidence is

provided through consumption behaviour: for example Deaton (1991, 1992) shows that

consumption responds asymmetrically to good and bad states.

In general, the inclusion of downside risk measures in portfolio optimisation problem

represent the more natural way of characterising the mindset of very risk averse investors

who act primarily to guard against catastrophic losses.

Although variance is still universally recognised as a possible risk measure, it is often

not completely adequate for the type of risk that regulators and practitioners are trying

to evaluate and manage. In light of the evidence in favour of investors’ sensitivity to

downside losses, we replace the symmetric variance with the two risk measures commonly

used in finance: Value at Risk and Expected Shortfall. Assessing risks using these quantile

or mean based measures is consistent with the safety-first approach3 of Roy (1952) and

Arzac and Bawa (1977)4.

Choosing this framework we do not mean to claim that this is the best choice one could

made in every situation and we should abandon the MVO. Indeed, as argued by Bensalah

et al. (2002):

“There is no final answer or optimal measure of risk”

The optimality of a given allocation is conditional on the actual correspondence of its

underlying assumptions to the risk preference of the investor. In our case, a plausible

profile of risk preference, alternative to that based on variance, that matches the idea

of an investor very concerned with extreme events (that cause large losses), is perfectly

represented and justified by the safety-first criterion.

The past few decades have witnessed numerous extensions and generalizations of

Markowitz’s groundbreaking classic model and typically mainstream finance rests on the

assumption of normality. For normally distributed returns, using V aRα or ESα poses no

difficulty, due to the following feature of the normal distribution, or in general elliptical

distributions: a linear combination of the marginal components is again normally dis-

tributed. If we assume that asset returns are multivariate normally distributed, then any

3Notice that risk minimisation with respect to VaR or ES and with reference to the failure probability
are, with minor variations, the same problem.

4They noted that the original criterion fails to order risky assets, which are unambiguously ordered by
the principle of absolute preference. By considering a lexicographic form of the safety-first principle, to
the extent that the investor is only concerned about safety when the failure probability is above a critical
level and otherwise maximizes expected return, and by allowing for borrowing and lending, the authors
were able to resolve the theoretical shortcomings of the original criterion.
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linear combination of those assets (a linear portfolio of the assets) is normally distributed.

If X ∼ N(0, σ2
X) represents the losses of any such portfolio, then the VaR at confidence

level α is V aRα(X) = σXΦ−1(α), where Φ(z) = P (Z ≤ z) and Z ∼ N(0, 1). This implies

that the VaR of the portfolio is a simple linear transformation of the portfolio’s variance.

Therefore, choosing weights which minimize the portfolio’s variance is equivalent to choos-

ing weights which minimize the value at risk, or for that matter, the expected shortfall.

These weights will not depend on the confidence level α.

However, several empirical studies found out that the distribution of financial returns

actually exhibits heavy tails and asymmetry, features that cannot be described only look-

ing at its mean and variance5. Such departure from normality is crucial for safety-first

investors. Ignoring this evidence could lead to systematically underestimate the probabil-

ity of observing very large losses on the portfolio, and might result in an optimistic asset

allocation.

The question, then, is whether it is possible to improve the estimate of the two risk

measures taking into account the heavy tailed feature of asset returns, generating failure

probabilities that are considerably different from normal probabilities. Since in our setting

we are concerned with extreme market movements, and moreover VaR/ES calculations,

by definition, deal with the tails of a probability distribution, techniques from Extreme

Value Theory (EVT) may be particularly effective.

In this work we examine the optimal portfolio selection problem for risk averse investors

who are concerned with extreme market movements and aim to reduce the risk of suffering

from unexpected large losses. We build our model relying on Roy’s safety first approach to

investment strategy and writing downside risk in terms of portfolio Value-at-Risk (VaR)

and Expected Shortfall (ES). These are currently the most used risk measures in the

financial world. Time series of financial asset values exhibit well known statistical features,

such as heavy tails. Therefore, in order to take into account this aspect, we relax the

normality assumption that characterised the MPV, and apply the tools of univariate

extreme value theory to the asset allocation problem. Classical Extreme Value Theory

(EVT), through the threshold exceedances approach, yields a methodology for modelling

the tails of the distribution and estimating the risk measures.

This enables a much more generalised framework to be developed, employing the dis-

tributional assumption most appropriate to the type of financial assets. The identified

optimal portfolio is then compared with the one obtained under the classical MPT frame-

work. For problems involving downside risks, that are far in the tails of the distribution

(high confidence level α for the risk measures), we expect our technique to outperform

the MVO; as it is built upon knowledge of the tail behaviour that must be followed by

5Widely discussed in Section 1.3.2 b Chapter 1.
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any unbounded fat-tailed distribution.

In addition, we perform an analysis to quantify and to understand how the extremal

dependence between markets may impact the asset allocation problem. EVT provides

useful dependence measures for this purpose (Coles et al., 2001), and we find that about

half of the international equity markets examined are asymptotically independent. This

asymptotic independence should induce a greater benefit to diversification as we move

deeper into the tail (at the highest quantiles α). The methodology is tested on real data

and applied to portfolios made up of international equity market indices.

2.1.1 Overview of related work

The safety-first approach to portfolio selection calls for accurate estimates of the failure

probability. In this sense, as far as failure can be considered a rare event, EVT provides

suitable tools for accurate calculations. Managing extreme market risk is a goal of any

financial institution or individual investor and is nowadays also the focus of financial

regulators and their effort to guarantee solvency of the whole system.

The approach to EVT in this thesis follows most closely Embrechts et al. (1997);

McNeil et al. (2005, 2015) that is a priceless resource for the application of univariate

extreme value theory in the Insurance and Finance fields. Other texts on EVT include for

example Beirlant et al. (1996, 2004); De Haan and Ferreira (2006); Falk et al. (2011) and

Reiss et al. (2007). All of these texts emphasize applications of the theory in insurance

and finance although much of the original impetus for the development of the methods

came from hydrology. The application of EVT to financial modelling is a growing field and

the literature is wide; the theory for multivariate extreme value theory is fully developed

for instance in Resnick (1987) while the book by Coles et al. (2001) provides an excellent

introduction to the application of both univariate and multivariate extremes.

The first influential studies applying EVT to VaR computation are the following:

Embrechts et al. (1998, 1999) Pownall and Koedijk (1999), Danielsson and de Vries (1997b,

2000); Danielsson et al. (1998), Longin (2000, 2001), McNeil (1997, 1998); McNeil and Frey

(2000) and Neftci (2000).

Embrechts et al. (1999) advocate the use of a parametric estimation technique which

is based on a limit result for the excess-distribution over high thresholds. This approach

will be adopted in this thesis to estimate return distributions of financial time series

via EVT6. Longin (2000) and McNeil (1998) use estimation techniques based on limit

theorems for block maxima. Longin ignores the stochastic volatility exhibited by most

financial return series and simply applies estimators for the i.i.d.-case. McNeil, instead,

uses a similar approach but shows how to correct for the clustering of extremal events

6Explained in detail in Section 2.3.
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caused by stochastic volatility. Danielsson and de Vries (1997a,b) use a semiparametric

approach based on the Hill-estimator of the tail index. In Pownall and Koedijk (1999),

the authors study the crisis of Asian markets, and provide a conditional approach to

VaR calculation via the use EVT. They find that the methodology yields an improvement

in VaR estimation, compared to the technique employed by RiskMetrics. Neftci (2000)

compares the EVT approach to VaR calculation to the standard one based on the normal

distribution, dealing with several interest rates and exchange rates. Much more research

comparing EVT-driven estimates of VaR to other approaches (both standard and new

ones) has been done since these seminal papers appeared. The main overall conclusions one

can draw from analysing this literature is that: EVT based estimates of VaR outperform

estimates obtained with other methodologies for very high quantiles, namely for α ≥ 0.99;

moving further into the tails, the EVT estimates improve; when α < 0.99, evidence is

mixed and EVT can perform worse than other techniques.

The following literature, instead, extends the use of extreme value theory for statisti-

cally estimating extremal risk measures based on time series observations, to the problem

of portfolio choice.

Jansen et al. (2000); Jansen (2001) use univariate semi-parametric EVT approach in

the context of portfolio selection with limited downside risk to construct optimal safety-

first portfolios. In their framework, they face the problem of choosing between investing

in a mutual fund of bonds or a mutual fund of stocks, and find that an assumption of tail

fatness is plausible and employ EVT (precisely, the Hill estimator) to calculate the risk

associated to each possible portfolio. Along similar lines, Susmel (2001) apply EVT on the

tails of the unconditional distribution of Latin American emerging markets stock returns

and studies their implications for portfolio diversification of a US investor according to

the safety first criterion. The authors find that the Latin American emerging markets

have significantly fatter tails than industrial markets, especially, the lower tail of the

distribution.

Hyung and De Vries (2007) consider the portfolio problem of choosing the mix be-

tween stocks and bonds under a downside risk constraint. They remarks that downside

risk criteria for portfolio selection, like the safety-first approach, often yield corner so-

lutions, namely portfolio combinations in which only the least risky assets are chosen.

The authors argue that this is due to a focus on a first-order asymptotic expansion of

the tail distribution of stock returns, while a second order expansion of the downside risk

provides more balanced solutions, in which some proportion of risky assets appears in the

optimal portfolio mix as well. Empirical evidence of this theoretical insight is presented

by computing optimal portfolios for the problems considered in Jansen et al. (2000) and

Susmel (2001) with their new approach, and showing that in this way corner solutions

appear less frequently.
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Consigli (2002), solves the asset allocation problem in a mean-VaR setting with data

including the Argentinean Eurobond crisis of July 2001, and evaluating downside risk by

means of both EVT and a jump-diffusion model. Both methods yield accurate estimates

of the tail risk in the cases analysed; the latter seems to be more accurate, while the

former provides more stable estimates, thus being more appropriate for the determination

of capital adequacy in which a regulator is interested.

The mean-VaR portfolio selection problem is analysed also by Bensalah et al. (2002)

who considers both the direct problem of maximizing return, subject to a constraint on

the VaR, and its dual, that is the problem of minimizing VaR, subject to a lower bound

constraint to the expected return. Bensalah makes a comparison between different ways of

calculating VaR: duration, historical simulation, normal VaR with normality assumption

and EVT. Considering a portfolio of two fixed-income securities (a 1-year treasury-bill

and a 5-year zero-coupon bond) and several highly conservative values for the confidence

levels, he finds that historical simulation and normal VaR lead to the same allocation

irrespectively of the given confidence level: investing the whole capital in the short-term

security, both in the maximum return and in the minimum risk problem. This is not the

case when they consider EVT based calculations of VaR. Indeed, two important features

appear: first the portfolio composition changes as the confidence level grows; second, the

riskier (in terms of duration) asset is given non-zero weight (in particular, is an increasing

function of the confidence level). In addition, they show that its weight is greater in the

minimum risk than in the maximum return problem.

Therefore, Bensalah concludes that an EVT approach, being tailored on extreme

events and differently responding to various confidence levels, seems to be better suited

to regulatory purposes and to cope with periods of market stress.

Finally, Bensalah et al. (2002) proposes an algorithm to solve the problem when dealing

with multiple assets. The reason for its introduction is the relevance of the dimensionality

issue in portfolio selection. An improvement over this algorithm is provided by Bradley

and Taqqu (2004b); this article, together with Bradley and Taqqu (2004a), are our selected

benchmark papers.

2.1.2 Organisation of the chapter

This chapter outlines the following sections: Section 2.2 review the fundamentals of

Markowitz’s MVO approach in order to introducing our optimal portfolio allocation prob-

lem and to understand how we overcame the two main MPT’s assumptions.

In Section 2.3, a brief introduction to the broad variety techniques that EVT offers is

given. We then present the main theoretical results of the so called “threshold exceedances

approach”, upon which we build our model.

The next Section 2.4 is dedicated to formalising the key assumption, that allow us to
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model the excess distribution above a fixed threshold of a generic risk, via a Generalised

Pareto distribution (GPD). Further, the estimation method to perform the GPD fit is

discussed. These are then used in Section 2.5 to define estimators for the tail probabilities

and for the two risk measures V aRα and ESα.

All of these preliminaries are employed in Section 2.6 to build and formally define

our optimal portfolio selection problem for risk averse investors who are concerned with

possible extreme market movements. Firstly, this involves the need of introducing some

preliminary notation and defining our setting. The rv loss of the portfolio P is derived

in order to then properly formalise the asset allocation problem. Secondly, its specific

modelling via the univariate EVT approach structure variable method (SVM) and all the

expressions for the variables of interest are presented.

Finally, in Section 2.7, we discuss several practical aspects characterising the EVT

modelling implementation. First, we deal with the estimation procedure on a data sam-

ple of multivariate observations. Second, we examine the problem of choosing a proper

threshold over which fitting our GPD model. Lastly, a two stage methodology is presented

to perform the optimisation needed considering multiple markets. This is necessary as the

method usually applied to the bivariate asset problem (called brute force method) becomes

numerically intractable. In this section we will also perform a simulation study in order

to better understand the sensitivity of the EVT threshold exceedances approach to the

choice of the threshold. Both the non parametric (Hill estimator) and fully parametric

(GPD model) are considered. We find that, in this case, the GPD-based tail estimator is

more robust to threshold changes then the Hill method.

2.2 Mean variance optimisation

Markowitz’s seminal paper on portfolio selection undoubtedly has had a major impact

not only on academic research but on the financial industry as a whole. It contains the

first mathematical formalisation of the idea of diversification of investments: the financial

version of “the whole is greater than the sum of its parts”. In the MVO framework,

efficient portfolios are formed by choosing an asset based upon its interaction with other

assets in the portfolio as well as on its contribution to the overall portfolio, and not on

the basis of its standalone performance. He postulates that an investor should maximize

expected portfolio return while minimising portfolio risk, measured as variance of portfolio

return. Let us present more details on the mathematical model.

Consider an investment universe of with d different assets S1, S2, . . . , Sd with uncertain

future returns R1, R2, . . . , Rd. We denote by R = [R1, . . . , Rd]
T the vector of these returns.

A portfolio is represented by the n-dimensional vector ω = [ω1, . . . , ωn]T where ωi denotes

the proportion of the total funds invested in security i. The Ri are considered to be
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random variables, while the ωi, i = 1, . . . , d are fixed by the investor.

The (uncertain) return of the portfolio, RP , depends linearly on the weights ω and is

expressed as

RP (ω) = ω1R1 + ω2R2 + · · ·+ ωnRd = ωTR

The yield RP on the portfolio as a whole is a random variable as well, being a weighted

sum of the Ri random variables. The return RP (t) of a portfolio at time t can be defined

to be the total value Pt of the portfolio divided by the total value at an earlier time t− 1,

that is

RP (t) =
Pt
Pt−1

− 1

hence its simply the percentage change in the value from one time to another. Markowitz

portfolio theory provides a method to analyse how good a given portfolio is only looking

at the mean and the variance of the returns of the assets contained in the portfolio.

Notation. Defining Ω, a subset of Rd, as the set of permissible portfolios, ω ∈ Ω means

that the portfolio weights have to satisfy the constraints we impose upon our portfolio.

We represent the expected returns of the securities by µ = [µ1, ..., µd]
T, where µi = E(Ri),

i = 1, . . . , d. Therefore, since the expectation operator is linear, the expected return from

the portfolio, with weights ω, as a whole is simply the weighted sum of the expected

return from the individual assets

E(RP ) =
d∑
i=1

ωiµi = µTω (2.1)

We denote by σi the standard deviation of Ri, σij ; let ρij be the correlation coefficient

of the returns of assets Si and Sj (for i 6= j), and Σ is the (symmetric) [dxd] covariance

matrix of the returns of all the assets:

Σ =



σ11 σ12 σ13 . . . σ1n

σ21 σ22 σ23 . . . σ2n

...
...

...
. . .

...

σn1 σn2 σn3 . . . σnn


where σii = σ2

i and σij = ρijσiσj (for i 6= j). All valid covariance matrices are positive

semidefinite matrices (namely that ωTΣω > 0, ∀ω), or equivalently, all of their eigen-

values are non-negative. However, we assume that Σ satisfies the stronger property of

positive definiteness (that is ωTΣω > 0, ∀ω 6= 0.), and this is equivalent to say that none

of the assets can be perfectly replicated by a combination of the remaining securities. This
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assumption ensures that Σ is an invertible matrix.

For a given portfolio with weights ω, we can compute the variance and the standard

deviation of the portfolio return as

V arRP (ω) = ωTΣω =
d∑
i=1

d∑
j=1

ωiωjσi,j and σRP (ω) =
√
ωTΣω (2.2)

The standard deviation of the portfolio return, also referred to as portfolio volatility, is

frequently used as a risk measure of the portfolio with weights ω. The variance operator,

is not linear and so the risk of a portfolio, as measured by the variance, is not equal to

the weighted sum of risks of the individual assets.

This provides a way to quantify the benefit of diversification and shows that the rele-

vant risk of an asset is not its stand-alone volatility, but rather its contribution to portfolio

risk, and that this is primarily a question of its covariance with all the other securities in

the portfolio. Henceforth, the concepts of risk and correlation became inseparable.

An investor is supposed to be risk-averse, hence he/she wishes for a low variance on

return (i.e. small risk) and a high expected rate of return is also desired. The mean-

variance optimization problem is the following:

max
ω∈Ω

µTω − λ ωTΣω

where λ is an investor specific risk aversion parameter that determines the trade-off be-

tween expected portfolio return and portfolio risk. The case λ = 0 corresponds to the

investor only caring about getting a large expected return on the portfolio no matter what

the risk is. An increasing λ corresponds to the investor becoming more willing to sacrifice

part of the expected return to bear a lower risk (measured as lower portfolio variance).

Starting with the first paper of Markowitz on the subject, most MVO formulations fea-

tured a variety of constraints.

One formulation we can see very often is the following:

max
ω∈Ω

µTω − λ ωTΣω (2.3)

subject to :

d∑
i=1

ωi = 1 (2.4)

ωi > 0, i = 1, . . . , d (2.5)

The objective models the actual goal of the investor, a tradeoff between risk and reward.

The constraint (2.4) means that the portfolio is fully invested and the condition (2.5),

also known as the long-only investing constraint, is the same as saying that only long

positions are allowed. Therefore, if one wants to include short sales in the model, it will
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be necessary to omit this condition.

Alternative formulations of the MVO problem are obtained by either maximizing the

expected return subject to an upper limit on the portfolio variance, or by minimizing the

portfolio variance subject to a lower limit on the expected return, that is keeping the

constraints but substituting (2.3) with one of the following

max
ω∈Ω

µTω

ωTΣω ≤ σ2
max

min
ω∈Ω

ωTΣω

µTω > Rmin

(2.6)

Here the investor’s goal is split between objective and reward condition. For different

choices of ω the investor will get different combinations of µP = E(RP ) (2.1) and σ2
P =

V arRP (2.2). The set of all possible combinations (µP , σ
2
P ) is called the attainable set. The

set of optimal portfolios with minimum σ2
P for a given or more Rmin and maximum µP for

a given σ2
max or less, are called the efficient set (or efficient frontier); those are optimal in

the sense that an investor cannot achieve a greater expected return, µP , without increasing

his risk, σP . Any rational investor making decisions based only on the mean and variance

of the distribution of returns of a portfolio, wants a high profit and a small risk, and would

only choose to own portfolios on this efficient frontier. The specific portfolio he chooses

depends on his level of risk aversion.

If the constraint set only includes linear equality and inequality constraints then the

MVO is a quadratic program (QP) and can be solved by using standard numerical opti-

mization software. Modern portfolio optimization software can also deal with non-linear

constraints, such as risk limits or risk contribution limits on groups of securities, as well as

constraints with discrete elements such as number of holdings and/or trades constraints.

Such formulations are typically solved by using software that has conic optimization and

integer optimization capabilities7. One of the appeals of MVO in quantitative portfolio

construction is the flexibility this approach offers for incorporating multiple constraints

reflecting client guidelines, regulatory restrictions, as well as the discretionary views of

the portfolio manager.

2.3 Extreme value theory

The statistical analysis of extremes is key to many of the risk management problems

related to insurance, reinsurance, and finance. EVT is a powerful and yet fairly robust

framework for studying the tail behaviour of a distribution, and it is a canonical tool in

the field of rare event estimation.

7See, for example, Fabozzi et al. (2007) for a discussion of numerical optimization software for solving
portfolio optimization problems.
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EVT provides two principal kinds of model for describing the extreme values of a

succession of random variables. Specifically, there are two families of extreme value distri-

butions corresponding to the two possible approaches for sampling extreme events. The

first is generalized extreme value (GEV) distribution that is used in Block Maxima ap-

proach (which models the maxima of a set of blocks dividing the series) and the second is

the generalized Pareto distribution (GPD) employed in the more modern group of mod-

els for threshold exceedances (considering as extreme any observation that exceeds some

high level). The latter type of models are generally considered to be the most useful for

practical applications. The block maxima method has the major defect that it is very

wasteful of data; to perform the analyses one only the maximum losses in large blocks are

retained. For this reason it has been largely superseded in practice by methods based on

threshold exceedances.

The history of EVT dates back to early work by Fisher and Tippett (1928), Gnedenko

(1943), who proved that the limiting distribution of normalized maxima of i.i.d. random

variable (with cumulative distribution function F), belongs to one of the following non-

degenerate distribution families: Weibull, Gumbel, Fréche. When modelling the maxima

of a random variable, extreme value theory plays the same fundamental role as the central

limit theorem plays when modelling sums of random variables. In both cases, the theory

tells us what the limiting distributions are.

We consider a sequence of i.i.d. rvs (Xi)i∈N with unknown underlying distribution

function F . Suppose that block maxima Mn = max(X1, . . . , Xn) of i.i.d. rvs converge

in distribution under an appropriate normalization, that is there exist sequences of real

constants (dn) and (cn), where cn > 0 for all n, such that

lim
n→∞

P

(
Mn − dn

cn
≤ x

)
= lim

n→∞
Fn(cnx+ dn) = H(x) (2.7)

for some non-degenerate cdf H(x) and recalling that P (Mn ≤ x) = Fn(x). The role of

the GEV in the study of maxima is formalized by the following definition and theorem.

Definition 2.1 (maximum domain of attraction). If 2.7 holds for some non degen-

erate cdf H, then F is said to be in the maximum domain of attraction of H, written

F ∈MDA(H).

Theorem 2.1 (Fisher-Tippett, Gnedenko). If F ∈MDA(H) for some non-degenerate

cdf H then H must be a distribution of type Hξ , i.e. a GEV distribution.

Definition 2.2 (GEV). The cdf of the (standard) GEV distribution is given by

Hξ(x) =

exp(−(1 + ξx)−1/ξ) , ξ 6= 0,

exp(−e−x) , ξ = 0,
(2.8)
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2.3. Extreme value theory

where 1 + ξx > 0. A three-parameter family is obtained by defining Hξ,µ,σ(x) = Hξ((x−
µ/σ)) for a location parameter µ ∈ R and a scale parameter σ > 0.

The parameter ξ is known as the shape parameter of the GEV distribution and Hξ

defines a type of distribution, meaning a family of distributions specified up to location

and scaling. The extreme value distribution in Definition 2.2 is generalized in the sense

that the parametric form subsumes three types of distribution which are known by other

names according to the value of ξ : when ξ > 0 the distribution is a Fréchet distribution;

when ξ = 0 it is a Gumbel distribution; when ξ < 0 it is a Weibull distribution.

Considering the broad variety techniques that EVT offers, in this section we will focus

on the threshold exceedances approach, as the method we employ to tackle our portfolio

allocation problem. In particular, we present in detail the parametric GPD approach.

However, this is not the only way available to estimate the tail of a distribution. Indeed,

within the threshold exceedances class of models, one may further distinguish two styles

of analysis. There are the semi-parametric models built around the Hill estimator and its

relatives (Beirlant et al., 1996; Danielsson and de Vries, 1997a; Danielsson et al., 1998)

and the fully parametric models based on the generalized Pareto distribution or GPD

(Embrechts et al., 1998, 1999). Both are theoretically justified and empirically useful

when used correctly. We favour the latter style of analysis for reasons of simplicity, both

of exposition and implementation. One obtains simple parametric formulae for measures

of extreme risk for which it is relatively easy to give estimates of statistical error using

the techniques of maximum likelihood inference8.

EVT-based methods have two features which make them attractive for tail estimation:

they are based on a sound statistical theory and they offer a parametric form for the tail

of a distribution. Hence, these methods allow for some extrapolation beyond the range of

the data, even if care is required at this point.

From a mathematical point of view, the threshold exceedances method is based on

Balkema and De Haan (1974) and Pickands (1975). The statistical theory was initially

worked out by Davison (1984) and Davison and Smith (1990).

2.3.1 General Theory: Threshold Exceedances

Let X1, X2, . . . be identically distributed random variables with unknown underlying dis-

tribution function F (x) = P (Xi ≤ x) (we work with distribution functions and not

densities) representing financial losses. These may have a variety of interpretations, such

as operational losses, insurance losses and losses on a credit portfolio over fixed time in-

tervals. Moreover, they might represent risks which we can directly observe or they might

8A list of pros of using the GPD approach instead of the Hill estimator is provided by McNeil and Frey
(2000), including greater stability with respect to the choice of the cut-off and the possibility of modelling
any kind of extreme value distribution, not only the heavy-tailed ones.
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also represent risks which we are forced to simulate in some Monte Carlo procedure, be-

cause of the impracticality of obtaining data.

Generalized Pareto Distribution. The main distributional model for exceedances

over thresholds is the generalized Pareto distribution (GPD).

Definition 2.3 (GPD). The GPD is a two parameter distribution with distribution

function

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ , ξ 6= 0,

1− exp(−x/β) , ξ = 0,
(2.9)

where β > 0, and x > 0 when ξ > 0 and 0 6 x 6 −β/ξ when ξ < 0. The parameters ξ

and β are referred to, respectively, as the shape and scale parameters.

This distribution is generalized in the sense that it subsumes certain other distributions

under a common parametric form. ξ is the important shape parameter of the distribution

and β is an additional scaling parameter.

If ξ > 0 then Gξ,β(x) is a reparametrized version of the ordinary Pareto distribution,

which has a long history in actuarial mathematics as a model for large losses; ξ = 0 corre-

sponds to the exponential distribution and ξ < 0 is known as a Pareto type II distribution

(short tailed). The first case is the most relevant for risk management purposes since the

GPD is heavy-tailed when ξ > 0. The cdf and pdf of the GPD for various values of ξ and

β = 1 are shown in Figure 2.1.

Whereas the normal distribution has moments of all orders, a heavy-tailed distribution

does not possess a complete set of moments. In the heavy-tailed case, GPD with ξ > 0,

one can find that E[Xk] = ∞ for k > 1/ξ9. For example, when ξ = 1/2, the GPD is an

infinite variance (second moment) distribution; when ξ = 1/4, the GPD has an infinite

fourth moment. The mean of the GPD is defined provided ξ < 1 and is

E(X) = β/(1− ξ). (2.10)

Excess Distributions. The role of the GPD in EVT is as a natural model for the

excess distribution over a high threshold. We define this concept along with the mean

excess function, which will also play an important role in the theory.

Definition 2.4 (excess distribution over threshold u). Let X be an rv with cdf F .

The excess distribution (also known as distribution of excesses losses) over the threshold

u has cdf

Fu(x) = P (X − u ≤ x | X > u) =
F (x+ u)− F (u)

1− F (u)
(2.11)

for 0 6 x < xF − u, where xF 6∞ is the right endpoint of F .

9This is also discussed in Section 3.3.2 Chapter 3 as a consequence of Theorem 3.1 by Gnedenko (1943).
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2.3. Extreme value theory

Figure 2.1: (a) Distribution function of GPD in three cases: the solid line corresponds
to ξ = 0 (exponential); the dotted line to ξ = 0.5 (a Pareto distribution); and the dashed
line to ξ = −0.5 (Pareto type II). The scale parameter β is equal to 1 in all cases. (b)
Corresponding densities.

The excess cdf Fu describes the distribution of the excess loss over the threshold u,

given that u is exceeded. It is very useful to observe that it can be written in terms of the

underlying F . Mostly we would assume our underlying F is a distribution with an infinite

right endpoint, i.e. it allows the possibility of arbitrarily large losses, even if it attributes

negligible probability to unreasonably large outcomes, e.g. the normal or t-distributions.

But it is also conceivable, in certain applications, that F could have a finite right endpoint.

An example is the beta distribution on the interval [0; 1] which attributes zero probability

to outcomes larger than 1 and which might be used, for example, as the distribution of

credit losses expressed as a proportion of exposure.

In survival analysis the excess cdf is more commonly known as the residual life cdf ; it

expresses the probability that, say, an electrical component which has functioned for u

units of time fails in the time period (u, u+ x].

Definition 2.5 (mean excess function). The mean excess function of an rv X with

finite mean is given by

e(u) = E(X − u | X > u). (2.12)

The mean excess function e(u) expresses the mean of Fu as a function of u. The mean

excess function is known as the mean residual life function and gives the expected residual

lifetime for components with different ages. For the special case of the GPD, the excess

cdf and mean excess function are easily calculated.
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Example 2.1 (excess distribution of exponential and GPD). If F is the cdf of an

exponential rv, then it is easily verified that Fu(x) = F (x) for all x, which is the famous

lack-of-memory property of the exponential distribution, namely the residual lifetime of

the aforementioned electrical component would be independent of the amount of time

that component has already survived. More generally, if X has cdf F = Gξ,β, then, using

(2.11), the excess cdf is easily calculated to be

Fu(x) = Gξ,β(u)(x), β(u) = β + ξu, (2.13)

where 0 6 x < ∞ if ξ > 0 and 0 6 x 6 −(β/ξ) − u if ξ < 0. The excess distribution

remains a GPD with the same shape parameter ξ but with a scaling that grows linearly

with the threshold u. The mean excess function of the GPD is easily calculated from

(2.13) and (2.10) to be

e(u) =
β(u)

1− ξ
=
β + ξu

1− ξ
, (2.14)

where 0 6 u < ∞ if 0 6 ξ < 1 and 0 6 u 6 −β/ξ if ξ < 0. It may be observed that the

mean excess function is linear in the threshold u, which is a characterizing property of the

GPD.

Example 2.1 shows that the GPD has a kind of stability property under the operation

of calculating excess distributions. We now give a mathematical result that shows that

the GPD is, in fact, a natural limiting excess distribution for many underlying loss distri-

butions. The following limit theorem is a key result in EVT and explains the importance

of the GPD.

Theorem 2.2 (Pickands (1975)-Balkema and De Haan (1974)). We can find a

(positive-measurable) function β(u) such that

lim
u→xF

sup
06x<xF−u

| Fu(x)−Gξ,β(u)(x) |= 0, (2.15)

if and only if F ∈MDA(Hξ)
10, ξ ∈ R.

That is, for a large class of underlying distributions F (in particular those F for which

normalized maxima converge to a GEV distribution11), as the threshold u is progressively

raised, the excess distribution Fu converges to a generalized Pareto; moreover, the shape

parameter of the limiting GPD for the excesses is the same as the shape parameter of the

limiting GEV distribution for the maxima. Essentially all the commonly used continuous

distributions of statistics are in MDA(Hξ) for some ξ, so Theorem 2.2 proves to be a very

10This notation means that F is in the maximum domain of attraction of Hξ.
11The class contains all the common continuous distributions of statistics and actuarial science (normal,

lognormal, χ, t, F , gamma, exponential, uniform, beta, etc.).
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widely applicable result that essentially says that the GPD is the canonical distribution

for modelling excess losses over high thresholds.

2.4 Modelling Excess Losses

Our model for a generic risk Xi having distribution F assumes that, for a certain u, the

excess distribution above this threshold may be taken to be exactly GPD for some ξ and

β. We exploit Theorem 2.2 by assuming that we are dealing with a loss distribution

F ∈ MDA(Hξ) so that, for some suitably chosen high threshold u, we can model Fu by

a generalized Pareto distribution. We formalise this with the following assumption.

Assumption 2.1. Let F be a loss distribution with right endpoint xF and assume that

for some high threshold u we have

Fu(x) = Gξ,β(x)

for 0 6 x < xF − u and some ξ ∈ R and β > 0.

This is clearly an approximation based on the asymptotic EVT results, since in practice

the excess distribution will generally not be exactly GPD.

2.4.1 The method: GPD fit

Assuming we have realisations of our loss rvs we use statistics to make the model more

precise by choosing a sensible u and estimating ξ and β. Given loss data X1, . . . , Xn

from F , a random number Nu will exceed our threshold u; it will be convenient to relabel

these data X̃1, . . . , X̃Nu . For each of these exceedances we calculate the amount Yj =

X̃j − u of the excess loss. We wish to estimate the parameters of a GPD model by fitting

this distribution to the Nu excess losses. There are various ways of fitting the GPD

including maximum likelihood (ML) and probability-weighted moments (PWM)12. The

former method is more commonly used and is easy to implement if the excess data can

be assumed to be realizations of independent rvs, since the joint density will then be a

product of marginal GPD densities.

Writing gξ,β for the density of the GPD, the log-likelihood may be easily calculated to

be

lnL(ξ, β;Y1, ..., YNu) =

Nu∑
j=1

ln gξ,β(Yj) = −Nu lnβ −
(

1 +
1

ξ

) Nu∑
j=1

ln

(
1 + ξ

Yj
β

)
, (2.16)

12A method proposed by Hosking et al. (1985).
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which must be maximized subject to the parameter constraints that β > 0 and 1+ξ
Yj
β > 0

for all j . Solving the maximization problem yields a GPD model Gξ̂,β̂(x) for the excess

distribution Fu.

Remark 2.1 (Non-i.i.d. data.). For insurance or operational risk data the i.i.d. as-

sumption is often unproblematic, but this is clearly not true for time series of financial

returns. If the data are serially dependent but show no tendency to give clusters of ex-

treme values, then this might suggest that the underlying process has extremal index

θ = 1. In this case, asymptotic theory (see Section 7.4 in McNeil et al. (2005)) suggests a

limiting model for high-level threshold exceedances, in which exceedances occur according

to a Poisson process and the excess loss amounts are i.i.d. generalized Pareto distributed.

If extremal clustering is present, suggesting an extremal index θ < 1 (as would be consis-

tent with an underlying GARCH process), the assumption of independent excess losses is

less satisfactory. The easiest approach is to neglect this problem and to consider the ML

method to be a quasi-maximum likelihood (QML) method, where the likelihood is misspec-

ified with respect to the serial dependence structure of the data. We follow this course

in this thesis. First of all because the i.i.d. assumption is a convenient starting point in

order to develop our methodology. Second, it may not affect our conclusions since, the

point estimates will still be reasonable (unbiased estimators); although standard errors

may be too small Kearns and Pagan (1997). However, the latter do not directly impact

the portfolio allocation problem as we will see in detail later on.

2.5 Modelling Tails and Measures of Tail Risk

In this section we describe how the GPD model for the excess losses is used to model the tail

of the underlying loss distribution F and to estimate associated risk measures. Wherever

the tail of a loss distribution is of interest, whether for market, credit, operational or

insurance risks, the threshold exceedances method provides a simple tool for modelling

and estimating measures of tail risk.

2.5.1 Tail distribution

To make the necessary theoretical calculations we again make Assumption 2.1.

In view of (2.11) we have for 0 6 x < xF − u, that F (x+ u) = F (u) + (1− F (u))Fu(x).

By setting y = u+ x and being F̄ (y) = 1− F (y) = P (Y > y),∀y > u we get

F (y) = F (u) + (1− F (u))Fu(y − u)

= 1 + F̄ (u)[Fu(y − u)− 1], u 6 y < xF
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2.5. Modelling Tails and Measures of Tail Risk

This formula shows that we may move easily to an interpretation of the model in terms

of the tail of the underlying distribution F (y) for y > u. Indeed, continuing from the

previous expression and using (2.9), we obtain

F̄ (y) = F̄ (u)[1− Fu(y − u)]

= F̄ (u)F̄u(y − u) = F̄ (u)[1−Gξ,β(y − u)] (2.17)

= F̄ (u)

(
1 + ξ

y − u
β

)−1/ξ

, u 6 y < xF (2.18)

The expression (2.18), knowing F̄ (u), gives us a formula for the tail probabilities under

the parametric GPD method. We would have obtained the tail decomposition (2.17) also

observing that, for x > u13

P (X > x) = P (X > u)P (X > x | X > u)

= P (X > u)P (X − u > x− u | X > u)

= F̄ (u)F̄u(x− u).

2.5.2 Value at Risk

Mathematically we define our measures of extreme risk in terms of the loss distribution

F . Let the confidence level of our risk measures be 0.95 6 α < 1. Value-at-Risk (VaR) is

the αthquantile of the distribution F , that is

V aRα = F−1(α)

where F−1 is the inverse of F. For a given probability α > F (u) the VaR estimate is

calculated by conveniently inverting the tail formula (2.18). Solving the following

α = F (V aRα) = 1− F̄ (V aRα) = 1− F̄ (u)

(
1 + ξ

V aRα − u
β

)−1/ξ

we get a parametric expression for the quantile based risk measure, that is

V aRα = u+
β

ξ

((
1

F̄ (u)
(1− α)

)−ξ
− 1

)
(2.19)

2.5.3 Expected shortfall

Expected shortfall at a confidence level α is the expected loss size, given that V aRα is

exceeded.

13Kolmogorov defines conditional probabilities as P (A|B) = P (A ∩ B)/P (B), P (B) > 0. Therefore,
P (X > x | X > u) = P (X > x)/P (X > u), x > u.
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ESα = E[X | X > V aRα]

It may also be obtained by using the model of the tail of the distribution given in Eq.

(2.18). Indeed, for the linearity of expectation and recalling the mean excess function

expression presented in Definition 2.5, we have

ESα = E[X − V aRα + V aRα | X > V aRα]

= E[X − V aRα | X > V aRα] + E[V aRα | X > V aRα]

= E[X − V aRα | X > V aRα] + V aRα

= e(V aRα) + V aRα (2.20)

Suppose the random variable Y has a generalized Pareto distribution with shape parame-

ter ξ < 1, this condition is necessary for the expected value to exist, and scale parameter

β. Then for s < xF the mean excess function is linear in the threshold s, as we showed in

the Example 2.1 Eq. (2.14) and is given by e(u) =
β + ξs

1− ξ
, β + ξs > 0. Therefore, using

this expression, the Definition of mean excess function 2.5, and the following relation

eY (s) = eY−u(s− u)14

we obtain a parametric expression for the Expected Shotfall starting from (2.20)

ESα = eY−u(V aRα − u) + V aRα =
β + ξ(V aRα − u)

1− ξ
+ V aRα

=
V aRα
1− ξ

+
β − uξ
1− ξ

(2.21)

2.5.4 Estimation in practice

We note that, under Assumption 2.1, tail probabilities, VaRs and expected shortfalls are

all given by formulas of the form g(ξ, β, F̄ (u)). Assuming that we have fitted a GPD to

excess losses over a threshold u, as described in Section 2.4.1, we estimate these quantities

by first replacing ξ and β in formulas (2.18),(2.19),(2.21) by their estimates ξ̂, β̂. Of

course, we also require an estimate of F̄ (u). For this purpose we take the obvious empirical

estimator

̂̄F (u) =
Nu

n
, where Nu =

∑n
i=1 1{Xi>u}

and n is the total number of observations. That is, we use the method of historical simula-

tion (HS). In doing this, we are implicitly assuming that there is a sufficient proportion of

sample values above the threshold u to estimate F̄ (u) reliably. An immediate question is,

why do we not use the HS method to estimate the whole tail of F (x) (i.e. for all x > u)?

14eY−u(s− u) = E(Y − u− (s− u) | Y − u > (s− u)) = E(Y − s | Y > s) = eY (s).
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This is because historical simulation is a poor method in the tail of the distribution where

data become sparse. In setting a threshold at u we are judging that we have sufficient

observations exceeding u to enable a reasonable HS estimate of F (u), but for higher levels

the historical method would be too unreliable. We hope to gain over the empirical method

by using a kind of extrapolation based on the GPD for more extreme tail probabilities

and risk measures. For tail probabilities we obtain an estimator, first proposed by Smith

(1987), of the form ̂̄F (y) =
Nu

n

(
1 + ξ̂

y − u
β̂

)−1/ξ̂

, y > u (2.22)

It is important to observe that this estimator is only valid for y > u. This estimate can be

viewed as a kind of HS estimate augmented by EVT and it can be constructed whenever

we believe data come from a common distribution, although its statistical properties are

best understood in the situation when the data may also be assumed independent or

only weakly dependent. For confidence levels α > 1 − Nu/n we obtain analogous point

estimators of V aRα and ESα

V̂ aRα = u+
β̂

ξ̂

((
n

Nu
(1− α)

)−ξ̂
− 1

)
(2.23)

ÊSα =
V̂ aRα

1− ξ̂
+
β̂ − uξ̂
1− ξ̂

(2.24)

2.6 Optimisation problem using EVT

We study the optimal portfolio selection problem for risk averse investors concerned with

extreme market movements and aiming to ameliorate the risk of suffering from large losses

caused by those rare events.

In this setting, we find natural building our model relying on Roy’s safety first ap-

proach (Roy, 1952) instead of the classical MVO reviewed in Section 2.2. Indeed, while

Markowitz’s typical investor is concerned about maximizing the portfolio expected return

controlling the portfolio variability, safety first investors are rather interested in avoiding

extreme losses through minimizing the disaster probability.

We refer to the stream of literature that remove the mean constraint, while keeping the

disaster probability as the objective to be minimized. In particular, our model proceeds to

the risk minimisation expressing portfolio downside risk in terms of the two risk measures:

Value-at-Risk (VaR) and Expected Shortfall (ES). We relax the normality assumption that

characterised the MPV, and apply the tools of univariate extreme value theory to the asset

allocation problem.
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2.6.1 Portfolio Loss distribution

In order to precisely formalise our model, we need to introduce first some preliminary

notation and define the random variable representing the loss of the portfolio.

Indeed, this is the core loss distribution on which we will be able to apply the GPD

model for the excess losses to describe its tails and to estimate associated risk measures.

We represent the uncertainty about future states of the world by a probability space

(Ω,F , P ), which is the domain of all random variables (rvs) we introduce below. Consider

an investment universe composed of a number d of available assets, S1, S2, . . . , Sd, each

with a well defined value15 Si,t, i = 1, . . . , d at any time t .

Viewed from today, the value of each asset one time period in the future is a random

variable Si,t+1, , i ∈ {1, . . . , d}16. The price process of asset i is denoted by (Si,t)t∈N.

In (market) risk management one is interested in the (positive) tail of the so-called Profit-

and-Loss (P&L) distribution function (cdf) of the random variable (rv) of interest17.

Therefore, let the rvs X1,t+1, X2,t+1, . . . , Xd,t+1 represent financial losses arising from

those financial positions over the period [t, t+ 1], i.e. the negative (simple) returns on the

investment in each of the single securities in our universe over the next unitary period.

Xt+1 ∈ Rd is the correspondent vector, where each component is defined as

Xi,t+1 = −(Si,t+1 − Si,t)/Si,t, i = 1, . . . , d

Following standard practice in finance and risk management we use logarithmic prices as

risk factors18. Zt = logSt ∈ Rd is a random vector of risk factors, where

Zt = (Z1,t, . . . , Zd,t)
T, Zi,t = logSi,t i ∈ {1, . . . , d} (2.25)

Risk factors are observable, because we already assumed that asset prices are observable

as well, thus Zt is known at time t19. It will be convenient to define the series of risk-

factor changes (Yt)t∈N by Yt := Zt − Zt−1. These are the objects of interest in most

statistical studies of financial time series. Assuming (2.25), we find that, the log-returns

of the securities in the universe corresponds to the risk-factor changes

Yi,t+1 = Zi,t+1 − Zi,t = logSi,t+1 − logSi,t = log(Si,t+1/Si,t), i = 1, . . . , d

15We will not enter into a more detailed economic and/or actuarial discussion of the precise meaning of
value in a more general case: it suffices to mention possibilities like “fair value”, “market value” (mark-to-
market), “model value” (mark-to-model), “accounting value” (often depending on the jurisdiction under
which industry is regulated) and indeed various combinations of the above.

16The rvs Si,t, i = 1, . . . , d are assumed to be observable so that St is known at time t. In the same way,
St+1 is known at time t+ 1 but it is random from the viewpoint of time t.

17Clearly in risk management we are concerned with possible high losses. Thus, the P&L distribution
is actually intended as “loss distribution”; its upper (right) tail represents large positive losses.

18Frequently used risk factors are logarithmic prices of financial assets, yields and logarithmic exchange
rates.

19Risk factors are usually assumed to be observable so that Zt is known at time t.
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Now, consider a linear portfolio P of the d securities and denote by λi the number of

shares of asset Si,t, i ∈ {1, . . . , d} in the portfolio P at time t20. We denote the value of

this portfolio at time t by Vt and assume that the rv is observable at time t.

Following standard risk-management practice, the value of the portfolio P is modelled as

a function of time and the d-dimensional random vector Zt of risk factors, i.e. we have

the representation

Vt = f(t,Zt) (2.26)

for some measurable function f : R+ × Rd → R. A representation of the portfolio value

in this form (2.26) is termed a mapping of risks.

Considering logarithmic prices of financial assets as risk factors as we did in (2.25) and in

view of (2.26), the value of the linear portfolio P in t+ 1 will be a linear combination of

the individual asset prices with weights λi; i.e we have the following representation

Vt+1 = f(t+ 1,Zt+1) =
d∑
i=1

λiSi,t+1 =

d∑
i=1

λi exp(Zi,t+1) (2.27)

The loss of the portfolio over the period [t, t+ 1] is given by

L[t,t+1] = Lt+1 = −(Vt+1 − Vt)

Using the mapping (2.27) the portfolio loss can be written as

L[t,t+1] = Lt+1 = −(f(t+ 1,Zt+1)− f(t,Zt))

= −(f(t+ 1,Zt + Yt+1)− f(t,Zt))

The distribution of L[t,t+1] is termed the loss distribution. We distinguish between the

conditional loss distribution, i.e. the distribution of Lt+1 given all available information

up to and including time t, and the unconditional loss distribution; this issue is taken

up in more detail in Remark 2.5. Since Zt is known at time t, the loss distribution is

determined by the distribution of the risk-factor change Yt+1. We therefore introduce

another piece of notation, namely the loss operator l[t] : Rd → R, which maps risk-factor

changes into losses. It is defined by

l[t](x) := −(f(t+ 1,Zt + x)− f(t,Zt)),x ∈ Rd, (2.28)

and we obviously have Lt+1 = l[t](Yt+1). We are interested in finding the expression for

20For instance, if we were to consider portfolios of default-free zerocoupon bonds with maturity Ti and
price p(t, Ti), λi would have denoted the number of bonds with maturity Ti in the portfolio. In a detailed
analysis of the change in value of a bond portfolio one takes all yields y(t, Ti), as risk factors. See Section
2.1.3, Example 2.6 in McNeil et al. (2005).
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the loss of the linear portfolio P, that is in view of (2.27)

Lt+1 = −(f(t+ 1,Zt+1)− f(t,Zt)) (2.29)

= −
d∑
i=1

λi(exp(Zi,t+1)− exp(Zi,t))

= −
d∑
i=1

λi(exp(Zi,t + Yi,t+1)− exp(Zi,t))

= −
d∑
i=1

ω̃i(exp(Yi,t+1)− 1) = −
d∑
i=1

ω̃iRi,t+1

=
d∑
i=1

ω̃iXi,t+1 (2.30)

where ω̃i = λi exp(Zi,t) = λiSi,t and Ri,t+1 = exp(Yi,t+1)− 1 is the simple (or arithmetic)

return rv for each security. For our purposes, we prefer to express the portfolio loss in

terms of relative change instead of actual difference. Therefore, we define our random

variable of interest starting from (2.30), in the following Definition.

Definition 2.6 (Loss of a linear portfolio P). Consider an investment universe of d

available assets, each of those have a well defined value Si,t, i = 1, . . . , d at any time t .

Let the vector of rvs Xt+1 = (X1,t+1, X2,t+1, . . . , Xd,t+1)T represent the set of negative

(simple) returns (i.e. losses) from the investment in each individual securities within our

universe. Consider a fixed portfolio of the d securities and denote by λi the number of

shares of asset i one hold in the portfolio at time t. Then, the rv loss of the linear portfolio

P, with allocation wt = (w1,t, w2,t, . . . , wd,t)
T ∈ Rd, is

Lt+1(w) = −(Vt+1 − Vt)/Vt =
d∑
i=1

ωiXi,t+1 , 0 6 wi 6 1 , i = 1, . . . , d, (2.31)

simply a linear combination of the loss from the d assets, each with weight ωi = ω̃i/Vt =

(λiSi,t)/Vt given by the proportion of the portfolio value invested in security i at time t.

Based on models and statistical estimates (computed from data) forXt+1, the problem

is now clear: find the cdf (or some synthetic characteristic, as a risk measure) of our

portfolio loss random variable Lt+1
21. This rv depends also on the chosen allocation

among the assets available in our universe, as identified by the vector of weights w.

Remark 2.2 (Unchanged allocation). Note that our definition of the portfolio loss

implicitly assumes that the composition of the portfolio remains unchanged over the uni-

21In general for easy of notation we omit the dependence of the loss random variable on the vector Xt+1.
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tary time horizon. While unproblematic for daily losses this assumption becomes increas-

ingly unrealistic for longer time horizons.

Remark 2.3 (Time Notation). In developing the formulas we have implicitly considered

a fixed horizon ∆ and assumed that time is measured in units of this horizon ∆. We can

therefore introduce a time series notation, moving from a generic process Y (s) to the time

series (Yt)t ∈ N with Yt := Y (t∆). The loss of the portfolio is then written as

Lt+1 := L[t∆,(t+1)∆] = −(Vt+1 − Vt).

For instance, in market risk management we often work with financial models where the

calendar time s is measured in years and interest rates and volatilities are quoted on an

annualized basis. If we are interested in daily losses we set ∆ = 1/365 or ∆ ≈ 1/250;

the latter convention is mainly used in markets for equity derivatives since there are

approximately 250 trading days per year. The rvs Vt and Vt+1 then represent the portfolio

value on days t and t+ 1, respectively, and Lt+1 is the loss from day t to day t+ 1.

Remark 2.4 (Aggregation of risk factors). Considering our particular choice of

risk factors, and thus risk factor changes (2.25), and that P linearly depends on those

underlying risk factors, the structure of the portfolio value (2.27) we find is simple. There-

fore, also the loss of the linear portfolio has immediate and clear interpretation (Equations

(2.30) and (2.31)). However, this approach could be generalised to cases where portfolios

P of financial positions (such as a collection of stocks or bonds, a book of derivatives, a

collection of risky loans or even a financial institution’s overall position in risky assets)

might be more complicated. Thus, function (2.27) can be highly non-linear. For instance,

this especially holds true in cases where derivative financial instruments (like options) are

involved. In this situation, the standard procedure is, if f is differentiable, to consider a

first-order approximation of the loss in (2.29) of the form

Lt+1 = −(f(t+ 1,Zt + Yt+1)− f(t,Zt)) ≈ L∆
t+1 = −

(
ft(t,Zt) +

∑d
i=1 fzi(t,Zt)Yi,t+1

)
where the subscripts to f denote partial derivatives. The first-order approximation is

convenient as it allows us to represent the loss as a linear function of the risk-factor

changes. The quality of the approximation is higher if the portfolio value is almost linear

in the risk factors (i.e. if the function f has small second derivatives) and if Yt+1 is

stochastically small. The latter implies that one-period changes in the risk factors are

small; this is acceptable if we are measuring risk over a short horizon and we are in

“normal” periods but not in “extreme” periods. Note that it is especially for the latter

that QRM is needed!

Remark 2.5 (Unconditional and Conditional loss distribution). Here, “the

cdf” can be interpreted unconditionally or conditionally on some family of σ-algebras (a
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filtration of historical information). In risk management we often have to decide if we are

interested in the conditional or the unconditional distribution of losses. Both are relevant

for risk-management purposes, but it is important to be aware of the distinction between

the two concepts. The differences between conditional and unconditional loss distributions

are strongly related to time series properties of the series of risk-factor changes (Yt)t∈N.

Suppose that the risk-factor changes form a stationary time series with stationary dis-

tribution FY on Rd. Essentially, this means that the distribution of (Yt)t∈N is invariant

under shifts of time and most time series models used in practice for the modelling of

risk-factor changes satisfy this property. Now fix a point in time t (current time), and

denote by Ft the sigma field representing the publicly available information at time t.

Typically, Ft = σ({Ys : s 6 t}), the sigma field generated by past and present risk-factor

changes, often called the history, up to and including time t. Denote by FYt+1|Ft the con-

ditional distribution of Yt+1 given current information Ft. In most stationary time series

models relevant for risk management, FYt+1|Ft is not equal to the stationary distribution

FY . An important example is provided by the popular models from the GARCH family.

In this class of model the variance of the conditional distribution of Yt+1 is a function

of past risk-factor changes and possibly of its own lagged values. On the other hand, if

(Yt)t∈N is an independent and identically distributed (i.i.d.) series, we obviously have

FYt+1|Ft = FY . The conditional loss distribution FLt+1|Ft(l) is defined as the distribution

under FYt+1|Ft . Formally we have,

FLt+1|Ft(l) = P (Lt+1 6 l | Ft)

i.e. the conditional loss distribution gives the conditional distribution of the Lt+1 in the

next time period given current information Ft. The unconditional loss-distribution FLt+1

on the other hand is defined as the distribution under the stationary distribution FY of

risk-factor changes. It gives the distribution of the portfolio loss if we consider a generic

risk-factor change Y with the same distribution as Y1, . . . ,Yt. The unconditional loss

distribution is of particular interest if the time horizon over which we want to measure

our losses is relatively large, as is frequently the case in credit risk management and

insurance. For now, we proceed referring to the latter, as we intend the application of our

methodology mainly for the actuarial field.

2.6.2 Portfolio optimisation problem definition

The goal of our risk averse investor is to find the optimal allocation w∗, which minimises

the risk associated with the linear portfolio P, whose loss random variable Lt+1(w) is

expressed in (2.31). Instead of using variance we refer to downside risk measures as either

the V aRα or the expected shortfall ESα.
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Clearly, we do not know the exact portfolio loss distribution. The time series (Lt)t∈N

(stationary or not) is driven by a d-dimensional stochastic process (Xt)t∈N and a de-

terministic portfolio structure f , that in our case is linear. One has to model the cdf

FLt+1(x) = P (Lt+1 6 x) under various assumptions on the input. Only for the most triv-

ial case, like Xt+1 is multivariate normal, can this be handled analytically. In practice,

one could:

• Model the whole loss distribution. Find stochastic models for (Xt)t∈N closer

to reality, in particular beyond Gaussianity but for which FLt+1 can be calculated and

estimated readily. This is a non-trivial task in general as it would involve the model

of both the marginals and their dependence structure via copulas;

• Summarise loss risk. Rather than aiming for a full model for FLt+1 , estimate some

characteristics of FLt+1 , namely estimate a risk measure, relevant in our case for solving

the portfolio choice problem22,

We follow the second approach as we do not need to model the whole portfolio loss

distribution: extreme events occur when a risk takes values from the tail of its distribution

and EVT attempts to provide us with the best possible estimate of the tail area regardless

of its central part.

With reference to the classical portfolio optimization problem of Markowitz type in

(2.6), we replace the variance by a generic quantile risk measure ρ with confidence level α

and we look at the conservative version of the optimisation problem which minimizes the

objective function

ω∗ = argmin
ω

ρα(Lt+1(w))

d∑
i=1

ωi = 1,

ωi > 0 , i ∈ {1, . . . , d}

(2.32)

The conditions imply that the portfolio is fully invested and no short selling is allowed and

the confidence level is a design parameter. The formulation is consistent with the safety

first principle introduced by (Roy, 1952), considering investors that act primarily to guard

against catastrophic losses. We conduct the portfolio risk minimisation with respect to

both Value at risk and Expected shortfall (in the next formula, we omit subscript t + 1

for readability)

22Or for solvency capital calculations in case we were using this methodology to model the Insurer’s
predictive aggregate loss distribution.
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argmin
ω

ESα(L(w))

= argmin
ω

E[L(w) | L(w) > V aRα(L(w))]

d∑
i=1

ωi = 1,

ωi > 0 , i ∈ {1, . . . , d}

argmin
ω

V aRα(L(w))

= argmin
ω

F−1
L(w)(α)

d∑
i=1

ωi = 1,

ωi > 0 , i ∈ {1, . . . , d}

(2.33)

When asset returns Xt+1 are assumed to be multivariate normal, the optimal allocation of

the minimum risk portfolio is the straightforward solution of a system of linear equations.

Indeed, because of the special nature of the normal distribution23, allocations which min-

imize the portfolios variance also minimize quantile-based measures of risk such as V aRα

and ESα. Under this assumption we would simply obtain the minimum variance portfolio.

However, we have widely discussed that time series of financial asset values exhibit

heavy tails and thus, relaxing the normality assumption that characterised the MPV, we

apply the tools of EVT to estimate the two risk measures. In general, two approaches are

available: one univariate and the other multivariate.

The former is the one we rely on and is called the structure variable method (SVM)

and considers focusing on a univariate functional of a random vector X (Coles et al.,

2001) instead of modelling its multivariate distribution. For our purposes, we choose the

portfolio loss operator previously defined in (2.28) and in (2.31) as the structure variable

Lt+1(ω) = ∆[t](ω,Xt+1) =
d∑
i=1

ωiXi,t+1 (2.34)

∆[t] : Rd → R. Observe that, while Xt+1 is a random vector, Lt+1(ω) = ∆[t](ω,Xt+1) is

a univariate random variable.

The use of the SVM allow us to focus and model Lt+1(ω) instead of modelling Xt+1.

In this context, techniques from univariate EVT can be used to model the tail of

the portfolio loss distribution FLt+1(ω) and to estimate the two portfolio risk measures

V aRα(Lt+1(ω)) and ESα(Lt+1(ω)) for fixed large confidence levels α. Then the minimum

risk portfolio is the one with optimal allocation ω∗ which minimizes either V aRα(Lt+1(ω∗))

or ESα(Lt+1(ω∗)), for a fixed choice of confidence level α. We investigate how the optimal

portfolio allocation changes as a function of α.

Specifically, we apply the threshold exceedances method of univariate extremes and ap-

proximate the excess distribution over a high threshold, of the structure variable Lt+1(ω)

using the generalized Pareto distribution.

23In particular, this is due to the fact that linear combination of the components of a multivariate normal
distribution are again normally distributed.
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2.6.3 GPD model for the portfolio loss distribution

In general, the minimization of risk, either V aRα or ESα, requires the specification of the

distribution of portfolio losses. Since this distribution is unknown, we rely on asymptotic

results from EVT to specify the form of the tails of the distribution.

Treating each portfolio Lt+1(ω) in (2.34) as a different structure variable, when varying

ω ∈ Rd, univariate extreme value theory provides the necessary tools to model the tail

distribution of each of those rv.

Setting (Sequence of portfolio negative returns). Let (Lt(ω))t∈N be a sequence

of identically distributed random variables, with unknown distribution function F (x) =

P (L(ω) 6 x), representing the negative returns on a portfolio of investments with asset

allocation ω ∈ Rd.

At this point, the key passage is to refer to the assumption formalised in 2.1, in order to

be allowed to rely on all the results presented in Sections 2.4.1 and 2.5.

Assumption (Portfolio loss distribution F ∈MDA(Hξ)). Our model for the port-

folio loss rv L(ω) assumes that its unknown distribution FL(ω) = F ∈MDA(Hξ).

Therefore, applying Theorem 2.2, the distribution of all losses exceeding some large thresh-

old u (namely excess distribution over the threshold u) is approximately a generalized

Pareto distribution GPD (as formalised in Assumption 2.1 for a generic risk Xi with

distribution F ).

More formally, for a high threshold u let

Fu(x) = P (L(ω)− u 6 x | L(ω) > 0) = Gξ,β(x) =

1− (1 + ξx/β)−1/ξ , ξ 6= 0,

1− exp(−x/β) , ξ = 0,

for 0 6 x < xF − u and some ξ ∈ R and β > 0.

A GPD model for the excess losses is used to model the tail of the underlying portfolio

loss distribution F . Thus, we can rely on the results found in Section 2.5 to estimate

associated risk measures. In view of (2.18), for y > u, u large, we have

F (y) = 1− F̄ (u)

(
1 + ξ

y − u
β

)−1/ξ

, u 6 y < xF (2.35)

The distribution F of L(ω) is arbitrary for y < u. Setting F (yα) = α and solving for yα

(namely yα = V aRα(L(ω))), we obtain

V aRα(L(ω)) = u+
β

ξ

((
1

F̄ (u)
(1− α)

)−ξ
− 1

)
(2.36)
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provided V aRα(L(ω)) > u. The expected shortfall V aRα(L(ω))) can also be obtained by

using the model of the tail of the portfolio loss distribution given in (2.35),

ESα(L(ω)) =
V aRα(L(ω))

1− ξ
+
β − uξ
1− ξ

(2.37)

The restriction ξ < 1 implies that the heavy-tailed distribution must have at least a finite

mean.

2.7 A Practical Discussion of EVT-based mod-

elling

Suppose we have data from an unknown underlying distribution F , which we assume lies

in the domain of attraction of an extreme value distribution Hξ for some ξ. If the data

are realizations of i.i.d. variables, or variables from a process with an extremal index (θ

such as GARCH), the implication of the EVT theory is that:

• The true distribution of the n-block maximum Mn can be approximated for large

enough n by a three-parameter generalised extreme value (GEV) distribution Hξ,µ,σ

(Block maxima method);

• The true distribution of the realisations of the loss rvs exceeding a suitable threshold

u can be approximated, for a large enough threshold, by a two parameters generalised

pareto distribution (GPD) Gξ,β (Treshold exceedances).

The shape parameter ξ in the generalized Pareto distribution Gξ,β is the same parameter

as in the generalized extreme value distribution function Hξ,µ,σ. The scale parameter,

β = σ + ξ(u− µ)

of Gξ,β is a function of the threshold u, and of the location, scale and shape parameters

of the generalized extreme value distribution function Hξ,µ,σ.

The consistency and asymptotic efficiency of the resulting MLEs can be established for

the case when ξ > −1/2 using results in Smith (1985) and for ξ > −1 referring to Zhou

(2009, 2010), thus virtually covering all the cases of interest for financial applications.

Note also that, in the case of dependent data (θ < 1), somewhat larger block sizes than

are used in the i.i.d. case may be advisable; dependence generally has the effect that

convergence to the GEV distribution is slower, since the effective sample size is nθ, which

is smaller than n.
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2.7.1 Estimation and Step procedure

We have a sample of multivariate observations of the random vector Xt = (X1,t, X2,t, . . . ,

Xd,t) ∈ R representing the negative returns of the d assets in our universe

X̃s = (X̃1,s, X̃2,s, . . . , X̃d,s) , s ∈ {1, . . . , n}

where

X̃i,s , i ∈ {1, . . . , d} , s ∈ {1, . . . , n}

is the sth observation of the ith marginal component of the random vector of losses from

the d assets in our universe (i.e. realisation at time s of the ith asset’s negative return

rv). For fixed allocation ω ∈ R, we then have n observations

{∆̃[s−1](X̃s,ω) , s = 1, . . . , n} = {L̃s(ω) =
∑d

i=1ωiX̃i,s , s = 1, . . . , n}

of the structure variable that is the portfolio loss rv. Extreme value theory provides a

methodology for estimating the risk measures

V̂ aRα(L(ω)) and ÊSα(L(ω))

for α large (close to one) starting from those realised values.

Assumption (Data distribution F ∈MDA(Hξ)). Suppose that for each asset allo-

cation ω ∈ R our data

{L̃s(ω) =
∑d

i=1ωiX̃i,s , s = 1, . . . , n}

are drawn from a sequence of identically distributed portfolio loss rvs, with unknown

underlying distribution FL(ω) = F that lies in the domain of attraction of an extreme

value distribution Hξ for some ξ.

We can therefore estimate the GPD model for the tail of the portfolio loss distri-

bution (presented in Section 2.6.3) on those realisation exceeding a fixed high threshold

u via maximum likelihood (Section 2.4.1). In particular, a number Nu of the sample

observations of our loss rvs will exceed the threshold u

{L̃j(ω) =
∑d

i=1ωiX̃i,j , j = 1, . . . , Nu}

For each of those we calculate the amount of excess loss {L̃j(ω) − u, j = 1, . . . , Nu}.
Once we have estimated the parameter of the GPD ξ̂, β̂ by fitting the distribution over

the Nu exceedances, we use them to get an estimate for the risk measures (Section 2.5.4).
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In view of (2.23) and (2.24), for confidence levels α > 1−Nu/n, we obtain the point

estimators of the risk measures calculated over the portfolio (with allocation ω) loss

distribution

V̂ aRα(L(ω)) = u+
β̂

ξ̂

((
n

Nu
(1− α)

)−ξ̂
− 1

)
(2.38)

ÊSα(L(ω)) =
V̂ aRα(L(ω))

1− ξ̂
+
β̂ − uξ̂
1− ξ̂

(2.39)

As we can notice from the formulas above, for each vector of weights ω (representing

the allocation among the d assets) we have a different linear portfolio, and thus we get a

different time series of realisations of the related loss random variable.

Setting 2.1 (Model estimation - Step procedure). For every allocation ω = (ω1, . . . , ωd)

(i) Data. Starting from the time series of asset (negative) returns X̃s , s ∈ {1, . . . , n}
we obtain the time series of portfolio (negative) returns {L̃s(ω) =

∑d
i=1ωiX̃i,s , s =

1, . . . , n} ;

(ii) Parameters estimation. Choice of the threshold u and estimation of the param-

eters (ξ̂, β̂, ̂̄F (u)) fitting the GPD distribution of the excess loss over the threshold;

(iii) Risk measures. Estimators of V̂ aRα(L(ω)) and ÊSα(L(ω)) are immediately given

by substituting estimated parameter values into (2.38) and (2.39).

The optimal portfolio allocation ω∗ among the d assets, is the vector of weights that

leads to minimum portfolio risk, assessed in terms of minimum value of the risk measures

estimated in step (iii).

2.7.2 Threshold choice

Before one is allowed to proceed with the model estimation, a suitable, high enough,

threshold u needs to be chosen (point (ii) in the list).

This is a very delicate issue concerning statistical methods of EVT, since this choice

entails a trade-off between bias and variance of the parameters estimate. On the one hand,

we would like u as large as possible in order to reduce the bias incurred from applying

an asymptotic theorem and eventually including ordinary observations (not extreme). On

the other, when u is too large, we are left with few, if any, observations to estimate the

parameters, compromising their statistical accuracy. In addition, the parameter β in the

GPD model has a theoretical dependence on the threshold chosen. Indeed, it appears in

the theory as a function of the threshold u (see Eq. (2.13) and Theorem 2.2). In practice,

we would expect the estimated β parameter to vary with threshold choice.

Methods for selection of the threshold u may be found for example in Embrechts et al.

(1997), Coles et al. (2001). Below we briefly present the main alternatives.
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Conventional Choices

Many authors do not address explicitly the problem of the choice of the cut-off for the

data they are handling, but simply follow either common sense choices or suggestions

retrieved in the literature. A widely used suggestion in this respect is that the number

of data falling in the tail should not be higher than 10-15% and a rule of thumb value of

5-10% is often used;

Graphical Methods

These graphical tools can be very helpful in the choice of u, subtracting it from the

domain of pure convention or common sense, though they are still far from a mathematical

standard of rigour and still allow for considerable degrees of arbitrariness.

Hill plots When using the Hill estimator to estimate the tail index α = 1/ξ24 of a

given distribution, this is a very common method to determine a good choice for

the cut-off (k that is the number Nu of the exceedances over the threshold u). It is

a graphical representation, in a coordinate system, of {(k, α̂Hk,n) : k = 1, . . . , n} the

estimates of the tail index as a function of the cut-off. Regions of the plot that are

approximately close to be horizontal lines indicate values of k for which theestimate

α̂Hk,n is essentially stable with respect to the choice of the cut-off;

Pickand plots Analogously, this method can be employed when dealing with the Pickands

estimator that was studied by Pickands (1975), and unlike the Hill estimator, can

be used to estimate the shape parameter of any of the three extreme value distribu-

tions25. In this graph the set {(k, α̂Pk,n) : k = 1, . . . , bn/4c}, where bxc denotes the

integer part of x ∈ R, is plotted;

Mean excess plots The mean excess plot is a tool widely used in the study of risk,

insurance and extreme values. One use is in validating a generalized Pareto model

for the excess distribution. It consists in plotting {(Xi,n, en(Xi,n)) : i = 2, . . . , n},
where Xi,n denotes the ith order statistic. If the data have an excess distribution

over high thresholds which is distributed according to a GPD, then the resulting

plot will be roughly linear (for the higher order statistics) and the slope of the

line will provide evidence concerning the sign of the shape parameter ξ (an upward

line corresponding to ξ > 0, i.e. the Fréchet case; an horizontal plot, to ξ = 0; a

downward plot, to ξ < 0.

24Please refer to Section 3.3.2 Chapter 3 for further details on the Hill estimator.
25Pickands estimator is used in applied papers such as Longin (2005), which employs both Hill and

Pickands estimators, and Ho (2008).
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Monte Carlo Simulation and MSE Minimization

A largely used selection method for automatically obtaining the cut-off between the centre

and the tail of the distribution is the one proposed by Koedijk et al. (1990), Jansen and

de Vries (1991) and subsequently employed in many papers concerning financial appli-

cations of EVT, such as Longin and Solnik (2001), Haile and Pozo (2006), Vilasuso and

Katz (2000). This method sets the minimization of the mean squared error (MSE) as the

optimality criterion for the choice of the cut-off, thus taking simultaneously into account

both the bias and the inefficiency components. In practice, the selection of the optimal

cut-off is based on the following algorithm:

(i) Simulate data via Monte Carlo from a known distribution F in the domain of at-

traction of a Fréchet distribution with tail index α;

(ii) Compute the Hill estimator of α for different choices of k;

(iii) Choose the value of k that has minimal MSE.

The simulation from a known distribution is required. The usual choice for F is the cdf of

a Student t, which allows for different degrees of heavy tailedness and is standard when

modelling financial data. However, this method has two major drawbacks. The first one is

the distributional assumption in step (i), since it seems denying one of the most appealing

features of EVT, that is the possibility of modelling the tails without knowing the exact

underlying distribution. In addition, there is no guarantee that the optimal choice for k,

when dealing with simulated data, coincides with the optimal choice induced by real data.

The second drawback is related to the choice of MSE minimisation as an optimality

criterion (and thus it affects data-driven methods as well). On the one hand, Manganelli

and Engle (2001) point out that the evaluation of the optimal cut-off based on this criterion

yields a biased estimator. On the other hand, if the i.i.d. hypothesis that we have assumed

up to now fails, Kearns and Pagan (1997) show that actual standard errors are greater than

those predicted by the asymptotic theory for independently distributed random variables.

Therefore, when the data are not i.i.d., an MSE based optimality criterion is questionable.

Data Driven Algorithms

To overcome the need of a distributional assumption in the simulation based MSE mini-

mization, several algorithms have been proposed which endogenously generate the selec-

tion of an optimal cut-off, relying on the real data. We refer the reader to the paper

by Lux (2000), that provides a review and a comparative analysis of the main ones. He

focuses on five methods: we bring to attention the method proposed by Hall (1990) and

Danielsson and de Vries (1997b), which employs a bootstrap approach to estimating MSE,

and the method by Beirlant and Novak (2006), which is based on an iterative regression

approach.
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Setting the threshold u in our model

Within our optimal portfolio choice model, we are required to choose a large u for each

allocation ω to be able to apply the methodology and obtain the risk measures estimates

we need to identify the minimum risk portfolio. As we can see in the modelling step

procedure presented in Setting 2.1, in order to solve the portfolio optimisation problem, an

estimation of the tail distribution across many different portfolio allocations is necessary.

Therefore, we are not focussing on just one random variable but we are modelling every

portfolio loss rv resulting from all the allocation vector considered by the optimum search

algorithm. In theory, based on the above-mentioned available methods, each of these

allocations requires a careful selection of the choice of u. Considering our specific settings,

this approach would be intractable in terms of managing such high problem dimension.

Setting 2.2 (Threshold choice). With regard to the choice of a suitable threshold, con-

sidering our problem specification, we refer to the so called “conventional choice method”.

In practice, we choose u to be some high quantile of the empirical distribution. Keeping in

mind the trade-off between bias and variance in choosing u and based on the best practice

found in the related literature, we take u as the 95% quantile of the empirical distribution

of L(ω),ω ∈ Rd.

2.7.3 Simulation study

In this section we perform a simulation study via Monte Carlo simulation to better un-

derstand the sensitivity of the EVT threshold exceedances approach to the choice of the

threshold. Both the non parametric (Hill estimator) and fully parametric (GPD model)

are considered and compared.

In particular, we perform first the estimation of the shape parameter ξ and then the

estimation of the high quantile V aRα. The two estimators are compared using mean

squared errors (MSEs) in both situations; we recall that the MSE of an estimator ϑ̂ of

a parameter ϑ is given by MSE(ϑ̂) = E(ϑ̂ − ϑ)2 = (E(ϑ̂ − ϑ))2 + var(ϑ̂), and thus has

the well-known decomposition into squared bias plus variance. A good estimator should

keep both the bias term E(ϑ̂ − ϑ) and the variance term var(ϑ̂) small. Since analytical

evaluation of bias and variance is not possible, we calculate Monte Carlo estimates by

simulating 1000 datasets in each experiment. The estimates are calculated using the Hill

method and the GPD method based on different numbers of upper order statistics (or

differing thresholds) and try to determine the choice of k (or Nu) that is most appropriate

for a sample of size n. Note that the parameters of the GPD are always determined by

ML. In the case of estimating VaR we also compare the EVT estimators with the simple

empirical quantile estimator.

The simulation experiment is conducted as follows. We assume that we have a sample
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of 1000 i.i.d. data from a t distribution with four degrees of freedom and we want to

estimate ξ, the reciprocal of the tail index, which in this case we know is equal to 0.2526.

The Hill estimate is constructed for k values in the range {2, . . . , 200} and the GPD

estimate is constructed for k (or Nu) values in {30, 40, 50, . . . , 400}. The results are shown

in Figure 2.2.

Figure 2.2: Comparison of (a) estimated MSE, (b) bias and (c) variance for the Hill
(dotted line) and GPD (solid line) estimators of ξ as a function of k (or Nu), the number
of upper order statistics from a sample of 1000 t-distributed data with four degrees of
freedom.

The t distribution has a well-behaved regularly varying tail and the Hill estimator

gives better estimates of ξ than the GPD method, with an optimal value of k around

20-30. The variance plot shows where the Hill method gains over the GPD method; the

variance of the GPD-based estimator is much higher than that of the Hill estimator for

small numbers of order statistics. The magnitudes of the biases are closer together, with

the Hill method tending to overestimate ξ and the GPD method tending to underestimate

it. If we were to use the GPD method, the optimal choice of threshold would be one giving

100-150 exceedances.

The conclusions change when we attempt to estimate the 99%VaR; the results are

shown in Figure 2.3. The Hill method has a negative bias for low values of k but a rapidly

growing positive bias for larger values of k; the GPD estimator has a positive bias that

grows much more slowly; the empirical method has a negative bias. The GPD attains its

lowest MSE value for a value of k around 100, but, more importantly, the MSE is very

26The distribution function Fν of a t distribution has tail index ν (see Example 7.29 McNeil et al., 2005).
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Figure 2.3: Comparison of (a) estimated MSE, (b) bias and (c) variance for the Hill
(dotted line) and GPD (solid line) estimators of V aR0.99, as a function of k (or Nu), the
number of upper order statistics from a sample of 1000 t-distributed data with four degrees
of freedom. Dashed line also shows results for the (threshold-independent) empirical
quantile estimator.

robust to the choice of k because of the slow growth of the bias. The Hill method performs

well for 20 6 k 6 75 (we only use k values that lead to a quantile estimate beyond the

effective threshold Xk,n) but then deteriorates rapidly.

Both EVT methods obviously outperform the empirical quantile estimator. Given the

relative robustness of the GPD-based tail estimator to changes in k, the issue of threshold

choice for this estimator seems less critical than for the Hill method.

2.7.4 Optimisation algorithm

The problem that motivates the introduction of an optimisation algorithm is the relevance

of the dimensionality issue in portfolio selection, since, as the number of assets grows, the

so called brute force approach to the calculation of the optimal portfolio becomes soon

intractable.

Indeed, when looking at the bivariate case, two assets X1 X2, we could consider nω

different portfolio allocations of the form ωj = (ω1,j , ω2,j), j = 1, . . . , nω where ω2,j =

1 − ω1,j , and take ω1,j to form an evenly spaced grid over the unit interval; that is,

ω1,j = (j − 1)δω where δω = 1/(nω − 1). Since the computational burden in the two asset

problem is minimal, considering δω = 1% is reasonable as gives a grid of nω = 101 points.

Then proceeding with the estimation over the possible allocations, included in the grid,

we can identify the minimum risk portfolio.
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However, we are interested in constructing optimal portfolios of multiple assets. In

this case, the described methodology becomes intractable. For instance, with three assets,

the same 1% incremental step gives 5151 different possible allocations. Thus, we refer and

use a two stage methodology instead. The first stage uses the sampling algorithm of

Bensalah et al. (2002) to pick an appropriate starting position. The second stage, that is

an improvement over Bensalah’s algorithm provided by Bradley and Taqqu (2004b), uses

an incremental trade algorithm to step away from the starting allocation in the direction

of highest marginal utility.

The algorithm stops when there is no longer any marginal benefit to trading. We

compare optimal allocations under the assumption of normality and under the incremental

trade algorithm.

Let α be the design parameter and take the risk to be V aRα or ESα. Our universe

consists of d securities and we consider portfolios in a subset of the d-dimensional unit

cube, that is, ω∗ ∈ [0, 1]d such that
∑d

i=1 ωi = 1 and ωi > 0. To get a starting position,

we randomly sample from portfolios in this set and compute their risk. We also consider

the normal allocation ωN and the d portfolios that consist of only one among the d assets

in turn assets as a possible starting position. Specifically, we take as a starting position

the allocation ωst ∈ [0, 1]d, where ωst has minimal risk over all ns sample allocations

ωj = (ω1,j , . . . , ωd,j), j = 1, . . . , ns

The ns sample allocations are constructed as follows. For the jth sample, take

ω1,j ∼ U([0, 1])

ω2,j ∼ U([0, 1− ω1,j ])

...

ωd−1,j ∼ U([0, 1− ω1,j − · · · − ωd−2,j ])

ωd,j = U([0, 1−
d−1∑
i=1

ωi,j ])

We fit the tail of the structure variable L(ωj) for each sample allocation ωj , j = 1, . . . , ns.

For each high quantile of interest α, the risk, V aRα(L(ωj)) or ESα(L(ωj)), is estimated

accordingly. The starting position ωst is the allocation which minimizes the risk over all

sample allocations ωj , j = 1, . . . , ns.

Once a starting position ωst is obtained, we apply an incremental trade algorithm to

find the minimum risk portfolio. It needs to be applied separately for V aRα and ESα.

Let δω be the size of the incremental trade to be considered. The algorithm takes steps

of size δω in each asset away from its current position (buying and selling). This amount

δω bought or sold in the ith asset leaves the portfolio over or under invested by δω. This

amount is then spread across all possible (except the ith) assets in order to leave the
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portfolio fully invested. The resulting portfolio has an incremental trade of δω in the ith

asset and a very minor change (relative to δω) in the remaining assets.

More precisely, suppose we want to buy δω in the ith asset. The allocation in the

ith asset would go from ωi → ωi + δω, but this would leave the resulting portfolio over-

invested by δω. To overcome this, we use δω as a design parameter and pick the additional

allocation δ such that

ωi + δ

1 + δ
= ωi + δω

and then replace the weight ωi by ωi + δ. Next, we normalize all weights

ωj = (ω1, . . . , ωi−1, ωi + δ, ωi+1, . . . , ωd)

by 1 + δ. We follow a similar procedure for selling the ith asset ωi → (ωi − δ)/(1 − δ)
and repeat the procedure for all d assets. At each iteration, the algorithm picks the trade

which is most risk reducing. It continues in this fashion until the risk is minimized. If,

for any given stage, no trade provides a reduction in risk, then we continue considering

trades of marginally larger size δω for a fixed number of times. This is done to avoid

stopping at a local minimum. Local extrema of the objective function are due to the fact

that one performs a separate statistical analysis at each point of the allocation space.

Estimation error alone leads to local extrema of the objective function. When there is no

marginal benefit to continued trading, the trading stops and the optimal allocation ω∗ is

returned. Note that although the algorithm currently only considers the minimization of

risk, it is straightforward to include other factors in the utility function. For example, it

is straightforward to add expected returns to the utility function.
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Chapter 3

Extreme Value Dependence

The concept of diversification is fundamental to the decision of how best to allocate assets

and this is also true in the classical MVO. The benefit of diversification is partly controlled

by the dependence between the assets under consideration. We perform a parallel analysis

to identify the correct extremal dependence structure of the portfolio’s constituents and

to understand how this may impact the optimal asset allocation problem presented in the

previous chapter.

In this chapter, we present a multivariate framework for studying rare events in finance,

particularly useful for this purpose, and suitable when asset returns consist of more than

one component, as in the case of a portfolio. The methodology is based on multivariate

extreme value theory (MEVT) and, specifically, on the results of Poon et al. (2003, 2004).

We believe that this line of research is of particular interest to international portfolio

managers, who systematically monitor correlations between various stock markets, and the

success of their policies is intimately linked to the stability of the estimated dependencies.

3.1 Multivariate Extremes

Financial risk models are inherently multivariate. As an example, the value change of a

portfolio of traded instruments over a fixed time horizon depends on a random vector of

risk-factor changes or returns. A stochastic model for a random vector can be thought of

as simultaneously providing probabilistic descriptions of the behaviour of the components

of the random vector and of their dependence or correlation structure. Therefore, esti-

mating dependence between risky asset returns is essential in portfolio theory and many

other finance applications such as hedging, spread analysis and valuation of exotic options

written on more than one asset. In general, the modelling of interdependence between risk

factors or risk-factor changes is a relevant basic question in Quantitative risk management.

A great part of the financial community uses linear correlation to describe any measure
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of dependence. Correlation lies at the heart of the capital asset pricing model (CAPM) and

the arbitrage pricing theory (APT), where its use as a measure of dependence between

financial instruments is essentially founded on an assumption of multivariate normally

distributed returns. Without the restrictive assumption of normality, is linear correlation

still an appropriate measure of dependence? Outside the elliptical world correlation must

be used with care (Embrechts et al., 1999) and unfortunately, most dependent real world

risks do not appear to have an elliptical distribution.

The conventional dependence measure, Pearson correlation, though widely used is

appropriate only for linear association. It is constructed as an average of deviations from

the mean, the weight given to extreme realizations is the same as for all of the other

observations in the sample. If the dependence characteristics for extreme realizations

differs from all others in the sample, the conclusions drawn from the Pearson correlation

could result in a financial institution risking bankruptcy. Thus modern risk management

calls for an understanding of stochastic dependence going beyond simple linear correlation.

For all of these reasons, alternative approaches to understanding and modelling depen-

dency has been introduced: copulas1 and various other dependence concepts (including,

for instance, comonotonicity, rank correlation and tail dependence)2, useful to risk man-

agement practitioners. The multivariate extreme value theory (MEVT) framework offers

further tools to study the dependence structure when one is particularly concerned with

extreme values, and need asymptotic measures of tail dependence to perform the analyses.

MEVT can be used to model the tails of multivariate distributions and one way of under-

standing it, is as the study of copulas which arise in the limiting multivariate distribution

of component-wise block maxima (see Section 4.5.3 in Chapter 4).

Understanding the dependence between extreme values in a multivariate random sam-

ple is of great interest and it also plays an important role in terms of affecting the benefit of

diversification that characterise an asset allocation problem. Multivariate extreme value

theory yields the ideal modelling environment to tackle this aspect within our model, as

we clearly do not rely on elliptical risks assumptions; moreover, MEVT also represents the

natural evolution of the methodology we have already referred to in the univariate case.

Basically dependence structures can be grouped into four types: independent, perfect

dependent, asymptotic independence and asymptotic dependence.

The distinction between the two asymptotic dependence structures occurs as both

variables approach their respective upper limits. Most finance articles adopt MEVT mod-

els that assume asymptotic dependence without making clear distinction between those

possible dependence structures.

1The word copula first appeared in the statistics literature Sklar (1959), although similar ideas and
results can be traced back to Hoeffding (1940).

2See for example Embrechts et al. (2003) for further details.
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3.1.1 Literature on Extremal dependence across markets

The issue of extreme dependence among financial time series can be specifically addressed

when studying correlation and contagion among markets, in particular during period of

economic difficulty.

It has been widely documented in many empirical studies that equity markets around

the world exhibit a higher correlation during periods of crises. Although this is hardly

disputed, there is a rising controversy on the economic interpretation that should be given

to it.

Changes in the correlation coefficient of financial asset returns have been typically

associated with the notion of contagion. This term refers to the spread of downside

market shocks from one country to another and it can be explained from the existence of

real and financial linkages between the countries or the behaviour, rational and irrational,

of international investors3. However, before one proceeds with the explanations that have

been offered to the correlation breakdown issue, there must be an agreement that this

breakdown has really occurred.

In this context, the econometric investigation of the stability of the correlation co-

efficient has highlighted two major problems. First, the choice of “conditioning” the

correlation index on periods of high volatility is not the appropriate one if we intend to

test for a correlation breakdown. A second, and perhaps more critical, issue is related

to the suitability of the Pearson correlation index as a statistical measure of dependence

when returns are not drawn form the class of elliptical distributions, a distinct member

of which is the multivariate normal distribution4. It is known, for example, that the con-

ditional correlation of a multivariate normal distribution tends to zero as the threshold

used to define the tails tends to infinity. This contradicts however the widely held view

that correlation across markets increases dramatically in the presence of large negative

shocks.

For this reason there is a stream of literature addressing this issue by making use of

asymptotic results from the multivariate EVT which hold for a wide range of parametric

distributions. Two main approaches have been adopted to study this aspect. Firstly,

dependence between different countries has been analysed in detail for given financial

sectors. Secondly, dependence among different financial markets within the same country

was also of interest to many authors.

The paper of Longin and Solnik (2001) falls within the first type and it applies mul-

tivariate EVT to test the validity of the common belief that correlation between stock

markets increases during volatile periods. They use multivariate threshold exceedances,

3See Karolyi (2003) for a survey on the issue.
4Embrechts et al. (2003, 2002) discuss the role of the linear correlation coefficient and other measures

of dependence outside the class of elliptical distributions.
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modelling dependence via the effective, though parsimonious, logistic model, in which a

single parameter accounts for dependence and this parameter is related to correlation by

a simple formula5. Fitting a bivariate model to pairs of monthly equity index returns

they find more dependence in the tails of the distribution than can be explained by the

multivariate normal distribution. Furthermore, the correlation pattern of threshold ex-

ceedances is asymmetric and it depends on the chosen threshold both in size and in sign.

In particular, they find that correlation of exceedances is increasing in the absolute value

of the threshold, if the threshold itself is negative; otherwise, it is decreasing. Moreover,

it appears that it is a bear market, rather than volatility per se, that is the driving force

in increasing international correlation.

In a complementary way, Bekiros and Georgoutsos (2008) study the correlation of

extreme returns between seven Asia-Pacific stock markets and the U.S. They use the

same methodology as Longin and Solnik (2001) recurring to a bivariate logistic dependence

function to model threshold exceedances, in order to produce a ranking of Asia-Pacific

countries in three risk categories (low, medium and high risk groups). In other words,

they attempt to answer the question whether the contagion of financial crises is more or

less the same for the seven Asia-Pacific countries.

They also examine whether there is any validity to the argument that the Asia-Pacific

capital markets belong to a distinct cluster of markets, where the other two could be

the U.S. and Europe. A clustering analysis shows that the Asia-Pacific countries do

not belong to a distinct block based on the extreme correlations they have estimated

within the group. The conclusion is that Japan and U.S. exhibit varying degrees of

extreme correlation with the other markets and therefore their investors can benefit from

diversifying their portfolios with assets from the Asia-Pacific stock markets. This remains

true even during crisis periods as they conducted a sensitivity analysis estimating the

model with two distinct sets of data, one including the 1987 crash and the other on the

period immediately after it, yielding to similar results. The fact that these results are

close to the correlation estimated via standard unconditional and conditional (GARCH

models) methods provides evidence against contagion having occurred during the 1990s

crises within the Asia-Pacific stock markets (namely no correlation breakdown has been

observed).

The choice of the previous articles to measure extreme dependence by means of the

correlation coefficient is however questionable.

Poon et al. (2003, 2004) apply new dependence measures from multivariate EVT (the

coefficient of upper tail dependence and a complementary measure) to quantify depen-

dence between equity markets from the G-5 countries6. They find little evidence of asymp-

5 They use a transformation of the dependence parameter of the bivariate logistic distribution to
estimate the conditional correlation between pairs of assets in the tails of the distribution.

6They apply the pair of dependence measures on daily data of stock index returns of the five largest
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totic dependence between markets and they conclude that the asymptotic dependence

between the European countries (United Kingdom, Germany and France) has increased

over time but that asymptotic independence between Europe, United States and Japan

best characterizes their stock markets behaviour. This is in agreement with our results.

Regarding the second aspect of dependence, namely dependence across different kinds

of financial activities (cross-asset or inter-sector dependence), Hartmann et al. (2004)

study contagion risk between stock markets and government bond markets of the G-5

countries. They characterize asset return linkages during periods of stress by a nonpara-

metric extremal dependence measure and, contrary to correlation analysis, this is not pre-

disposed toward the normal distribution and can allow for nonlinear relationships. Aiming

at determine whether contagion is present between markets and across asset classes, their

estimates for the G-5 countries suggest that simultaneous crashes between stock markets

are much more likely than between bond markets.

Finally, for policy purposes, a particular interest is attached to studies regarding cur-

rency crises contagion and cross-country dependence in the banking sector (see for example

Haile and Pozo, 2008; Garita and Zhou, 2009; Hartmann et al., 2005; Chan-Lau et al.,

2007; Pais and Stork, 2011). We are not giving further details as it is not within our

scope, but it is worth to be mentioned.

In general, there are two classes of extreme value dependence, asymptotic dependence

and asymptotic independence, for which the characteristics of events behave quite differ-

ently as the events become more extreme. Both forms of extremal dependence permit

dependence between moderately large values of each variable, but the very largest values

from each variable can occur together only when the variables exhibit asymptotic depen-

dence. Conventional multivariate extreme value theory has emphasized the asymptotically

dependent class resulting in its wide use in most of the finance applications. If the series

are truly asymptotically independent, such an approach will result in the over-estimation

of extreme value dependence, and consequently of the financial risk.

We use the set of dependence measures from EVT proposed by Ledford and Tawn

(1997) and Coles et al. (1999) to distinguish between asymptotically dependent or in-

dependent variables, and to quantify the degree of extremal dependence between inter-

national equity markets. The estimation methodology introduced by Poon et al. (2003,

2004) is applied. Our focus is on dependence estimation in the bivariate context, as this

is the most common framework due to the complexity arising in higher dimensions.

stock markets.
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3.2 Measures of Extreme value dependence

The joint distribution of a set of variables can be separated into their respective marginal

distributions and the dependence structure among them. We focus on studying the de-

pendence among extreme realizations of different components of a multivariate process.

In the study of multivariate dependence structure, it is helpful to remove the influence of

marginal aspects first by transforming the raw data to a common marginal distribution.

After such a transformation, differences in distributions are purely due to dependence.

Thus, suppose we have a bivariate returns (X,Y ), we transform them to unit Fréchet

marginals (S, T ) as follows:

S = −1/ logFX(x) and T = −1/ logFY (y) (3.1)

where FX and FY are the respective marginal distribution functions for X and Y . The

Fréchet transformation is used because of the widely documented fat-tail distributions for

risk asset returns. Consequently S and T have the distribution function F (s) = e−1/s for

s > 0, so P (S > s) = P (T > s) = s−1 + O(s−2) ∼ s−1 as s → ∞. The variables (S, T )

possess the same dependence structure as (X,Y ) since

P (q) = P (F (T ) > q | F (S) > q) = P (Y > F−1
Y (q) | Y > F−1

X (q)) (3.2)

In practice, the values of FX and FY , used in the transformation, are obtained using the

empirical distribution functions of the separate variables.

We will focus our discussions on the dependence estimation in the bivariate context,

though the ideas and techniques extend naturally to higher dimensions. The extension

to general multivariate distributions can be theoretically conceivable, but it is often de-

manding from a computational viewpoint and it is not always completely straightforward.

Thus, in practice, most applications restrict to k-variate EVT with k = 2 or k = 3.

The variables S and T are said to be asymptotically independent if P (q) has a limit

equal to zero as q → 1. If the limit in Equation (3.2) is non zero instead, S and T

are described as asymptotically dependent. Values of P (q) greater than, equal to, and

less than (1 − q) indicate positive dependence, independence, and negative dependence,

respectively, at percentile q.

In next Sections 3.2.1 and 3.2.2, we present measures of the degree of asymptotic

dependence and asymptotic independence, respectively. Although it will be seen that

these measures have some similarities with the co-skewness measure, they are not exactly

the same. Positive co-skewness describes the case where large positive realizations of one

series coincide with large absolute realizations of another series.

The extremal measures here can be used to measure dependency of the same or dif-
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ferent signs and they provide two further advantages: they are invariant to the marginal

distributions of the random variables and they give the most relevant summary of the de-

pendence between variables for extreme values as they quantify the characteristics of P (q)

as q → 1. If tail events are systematic as well, one might expect the extremal dependence

between the asset returns and the market factor returns to be priced and command a risk

premium. The extremal dependence measures we analyse provide the flexibility for testing

such a pricing relationship separately for positive, negative, or unsigned systematic tail

dependence.

3.2.1 The conventional approach χ

To understand extremal dependence, one must first appreciate that the form and degree

of such dependence determine the chance of obtaining large values of both variables. As

S and T are on a common scale, events of the form (S > s) and (T > s), for large values

of s, correspond to equally extreme events for each variable. As all such probabilities will

tend to zero as s → ∞ it is natural to consider conditional probabilities of one variable

given that the other is extreme.

Specifically, consider the behaviour of P (T > s | S > s) for large s. If (S, T ) are

perfectly dependent then P (T > s | S > s) = 1. In contrast, if (S, T ) are exactly

independent then P (T > s | S > s) = P (T > s), which tends to 0 as s→∞.

The first nonparametric measure of dependence we introduce χ, is based on P (q) in Eq.

(3.2).

Definition 3.1 (χ dependence measure). Let be (X,Y ) a bivariate rv, and let be

(S, T ) the transformation into unit Fréchet marginals.

χ = lim
q→1

P (q) = lim
s→∞

P (T > s | S > s) = lim
s→∞

P (T > s, S > s)

P (S > s)
(3.3)

and 0 6 χ 6 1. We say that variables are asymptotically dependent if χ > 0, asymptotically

independent if χ = 0 and perfectly dependent if χ = 1.

Clearly χ measures the degree of dependence that persists to the limit. Recalling that,

motivated by MEVT, we standardise the marginals to have unit Fréchet distribution

P (S 6 s) = P (T 6 s) = e−1/s for s > 0

Hence

P (S > s) = P (T > s) ∼ s−1 as s→∞.

Perfect dependence (S = T a.s.) corresponds to

P (S > s, T > s) = P (S > s) ∼ s−1
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and exact independence corresponds to

P (S > s, T > s) = P (S > s)2 ∼ s−2

The dependence measure χ presented in (3.3) is a version of the so called coefficient of

upper tail dependence, that is invariant with respect to the marginal distributions of the

random variables as it was obtained conveniently standardizing the marginal distributions.

Definition 3.2 (coefficient of upper/lower tail dependence). Let X1 and X2 be rvs

with cdfs F1 and F2. The coefficient of upper tail dependence of X1 and X2 is

λu := λu(X1, X2) = limq→1− P (X2 > F−1
X2

(q) | X1 > F−1
X1

(q))

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], then X1 and X2 are said to show upper tail

dependence or extremal dependence in the upper tail; if λu = 0, they are asymptotically

independent in the upper tail. Analogously, the coefficient of lower tail dependence can

be defined

λl := λl(X1, X2) = limq→0+ P (X2 6 F−1
X2

(q) | X1 6 F−1
X1

(q))

provided a limit λl ∈ [0, 1] exists.

Example 3.1 (Logistic model). An example of a non-trivial asymptotically joint distri-

bution is the logistic model in the bivariate extreme value, see Tawn (1988) and Longin

and Solnik (2001), which for unit Fréchet margins has

P (S 6 s, T 6 t) = exp{−(s−1/α + t−1/α)α} (3.4)

with 0 < α ≤ 1. When α = 1, the variables are exactly independent and χ = 0. When

α < 1, χ = 2− 2α and the variables are asymptotically dependent to a degree depending

on α.

Generally, when χ = 0 the two random variables are not necessarily also exactly

independent. For example, if the dependence structure is that of a bivariate normal

random variable with any value for the correlation coefficient less than one, then χ = 0

(Sibuya, 1959). These variables are not exactly independent if ρ 6= 0.

When exact independence of the variables is rejected, traditional multivariate extreme

value methods assume P (T > s | S > s) = χ > 0 for all large s. However, if the

true distribution of the variables is asymptotically independent, this approach will over-

estimate P (T > s | S > s) and all other probabilities of joint extreme events. The

degree of bias will depend on the difference between the estimated χ and the true value

of P (T > s | S > s), which is determined by the value of s and the rate at which

P (T > s | S > s)→ 0 as s→∞.
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3.2.2 An alternative measure of dependence χ̄

Ledford and Tawn (1996, 1997); Bruun and Tawn (1998); Bortot and Tawn (1998) have

provided a range of extremal dependence models, derived from a different form of mul-

tivariate limit theory, that describe dependence but have χ = 0. Although the random

variables are asymptotically independent in this case, different degrees of dependence are

attainable at finite levels of s. Based on these studies, Coles et al. (1999) suggest a new

dependence measure.

Definition 3.3 (χ̄ asymptotic independence measure). Let be (X,Y ) a bivariate

rv, and let be (S, T ) the transformation into unit Fréchet marginals.

χ̄ = lim
s→∞

2 logP (S > s)

logP (S > s, T > s)
− 1 (3.5)

and −1 < χ̄ 6 1, is an appropriate measure of asymptotic independence as it gives the

rate that P (T > s | S > s) → 0 approaches 0. For perfect dependence, P (T > s, S >

s) = P (S > s) and χ̄ = 1. For independence, P (T > s, S > s) = [P (S > s)]2, so

logP (S > s, T > s) = 2 logP (S > s) and χ̄ = 0. Hence values of χ̄ > 0, χ̄ = 0 and χ̄ < 0

correspond, respectively, to when (S, T ) are positively associated, exactly independent,

and negatively associated in the extremes. For the bivariate normal dependence structure

χ̄ = ρ is the correlation coefficient.

The pair of dependence measures (χ, χ̄) together provide all the necessary information

for characterising the form and the degree of extremal dependence.

• For asymptotically dependent variables, χ̄ = 1 with the degree of asymptotic de-

pendence given by χ > 0;

• For asymptotically independent variables, χ = 0 with the degree of dependence

given by χ̄.

It is important to test if χ̄ = 1 first, before drawing conclusions about asymptotic depen-

dence based on estimates of χ.

One could wrongly think that asymptotic independence means independence also at a

sub-asymptotic level, but this is not the case. Also rvs positively associated in extremes

and rvs negatively associated in extremes, lead to asymptotic independence.

The only degree of dependence between moderately large values of each rv, that is

strong enough to effectively becoming asymptotic dependence (χ > 0), is perfect depen-

dence in extremes (χ̄ = 1).
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3.3 Estimation and statistical inference

For estimating χ > 0 and χ̄, weak assumptions are required (the first three of which are

essentially the same as those required when estimating the univariate tail behaviour by

extreme value models):

(i) The joint distribution (S, T ) has a joint tail behaviour that is bivariate regularly

varying, satisfying the conditions of Ledford et al. (1998);

(ii) Both χ > 0 and χ̄ are limit properties, so it is necessary to assume that the sample

characteristics of the empirical joint distribution, above some selected threshold,

reflect the limiting behaviour;

(iii) The series has sufficient independence over time for the sample characteristics to

converge to the population characteristics χ > 0 and χ̄;

(iv) The marginal variables can be transformed to identically distributed Fréchet vari-

ables.

With the above assumptions, we use results in Ledford and Tawn (1996, 1997); Ledford

et al. (1998) to estimate χ > 0 and χ̄.

3.3.1 Coefficient of tail dependence

Ledford and Tawn (1996, 1997); Ledford et al. (1998) showed that under general regularity

conditions the joint survivor function of the random vector (S, T ) satisfies

P (T > s, S > s) ∼ L(s)s−1/η as s→∞ (3.6)

0 < η 6 1 is a constant and L(s) is a slowly varying function. The constant η ∈ (0, 1] is

called the coefficient of tail dependence and describes that nature of the dependence in

the tails. A function L(y) is said to be slowly varying (at ∞) if

limy→∞
L(ty)

L(y)
→ 1 for all t > 0

Notice that (3.6) implies that

P (T > s | S > s) ∼ L(s)s1−1/η as s→∞ (3.7)

0 < η 6 1. Therefore, perfect dependence corresponds to

η = 1 and L(y) = 1,

and exact independence corresponds to

η = 1/2 and L(y) = 1,
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When 0 < η < 1/2 the marginal components are negatively associated in the tail since

the survivor function decays faster than when they are exactly independent. The slowly

varying function L describes the strength of the dependence for a given level of η. In view

of (3.7), the definition of χ in (3.3) implies that

χ > 0 if and only if η = 1 and L(y)→ c > 0.

From the representation (3.6) it follows that

χ̄ = lim
s→∞

2 logP (S > s)

logP (S > s | T > s)
− 1

= lim
s→∞

2 log y−1

log(L(s)s−1/η)
− 1

= lim
s→∞

−2

logL(s)
log y −

1

η

− 1

= 2η − 1 (3.8)

since lims→∞
logL(s)

log y = 0 (see Proposition 0.8 of Resnick, 1987). Therefore, the coefficient

of tail dependence η and the measure χ̄ are linearly related.

The relationship between the dependence measures χ, χ̄, η and L(y) may be summa-

rized as follows:

χ̄ = 2η − 1 (3.9)

and

χ =


c if χ̄ = 1 and L(s)→ c > 0

0 if χ̄ = 1 and L(s)→ 0

0 if − 1 < χ̄ < 1.

(3.10)

There is the possibility that η = 1 and L(s)→ 0 as s→∞ leading to asymptotic indepen-

dence. This boundary case cannot be recognised from data as the slowly vary function

cannot be identified other than as a constant, and misspecification of the dependence

structure in this situation is unlikely to be important.

In summary, the pair (χ̄, χ) provide an overview of extremal dependence. When the

variables are asymptotically independent and χ = 0, the value of χ̄ provides a measure of

the strength of dependence. When the variables are asymptotically dependent χ̄ = 1 and

χ (through c) provides a measure of the strength of asymptotic dependence. Thus, we

focus on inference for η and lims→∞ L(s), treating the slowly varying function as constant

over some threshold u, i.e. L(s) = c for s > u.

In particular, when (S, T ) have a Gaussian dependence structure with correlation ρ,

χ = 0 and χ̄ = ρ which provides a useful benchmark for measuring dependence across the

class of asymptotically independent variables.
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3.3.2 Hill estimator

In practice, is convenient to first estimate η and then estimate χ̄ through (3.9). If χ̄ is

statistically indistinguishable from 1, then one estimates χ (through L(s) = c).

To proceed with the estimation, we follow the methodology suggested by Poon et al.

(2003, 2004) which is based on results from univariate EVT. The estimation of χ and χ̄

is based on fitting a univariate model for exceedances of a high threshold.

However, this time we are not applying the fully parametric GPD approach, as we did

in the previous chapter, but we rely on the semiparametric one. A number of diagnostic

techniques exist for threshold selection (reviewed in Section 2.7.2 Chapter 2). An impor-

tant result of Gnedenko (1943) shows that the tail of a univariate heavy-tailed variable Z

above a high threshold u satisfies the following relation.

Theorem 3.1 (Gnedenko (1943) Fréchet MDA). For heavy tailed distributions ξ > 0,

F ∈MDA(Hξ)⇔ F̄ (x) = x−1/ξL(x) (3.11)

for some function L slowly varying at ∞.

This means that distributions giving rise to the Fréchet case are distributions with

tails that are regularly varying functions with a negative index of variation. Their tails

decay essentially like a power function and the rate of decay α = 1/ξ is often referred to

as the tail index of the distribution.

These distributions are the most studied distributions in EVT and they are of par-

ticular interest in financial applications because they are heavy-tailed distributions with

infinite higher moments.

If X is a non-negative rv whose cdf F is an element of MDA(Hξ) for ξ > 0, then we

have already shown that E[Xk] =∞ for k > 1/ξ.

This form of the survivor function is usually assumed to hold for x large (x > u) and

L(x) = c for some constant c. Estimation of the shape parameter is performed by using

the semi-parametric estimator of Hill et al. (1975).

We make the modelling assumption that Equation (3.6) is an equality for s > u.

Inference follows, using univariate extreme value techniques, by identifying that if Z =

min(S, T ) then

P (Z > z) = P (min(S, T ) > z) = P (S > z, T > z) = L(z)z−1/η (3.12)

= cz−1/η, for z > u

for some high threshold u. From the Eq. (3.12) and the univariate form in Eq. (3.11), it

can be seen that 1/η is the tail index of the univariate variable Z, and so can be estimate

using the Hill estimator.
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3.3. Estimation and statistical inference

3.3.3 χ̄ estimation

Given a sample of i.i.d. observation of the bivariate random vector (S, T )

(Y1,i, Y2,i), i = 1, . . . , n,

Let be

Y
(1)

min > Y
(2)

min > · · · > Y
(n)

min

the corresponding order statistics of

Ymin,i = min(Y1,i, Y2,i), i = 1, . . . , n,

Conditional on a number of exceedances over the threshold u equal to k ({K = k}), the

joint density of the order statistics (Y
(1)

min, Y
(2)

min, . . . , Y
(j)

min) is given by

f
(Y

(1)
min,Y

(2)
min,...,Y

(j)
min)

(y1, . . . , yk) =
n!

(n− k)!
(1− cy1/η

k )n−kckη−k
k∏
i=1

y
−(1/η+1)
i , (3.13)

for u < yk 6 · · · 6 y1. Maximization of the conditional log-likelihood function associated

with (3.13) yields the following estimators due to Hill et al. (1975)

η̂ =
1

k

k∑
i=1

log Y
(i)

min − log u, (3.14)

ĉ =
k

n
u1/η̂ (3.15)

Estimation of the extremal dependence measures χ̄ and χ is now straightforward. Using

(3.9), we estimate χ̄ by

ˆ̄χ = 2η̂ − 1 = 2

(
1

k

k∑
i=1

log Y
(i)

min − log u

)
− 1 (3.16)

Under certain regularity conditions on the tail of F 7 and conditions on the rate that

k = k(n)→ inf, k/n→ 0 as n→∞, the estimator η̂ is asymptotically normal such that

√
k(n)(η̂ − η)

d−→ N (0, η2) (3.17)

where
d−→ denotes convergence in distribution. The asymptotically normality of χ̄ is en-

sured by results in Smith (1987). A natural estimator of the variance of ˆ̄χ = 2η̂ − 1 is

then given by

V̂ ar( ˆ̄χ) =
4η̂2

k
=

(ˆ̄χ+ 1)2

k
(3.18)

7These regularity conditions involve a second-order regular variation assumption on the tail of F . See
Sec. 6.4 of Embrechts et al. (1997) for details and references.
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If ˆ̄χ is significantly less than 1 (i.e., if ˆ̄χ + 1.96
√

Var( ˆ̄χ) < 1) then we infer the variables

to be asymptotically independent and take χ = 0.

3.3.4 χ estimation

Only if there is no significant evidence to reject χ̄ = 1, hence ˆ̄χ is statistically indistin-

guishable from one, we reject asymptotic independence and estimate χ.

The estimation of χ is made under the condition that χ̄ = η = 1. Taking η = 1 in (3.15),

together with (3.10) gives the estimator

χ̂ = ĉ =
k

n
u (3.19)

An estimator of Var(χ̂) is available via the properties of the maximum likelihood estimator.

Let l(c; η = 1, Y1, . . . , Yk) be the logarithm of the likelihood associated with (3.13) where

we set η = 1. 1/Var(ĉ) equals the Fisher information of the parameter c and is given by

− ∂2

∂c2
l(c; η = 1, Y1, . . . , Yk) = E

(
c2(c− Yk)2

c2n2ckYk + kY 2
k

)
(3.20)

But recall that we are conditioning on there being k exceedances of u. Letting Yk = u in

(3.20) and replacing c by its estimator ĉ = ku/n, a natural estimator of the variance of

χ = c is given by

V̂ar(χ̂) =
u2k(n− k)

n3
(3.21)

Remark 3.1 (Threshold choice). Key to the success of the above methodology is the

choice of u (or k), above which we assume the model of the tail holds. The choice of k

corresponds to the choice of the high threshold u in the threshold excess modelling. This

determines how many order statistics, (Y
(1)

min, Y
(2)

min, . . . , Y
(j)

min), are used in the estimation of

the η and c in (3.14) and (3.15) respectively.

It is a delicate matter which typically relies on certain graphical techniques or sampling

methods to determine the optimal choice of threshold, as we have already discussed in

Section 2.7.2 Chapter 28. Ideally, the choice of threshold u should be done for every pair

of markets Y1 and Y2. Since in our application (Chapter 4) we will consider 12 markets,

thus 66 different possible pairs of them, we make the pragmatic choice of u as the 95%

quantile of the empirical distribution of Ymin,i, i = 1, . . . , n.

First of all because is the typical choice for the application of EVT in literature, and

secondly to be consistent with the choice we made to solve the optimal portfolio allocation

problem.

8See Sec. 6.4 in Embrechts et al. (1997) and references therein for a detailed discussion on the choice
of threshold.
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Remark 3.2 (i.i.d. random variables). The whole precedent discussions apply to

independent variables. When the variables are dependent, the statistical approaches for

analysing maxima are unchanged and the limit distribution of the maximum is also a

generalized extreme value distribution (see Section 7.1.3 in McNeil et al., 2005). Unlike the

maximum over intervals method, temporal dependence due the use of threshold method

adds some complications.

Ignoring the dependence and applying the methods as if the data were independent

will lead to unbiased estimators but with standard errors that are too small (Kearns and

Pagan, 1997). Several approaches may be used to overcome this problem: declustering

of the exceedances of the threshold to produce approximately independent data (Davison

and Smith, 1990), or adjusting the standard error within maximum likelihood framework

(see Coles and Walshaw, 1994).
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Chapter 4

Portfolio of International Equity

Indices

This final chapter outlines the application of the methodology presented in Chapters 2

and 3 to a portfolio of international equity market indices.

The aim is to give an empirical perspective of the modelling framework and dependence

analysis previously introduced. The choice of the asset universe is crucial for this purpose.

Indeed, in our setting, performing an analysis to identify the correct extremal dependence

structure of the portfolio’s constituents, means studying the dependence between countries

during extreme economic periods.

We link the two main topics, portfolio optimisation and extreme dependence analysis,

trying to understand how the asymptotic dependence or independence of pairs of markets,

may impact the optimal asset allocation problem.

The software used in this dissertation, to perform the extremal dependence analysis

and to solve the EVT-based portfolio optimisation problem, was entirely and indepen-

dently written by the author in MATLAB1.

4.1 Empirical data

The methodology presented in the two previous chapter is tested on real data. This final

chapter is dedicated to the presentation of analyses and results, when the EVT-based

model is applied to a portfolio composed of international equity indices.

In the empirical application we consider the assets listed in Table 4.1. These are eq-

uity indices of twelve large capitalization international markets. We use Thomson Reuters

1We did not make use of any of the available software systems for EVT (like for instance EVIS, Extreme
Values In S-Plus, developed at ETH Zurich, or XTREMES developed by Rolf Reiss and Michael Thomas
at the University of Siegen in Germany.
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Datastream as data source. Datastream produces many of their own stock indices, includ-

ing total market indices representing all the stocks trading in a country’s stock market.

We refer to these Total market country indices to perform our analyses. To retrieve

them, the identifying codes are composed by: “Totmk” + “Country code”. For instance

TOTMKUK data type RI, represents the total return for the Total UK Market. We

refer to data type RI for all the countries.

The total return index is a type of equity index that tracks both the capital gains of

a group of stocks over time, and assumes that any cash distributions, such as dividends,

are reinvested back into the index. Looking at an index’s total return displays a more

accurate representation of the index’s performance. By assuming dividends are reinvested,

the index effectively account for stocks that do not issue dividends and instead, reinvest

their earnings within the underlying company.

Market Min Max Mean stdev skew kurt MV

HK -34.724 16.838 0.043 1.637 -1.444 31.762 1,994,437

JP -16.000 12.000 0.031 1.356 -0.012 6.089 4,770,875

AU -26.157 8.739 0.032 1.385 -1.152 20.102 1,133,719

BG -11.146 10.204 0.034 1.180 -0.099 6.229 388,591

CN -12.660 9.988 0.031 1.115 -0.576 12.087 1,661,925

FR -10.142 11.234 0.034 1.328 -0.115 5.960 1,918,682

BD -11.733 17.659 0.032 1.279 0.044 8.718 1,714,272

IT -12.511 11.914 0.033 1.535 -0.106 5.135 518,132

NL -10.852 10.727 0.036 1.244 -0.147 7.438 608,278

SW -10.497 9.465 0.039 1.082 -0.206 6.039 1,442,935

UK -13.528 12.543 0.032 1.217 -0.273 9.313 3,127,606

US -18.705 11.518 0.039 1.081 -0.642 17.659 22,948,820

Table 4.1: Descriptive statistics for the raw data based on 9,565 observations of daily
simple periodic returns (expressed as %) from international equity markets for the period
from 02-Jan-1980 to 30-Aug-2016. The kurtosis is defined so that the kurtosis of the
normal distribution is zero. Market value is reported in millions of US dollars.

Table 4.1 summarise the descriptive statistics of daily returns from 12 international

equity markets that are taken into account. The simple returns data is calculated from

daily closing price (adjusted for dividends and splits) time series of the total market indices
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covering the period from 02-Jan-1980 to 30-Aug-2016. Hence, the dataset consists of 9,565

data points for each market index time series.

These markets exhibit a negative skewness (except for Germany BD) and positive

excess kurtosis, implying an increased probability of observing large losses. We have

widely discussed how much such a departure from normality is critical to the safety-

first investor. Therefore, a preliminary analysis of data shows the validity of the stylised

facts, not just from a theoretical perspective, but also on the true data considered in our

empirical experiment.

All the variables involved are downloaded from the data source in the same currency,

US Dollars, as in our framework we are not modelling the dynamic of exchange rates. In

this empirical application, we use the following definition of kurtosis such that the normal

distribution has a kurtosis of zero.

K(X) =
E(X − µX)4

(VarX)2
− 3

Heavy tailed distribution, thus will lead to positive value of kurtosis. Looking at Table

4.1, we can also notice that the Italian and Hong Kong stock markets are the most volatile

(higher stdev), while Switzerland and US are the less risky in the sample, when referring

to variance as risk measure. This evidence will be visible again, in the plots of the prices

indices and of returns, since safer countries will display respectively a smoother price line

and a narrower return series.

The price and return series for four out of twelve markets are displayed in Figure

4.1: two European, United Kingdom and Italy, one American, US, and finally one Asian

market, Japan. The effects of the main financial crises can clearly be seen in all of them:

the 1987 stock market crash; then the Asian financial crisis triggered in July 1997, the

hedge-fund crisis during 1997-1998 and subprime crisis (2007-2009). In addition, the

consequences of Brexit referendum in June 2016, are visible both in the UK market, plot

4.1a, and in the Italian one, 4.1d. In particular, the latter market observed, on “the day

after” (24-Jun-2016), its minimum value on the whole time series considered.

A collection of the dates on which the minimum and maximum returns values of each

daily market return time series were reached, are shown in Table 4.2. Canada, France and

Netherlands were mainly hit, both in terms of losses and gains, during the credit crisis

in 2008. The Asian crisis made the Asian markets within our sample, Hong Kong and

Japan, reaching their maximum gain on the whole period considered.
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(a)

(b)

Figure 4.1: UK market-TOTMKUK and US market-TOTMKUS. The upper graphs
show the closing share prices on the sampling period 02-Jan-1980 to 30-Aug-2016. The
lower panel show the daily returns (expressed as %).
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(c)

(d)

Figure 4.1: Japanese market-TOTMKJP and Italian Market-TOTMKIT. The upper
graphs show the closing share prices on the sampling period 02-Jan-1980 to 30-Aug-2016.
The lower panel show the daily returns (expressed as %).
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Table 4.2: Dates on which minimum and maximum values of each daily market return
time series were reached over the period 02-Jan-1980 to 30-Aug-2016.

Market Min Max Market Min Max

HK 26/10/1987 29/10/1997 BD 19/08/1991 28/10/2008

JP 20/10/1987 07/10/1998 IT 24/06/2016 29/10/2008

AU 20/10/1987 13/10/2008 NL 06/10/2008 24/11/2008

BG 19/10/1987 10/05/2010 SW 19/10/1987 13/10/2008

CN 20/11/2008 14/10/2008 UK 20/10/1987 29/10/2008

FR 06/10/2008 24/11/2008 US 19/10/1987 13/10/2008

4.1.1 GPD estimation on the marginals

Following all the discussions in Chapter 2, and for being consistent throughout the analy-

sis, we have chosen to set our threshold at the 95% percentile of the empirical distribution

for all markets.

Thus we fit a GPD distribution to excess losses above this threshold, using formulas

and methodology presented in Sections 2.4 and 2.5 in Chapter 2, via maximum likelihood.

Henceforth, we are considering negative returns for each market, so that losses will be

positive e we perfectly lie within the previously presented framework2.

Given our sample of multivariate observations of the random vector representing neg-

ative returns of the 12 assets in our universe

X̃s = (X̃1,s, X̃2,s, . . . , X̃12,s) , s ∈ {1, . . . , n}

We assume that the realisations of each component are drawn from a sequence of iden-

tically distributed rvs, with unknown underlying distribution F (i), i = 1, . . . , 12 and each

of those lie in the domain of attraction of an extreme value distribution Hξ for some ξ.

Therefore, all the results presented in Chapter 2 hold and we model the tails of every

asset’s return distribution in our sample F (i)(x), i = 1, . . . , 12, x ≥ u, by means of the

EVT fully parametric GPD model.

Table 4.3, provides estimates of the shape parameter ξ for the left (Gains) and right

(Losses) tails of the 12 international equity markets we consider. The shape parameter ξ

is positive in all markets and in both tails. This is coherent with the heavy tailedness of

the returns distributions showed by the kurtosis values calculated on the raw return series.

For financial data we expect ξ ∈ (0, 1), so that the tail is heavier than it would be for

2We apply the EVT based model always on the right tail of the distribution (positive values). Therefore,
when analysing the Gain Tail, the sign of the negative returns will change accordingly. For the tails, losses
and gains are reported as positive.
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exponential decay distributions (ξ > 0), and the mean exists (ξ < 1). This is confirmed

by our findings showed in Table 4.3. The relation ξ < 1 guarantees that the estimated

expected shortfall, which is a conditional first moment, exists for both tails.

Loss Tail Gain Tail

Market F (u) u ξ se ξ β se β u ξ se ξ β se β

HK 0.95 2.373 0.246 0.053 1.129 0.078 2.402 0.209 0.056 0.975 0.070

JP 0.95 2.041 0.122 0.047 0.848 0.055 2.128 0.161 0.051 0.808 0.055

AU 0.95 2.017 0.248 0.051 0.859 0.058 2.071 0.195 0.056 0.758 0.054

BG 0.95 1.776 0.180 0.055 0.762 0.054 1.790 0.167 0.055 0.779 0.055

CN 0.95 1.604 0.229 0.055 0.836 0.059 1.606 0.232 0.055 0.669 0.047

FR 0.95 2.020 0.122 0.052 0.945 0.065 1.987 0.202 0.052 0.765 0.053

BD 0.95 1.976 0.143 0.054 0.844 0.059 1.934 0.214 0.054 0.711 0.050

IT 0.95 2.330 0.093 0.055 1.149 0.082 2.398 0.206 0.055 0.854 0.060

NL 0.95 1.856 0.144 0.054 0.925 0.065 1.847 0.204 0.054 0.781 0.055

SW 0.95 1.634 0.178 0.052 0.682 0.047 1.697 0.232 0.056 0.564 0.040

UK 0.95 1.828 0.193 0.050 0.790 0.053 1.807 0.198 0.051 0.710 0.048

US 0.95 1.597 0.256 0.055 0.683 0.048 1.611 0.221 0.058 0.673 0.049

Table 4.3: Parameter estimates of the generalized Pareto distribution for the loss and
gain tails. “se” refers to standard errors. The threshold u was picked to correspond to
the 0.95 quantile of the empirical distribution and is expressed as %. For both tails, losses
and gains are reported as positive.

The GPD models we have fitted on each marginals show that all the equity market

indices have finite variance as ξi < 1/2, i = 1, . . . , 12 in both tails. All the markets have

heavy-tailed Fréchet distributions with a finite fourth moment, excluding the US loss tail.

Furthermore, we can notice that the GPD models for the loss tail of both Hong Kong and

Australian markets, are close to having an infinite fourth moment. The obtained results

agreed with one of the stilized facts, listed in Section 1.3.2 Chapter 1, stating that “the

(unconditional) distribution of returns seems to display a power-law or Pareto-like tail,

with a tail index which is finite, higher than two and less than five for most data sets

studied”.

Looking at the threshold values (on the loss tail) we can say that Italy and Hong Kong,

having the highest u values, are again the riskiest markets also considering a quantile

based risk measure. Indeed, the u in our setting, corresponds to the value at risk at 95%

confidence level calculated on the empirical distribution. US, Canada and Switzerland are
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the safest in this perspective.

Considering the results, we cannot generalise that the loss tail is heavier than the

gain one for all indices. Actually for European countries, France, Germany, Italy and

Netherlands, the opposite case seems to hold.

Now, suppose the risk manager wants to obtain value at risk and expected shortfall

estimates of the returns on the indices at some high quantiles (higher than the threshold

u). Parametric formulas are available for those risk measures, under the GPD modelling

we are referring to (Section 2.5 in Chapter 2).

Loss tail risk measures

Market VaR99% ES99% Market VaR99% ES99%

HK 4.601 6.825 BD 3.505 4.747

JP 3.549 4.725 IT 4.325 5.796

AU 3.717 5.421 NL 3.531 4.892

BG 3.199 4.440 SW 2.906 4.011

CN 3.231 4.799 UK 3.319 4.654

FR 3.702 5.014 US 2.958 4.344

Table 4.4: V aR and ES values (expressed as %) at a confidence level α = 99% for every
equity market index in our universe. The focus is on the right tail as we are concerned by
the consequences related to downside risk.

Table 4.4 shows the values of the Var and ES at a confidence level α = 99% for every

equity market index in our universe. Obviously, in this case we focus only on the right

tail (loss) of the distribution as we are concerned by the consequences associated with

downside risk. Looking at estimated VaR and ES values, we observe that the conclusions

in terms of exposure to extreme losses, hence riskiness, among the considered countries

are the same as before.

4.2 Extremal dependence analysis

This section presents the results obtained after analysing the extremal dependence struc-

ture between pairs of assets in our universe. Since the securities considered are total

market index return, this would mean understanding dependence relations between coun-

tries when grouped in twos.

We focus on dependence estimation in the bivariate context, but the ideas and tech-

niques can be extended to higher dimensions. The extension is theoretically conceivable,

but often demanding from a computational viewpoint. We follow the methodology pre-
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sented in Chapter 3 applying it to all the possible pairs of markets listed in Table 4.1.

Hence, we consider 66 pairs in total and examine the nature of their extremal dependence

for both the loss and gain tails of the distribution. Of course we aim at establishing which

of the two classes of extreme value dependence, asymptotic dependence and asymptotic

independence, characterise each couple.

In order to do that we refer to the pair of dependence measures (χ̄, χ), that together

provide all the necessary information for characterising the form and the degree of extremal

dependence. To briefly summarise their interpretation:

For asymptotically dependent variables, χ̄ = 1, and the degree of extremal de-

pendence is given by χ > 0;

For asymptotically independent variables, χ = 0 , and the value of χ̄ provides

the degree of dependence at a sub-asymptotic level. In particular, when 0 < χ̄ < 1

the markets are positively associated in the extremes, χ̄ = 0 means independence,

and finally −1 < χ̄ < 0 negative association in the extremes.

First, we estimate χ̄ and its standard error (see Section 3.3.3 Chapter 3). Using

the asymptotic normality of the estimator ˆ̄χ of χ̄, we reject asymptotic independence if

ˆ̄χ > 1− 1.96σ ˆ̄χ. When asymptotic independence is rejected, we estimate χ̄ conditionally

on χ̄ = η = 1.

The results are presented in Table 4.6. This shows estimates of the classical dependence

measure, that is the linear correlation ρ, and estimates of χ̄ and χ for both the tails. First,

recall that if the dependence structure were Gaussian, then χ̄ = ρ. Thus this value can

be considered a benchmark.

Results shows that χ̄Loss > ρ for the loss tail in all 66 pairs of markets. Similar results

hold for the the gain tail where again we have χ̄Gain > ρ for all 66 pairs of markets. This

reinforces our previous conjecture that the Pearson correlation measure is a poor measure

for tail dependence. Next, notice that χ̄Loss > χ̄Gain in 55 out of the 66 markets. The

dependence in the loss tail is thus generally greater than the dependence in the gain tail.

In Table 4.5 a summary of the findings regarding the extremal dependence structure

is shown. In particular, it presents how many of the markets pairs show either asymptotic

dependence or asymptotic independence within our sample; the results refer to both tails

and are presented for different significance levels, α = 1% and α = 5%, of the hypothesis

test, with null H0 : χ̄ = 1. It is clear, that the dependence during bad states of the market

is greater than the dependence found in very good economic periods (gain tail). Indeed,

the number of couple of markets, being asymptotic dependent, is higher in the loss tail

for both significance levels considered. When focussing on the loss tail and moving from a

significance level of α = 5% to α = 1%, the numbers of independent pairs drops from 32

(48% of the total) to 28 (42% of the total). Whereas, when looking at the gain tail, 61%

of the total number of pairs are asymptotic independent with significance level α = 5%;
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this percentage decreases to 52% at a significance level α = 1%.

While asymptotic independence between markets prevails in the gain tails, the same

is not true in the loss one; where the situation is more balanced but between 52% (α =

5%) and 58% (α = 1%) of the market pairs are dependent in the very extreme part of

the distribution. All the detailed results regarding the estimation of the dependence

Table 4.5: Number of markets pairs that show asymptotic dependence (first row) or
asymptotic independence (second row) in the sample, looking at both tails and for different
significance levels (α = 1% and α = 5%,H0 : χ̄ = 1).

Loss Tail Gain Tail

Test significance level 0.01 0.05 0.01 0.05

Asymptotic:

Dependence 38 34 32 26

Independence 28 32 34 40

measures, and their standard errors, together with the p-values of the hypothesis tests are

reported in Table 4.6. The values relative to χ are shown only for asymptotic dependent

pairs of markets, i.e. for those that not significantly reject the null H0 : χ̄ = 1 (p-

value>significance level). Notice that in red are the χ estimates for those pairs being

asymptotic dependent when the test is performed at a significance level of α = 1%, but

resulting significantly asymptotic independent when α = 5%; in black those whose χ̄ is

statistically indistinguishable from one, thus asymptotic dependent, for α = 5%.

Recall that the χ estimate gives the probability of joint occurrence of the most extreme

values. For example, an estimates of χ = 0.5 in the period, would indicate that there is

about a 50% chance that one country will experience the largest gain (fall) in the stock

market, when the largest positive (negative) return is recorded in the other paired market.

So χ is a true measure for systemic risk in international stock markets. The mean value of

the χ dependence measure for the asymptotically dependent markets is 0.4545 (when test

significance α = 5%), which corresponds to fairly strong dependence. The mean value of

the χ dependence measure, for markets which are asymptotically dependent in the gain

tail, is 0.4417 (when test significance α = 5%). This again corresponds to fairly strong

asymptotic dependence.

Remark 4.1 (MEVT and the common assumption of asymptotic dependence).

Since a non zero estimate of χ in the loss tail, corresponds to 52% − 58% of the total

number of groups considered, we may conclude that the a priori modelling via MEVT,
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Table 4.6: The traditional dependence measure of linear correlation ρ and extreme values
theory dependence measures χ̄ and χ for both the Loss and Gain tails for pairs of assets in
our universe. In red, the χ estimates for asymptotic dependent pairs when the hypothesis
test has α = 1%, but resulting significantly asymptotic independent when α = 5%; in
black those whose χ̄ is statistically indistinguishable from one (asymptotic dependent),
for α = 5%.

Loss Tail Gain Tail

Markets ρ χ̄ σχ̄
p-value

(H0 : χ̄ = 1)
χ σχ χ̄ σχ̄

p-value
(H0 : χ̄ = 1)

χ σχ

HKvsJP 0.317 0.664 0.076 0.000 0.520 0.070 0.000

HKvsAU 0.429 0.768 0.081 0.002 0.638 0.075 0.000

HKvsBG 0.256 0.551 0.071 0.000 0.328 0.061 0.000

HKvsCN 0.257 0.499 0.069 0.000 0.444 0.066 0.000

HKvsFR 0.288 0.594 0.073 0.000 0.398 0.064 0.000

HKvsBD 0.303 0.512 0.069 0.000 0.401 0.064 0.000

HKvsIT 0.222 0.509 0.069 0.000 0.368 0.063 0.000

HKvsNL 0.318 0.621 0.074 0.000 0.424 0.065 0.000

HKvsSW 0.298 0.632 0.075 0.000 0.402 0.064 0.000

HKvsUK 0.312 0.587 0.073 0.000 0.470 0.067 0.000

HKvsUS 0.168 0.432 0.065 0.000 0.472 0.067 0.000

JPvsAU 0.392 0.744 0.080 0.001 0.554 0.071 0.000

JPvsBG 0.252 0.472 0.067 0.000 0.407 0.064 0.000

JPvsCN 0.179 0.393 0.064 0.000 0.387 0.063 0.000

JPvsFR 0.249 0.456 0.067 0.000 0.352 0.062 0.000

JPvsBD 0.255 0.412 0.065 0.000 0.370 0.063 0.000

JPvsIT 0.190 0.470 0.067 0.000 0.324 0.061 0.000

JPvsNL 0.260 0.481 0.068 0.000 0.313 0.060 0.000

JPvsSW 0.310 0.509 0.069 0.000 0.497 0.068 0.000

JPvsUK 0.263 0.437 0.066 0.000 0.465 0.067 0.000

JPvsUS 0.059 0.360 0.062 0.000 0.308 0.060 0.000

AUvsBG 0.392 0.807 0.083 0.010 0.858 0.085 0.047 0.299 0.013

AUvsCN 0.375 0.752 0.080 0.001 0.751 0.080 0.001

AUvsFR 0.396 0.814 0.083 0.013 0.324 0.014 0.742 0.080 0.001

AUvsBD 0.389 0.804 0.083 0.009 0.645 0.075 0.000

AUvsIT 0.349 0.733 0.079 0.000 0.639 0.075 0.000

AUvsNL 0.437 0.832 0.084 0.023 0.343 0.015 0.731 0.079 0.000

AUvsSW 0.418 0.850 0.085 0.038 0.321 0.014 0.737 0.079 0.000
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(Table 4.6 Continued). The traditional dependence measure of linear correlation ρ and
extreme values theory dependence measures χ̄ and χ for both the Loss and Gain tails for
pairs of assets in our universe. In red, the χ estimates for asymptotic dependent pairs when
the hypothesis test has α = 1%, but resulting significantly asymptotic independent when
α = 5%; in black those whose χ̄ is statistically indistinguishable from one (asymptotic
dependent), for α = 5%.

Loss Tail Gain Tail

Markets ρ χ̄ σχ̄
p-value

(H0 : χ̄ = 1)
χ σχ χ̄ σχ̄

p-value
(H0 : χ̄ = 1)

χ σχ

AUvsUK 0.446 0.878 0.086 0.079 0.339 0.015 0.777 0.081 0.003

AUvsUS 0.142 0.599 0.073 0.000 0.554 0.071 0.000

BGvsCN 0.434 0.884 0.086 0.088 0.346 0.015 0.893 0.087 0.108 0.303 0.014

BGvsFR 0.717 1.000 0.093 0.500 0.541 0.024 0.963 0.090 0.340 0.494 0.022

BGvsBD 0.683 0.971 0.090 0.374 0.513 0.023 0.910 0.087 0.152 0.474 0.021

BGvsIT 0.586 0.874 0.086 0.070 0.438 0.020 0.832 0.084 0.023 0.397 0.018

BGvsNL 0.740 1.000 0.095 0.500 0.549 0.024 1.000 0.092 0.500 0.488 0.022

BGvsSW 0.698 1.000 0.093 0.500 0.495 0.022 1.000 0.092 0.500 0.451 0.020

BGvsUK 0.644 1.000 0.094 0.500 0.465 0.021 1.000 0.093 0.500 0.411 0.018

BGvsUS 0.335 0.853 0.085 0.042 0.301 0.013 0.814 0.083 0.013 0.280 0.012

CNvsFR 0.512 0.910 0.087 0.150 0.376 0.017 0.851 0.085 0.039 0.341 0.015

CNvsBD 0.498 0.963 0.090 0.340 0.376 0.017 0.897 0.087 0.119 0.336 0.015

CNvsIT 0.414 0.766 0.081 0.002 0.709 0.078 0.000

CNvsNL 0.550 0.956 0.089 0.310 0.407 0.018 0.878 0.086 0.077 0.364 0.016

CNvsSW 0.461 1.000 0.092 0.500 0.334 0.015 0.731 0.079 0.000

CNvsUK 0.557 0.982 0.091 0.421 0.402 0.018 0.962 0.090 0.335 0.343 0.015

CNvsUS 0.662 0.990 0.091 0.458 0.487 0.022 0.899 0.087 0.121 0.434 0.019

FRvsBD 0.767 1.000 0.095 0.500 0.574 0.026 0.974 0.090 0.388 0.549 0.024

FRvsIT 0.646 1.000 0.094 0.500 0.489 0.022 0.956 0.089 0.312 0.437 0.020

FRvsNL 0.810 1.000 0.096 0.500 0.609 0.027 1.000 0.092 0.500 0.577 0.026

FRvsSW 0.741 1.000 0.092 0.500 0.530 0.024 0.988 0.091 0.446 0.484 0.022

FRvsUK 0.727 1.000 0.093 0.500 0.528 0.024 0.953 0.089 0.299 0.499 0.022

FRvsUS 0.406 0.916 0.088 0.169 0.335 0.015 0.833 0.084 0.023 0.312 0.014

BDvsIT 0.618 0.976 0.090 0.394 0.472 0.021 0.894 0.087 0.110 0.419 0.019

BDvsNL 0.780 1.000 0.093 0.500 0.586 0.026 0.936 0.089 0.235 0.543 0.024

BDvsSW 0.752 1.000 0.093 0.500 0.529 0.024 0.932 0.088 0.219 0.503 0.022

BDvsUK 0.668 1.000 0.095 0.500 0.468 0.021 0.930 0.088 0.214 0.456 0.020

BDvsUS 0.428 0.965 0.090 0.348 0.345 0.015 0.888 0.086 0.098 0.326 0.015
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(Table 4.6 Continued). The traditional dependence measure of linear correlation ρ and
extreme values theory dependence measures χ̄ and χ for both the Loss and Gain tails for
pairs of assets in our universe. In red, the χ estimates for asymptotic dependent pairs when
the hypothesis test has α = 1%, but resulting significantly asymptotic independent when
α = 5%; in black those whose χ̄ is statistically indistinguishable from one (asymptotic
dependent), for α = 5%.

Loss Tail Gain Tail

Markets ρ χ̄ σχ̄
p-value

(H0 : χ̄ = 1)
χ σχ χ̄ σχ̄

p-value
(H0 : χ̄ = 1)

χ σχ

ITvsNL 0.640 0.969 0.090 0.365 0.480 0.021 0.875 0.086 0.073 0.425 0.019

ITvsSW 0.591 0.862 0.085 0.053 0.435 0.019 0.896 0.087 0.115 0.386 0.017

ITvsUK 0.582 0.960 0.090 0.328 0.427 0.019 0.847 0.084 0.035 0.378 0.017

ITvsUS 0.316 0.749 0.080 0.001 0.558 0.071 0.000

NLvsSW 0.763 1.000 0.092 0.500 0.551 0.025 1.000 0.092 0.500 0.492 0.022

NLvsUK 0.790 1.000 0.094 0.500 0.571 0.025 1.000 0.095 0.500 0.521 0.023

NLvsUS 0.430 0.909 0.087 0.150 0.353 0.016 0.900 0.087 0.125 0.321 0.014

SWvsUK 0.679 1.000 0.093 0.500 0.465 0.021 0.982 0.091 0.422 0.448 0.020

SWvsUS 0.341 0.938 0.089 0.243 0.291 0.013 0.703 0.078 0.000

UKvsUS 0.417 0.874 0.086 0.071 0.347 0.015 0.783 0.082 0.004
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relying on the assumption of asymptotic dependence, is inappropriate in many cases.

Considering the difference in terms of asymptotic dependence we found in the two tails,

this assumption would definitely not be appropriate with reference to the gain tail. Tak-

ing into account an asymmetric model would be advisable. Multivariate that assumes

asymptotic dependency will overestimate portfolios that consist of asset returns that are

asymptotically independent; thus is important to perform a preliminary analysis of the

portfolio components to assess the extremal dependence structure.

Remark 4.2 (Market volatility). The number of cases of asymptotic dependence

should probably be considered an upper bound since Poon et al. (2003, 2004) show that

some of the extremal dependence is due to the non-i.i.d. nature of the data. In their inves-

tigation, the number of cases of asymptotic dependence drops when the market volatility

is filtered from the individual return series. This indicates that volatility is a major

contributing factor to the between-series extremal dependence.

Remark 4.3 (Market integration). With reference to similar studies conducted in the

past, the degree of asymptotic independence those found in the data was higher3, with a

very few instances of asymptotic dependence between markets.

However, a subset of the markets analysed here and different time periods were ac-

tually examined, and mostly with data arriving at early 2000’s. Therefore, our finding

regarding an increase in dependence through time, can be easily attributed both to mar-

kets integration and to the subsequent financial crises, further bringing a contagion and

systemic risk.

Remark 4.4 (Dependence in the extremes). Both forms of extremal dependence

permit dependence between moderately large values of each variable, but the very largest

values from each variable can occur together only when the variables exhibit asymptotic

dependence.

The extremal measures can be used to measure dependency of the same or different

signs. In particular for those pairs of market exhibiting asymptotic independence, i.e.

χ = 0, the value of χ̄ represents the degree of association of the rvs in the extremes.

In our data base, none of the asymptotic independent markets, are independent also

when considering moderately large values. χ̄ assumes always positive values and thus

showing rvs positively associated in the extremes.

Lastly, note the geographic relationship between markets which are asymptotically

independent with most the other markets. These are mainly included in the first of the

three tables 4.6 and are: Hong Kong, Japan and Australia. It seems that the cases of

strong asymptotic independence occur mostly in markets which are not in close geographic

proximity.

3See for example Poon et al. (2003),Poon et al. (2004), Bradley and Taqqu (2004b).
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4.3 Portfolio optimisation results

In this section we present the results obtained by applying the EVT based asset allocation,

presented in Chapter 2, to the Group of Five G-5 Countries. This name is given to

the five industrialized nations that meet periodically to achieve a cooperative effort on

international economic and monetary issues. The G-5 consists of five of the world’s leading

industrialised countries: France, Germany, Japan, the United Kingdom, and the United

States.

Before proceeding we focus on the analysis of their extremal dependence structure.

The main variables of interest are shown in Table 4.7.

These values reveal that Japan is the only country that is asymptotically independent

of the other markets. Furthermore, as measured by χ̄ (loss tail), has also a low amount

of dependence, in terms of positive correlation in extremes. This holds also when looking

at the gain tail. Thus, in agreement with what has been said in the previous section,

(positive) returns exhibits even lower sub-asymptotic dependence. All these facts support

the holding of Japan for the benefit of diversification.

Table 4.7: Focus on the extremal dependence for the G-5 Countries. Classical depen-
dence measure, linear correlation ρ, and EVT dependence measures χ̄ and χ for both the
Loss and Gain tails are shown.

Loss Tail Gain Tail

Markets ρ χ̄ σχ̄
p-value

(H0 : χ̄ = 1)
χ σχ χ̄ σχ̄

p-value
(H0 : χ̄ = 1)

χ σχ

JPvsFR 0.249 0.456 0.067 0.000 0.352 0.062 0.000

JPvsBD 0.255 0.412 0.065 0.000 0.370 0.063 0.000

JPvsUK 0.263 0.437 0.066 0.000 0.465 0.067 0.000

JPvsUS 0.059 0.360 0.062 0.000 0.308 0.060 0.000

FRvsBD 0.767 1.000 0.095 0.500 0.574 0.026 0.974 0.090 0.388 0.574 0.026

FRvsUK 0.727 1.000 0.093 0.500 0.528 0.024 0.953 0.089 0.299 0.528 0.024

FRvsUS 0.406 0.916 0.088 0.169 0.335 0.015 0.833 0.084 0.023

BDvsUK 0.668 1.000 0.095 0.500 0.468 0.021 0.930 0.088 0.214 0.468 0.021

BDvsUS 0.428 0.965 0.090 0.348 0.345 0.015 0.888 0.086 0.098 0.345 0.015

UKvsUS 0.417 0.874 0.086 0.071 0.347 0.015 0.783 0.082 0.004

The other markets are asymptotically dependent and, in this case, looking at the

value of χ, we can measure the strength of it. We notice that US has the lowest level of

asymptotic dependence within the group, whereas France exhibits the strongest limiting
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dependence. The others, United Kingdom (UK) and Germany (BD), have got roughly

the same dependence level.

Tables 4.8 and 4.9 show the results obtained from solving the optimisation problem,

via the methodology described in detail in Chapter 2, when focussing on the G-5 Coun-

tries’ market indices. The optimal solutions, represented by the allocation vector ω∗α, are

displayed for several high standard confidence levels (α1 = 97.5%, α2 = 99%, α3 = 99.5%)

and very high ones (α4 = 99.9% and α5 = 99.99%).

The output from our model is then compared to the optimal asset allocation we would

find under the assumption of normally distributed return. The latter is represented by

the vector ωN . We can notice that it does not vary when changing the confidence level as,

finding the optimal portfolio that minimise either V aR or ES, coincides with identifying

the minimum variance portfolio.

For every confidence level, the risk measure’s of each marginal distribution is showed in

the column next to the the related optimal allocation vector. This gives us an idea about

the riskiness of the equity market index as a univariate random variable. In particular,

looking at this quantities, at the highest quantiles α = 99.99%, Japan is less risky than

all other markets considering both risk measures.

As a result, Japan is held in the largest proportion in the minimum V aRα and ESα

portfolios for α = 99.99%. The initial optimal allocation, for the lowest confidence level

α = 97.5% in the set, invests his largest share in the US market, followed by Japan index,

the UK, Germany and finally France. The same investment order holds for both the risk

measures, even if with different, although similar, proportions.

Moving towards higher α, the portfolio proportion invested in US index decreases, while

the Japanese component gains ground, reversing the situation at α = 99.9% when con-

sidering the minimum VaR portfolio, and becoming the most influential investment at

α = 99% when minimising the ES.

Thus, for the α most far in the tail, the minimum risk portfolio has its bigger share

invested in the only market that, according to χ and χ̄ measures, is considered asymp-

totically independent with all the others. The second asset in terms of proportion in the

portfolio composition is the US index that, despite being the riskiest when looking at the

risk measure’s values on the marginals, has the lowest degree of dependence with all the

others, among the asymptotic dependent components.

We can notice that using ES as risk measure, the asset allocation quicker reacts to and

absorbs the asymptotic dependence results of the countries whose indices are involved in

the optimisation. This is due to the nature of the risk measure itself, that is by definition

a mean of the extreme values lying in the tail of the distribution.

In general, however, it is difficult to interpret and truly understand the contribution

of the changing relative marginal risks and the change in dependence. This is particularly
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Table 4.8: Optimal V aRα allocations of the two stage incremental trade algorithm
for the G5 markets as a function of high confidence level α. The columns with heading
V aRα are the estimated value at risk of the market at the given confidence level. The last
row shows the extra risk taken by using normal weights wN instead of optimal weights
w∗. The risk measure’s values are expressed in % terms.

α1 = 97, 5% α2 = 99% α3 = 99, 5% α4 = 99, 9% α5 = 99, 99%

wN w∗α1
V aRα1 w∗

2
V aRα2 w∗α3

V aRα3 w∗α4
V aRα4 w∗α5

V aRα5

US 46.08% 50.90% 2.115 44.18% 2.957 43.18% 3.739 31.71% 6.192 30.82% 12.026

JP 30.45% 30.71% 2.652 33.94% 3.546 34.55% 4.293 52.29% 6.290 57.22% 9.925

UK 15.09% 15.90% 2.414 16.91% 3.319 17.22% 4.118 5.71% 6.441 1.35% 11.308

FR 1.27% 0.85% 2.704 0.77% 3.701 0.78% 4.534 0.27% 6.763 3.41% 10.822

BD 7.10% 1.64% 2.591 4.19% 3.504 4.27% 4.279 10.02% 6.406 7.21% 10.444

V aRα(N ) 1.6293 2.2446 2.8157 4.6047 8.8522

V aRα(O) 1.6286 2.2166 2.7747 4.4427 7.2353

V aRα(N )

V aRα(O)
1.0004 1.0126 1.0148 1.0365 1.2235

Table 4.9: Optimal ESα allocations of the two stage incremental trade algorithm for
the G5 markets as a function of high confidence level α. The columns with heading ESα
are the estimated value at risk of the market at the given confidence level. The last row
shows the extra risk taken by using normal weights wN instead of optimal weights w∗.
The risk measure’s values are expressed in % terms.

α1 = 97, 5% α2 = 99% α3 = 99, 5% α4 = 99, 9% α5 = 99, 99%

wN w∗α1
ESα1 w∗

2
ESα2 w∗α3

ESα3 w∗α4
ESα4 w∗α5

ESα5

US 46.08% 43.39% 3.211 34.14% 4.343 33.79% 5.395 30.89% 8.692 28.72% 16.534

JP 30.45% 36.28% 3.703 40.60% 4.722 40.19% 5.572 57.62% 7.847 58.94% 11.987

UK 15.09% 15.98% 3.532 20.64% 4.653 20.44% 5.643 2.05% 8.521 2.10% 14.549

FR 1.27% 0.79% 3.876 0.43% 5.013 1.43% 5.962 1.86% 8.502 1.39% 13.127

BD 7.10% 3.56% 3.680 4.19% 4.746 4.15% 5.651 7.59% 8.134 8.85% 12.849

ESα(N ) 2.4297 3.2559 4.0226 6.4246 12.1273

ESα(O) 2.4131 3.2113 3.9172 5.6547 8.6179

ESα(N )

ESα(O)
1.0068 1.0139 1.0269 1.1362 1.4072
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true when considering the multi-asset setting like in our case.

A surprising result revealed in Tables 4.8 and 4.9 is the robustness of the classical

approach and thus robustness of diversification, for standard confidence levels. Indeed,

the last row in the table shows the extra risk taken by using normal weights wN instead

of optimal weights w∗ resulting from our model. The extra risk is calculated as ratio

between the risk measures of the optimal portfolios, respectively identified under normality

assumption4 and under GPD modelling5. The assumption of normality apparently leads

to only a modest amount of unnecessary risk at the α = 97.5%, α = 99% and α = 99.5%

quantiles. But when going further into the tail, at the highest α = 99.9% and α = 99.99%,

there is a significant higher risk exposure (as high as 40% of extra risk if considering the

expected shortfall) when using the normal weights.

4.4 Threshold sensitivity analysis

As we discussed in Section 2.7.2 Chapter 2, the threshold choice it is in general a delicate

issue when applying the threshold exceedances EVT method. The higher u is set, the

smaller is the bias incurred from applying an asymptotic theorem, but, on the other side,

we are left with few observations to estimate the parameters, and this could compromise

their statistical accuracy.

Moreover, the situation in our model setting is even more complicated as, in order

to solve the portfolio optimisation problem and identify the minimum risk portfolio, an

estimation of the tail distribution across many different portfolio allocations is necessary

to determine the risk measures’ estimate. Due to the high problem dimension, we referred

to the “conventional choice method” and, based on the best practice found in the related

literature, we set u equal to 95% quantile of the empirical distribution of L(ω), ω ∈ Rd.
In the previous section 2.7.3 Chapter 2, we already performed a simulation analysis

to understand how, in general, the EVT threshold exceedances method is sensitive to the

threshold choice. The results obtained in that case, were reassuring and supported the

use of the GPD approach rather than the Hill method.

However, although widely used in literature, the use of a single percentile of the empir-

ical portfolio distribution as a target to select the sample considered in the tail estimation

might seem a strong assumption. Therefore, in this section, the influence of different

thresholds on our EVT-based model is investigated. Given the importance of the ξ pa-

rameter in determining the weight of the tail and the relationship between quantiles and

expected shortfalls, we first show how estimates of ξ vary as we consider a series of thresh-

olds, and then we move to the risk measures’ point estimates.

4The optimal portfolio under the assumption of normality is denoted by N .
5The optimal portfolio found via our model is denoted by O.
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Setting. We perform a sensitivity analysis studying the optimal portfolio choice, among a

basket of international equity indices referred to G-5 countries, made using our methodol-

ogy but letting the threshold vary among different values. In particular, we consider a set

of u values, when performing the GPD fitting of the tail’s portfolio loss distribution, that

represent the empirical α-percentiles6 forming an evenly spaced sequence in the interval

[90%,99%], where the step is δα = 0.0017. We take into account both the problems of

minimising the VaR and the ES and construct the optimal portfolio satisfying downside

risk requirements of different tightness. Specifically, we solve the optimisation looking

at the same risk measures’ confidence levels considered in the previous section, namely

{97.5%, 99%, 99.5%, 99.9%, 99.99%}.

This setting give us a sample of 956 exceedances at maximum, that progressively

decrease when moving the threshold far in the tail. In figure 4.2 we show the estimate of ξ∗

as the thresholds u changes. The values of the empirical distribution Fn(u), are displayed

on the horizontal axis while the ξ∗ on the y axis. ξ∗ represents the shape parameter of the

GPD fitting the right tail distribution, over u, of the optimal portfolio (negative) return.

The results are exhibited when the optimal portfolio is obtained minimising both VaR,

continuous line on the left hand side, and ES, dashed line on the right hand side, with

several levels of confidence (different risk measure’s confidence level on each row).

First we notice that the estimates of ξ∗ are clearly different when considering various

risk measures and confidence levels.

This is because we obtain distinct minimum risk portfolios, and so optimal weights ω∗,

based on the risk measure’s choice and on the tightness of the downside risk requirement

considered. Therefore, the parameters of the GPD, ξ∗ included, that fits the tail of the

minimum risk portfolio are obviously determined by these choices.

In all the cases, approximately around the threshold values corresponding to the 98th−
98.5th empirical percentiles, the estimates exhibit a sudden change in direction and show

a different evolution compared to the one was guiding the trend before. This is probably

the result of the decreasing number of observations involved in the estimation, that leads

to an increase in estimators’ variability. ξ∗ is always positive8 and ξ∗ < 0.5 indicates that

all the portfolio loss distributions have finite variance.

We observe values ξ∗ > 0.5 only when referring to the VaR as portfolio risk measure,

and just for the very high threshold values where the estimators’ accuracy might be

compromised (in particular it happens in correspondence to the following confidence levels:

99%, 99.5% and 99.9%).

6Therefore, so that Fn(u) = α, where Fn(x) =
1

n

∑n
s=1 1[L̃s(ω)≤x] is the empirical distribution of the

portfolio loss.
7For a total of 100 possible values of the threshold.
8Except for VaR99.99%(O) and ES99.99%(O) when the threshold assumes its highest values.
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(a) ξ∗, VaR97.5%(O) (b) ξ∗, ES97.5%(O)

(c) ξ∗, VaR99%(O) (d) ξ∗, ES99%(O)

(e) ξ∗, VaR99.5%(O) (f) ξ∗, ES99.5%(O)
Figure 4.2
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(g) ξ∗, VaR99.9%(O) (h) ξ∗, ES99.9%(O)

(i) ξ∗, VaR99.99%(O) (j) ξ∗, ES99.99%(O)

Figure 4.2: Estimate of ξ∗ for different thresholds u (on the x axis we actually have
F (u)). ξ∗ is the shape parameter of the GPD fitting the distribution the Optimal Portfolio
return over u. The results are shown when the optimal ptf is obtained minimising both
VaR (continuous line, on the left hand side) and ES (dashed line, on the right hand side),
and for several confidence levels (97.5%, 99%, 99.5%, 99.9%, 99.99%).
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The estimates remain fairly constant around the values of approximately 0.12 − 0.14

for both the risk measures with the two highest confidence levels (in 4.2g, 4.2h, 4.2i,

and 4.2j). The method seems therefore quite robust when looking at the very extreme

risks. In correspondence to the more standard quantiles, the trend of ξ∗ for VaR97.5%(O)

stabilise starting from Fn(u) = 0.93 around values of 0.28 − 0.3 (4.2a). ξ∗ related to

the minimum risk portfolio ES97.5%(O), reaches its maximum values of 0.26− 0.28 when

Fn(u) ≥ 0.95 (4.2b). VaR99%(O) (4.2c) and VaR99.5%(O) (4.2e), although showing an

overall increasing trend of ξ∗, are however quite stable around values of 0.25 − 0.3 for

0.93 ≤ Fn(u) ≤ 0.96. ES99.5%(O) remains confined for the whole u values in the interval

[0.15, 0.2] and, in particular, is quite steady on the value 0.2 when 0.93 ≤ Fn(u) ≤ 0.97.

We also analyse the sensitivity of the two risk measures’ point estimates, because this

is the actual piece of information we are interested in. Figure 4.3 illustrates the point

estimates of the optimal portfolio risk measures, VaR (solid line) and expected shortfall

(dotted line), calculated using our EVT-based model. The results are always shown for

several confidence levels, and when varying the threshold u.

It is clear that these estimates show definitely modest variability to the threshold

choice, slightly bigger for the highest confidence interval (99.99%).

However, the reading of the graph might be impeded because of the different risk

measures’ scale. Therefore, in order to further investigate the first impression, we also

display the same information similarly to what we have just done with the “optimal”

shape parameters of the GPD. The results, separately illustrated by type of risk measure

and by confidence level, are shown in figure 4.49.

The risk measures’ estimate of the minimum risk portfolio, when considering a con-

fidence level of 97, 5%, are enclosed in an interval of width 0.03% for the VaR and

0.01% for the ES. Moreover, VaR97.5%(O) remain remarkably constant around 1.625%

for Fn(u) ≥ 0.93. If we consider VaR99%(O), ES99%(O), VaR99.5%(O), and ES99.5%(O),

the intervals within the point estimates vary, are slightly bigger with a dimension of

0.1%− 0.2%. Finally, when looking at the highest confidence levels, the trend showed by

the estimates of the VaR and ES are quite similar. These exhibit modest variability10

that essentially tracks the variability of the ξ∗ estimates.

These pictures provide some reassurance that different thresholds do not lead to drasti-

cally different conclusions. Furthermore, the stability usually characterising the estimates

correspondent to {u : 0.94 ≤ Fn(u) ≤ 0.97}, supports the threshold choice we made.

9In the graphs 4.4h and 4.4j we do not represent the two last point estimates of ES99.9%(O) and
ES99.99%(O), correspondent to Fn(u) = 99.5% and equal to 4.07%, as this would alter the scale and we
will not be able to appreciate the actual evolution. These two values are causing the sudden drop of the
two series at the top in figure 4.3.

10The intervals containing these estimate are not wider than 1%.
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(k) VaRα(O)

(l) ESα(O)

Figure 4.3: Point estimates of the Optimal portfolio risk measures, VaR (solid line) and
expected shortfall (dotted line), using our EVT-based model, for several confidence levels,
when varying the threshold u (on the x axis we actually have F (u)).
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(a) VaR97.5%(O) (b) ES97.5%(O)

(c) VaR99%(O) (d) ES99%(O)

(e) VaR99.5%(O) (f) ES99.5%(O)
Figure 4.4
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(g) VaR99.9%(O) (h) ES99.9%(O)

(i) VaR99.99%(O) (j) ES99.99%(O)

Figure 4.4: Point estimates of the Optimal portfolio risk measure, VaR (solid line on
the left hand side) and expected shortfall (dotted line on the right hand side), using
our EVT-based model, and for different thresholds u values (on the x axis we actually
have F (u)). We separately illustrate the results for several confidence levels (97.5%, 99%,
99.5%, 99.9%, 99.99%). In the graphs 4.4h and 4.4j we do not represent the two last point
estimates, correspondent to Fn(u) = 99.5% and equal to 4.07, as this would make them
less legible.
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4.5 Final remarks and further developments

The material contained in this dissertation could be further developed and extended in

several directions. This section discusses in more details the reasons behind some method-

ology choices we made, points out limitations of the current work, and also outlines di-

rections for future research.

4.5.1 Dynamic threshold

In section 4.4, we studied the impact of choosing different thresholds in our EVT-based

model. The sensitivity was performed considering a set of values for the fixed (quan-

tile based) threshold, chosen in order to model the tail of every possible portfolio loss

distribution via the POT approach.

It would be very interesting to investigate how the model could incorporate a dynamic

threshold, allowing its adjustment in response to the portfolio configurations selected at

each step of the optimisation algorithm. A possible approach to improving and refining

the model could be via the integration of factor models and tail index regression within

the algorithm.

4.5.2 Conditional EVT approach.

Various stylized facts of empirical finance argue against the assumption that market return

series are independent and identically distributed. While the correlation of market returns

is low, the serial correlation of absolute or squared returns is high; returns show volatility

clustering, namely the tendency of large values to be followed by other large values,

although not necessarily of the same sign.

Therefore, in calculating daily VaR estimates for such risks, a large literature recognise

that volatility of market instruments should be take into account. Intuitively, an extreme

value in a period of high volatility appears less extreme than the same value in a period

of low volatility. The most popular models for characterising this phenomenon are the

stochastic volatility (SV) models.

An interesting approach to explore in future research would be enclosing such a dy-

namic risk measurement procedure in our model, to take into account the extreme risk

over and above the volatility risk. A possible way to proceed is adopting the methodology

suggested by Diebold et al. (2000) and McNeil and Frey (2000).

Their basic idealisation is that returns (Xt) follow a stationary time series model with

stochastic volatility structure Xt = µt + σtZt, with Zt a strict white noise process of

unknown distribution. Afterwards, they apply a two-step procedure to obtain conditional

VaR and ES estimates, that consist in: first, pre-filtering the data through an AR(1) −
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GARCH(1, 1) model, and obtaining estimates of the conditional volatility via pseudo-

maximum-likelihood; second, applying EVT to the residual distribution11. In particular

one could use historical simulation for the central part of the distribution and threshold

methods from EVT for the tails, to estimate the distribution of the residuals. This

approach would reflect two stylized facts exhibited by most financial return series, namely

stochastic volatility and the fat-tailedness of conditional return distributions over short

time horizons. We may test the approach on our equity index return series, and analyse via

backtesting if this conditional methodology yields better estimates of VaR and expected

shortfall than unconditional EVT12.

A further interesting methodology to consider might be the nonparametric extension

of the classical Peaks-Over-Threshold method from EVT, recently proposed by Chavez-

Demoulin et al. (2014). This technique for the statistical estimation of conditional risk

measures, is applicable to both stationary as well as nonstationary time series models13.

Remark. The presence of stochastic volatility implies that returns are not necessarily inde-

pendent over time. Hence, with such models there are two types of return distribution to

be considered: the conditional return distribution where the conditioning is on the current

volatility and the unconditional (marginal or stationary) distribution of the process. We

have already discussed the two in Remark 2.5 Chapter 2. The GPD method, we referred

to, when applied to threshold exceedances in a financial return series is essentially an

unconditional method for estimating the tail of the P&L distribution and associated risk

measures.

Both distributions are actually of relevance to risk managers. A risk-manager who

wants to measure the market risk of a given portfolio is mainly concerned with a possible

loss caused by an adverse market movement over the next day, given the current volatility

background. The estimation of unconditional tails, instead, provides different, but com-

plementary information about risk. In this case, we take the long-term view and attempt

to assign a magnitude to a specified rare adverse event, such as a 5-year loss (the size of a

daily loss which occurs on average once every 5 years. This kind of information may be of

interest to the risk manager who wishes to perform a scenario analysis and get a feeling

for the scale of worst case or stress losses. In general, this approach might more suitable

in the credit and insurance field, being characterised by a long-term perspective.

The concern was raised that the use of conditional return distributions for market risk

measurement might lead to capital requirements that fluctuate wildly over time and are

11Statistical tests and exploratory data analysis confirm that the error terms or residuals do form, at
least approximately, i.i.d. series that exhibit heavy tails.

12In literature, McNeil and Frey’s backtesting shows that it yields better estimates than unconditional
EVT or GARCH-modelling with normally distributed error terms. Their analysis contradicts Danielsson
et al. (1998), who state that an unconditional approach is instead better suited for VaR estimation than
conditional volatility forecast.

13The stationarity assumption may be violated by erratic changes of regime.
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therefore difficult to implement. However, besides providing a basis for the determination

of risk capital, measures of market risk are also employed to give the management of a

financial firm a better understanding of the riskiness of its portfolio. Therefore, from

this point of view, as the riskiness of a portfolio does indeed vary with the general level of

market volatility, the current volatility background should be reflected in the risk-numbers

reported to management.

4.5.3 Multivariate extreme value theory and copulas

A key point of our work is that, in order to solve the optimisation problem, only univariate

EVT is applied to model the tail of the portfolio loss using the POT paradigm. Therefore,

the question of modelling the full joint distribution of asset returns, in particular their

tails, using techniques motivated by MEVT and copula-based, is replaced by modelling

the returns of the univariate portfolio itself.

The choice of reducing a multivariate problem to a univariate one, is justified by the

computational hurdles posed by the optimisation problem.

Suppose we have a family of random vectors X1,X2, . . . representing d-dimensional

losses at different points in time, where Xi = (Xi1, Xi2, . . . , Xid)
T.

We define the vector of componentwise block maxima to be (M1n,M2n, . . . ,Mdn)T where

Mjn = max(X1j , X2j , . . . , Xnj) is the block maximum of the jth component for a block

of size n observations. Now consider the vector of normalized block maxima given by

((M1n−b1n)/a1n, . . . , (Mdn−bdn)/adn)T , where ajn > 0 and bjn are normalizing sequences.

If this vector converges in distribution to a non-degenerate limiting distribution then this

limit must have the form

C

(
Hξ1

(
x1 − µ1

σ1

)
, Hξ2

(
x2 − µ2

σ2

)
, . . . ,Hξd

(
xd − µd
σd

))
for some values of the parameters ξj , µj , σj and some copula C. It must have this form

because of univariate EVT and each marginal distribution of the limiting multivariate

distribution must be a GEV.

MEVT characterizes the copulas C which may arise in this limit, the so-called MEV

copulas. It turns out that the limiting copulas must satisfy

C(ut1, . . . , u
t
d) = Ct(u1, . . . , ud) for t > 0.

There is no single parametric family which contains all the MEV copulas, but certain

parametric copulas are consistent with the above condition and might therefore be re-

garded as natural models for the dependence structure of extreme observations. In two

dimensions the Gumbel copula is an example of an MEV copula14.

14It is moreover a versatile copula and allow us to characterise the configurations of asymptotic depen-
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Realistically, however, parametric models of this kind are only viable in a small number

of dimensions. If we are interested in only a few risk factors and are particularly concerned

that joint extreme values may occur, we can use such models to get useful descriptions of

the joint tail. In very high dimensions there are too many parameters to estimate and too

many different tails of the multivariate distribution to worry about. This is the so-called

curse of dimensionality. In such situations collapsing the problem to a univariate problem

by considering a whole portfolio of assets as a single risk and collecting data on a portfolio

level seems more realistic.

This seems reasonable also in light of the results of Bradley and Taqqu (2004a). They

perform a comparison of the performance of univariate and multivariate techniques for an

asset allocation problem. Due to numerical constraints, they examine the bivariate case

only and conclude that MEVT yields accurate results if the copula allows for asymptotic

independence. MEVT models with a dependence function that prescribes only asymptotic

dependence15 may overstate the risk of a properly diversified portfolio. They also find that

the multivariate and the univariate estimated risks that are in close agreement for a wide

range of failure levels and allocations.

In particular, the use of a univariate approach, which is easier to implement, seems to

be robust when we are not interested in particularly extreme quantiles.

4.5.4 Dynamic asset allocation

Finally, another interesting question is to look deeper at the implications the findings

could have in terms of portfolio rebalancing. It would be relevant for asset managers’

purposes, to develop the model towards a Dynamic Asset Allocation Framework.

A portfolio’s asset allocation is the major determinant of a portfolio’s risk-and-return

characteristics. However, over time, asset classes produce different returns, so the port-

folio’s asset allocation changes. Therefore, to recapture the portfolio’s original risk-and-

return characteristics, it should be rebalanced.

The primary goal of a rebalancing strategy is to minimize risk relative to a target asset

allocation, rather than to maximize returns. Considering the foundations characterising

our model, it would probably fit well into this perspective.

dence we have analysed in Chapter 3. If the parameter β is 1 then CGu1 (v1, v2) = v1v2 and this copula
models independence of the components of a random vector (X1, X2)T. If β ∈ (0, 1) then the Gumbel
copula models dependence between X1 and X2. As β decreases the dependence becomes stronger until a
value β = 0 corresponds to perfect dependence of X1 and X2; this means X2 = T (X1) for some strictly
increasing function T . For β < 1 the Gumbel copula shows tail dependence, namely the tendency of
extreme values to occur together

15For instance, the standard logistic model to multivariate extremes.
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4.6 Conclusions

Recent studies have highlighted the importance of rare events in several fields such as

insurance and portfolio choice. The extreme and rare events might be in the form of a

large change in investment returns, a stock market crash, major defaults, or the collapse

of risky asset prices other than men-made or natural catastrophes.

The problem of portfolio optimisation has always been a topic of strong interest for

investors and fund managers, and the need to create resilient portfolios, reducing the

impact of extreme adverse events, is a growing concern given the financial crises suffered

in recent decades. The new risk-based solvency requirements for the banking and insurance

sectors further motivates the search for more appropriate methodologies to cope with rare

events which cause heavy losses.

Extreme Value Theory provides the solid mathematical and probabilistic fundamen-

tals, essential in order to build statistical models describing such risky events. Wherever

the tail of a loss distribution is of interest, whether for market, credit, operational or

insurance risks, EVT provides simple but powerful tool for estimating quantile-based or

mean-based risk measures according to the EVT framework, that should be more suitable

when focussing on a random variable’s tail. Employing other classical techniques might be

more practical and intuitive, but could lead to an underestimation of the tail risk, which

plays such a crucial role in the everyday operations of a financial institution.

We have investigated the asset allocation problem for risk-averse investors, whose goal

is to minimise the quantile and mean based risk measures V aRα and ESα of the portfo-

lio, to guard against the occurrence of large losses. The model relies on the foundation

introduced by the safety first criterion.

Moreover, we went beyond the classical MVO and its assumptions using EVT to re-

produce the fact that the returns are heavy-tailed (instead of assuming normality) and

employing quantile-based risk measures (instead of the symmetric variance). The method-

ology allows to embody the risk preferences of an investor representing the asymmetric

treatment of upside and downside risk. This behavioural profile has been observed in

several studies. Furthermore, the application of tail risk measures to solve the asset al-

location problem, reflects the impelling need of properly managing and considering also

the extreme events. This characterises risk managers’ mindset within the new solvency

regime, thinking beyond what is expected on average.

Furthermore, considering that the concept of diversification is fundamental to the

decision of how best to allocate assets and it is partly controlled by the dependence

between the assets under consideration, we performed a parallel analysis to identify the

correct extremal dependence structure of the portfolio’s constituents.
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Using dependence measures χ̄ and χ from Multivariate EVT we found that extreme

dependence is much stronger in bear markets than in bull markets. Comparing our result

with similar studies conducted in the past, in general, the correlation between volatilities

has increased over time to produce asymptotically dependent stock markets. The finding

of an increase in dependence through time, can be attributed both to markets integration

and to the financial crises, further bringing a contagion and systemic risk. Moreover, it

seems that the cases of strong asymptotic independence occur mostly in markets which

are not in close geographic proximity.

The EVT based methodology was tested on real data and applied to a portfolio of

international equity market indices. In particular the empirical results of the portfolio

optimisation examined the Group of Five G-5 countries: France, Germany, Japan, the

United Kingdom, and the United States.

We found that when markets are asymptotically independent, there is a greater ben-

efit to diversification at the highest confidence levels α than there is at lower α. Our

investigation revealed that for the confidence levels most far in the tail α = 99.9% and

α = 99.99%, the minimum risk portfolio has its bigger share invested in the only market

that is asymptotically independent with all the others, i.e. Japan. The second asset in

terms of proportion in the portfolio composition is the US index that, despite being the

riskiest when looking at the risk measure’s values on the marginal, has the lowest degree

of dependence among the asymptotic dependent assets. Furthermore, the optimal alloca-

tion is quantile-based and changes when varying the confidence level of the risk measures.

This is not true, when assuming normally distributed returns.

We can also notice that using ES as risk measure, the asset allocation quicker reacts to

and absorbs the asymptotic dependence results of the countries whose indices are involved

in the optimisation. This is due to the nature of the risk measure itself, that is by definition

a mean of the extreme values lying in the tail of the distribution.

A surprising result of our investigation is the robustness of the assumption of normality

on the allocation problem. For each allocation problem, we compare the risk of the

portfolio using normal weights ωN to the risk of the optimal portfolio ω∗.

For various high levels of confidence α we disclose the ratio of the risks. This ratio is

surprisingly close to one for all but the largest α. This means that for all, except for

the highest confidence levels, the investor takes not significant extra risk by allocating his

assets as though returns were normally distributed. However, as soon as we move to the

highest confidence levels, the extra risk taken, when considering the normality assumption,

jumps to value as high as 40%.

Therefore, increasing the effort during the modelling phase in terms of model com-

plexity and accuracy, can lead to a significant ex-post reduction of the risk exposure.
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Föllmer, H. and Schied, A. (2002). Convex measures of risk and trading constraints.

Finance and stochastics, 6(4):429–447. (Cited on pages 21 and 22).

Frittelli, M. and Gianin, E. R. (2002). Putting order in risk measures. Journal of Banking

& Finance, 26(7):1473–1486. (Cited on page 21).

Garita, G. and Zhou, C. (2009). Can open capital markets help avoid currency crises? Dnb

working papers, Netherlands Central Bank, Research Department. (Cited on page 77).

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.

Annals of mathematics, pages 423–453. (Cited on pages 44, 46, and 84).

127

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.153.01.0001.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.153.01.0001.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.153.01.0001.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0138
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0138


BIBLIOGRAPHY

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American

Statistical Association, 106(494):746–762. (Cited on pages 26 and 27).

Granger, C. W. J. (2009). In praise of pragmatic econometrics. In The Methodology and

Practice of Econometrics: A Festschrift in Honour of David F. Hendry, chapter 10,

pages 266–290. Oxford University Press, Oxford. (Cited on page 16).

Haile, F. and Pozo, S. (2008). Currency crisis contagion and the identification of trans-

mission channels. International Review of Economics & Finance, 17(4):572–588. (Cited

on page 77).

Haile, F. D. and Pozo, S. (2006). Exchange rate regimes and currency crises: an evaluation

using extreme value theory. Review of International Economics, 14(4):554–570. (Cited

on page 66).

Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing

parameter in nonparametric problems. Journal of multivariate analysis, 32(2):177–203.

(Cited on page 66).

Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of

Mathematical Statistics, 42(6):1887–1896. (Cited on pages 23, 24, and 29).

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust

statistics: the approach based on influence functions. John Wiley & Sons.

Hansen, L. P. and Sargent, T. J. (2008). Robustness. Princeton university press. (Cited

on page 23).

Hartmann, P., Straetmans, S., and de Vries, C. (2004). Asset market linkages in crisis

periods. Review of Economics and Statistics, 86(1):313–326. (Cited on page 77).

Hartmann, P., Straetmans, S., and De Vries, C. G. (2005). Banking system stability: A

cross-atlantic perspective. Technical report, National Bureau of Economic Research.

NBER Working Paper No. 11698. (Cited on page 77).

Harvey, C. R. and Siddique, A. (1999). Autoregressive conditional skewness. Journal of

financial and quantitative analysis, 34(04):465–487. (Cited on page 11).

Harvey, C. R. and Siddique, A. (2000). Conditional skewness in asset pricing tests. The

Journal of Finance, 55(3):1263–1295. (Cited on page 11).

Hill, B. M. et al. (1975). A simple general approach to inference about the tail of a

distribution. The annals of statistics, 3(5):1163–1174. (Cited on pages 84 and 85).

128



BIBLIOGRAPHY

Ho, T.-K. (2008). Extremal analysis of currency crises in taiwan. Applied Economics,

40(9):1175–1186. (Cited on page 65).

Hoeffding, W. (1940). Massstabinvariante korrelationstheorie. Teubner. Schriften des

Mathematischen Seminars und des Instituts für Angewandte Mathematik der Univer-

sität Berlin 5. (Cited on page 74).

Hosking, J., Wallis, J. R., and Wood, E. F. (1985). Estimation of the generalized extreme-

value distribution by the method of probability-weighted moments. Technometrics,

27(3):251–261. (Cited on page 49).

Huang, C.-f. and Litzenberger, R. H. (1988). Foundations for financial economics. North-

Holland. (Cited on page 9).

Huber, P. J. (1981). Robust statistics. Wiley, New york.

Huber, P. J. and Ronchetti, E. (2009). Robust statistics. Wiley, New york. 2nd edition.

(Cited on pages 23, 24, and 29).

Hyung, N. and De Vries, C. G. (2007). Portfolio selection with heavy tails. Journal of

Empirical Finance, 14(3):383–400. (Cited on page 38).

IAIS (December 2014). Consultation document. risk-based global insurance capital

standard. http://www.iaisweb.org/page/consultations/closed-consultations/

risk-based-global-insurance-capital-standard. International Association of In-

surance Supervisors. (Cited on page 28).

Ingersoll, J. E. (1987). Theory of financial decision making, volume 3. Rowman & Little-

field. (Cited on page 9).

Jansen, D. (2001). Limited downside risk in portfolio selection among us and pacific basin

equities. International Economic Journal, 15(4):1–39. (Cited on page 38).

Jansen, D. and de Vries, C. (1991). On the frequency of large stock returns: Putting

booms and busts into perspective. The Review of Economics and Statistics, pages

18–24. (Cited on page 66).

Jansen, D. W., Koedijk, K. G., and De Vries, C. G. (2000). Portfolio selection with limited

downside risk. Journal of Empirical Finance, 7(3):247–269. (Cited on page 38).

Jobst, N. J. and Zenios, S. A. (2001). The tail that wags the dog: Integrating credit risk

in asset portfolios. The Journal of Risk Finance, 3(1):31–43. (Cited on page 11).

Johansen, A. and Sornette, D. (1999). Critical crashes. arXiv preprint cond-mat/9901035.

(Cited on page 12).

129

http://www.iaisweb.org/page/consultations/closed-consultations/risk-based-global-insurance-capital-standard
http://www.iaisweb.org/page/consultations/closed-consultations/risk-based-global-insurance-capital-standard


BIBLIOGRAPHY

Jondeau, E. and Rockinger, M. (2003). Conditional volatility, skewness, and kurtosis:

existence, persistence, and comovements. Journal of Economic Dynamics and Control,

27(10):1699–1737. (Cited on page 11).

Karolyi, G. A. (2003). Does international financial contagion really exist? International

Finance, 6(2):179–199. (Cited on page 75).

Kearns, P. and Pagan, A. (1997). Estimating the density tail index for financial time

series. Review of Economics and Statistics, 79(2):171–175. (Cited on pages 50, 66,

and 87).

Kiesel, R., Rühlicke, R., Stahl, G., and Zheng, J. (2012). Conceptualizing robustness in

risk management. Available at SSRN 2065723. (Cited on page 24).

Kiesel, R., Rühlicke, R., Stahl, G., and Zheng, J. (2016). The wasserstein metric and

robustness in risk management. Risks, 4(3):32. (Cited on page 23).

Knetsch, J. L. and Thaler, R. H. (1990). Daniel kahneman. The Journal of Political

Economy, 98(6):1325–1348. (Cited on page 35).

Koedijk, K. G., Schafgans, M. M., and De Vries, C. G. (1990). The tail index of exchange

rate returns. Journal of international economics, 29(1-2):93–108. (Cited on page 66).
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