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a b s t r a c t 
The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently 
used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the 
liquid. The dynamics is explored for different bubble wall normal distances and triggering shock inten- 
sities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor 
bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to 
impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break 
the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the 
poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pres- 
sure and temperatures are found also at the wall, confirming that the strong localized loading combined 
with the jet impinging the wall is a potential source of substrate damage induced by the cavitation. 

© 2016 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
1. Introduction 

The collapse of vapor bubbles near solid boundaries has been 
deeply investigated in the last century. The triggering episode goes 
back to the finding of the destructive effects of cavitation phenom- 
ena on the propellers of the great ocean liners at the beginning of 
the 20th century. Similar effects have been observed successively 
on the blade of big hydraulic machines like turbines and pumps 
( Silberrad, 1912; Leighton, 2012 ). Only recently, due to the increas- 
ing impact of the micro and nano-technologies, the attention from 
millimeter-size bubbles has shifted downwards, toward micro or 
sub-micro bubbles. Indeed in microfluidic devices, the so called lab 
on a chip , cavitation phenomena can be employed for microfluidic 
pumping ( Dijkink and Ohl, 2008 ), to enhance mixing by means of 
vorticity generation during the final stage of bubble collapse and 
for surface cleaning purposes ( Ohl et al., 2006 ). Cavitation bub- 
bles are also used in advanced medical procedures like high in- 
tensity focused ultrasound (HIFU) and extracorporeal shock wave 
lithotripsy (ESWL) ( Coussios and Roy, 2008 ) to enhance drug de- 
livery or increase local heat deposition deep within the body, to 
control localized cell membrane poration ( Sankin et al., 2010 ), and 
to comminute kidney stones ( Zhu et al., 2002 ). Moreover, the use 
of femtosecond lasers, generating nanometric bubbles, has recently 
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found important applications in nanosurgery of cells and tissues 
( Vogel et al., 2005; 2008 ). 

The experimental investigation has played the most important 
part in the understanding of bubble–wall interactions, so far. The 
improvements in the bubble generation techniques led to cleaner 
and better reproducible data, starting from the kinetic impulse 
technique ( Benjamin and Ellis, 1966 ). This approach suffers from 
the disadvantage that the bubble must be located before the ap- 
plication of the impulse. Successively the problem of localization 
has been overcome by means of the generation of the bubble by 
using an electric spark ( Naudé and Ellis, 1961; Tomita and Shima, 
1986 ). As a drawback, the electrodes perturb the bubble motion 
in the last stage of the collapse. At the moment, the best bubble 
generation technique is, probably, the non-intrusive pulsed-laser 
discharge ( Vogel et al., 1989 ) that can focus an intense local 
heating and vaporization of the liquid through application of a 
thermal impulse. The visualization of the bubble dynamics can 
be performed by illuminating the scene with diffuse backlighting 
( Blake and Gibson, 1981 ) and by means of high-speed cameras, up 
to 20 million frames per second ( Ohl et al., 1995 ). More recently, 
the µ-PIV technique has been used to measure the flow field 
during the bubble collapse ( Sankin et al., 2010 ). The experiments 
allowed the visualization of the jet formation during the bubble 
collapse near solid surfaces and the assessment of the role of 
shock-wave emission, jet-wall interaction and chemical effects on 
cavitation damage ( Benjamin and Ellis, 1966; Plesset and Ellis, 
1955 ). Notwithstanding the extreme frame-rate of modern cam- 
eras, the complete and detailed description of thermo-acoustic and 
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flow fields, is still lacking. The temperature and pressure inside 
the bubble at the collapse instant is not easily accessible with 
non-intrusive measurements. The pressure indeed can be only ex- 
trapolated by measuring it with an hydrophone at some distance 
from the bubble and by assuming a classical 1/ r decay ( Lauterborn 
and Vogel, 2013 ). The temperature instead can be estimated by 
matching a blackbody radiation with the measured spectrum of 
the emitted light upon collapse ( Flannigan and Suslick, 2005 ). 

On the other hand, the mathematical modeling of cavitation is 
still a great challenge. The cornerstone in the theory of bubble dy- 
namics was the pioneering work of Rayleigh (1917) who described 
the collapse of a bubble immersed in a unbounded incompressible 
liquid. Despite the significant simplifying assumptions, the corre- 
spondence with experimental results is still impressive. The model 
has been successively refined by taking into account compress- 
ibility effects in the liquid ( Keller and Kolodner, 1956; Hickling 
and Plesset, 1964 ) and the presence of a dilute gas in the bub- 
ble. These refined models provided an estimate of the pressure 
peaks reached inside the bubble on the order of hundred times 
the pressure of the liquid environment. Numerical simulations and 
more complex analysis followed ( Plesset and Chapman, 1971; Ples- 
set and Prosperetti, 1977; Shima and Sato, 1981 ) in order to de- 
scribe the effect of a nearby boundary. Different numerical tech- 
niques have been used in order to capture the interfacial dynamics, 
ranging from the Boundary Element Method (BEM) for irrotational 
conditions ( Blake and Gibson, 1981 ) to the Arbitrary Lagrangian 
Eulerian (ALE) schemes ( Tipton et al., 1992; Ding and Gracewski, 
1996 ). Recently more sophisticated models have been proposed to 
gain new insights on the effects of dissolved gas and phase change 
( Akhatov et al., 2001 ) and to obtain a deeper knowledge in fasci- 
nating phenomena like sonoluminescence ( Brenner et al., 2002 ). Of 
particular interest is the diffuse interface approach which enables 
a natural description of interfacial flows, changes of topology, va- 
por/liquid and vapor/supercritical fluid phase changes which have 
been shown to be crucial for the correct description of the final 
stages of the bubble collapse ( Magaletti et al., 2015 ). 

In this work we will exploit the diffuse interface model to nu- 
merically investigate the collapse of a sub-micron vapor bubble 
near solid boundaries. The effect of the initial bubble–wall dis- 
tance will be analyzed and the visualization of the entire flow and 
thermo-acoustic fields will be provided. Particular attention will be 
paid to the stress distribution on the solid wall and we will address 
the role of the different pressure waves on cavitation damage. 

The paper is organized as follows: in Section 2 the diffuse in- 
terface model and the relevant conservation equations is derived; 
Section 3 provides details on the numerical scheme and describes 
the numerical setting of the simulations; finally, the results of the 
numerical experiments will be discussed in Section 4 to finally 
draw conclusions and provide final comments in the last Section 5 . 
2. Mathematical model 
Thermodynamics of non-homogeneous systems 

We exploit an unsteady diffuse interface description ( Anderson 
et al., 1998 ) of the multiphase flow in a domain D based on the 
van der Waals gradient approximation of the free energy functional 
F [ ρ , θ ] ( Dell’Isola et al., 1995; Jamet et al., 2001 ): 
F [ ρ, θ ] = ∫ 

D ˆ f dV = ∫ 
D 
(

ˆ f 0 ( ρ, θ ) + λ
2 | ∇ ρ| 2 )dV, (1) 

where ˆ f = ˆ f 0 + λ/ 2 |∇ρ| 2 with ˆ f 0 ( ρ, θ ) the classical Helmholtz 
free energy density per unit volume of the homogeneous fluid at 
temperature θ and mass density ρ . The coefficient λ( ρ , θ ), in gen- 
eral function of the thermodynamic state, embodies all the infor- 
mation on the interfacial properties of the liquid–vapor system (i.e. 

surface tension and interface thickness). In particular, for a van der 
Waals fluid, the free energy reads 
ˆ f 0 ( ρ, θ ) = R̄ ρθ

[
−1 + log (ρ K θ1 /δ

1 − bρ

)]
− aρ2 , (2) 

with δ = R̄ /c v , R̄ the gas constant, c v the constant volume specific 
heat, a and b the van der Waals coefficients and K a constant re- 
lated to the de Broglie length ( Zhao et al., 2011 ). 
Equilibrium conditions 

The present paragraph summarizes, for the reader convenience, 
results concerning thermodynamic equilibrium for systems de- 
scribed by the free energy functional (1) . Although well known to 
specialists, we deemed useful to present a short summary to ratio- 
nalize this classical material which is hardly described comprehen- 
sively in literature, Jamet (1998) . 

At given temperature, equilibrium is characterized by the mini- 
mum of the free energy functional in Eq. (1) , where variations are 
performed with respect to the density distribution ρ . The evalua- 
tion of the functional derivative leads to the following equilibrium 
condition: 
µ0 

c − ∇ · (λ∇ ρ)
= const, (3) 

where the temperature is constrained to be constant, θ = const, 
and µ0 

c = ∂ ̂  f 0 /∂ρ| θ is the classical chemical potential. The equa- 
tion defines a generalized chemical potential µc = µ0 

c − ∇ · (λ∇ ρ)

that must be constant at equilibrium. 
The consequence of the above equilibrium conditions is better 

illustrated in the simple case of a planar interface, where the only 
direction of inhomogeneity is x , under the assumption of constant 
λ. The constant temperature appears in the equilibrium problem 
as a parameter and will not be further mentioned throughout the 
present section. Hence, determining the equilibrium density distri- 
bution amounts to finding a solution of 
µc = µ0 

c (ρ) − λd 2 ρ/dx 2 = µeq , (4) 
where the chemical potential in the bulk fluid (the vapor phase, 
say), far from the interface where d ρ/d x = 0 , determines the con- 
stant µeq = µ0 

c (ρV ) = µ0 
c (ρL ) . By multiplying Eq. (4) by d ρ/ dx and 

integrating between ρ∞ = ρV and ρ , leads to 
ˆ w 0 (ρ) − ˆ w 0 (ρV ) = λ

2 
(

dρ
dx 

)2 
, (5) 

where ˆ w 0 (ρ) = ˆ f 0 (ρ) − µeq ρ . Eq. (5) shows that ˆ w 0 has the same 
value in both the bulk phases, where the spatial derivative of mass 
density vanishes: ˆ w 0 (ρL ) = ˆ w 0 (ρV ) . 

The grand potential, defined as the Legendre transform of the 
free energy, 
& = F − ∫ 

D ρ δF 
δρ

dV = ∫ 
D ˆ w dV, (6) 

has the density ( actual grand potential density) 
ˆ w [ ρ] = ̂  f − µc ρ = ˆ f 0 + λ

2 
(

dρ
dx 

)2 
−

(
µ0 

c − λ
d 2 ρ
dx 2 

)
ρ, (7) 

implying that, in the bulk, ˆ w = ˆ w 0 , i.e. ˆ w 0 is the bulk grand poten- 
tial density. 

Given the form of ˆ w 0 (ρ) , the solution of Eq. (5) provides the 
equilibrium density profile ρ( x ): 
x = √ 

λ
2 

∫ ρ

ρv dρ√ 
w 0 (ρ) − w 0 (ρV ) + const. (8) 
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Eq. (8) provides the equilibrium density profile characterized by 
two bulk regions separated by a thin layer. The layer thickness can 
be estimated as 
ϵ = ρL − ρV 

d ρ/d x | max . (9) 
The equilibrium condition, Eq. (5) , provides the interface thickness 
in terms of the bulk grand potential density ˆ w 0 (ρ) and of the pa- 
rameter λ, 
ϵ = ( ρL − ρV ) 

√ 
λ

2 [ ˆ w 0 ( ̄ρ) − ˆ w 0 (ρV ) ] , (10) 
without explicitly addressing the density profile. ρ̄ is the den- 
sity corresponding to the maximum of d ρ/ dx , achieved where 
d ̂  w 0 /dρ = 0 , Eq. (5) . 

The surface tension can be defined as the excess ( actual ) grand 
potential density, 
σ = ∫ x i 

−∞ ( ˆ w [ ρ] − ˆ w [ ρV ] )d x + ∫ ∞ 
x i 

(
ˆ w [ ρ] − ˆ w [ ρL ] )d x 

= ∫ ∞ 
−∞ ( ˆ w [ ρ] − ˆ w [ ρV ] )dx, (11) 

where x i is the position of the Gibbs dividing surface, whose pre- 
cise value is not influential since ˆ w [ ρV ] = ˆ w [ ρL ] (we stress that, 
e.g., ˆ w [ ρV ] should be interpreted as the functional (7) evaluated 
on the constant density ρV ). Given the definition of ˆ w [ ρ] , Eq. (7) , 
and exploiting the equilibrium condition for the chemical poten- 
tial, Eq. (4) , it follows that 
σ = ∫ ∞ 

−∞ 
[ ̂  f 0 + 1 

2 λ
(

dρ
dx 

)2 
− µeq ρ − ˆ w 0 (ρV ) 

] 
dx 

= ∫ ∞ 
−∞ 

[ 
ˆ w 0 + 1 

2 λ
(

dρ
dx 

)2 
− ˆ w 0 (ρV ) 

] 
dx. (12) 

Using Eq. (5) one finds 
σ = ∫ + ∞ 

−∞ λ

(
dρ
dx 

)2 
dx = ∫ ρL 

ρV λ
dρ
dx dρ

= ∫ ρL 
ρV 

√ 
2 λ(

ˆ w 0 (ρ) − ˆ w 0 (ρV ) )dρ, (13) 
where the second expression can be evaluated with no a priori 
knowledge of the equilibrium density profile. We observe that, as 
for the interface thickness, the surface tension only depends on 
the form of the bulk grand potential density ˆ w 0 (ρ) in the density 
range between the two equilibrium values, [ ρV ; ρL ], and on the 
parameter λ. 

Eq. (5) applied to the two bulk regions where d ρ/d x = 0 implies 
the mechanical equilibrium condition p 0 (ρL ) = p 0 (ρV ) , where 
p 0 = −∂ f 0 

∂v = −∂ ˆ f 0 /ρ
∂v = ρµ0 

c − ˆ f 0 (14) 
is the classical thermodynamic pressure, f 0 = ˆ f 0 /ρ the spe- 
cific bulk free energy, and v = 1 /ρ the specific volume. Indeed 
Eq. (5) implies ˆ w 0 (ρV ) = ˆ w 0 (ρL ) , which corresponds to the equal- 
ity of the pressures given that p 0 = − ˆ w 0 . 
Equations of motion 

The dynamics of the inhomogeneous system is described by the 
conservation equations for mass ρ , momentum ρu , and total en- 
ergy E densities of 
∂ρ
∂t + ∇ · ( ρu ) = 0 , (15) 

∂ρu 
∂t + ∇ · ( ρu ! u ) = ∇ · τ, (16) 

∂E 
∂t + ∇ · ( u E ) = ∇ · [ τ · u − q e ] . (17) 

The system ( 15 –17 ) needs to be complemented with thermody- 
namically consistent constitutive relations for the stress tensor τ
and the energy flux q e . Their derivation is outlined below for 
the simplest case of constant λ, following the general approach 
for non-equilibrium processes described in De Groot and Mazur 
(2013) . 

It is instrumental to rewrite the energy equation in terms of 
specific internal energy U , obtained by subtracting the equation for 
the kinetic energy from Eq. (17) 
ρ

D U 
Dt = τ : ∇ u − ∇ · q e , (18) 

where D/Dt = ∂ /∂ t + u · ∇ is the material derivative. By definition 
U = f + θ η, with f = ˆ f /ρ the specific Helmholtz free energy and 
η the specific entropy. The total derivative of U reads 
d U = ∂ f 

∂ρ
d ρ + ∂ f 

∂ ∇ ρ · d ∇ ρ + θd η. (19) 
The partial derivatives of the specific free energy can be derived 
from its definition, Eq. (1) , and from the definition of the thermo- 
dynamic pressure, Eq. (14) . Explicitly, one finds 
D U 
Dt = 1 

ρ2 
(

p 0 − λ
2 | ∇ ρ| 2 )Dρ

Dt 
+ θ Dη

Dt + λ
ρ

∇ ρ · D ∇ ρ
Dt . (20) 

The material derivative of the density gradient (last term in the 
RHS of Eq. (20) ) can be evaluated by applying the gradient operator 
to the equation of mass conservation, Eq. (15) : 
λ
ρ

∇ ρ · D ∇ ρ
Dt = −λ

ρ
∇ ρ · ∇ (ρ∇ · u ) − λ

ρ
∇ ρ ! ∇ ρ : ∇ u . (21) 

After substitution of Eqs. (15) , ( 20 ), ( 21 ) into Eq. (18) , a few more 
elementary manipulations allow to write the evolution equation 
for the entropy as 
ρ

Dη
Dt = ∇ · (λρ∇ ρ∇ · u − q e 

θ

)

+ 1 
θ2 [ λρ∇ ρ∇ · u − q e ] · ∇ θ

+ 1 
θ

[
τ + (p 0 − λ

2 | ∇ ρ| 2 − ρ∇ · (λ∇ ρ))
I 

λ∇ ρ ! ∇ ρ] 
: ∇ u . (22) 

The term under divergence defines the entropy flux. Since the 
entropy production must be positive definite in terms of the 
thermodynamic forces (Clausius-Duhem inequality), the other two 
contributions on the right hand side are required to be positive. 
Assuming linear dependence of thermodynamic fluxes – terms in 
square brackets in (22) – on thermodynamic forces – ∇ θ and ∇ u –
leads to identify the stress tensor with the following expression, 
τ = −p 0 I + "

= (−p 0 + λ
2 | ∇ ρ| 2 + ρ∇ · (λ∇ ρ))

I 
−λ∇ ρ ! ∇ ρ
+ µ[ (∇ u + ∇ u T ) − 2 

3 ∇ · u I ] , (23) 
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where the usual viscous terms with µ > 0 in the last line are the 
source of mechanical irreversibility (for the sake of simplicity we 
have assumed the second viscosity coefficient equal to −2 µ/ 3 ). 
Concerning the energy flux, positive entropy production, second 
line in Eq. (22) , calls for 
q e = λρ∇ ρ∇ · u − k ∇ θ , (24) 
where k > 0 is the thermal conductivity. 

Hereafter we assume constant values for µ and k and we adopt 
the van der Waals free energy density ˆ f 0 , Eq. (2) , to obtain 
p 0 = R̄ ρθ

1 − bρ
− aρ2 , (25) 

U = R̄ 
δ
θ − aρ + λ

2 ρ | ∇ ρ| 2 , (26) 
where the last term corresponds to the capillary contribution to 
the internal energy, U c = λ

2 ρ | ∇ ρ| 2 . 
Dimensionless parameters 

By introducing the dimensionless (or reduced) variables 
ρ∗ = ρ/ρc , p ∗ = p/p c , θ ∗ = θ/θc , 
where 
ρc = 1 

3 b , p c = a 
27 b 2 , θc = 8 a 

27 ̄R b 
are the critical values of density, pressure and temperature, respec- 
tively, the caloric and thermal equations of state take the form 
E ∗ = 8 

3 δ ρ∗θ ∗ − 3 ρ∗2 + 1 
2 ρ∗| u ∗| 2 + 1 

2 C | ∇ ∗ρ∗| 2 , (27) 
p ∗0 = 8 θ ∗ρ∗

3 − ρ∗ − 3 ρ∗2 , (28) 
where u R = √ 

p c /ρc is a reference velocity and L R is a reference 
length. Time is made dimensionless with respect to the refer- 
ence time t R = L R /u R . C = λρ2 

c / (p c L 2 R ) is a dimensionless parameter 
quantifying the relevance of capillary stress to the dynamics. 

For the reader’s convenience, the constitutive laws are rewrit- 
ten in dimensionless variables to highlight the relevant control pa- 
rameters. The asterisk ( ∗) is hereafter suppressed for the ease of 
notation: 
τ = (−p 0 + C 

2 | ∇ ρ| 2 + Cρ∇ 2 ρ)
I − C ∇ ρ ! ∇ ρ

+ 1 
Re 

[ (∇ u + ∇ u T ) − 2 
3 ∇ · u I ] , (29) 

q e = C ρ∇ ρ∇ · u − 1 
Re P r ∇ θ . (30) 

Re = L R √ 
p c ρc /µ is a Reynolds number based on critical quantities 

and P r = 3 µR̄ / (8 k ) is the analogous for a van der Waals fluid of 
the familiar Prandtl number. 
3. Algorithms and solution techniques 

The numerical solution of the system of equations (15–17 ) is 
challenging due to a combination of different physical phenomena, 
which all require a specialized numerical technique. 

Apart from the extremely thin liquid–vapor interface that re- 
quires a high numerical resolution, the system supports i) the 
propagation of shock waves; ii) viscous diffusion and capillary dis- 
persion; iii) phase change and transition to and from supercritical 
conditions. 

Fig. 1. Phase diagram in the p − ρ plane. In the zone (I) where p > p c and θ > θ c 
the fluid is in supercritical state. Zone (II), characterized by p < p c but θ > θ c , is the 
gas region. Conversely, zone (III) where p > p c but θ < θ c is the compressible-liquid 
region. In zone (IV) and (V) the fluid is in liquid or vapor state, respectively. Under 
the binodal curve, which represent the saturation conditions, we find zones (VI) 
and (VII) of metastable liquid and metastable vapor state, respectively. The spinodal 
curve, defined as ∂ p/∂ ρ| θ = 0 , separates the metastable regions from the unstable 
region (VIII). Finally, in subset of the unstable region, zone (IX), c 2 = ∂ p/∂ ρ| η < 0 , 
i.e. the sound speed becomes imaginary. 

From a numerical point of view, compressibility and shock 
wave propagation would suggest the adoption of specialized shock- 
capturing methods, like the Essentially Non Oscillatory schemes, 
or their Weighted WENO extension ( Shu, 1998 ). However hyper- 
bolic features conflict with the diffusive and dispersive behavior 
induced by viscosity and capillarity. Moreover, at least for the van 
der Waals equation of state, (28) , a region of the thermodynamic 
phase space exists where ∂ p 0 / ∂ ρ| η < 0. As well known, in ordi- 
nary conditions, this derivative defines the square of the sound 
speed, implying that where c 2 < 0 hyperbolic behavior changes 
into parabolic, see Fig. 1 for an explanatory diagram. The strat- 
egy conceived to deal with this complex mathematical structure, 
is based on two basic ingredients: 1) Identification of the hyper- 
bolic part of the operator and its extension to the parabolic re- 
gion where c 2 < 0; 2) Operator splitting into hyperbolic and non- 
hyperbolic part. For convenience, these two ingredients will be dis- 
cussed in reverse order. 
Operator splitting 

As discussed in Section 2 , the state of the system is identified 
by three basic, conserved fields, namely mass, momentum and to- 
tal energy density, to be collectively addressed here as the state 
vector U ( x , t) = ( ρ, ρu , E ) T . Formally system ( 15 –17 ) can be writ- 
ten as 
∂ U 
∂t = N [ U ] = H e [ U ] + P [ U ] , 

where H e is the extension to the whole phase space of the hyper- 
bolic part of the operator and P = N − H e is defined accordingly. 
The explicit expressions of the two operators H e and P will be pro- 
vided below. After the operator is split as explained, the state vec- 
tor can be evolved in time exploiting a solution strategy in terms 
of Strang splitting ( Strang, 1968 ). Denoting F N (t) the full propaga- 
tor such that 
U (t + τ ) = F N (τ ) U (t) , 
for small τ we can approximate 
F N (τ ) = F P (τ / 4) F H e (τ / 2) F P (τ / 4) 
where F P (τ ) is the propagator of system 
∂ U 
∂t = P [ U ] , 
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while F H e (τ ) is defined by 
∂ U 
∂t = H e [ U ] . 

Strang splitting allows for using different algorithms, specialized 
for each component of the system. The algorithms we selected 
are a third order WENO ( Shu, 1998 ) scheme for the hyperbolic 
part and a second order accurate, centered finite difference scheme 
for the parabolic part. We performed the time integration of the 
hyperbolic part with a full explicit, third-order TVD Runge–Kutta 
scheme. The parabolic operator is advanced in time with a mixed, 
implicit-explicit scheme, where the linear terms (viscous stress and 
heat flux) are treated implicitly in order to increase the stability 
limit. 
Definition of the operators above the binodal 

In the region of phase space where the sound speed is well de- 
fined, the hyperbolic step is 
∂ρ
∂t = −∇ · ( ρu ) , (31) 
∂ρu 
∂t = −∇ · ( ρu ! u + p 0 I ) , (32) 

∂E 0 
∂t = −∇ · [ u ( E 0 + p 0 ) ] − ∂ ( ρ U c ) 

∂t . (33) 
where E 0 = ρ(

U 0 + 1 / 2 | u | 2 ) is the total energy density deprived 
of the capillary contribution, which reproduces the classical Euler 
equation. The capillary contribution to the energy ( ρ U c ) is treated 
as an explicit forcing term depending on the density gradient. 
Here, as already stated, a van der Waals fluid is assumed in the 
equations of state. The parabolic part of the operator corresponds 
to 
∂ρ
∂t = 0 , (34) 
∂ρu 
∂t = ∇ · ", (35) 

∂E 
∂t = ∇ · (−1 

2 λ| ∇ ρ| 2 u + " · u − q e ), (36) 
where the capillary contribution (first term in the right hand side 
of the equation for E ) has been included in the energy flux. 
Definition of the operators below the binodal 

In the coexistence region below the binodal (or coexistence 
curve, Fig. 1 ), which contains the region where c 2 < 0, a Maxwell- 
like rule is used. Using the additivity of specific volume and en- 
tropy, mass density and specific entropy can be written as 
1 
ρ

= (1 − α) 1 
ρV (θ ) + α 1 

ρL (θ ) 
ηsat = (1 − α) ηV (θ ) + αηL (θ ) 
where subscript L and V denote pure liquid and vapor at the given 
temperature. The above relations can be inverted to yield 
α = α(ρ, ηsat ) 
θ = θ (ρ, ηsat ) . 
For the mixture of vapor and liquid, the saturation pressure de- 
pends only on temperature, such that 
p sat = p sat (θ ) = p sat (ρ, ηsat ) . 

This expression allows to extract the sound speed as 
c 2 sat = ∂ p sat 

∂ρ

∣∣∣
ηsat > 0 

whose final expression is 
c 2 sat = 

(
d p sat 
d θ

)2 
ρ2 (d ηL 

d θ + 1 
ρ2 

L d p sat 
d θ d ρL 

d θ − ρ − ρL 
ρρL d 2 p sat 

d θ2 
) . (37) 

The interested reader is referred to Michaelides and Zissis 
(1983) for details on the thermodynamic derivation of the sound 
speed for the mixture. 

In fact, the actual pressure differs from the saturation pres- 
sure, 
p 0 = p 0 (θ , ρ) = p sat (θ ) + δp(θ , ρ) , 
to the extent that c 2 = ∂ p/∂ ρ| η may become negative. We stress 
however that c 2 sat > 0 , thereby allowing to identify the hyperbolic 
part of the evolution operator in the region below the binodal 
(which includes the region where c 2 < 0). 

Concerning the energy density, we consistently address the en- 
ergy of the liquid–vapor mixture, 
E sat = 1 / 2 ρ| u | 2 + ρ[ (1 − α) U V + αU L ] . 
Again, the actual energy is 
E = E sat + δE. 
With the above position, the split system in the region below the 
binodal reads 
∂ρ
∂t = −∇ · ( ρu ) , (38) 
∂ρu 
∂t = −∇ · ( ρu ! u + p sat I ) , (39) 

∂E sat 
∂t = −∇ · [ u ( E sat + p sat ) ] − ∂δE 

∂t , (40) 
for the hyperbolic part and 
∂ρ
∂t = 0 , (41) 
∂ρu 
∂t = −∇ δp + ∇ · ", (42) 

∂E 
∂t = ∇ · [ −u ( δE + δp ) + " · u − q e ] , (43) 

for the parabolic part, respectively. 
We stress that the definitions of the operators given separately 

for the two regions of phase space join continuously at the binodal 
curve. 
Thermodynamic state of the liquid–vapor mixture 

Concerning the thermodynamics of the homogeneous vapor–
liquid mixture below the binodal, the saturation densities ρV ( θ ) 
and ρL ( θ ), are evaluated as follows. Given the state of the system 
in terms of density and temperature, the corresponding chemical 
potential is 
µ0 

c = 8 
3 θ

[
ρ

3 − ρ
− log (K (3 − ρ) θ1 /δ

3 ρ
)]

− 6 ρ. (44) 
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Fig. 2. Sketch of the simulation setup. 
Chemical, thermal and mechanical equilibrium require equality of 
temperature, θV = θL = θ , pressure, p V = p L , and chemical poten- 
tial µ0 

V = µ0 
L . After some algebra, one ends up with the following 

non-linear 2 × 2 system for ρL and ρV 
8 θρL 

3 − ρL − 3 ρ2 
L = 8 θρV 

3 − ρV − 3 ρ2 
V , 

θ

[
3 ( ρL − ρV ) 

( 3 − ρL ) ( 3 − ρV ) + log (ρL ( 3 − ρV ) 
ρV ( 3 − ρL ) 

)]

= 9 
4 ( ρL − ρV ) , 

which is solved by a standard Newton algorithm. 
Simulations setup 

All the simulations have been performed using an axisym- 
metric code, exploiting cylindrical symmetry, see the sketch in 
Fig. 2 . The system is initialized with a vapor bubble of radius 
R eq centered in z 0 , the distance between the wall and the bubble 
center. The effect of the initial distance is analyzed by performing 
5 simulations at different z 0 . The vapor bubble is in equilibrium 
with the confining liquid at temperature θ/θc = 0 . 6 . A shock wave 
with intensity I = (p 2 − p 1 ) /p 1 , with p 2 and p 1 the pressure in the 
perturbed and the unperturbed state, respectively, is initialized to 
hit the bubble and trigger the collapse. In most of the results to 
be discussed, I = 75 . A further case at I = 400 is also considered, 
to highlight the destabilizing effect of the impinging shock inten- 
sity. The fluid domain has dimension 4 R eq × 4 R eq and has been 
discretized with a uniform grid 2048 × 2048. The mesh influence 
has been analyzed by comparing the bubble evolution on a coarser 
mesh, 1024 × 1024. Since the results are nearly indistinguishable, 
only those obtained with the finer mesh has been produced here 
since the accuracy, in particular during the final stage of the 
collapse, is expected to be slightly better. An adaptive timestep, 
ranging from 10 −5 down to 10 −8 , has been used during the 
simulations to comply with stability and accuracy requirements. 
In particular, the smaller ones are used during the collapse stage, 
when the shockwaves are formed, in order to follow the large 
and fast changes experienced by the field. Selecting L R = R eq , the 
dimensionless parameters of the simulations are: Re = 50 , P r = 0 . 2 
and C = 1 . 6 × 10 −4 . These values correspond, e.g., to a bubble 
radius order of 100 nm with typical viscosity, thermal conductivity, 
surface tension and critical values of water. 

Fig. 3. Time evolution of the bubble volume for different initial wall–bubble dis- 
tance z 0 . The initial distance does not substantially affect the bubble dynamic dur- 
ing the first collapse, indeed the collapse time remains unaltered in all the numer- 
ical experiments. The characteristic frequency of collapse and re-expansion is not a 
function of the initial position. Conversely, the dynamic of the re-expansion and of 
the successive collapses is influenced by the initial position in a nontrivial way. In 
the inset it is reported the comparison between the shock-induced collapse near a 
wall (the solid red curve, z 0 = 1 . 3 ) and in free space (dotted black curve) where the 
bubble does not experience a volume plateau after the collapse. (For interpretation 
of references to color in this figure legend, the reader is referred to the web version 
of this article.) 
4. Results and discussions 

Overall, the dynamics of the bubble is characterized by a se- 
quence of rebounds, as shown by the plots of bubble volume vs. 
time reported in Fig. 3 for different wall normal distances of the 
bubble and for the triggering shock strength I = 75 . Generically, 
the first collapse phase (volume decreasing in time), is only slightly 
affected by the initial wall distance. After the minimum volume is 
reached, a plateau is observed. It will be shown to be related to 
the interaction of the bubble with the shock wave which is emit- 
ted when the collapse is arrested and is successively reflected back 
by the wall. After the shock/bubble interaction is completed, the 
bubble starts expanding up to a maximum volume, which is sys- 
tematically lower than the initial value. The process ends with the 
full condensation of the bubble. 
Equilibrium vapor bubble 

Before discussing in detail the actual dynamics observed in 
the simulations, it may be instrumental to identify the effect of 
a compression on an equilibrium bubble. Given the temperature, 
a system formed by a vapor bubble in equilibrium with the liq- 
uid should satisfy the conditions of constant chemical potential, 
Eq. (4) , 
µ0 

c (ρL , θ ) = µeq 
µ0 

c (ρV , θ ) = µeq , 
where the equilibrium state is parametrized by θ and µeq , and the 
chemical potential for a van der Waals fluid is explicitly provided 
in Eq. (44) . 

The equilibrium conditions are described in Fig. 4 , where a con- 
stant chemical potential line, thin solid line, is plotted in the ρ − p
plane. An isotherm is also reported as a red solid line. The inter- 
section of the two curves determines three points in the plane. The 
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Fig. 4. Illustration of the iso-chemical potential (black curves), isotherm (red curve, 
θ̄ = 0 . 6 ) and isobar (blue curve) for a van der Waals equation of state in the ρ–p 
plane. The range of very low densities is enlarged in the top inset. The equilibrium 
properties (same chemical potential, temperature and pressure) identify the satura- 
tion densities ( ρVsat and ρLsat ) as the intersection of the iso-chemical potential µsat 
(thicker black curve) and the isotherm and isobar. The two colored regions span the 
chemical potential values where a vapor bubble (light blue) or a liquid drop (light 
red) can be found as a metastable equilibrium condition for the fluid system. In 
the bottom inset the effect of reducing the liquid pressure, p L , under the saturation 
value on the equilibrium pressure difference, ,p , between the vapor bubble and 
the external liquid, is plotted for different fixed temperatures. The corresponding 
bubble radius can be obtained by the classical Young–Laplace equation. (For inter- 
pretation of references to color in this figure legend, the reader is referred to the 
web version of this article.) 
low density one corresponds to the vapor, ρV , p V , and is hardly 
visible on the scale of the plot, see the enlargement on the up- 
per part of the figure. The intersection at largest density corre- 
sponds to the liquid, ρL , p L . The third intersection, at intermedi- 
ate density ρspi 

V (θ ) < ρun < ρspi 
L (θ ) , always belongs to the unstable 

region of the phase space, below the spinodal, see Fig. 1 . The re- 
gion of the phase space where the above three intersections exist 
is shown by the colored band in the figure. More specifically, de- 
noted by µspi 

L (θ ) and µspi 
V (θ ) the chemical potential at the liquid 

and vapor spinodal, the condition µspi 
L (θ ) < µeq < µspi 

V (θ ) defines 
the relevant range of chemical potential. Outside the colored band, 
only one intersection is found, corresponding to vapor or liquid, 
according to the condition µeq < µspi 

L or µeq > µspi 
V , respectively. 

The pressure, of the vapor, say, is recovered from the pressure 
equation of state (25) , in combination with the expression for the 
chemical potential Eq. (44) , to yield p V = p V (µeq , θ ) . The chemi- 
cal potential at saturation, black thick line in Fig. 4 , is such that 
p V (µsat , θ ) = p L (µsat , θ ) = p sat (θ ) . As a property of the solution, 
p L ! p V when µeq ! µsat . It follows that, in order to have a bubble 
( p V > p L ), the chemical potential must be smaller than the satura- 
tion value, µspi 

L < µeq < µsat , light blue band in Fig. 4 . In this case 
the vapor is stable (i.e. the vapor point is above the binodal) and 
the liquid is metastable (liquid between binodal and spinodal). The 
other case, µspi 

V > µeq > µsat , corresponds to a drop of stable liquid 
in metastable vapor (light red band in the figure). 

By inverting the relationship p L = p L (µeq , θ ) and inserting it in 
the expression for vapor pressure, p V = p V (µeq , θ ) , allows to ex- 
press the pressure difference between vapor and liquid as a func- 
tion of the liquid pressure, 
,p = p V − p L = f (p L , θ ) , 

where ,p > 0 (vapor bubble) when p L < p sat . This relation, il- 
lustrated in the lower inset of Fig. 4 for several temperatures, is 
hardly distinguishable from a straight line on the adopted scale. 
Since µspi 

L < µeq < µsat , the corresponding range of liquid pressure 
is p spi 

L < p L < p sat (θ ) , where p spi 
L is the pressure at the liquid spin- 

odal. When the liquid pressure belongs to the allotted interval, the 
equilibrium radius of the bubble can then be estimated by using 
the Young–Laplace equation, R eq = 2 σ / ,p (the exact solution re- 
quires solving the corresponding problem in the phase field con- 
text Dell’Isola et al., 1995 ). 

Let us consider the bubble–liquid system in equilibrium with 
a given pressure p L in the liquid. Assume the liquid is now com- 
pressed to a new state, p ′ L = p L + δp L . If the compression is such 
that p ′ L < p sat , the bubble will find a new equilibrium condition, 
with a new pressure p ′ V and a new radius R ′ eq . A counterintu- 
itive effect is that, under compression of the liquid, the radius of 
the new equilibrium bubble increases. This is opposite to the be- 
havior expected from a gas bubble, and is explained by the inset 
of Fig. 4 where the pressure jump across the interface is shown 
to be a decreasing function of the liquid pressure. A little more 
though immediately provides the clue for understanding this be- 
havior. In fact, increasing the pressure, the liquid gets closer to 
saturation conditions, implying that also the vapor inside the bub- 
ble approaches saturation, see the inset of Fig. 4 . The consequence 
is that the pressure difference ,p between vapor and liquid de- 
creases, leading to a larger equilibrium radius as a consequence of 
the Young–Laplace equation. 

If the compression exceeds the saturation pressure, no vapor 
bubble can exist in equilibrium with the compressed liquid: in this 
case the vapor condenses altogether, and the new equilibrium state 
corresponds to a single phase, pure liquid. Our interest here is fo- 
cused on the nonequilibrium process that leads to such eventual 
condensation, when the compression is associated to a shock wave 
in the liquid impinging the vapor bubble. In order to achieve full 
condensation the shock wave amplitude p 2 − p 1 should be larger 
than p sat − p 1 , i.e. I > p sat /p 1 − 1 , where p 1 is the liquid pressure 
in equilibrium with the initial vapor bubble. 
Non-equilibrium process 

Experiments on laser induced bubbles in water ( Noack and Vo- 
gel, 1998 ) show that energy deposition by a focused laser beam 
leads to a fast local vaporization and the compression of the liq- 
uid. By measuring the speed of the shock wave, the authors could 
find the intensity of the shock wave as a function of the energy of 
the laser pulse. It is found that pressures in excess of 10 GPa are 
easily excited in water at standard conditions. Clearly the strength 
of the shock wave decreases with the distance from the focusing 
point, confirming that almost planar waves can easily be gener- 
ated in the liquid with the intensity we are using here to trigger 
the collapse of the bubble ( I ∈ [75, 400]). 

The evolution of the vapor bubble is represented in Figs. 5 
and 6 for two different initial wall distances, z 0 = 1 . 3 and z 0 = 1 . 9 , 
respectively. The weak impinging shockwave and the proximity of 
the wall is not sufficient to immediately break the spherical sym- 
metry and to produce the classical liquid jet that porates the bub- 
ble, clearly observed in millimeter-bubble experiments ( Benjamin 
and Ellis, 1966; Lauterborn and Bolle, 1975; Ohl et al., 2006 ). At 
sub-micron scale the surface tension is, in fact, predominant and 
preserves the nearly spherical shape during the first part of the 
evolution. Symmetry breaking eventually occurs when the bubble 
shrinks to its minimum volume and a non-spherical shockwave is 
emitted. By comparing Figs. 5 and 6 , the asymmetry is stronger 
for the bubble closer to the wall, where, instead of being more 
or less spherical, the shockwave produced at collapse consists of 
two curved shock fronts that propagate toward and away from 
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Fig. 5. Snapshots during the evolution of a collapsing bubble with z 0 = 1 . 3 . 
The sequence runs from left to right and from top to bottom and is not 
uniformly spaced in time ( t = 0 , 2 . 237 , 2 . 261 , 2 . 28 , 2 . 316 , 2 . 376 , 2 . 527 , 4 . 152 , 6 . 407 , 
7 . 474 , 7 . 683 , 7 . 736 ). The grey tones from darker to lighter represent the density 
field from smaller (vapor phase) to higher (liquid phase). The black lines are 
Schlieren-like iso-lines obtained as S = exp (−| ∇ p 0 | / | ∇ p 0 | max ) . The drawn iso-levels 
are S = 0 . 9 and S = 1 in order to highlight the regions with the highest pressure 
gradients, i.e. the vapor–liquid interface and the shockwaves. 
the wall. The former is eventually reflected by the solid wall and 
strikes again the re-expanding bubble. During this stage the bub- 
ble becomes flatter (elongated in the radial direction) and moves 
toward the wall. The expansion stage is strongly affected by the 
bubble–wall distance, with the closest bubble ( Fig. 5 ) touching the 
wall and the farthest one (e.g. in Fig. 6 ) remaining detached. Dur- 
ing the bubble expansion, the liquid in the thin layer between 
vapor and wall is compressed and a new shockwave is observed, 
third row of Fig. 6 . This sequence of events completely breaks the 
spherical symmetry, thereby reducing the strength of the succes- 
sive collapse. Eventually, the field becomes more and more com- 
plex, until dissipation prevails. It is worth noting that, at a qualita- 
tive level, the configuration of the shock waves compares very well 
with results found in experiments in similar conditions, Tomita and 
Shima (1986) . It should be stressed however that in the experi- 
ments the bubble is usually much larger, typically millimeter size. 
However femtosecond lasers allow to generate nano-sized bubbles, 
see Vogel et al. (2008) . 

Increasing the strength of the impinging shockwave, liquid-jet 
formation is observed. In Fig. 7 the evolution of the vapor bubble 
triggered by a shockwave of intensity I = 400 is represented up to 
the first re-expansion stage. The shape of the collapsing bubble be- 
comes much flatter than observed at weaker shock strengths and 
the strong vorticity generated at the periphery of the bubble gives 

Fig. 6. Snapshots during the evolution of a collapsing bubble with z 0 = 1 . 9 taken at 
times t = 0 , 2 . 266 , 2 . 319 , 2 . 395 , 2 . 399 , 2 . 771 , 4 . 545 , 4 . 627 , 7 . 04 , 7 . 533 , 7 . 736 , 9 . 482 . 
The grey tones and the iso-lines are the same of Fig. 5 . 
rise to the bubble poration by inducing a liquid jet focused toward 
the wall. In the third row of Fig. 7 , during the re-expansion stage, 
the bubble acquires an annular shape and the liquid jet impinges 
the wall and produces a radial flow. 

A direct comparison of the flow induced by the bubble collapse 
at different strengths of the triggering shockwave is reported in 
Fig. 8 . The liquid jet directed toward the wall is more pronounced 
for I = 400 and the flow is strong enough to pierce the bubble 
leading to an annular shape. In fact, although a wall-directed flow 
is observed also in the case of the weaker initial shockwave, at 
I = 75 the bubble is not flat enough to be pierced by the liquid 
jet and the overall effect reduces to a displacement of the bubble 
toward the wall. 

A crucial aspects of the phenomenology is the transition to 
supercritical conditions during the last stage of the collapse 
( Magaletti et al., 2015 ). The formation of an incondensable phase 
prevents the complete collapse of the bubble, reverting the motion 
to an outward expansion. Overall, a sequence of oscillations sets 
in, as shown in Fig. 3 , where the quantity reported on the ordinate 
is the volume of the non-liquid phase in the system (vapor and 
supercritical phases). During each successive collapse, the vapor is 
compressed and its temperature raises locally bringing the system 
in supercritical conditions. As already anticipated, Fig. 3 , the vol- 
ume during the first collapse stage is almost independent of the 
bubble–wall distance. On the contrary, the re-expansion stage is 
affected by the initial position. The following dynamics is affected 
by the complex interactions between the reflected shockwaves and 
the bubble motion. The time of the successive collapses are slightly 
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Fig. 7. Snapshots during the evolution of a collapsing bubble with z 0 = 2 . 2 and 
a trigger shockwave with intensity I = 400 . The time instants correspond to t = 
0 , 0 . 948 , 0 . 985 , 1 . 007 , 1 . 068 , 1 . 156 , 1 . 766 , 2 . 36 , 2 . 822 . The grey tones and the iso- 
lines are the same of Fig. 5 . The stronger impinging shock initiates the liquid jet 
formation and leads to the bubble poration. 

Fig. 8. Comparison of the flow fields for two different shock intensities. On the left 
the case I = 400 where it is apparent the liquid jet formation. On the right the case 
I = 75 . The plotted vectors are not at the maximum grid resolution to increase the 
clearness of the figure. 
different for the different cases (differences up to 10%) and the 
maximum volume achieved after the second re-expansion is not 
monotonous with z 0 . In the inset of Fig. 3 we compare the volume 
evolution of a shock-induced collapse in free space (black dotted 
curve) with the one near the wall (red solid curve, z 0 = 1 . 3 ). The 
overall dynamics is again a series of collapses and rebounds but, 
after each collapse, the bubble in free space does not experience 
the volume plateau which is an effect of the interaction between 
the re-expanding bubble and the shockwave reflected back by the 

Fig. 9. Time evolution of eccentricity for different initial distance. The first stage 
of the collapse is substantially spherical for all the initial distances. The break of 
symmetry occurs during the final stage of the collapse with the nearest bubble (red 
curve in the online version) that slightly extends toward the wall while the others 
in the radial direction. During the shock-interaction stage all the bubbles assumes a 
pronounced flat shape and remains elongated in the radial direction through all the 
re-expansion phase. The more drastic change of topology occurs during the second 
collapse when all the bubbles rapidly invert the elongation toward the wall. (For 
interpretation of references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 10. Evolution of the position of the bubble center. The faster migration toward 
the wall occurs between the collapse and the re-expansion stages when the flow 
produced during the bubble collapse is stronger and convects the bubble. The two 
snapshots in the insets show the velocity vectors in two different stages: on the left 
it is highlighted the axial flow during the bubble migration, while on the right it is 
shown the characteristic quasi-radial flow during the re-expansion phase that stops 
the axial motion of the bubble. 
wall. The reflected shock counteracts the re-expansion and keeps 
the bubble small for a longer time. 

The eccentricity of the bubble, e = a/b, where a is the semi- 
axis in the z -direction and b is the other semi-axis of the ellipsoid 
with the same volume of the bubble, V = 4 πab 2 / 3 , can be used 
to quantify the change in bubble shape, with e < 1 for a flat bub- 
ble (elongated in the radial direction). The time evolution of the 
eccentricity is reported in Fig. 9 , for several initial distances z 0 . 
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Fig. 11. Time evolution of the maximum pressure recorded in the whole fluid domain for the five different initial wall–bubble distances. As a reference the dotted curve 
reports the bubble volume evolution. The most intense pressure peaks are observed when the bubble reaches its minimum volume. In the case of z 0 = 1 . 3 , the maximum 
value is reached at the second collapse because the bubble is pinned on the solid boundary and its collapse is more intense. Of particular interest are the pressure peaks 
observed during the re-expansion stage for the cases z 0 = 1 . 6 and z 0 = 2 . 2 which are related to the compression of the liquid film between the bubble and the wall, as 
explained in the text. In the inset we report the time evolution of the maximum pressure in the case with the higher triggering shock intensity. 

Let us focus on the first collapse stage. As anticipated, during 
the initial phase of the first collapse, all the bubbles remain al- 
most spherical. The initial distance affects, instead, the shape in 
the final part of the collapse in such a way that the farther bub- 
bles take a flatter shape ( e < 1) while the closer ones get slightly 
elongated toward the wall ( e > 1) . This trend is the consequence 
of two counteracting effects of the triggering shockwave. On one 
hand the impinging shock flattens the bubble during the collapse. 
On the other hand the bubble-shock interaction weakens the pres- 
sure wave and slows it down locally in the region occupied by 
the bubble (see the second and third snapshots in the first row 
of Fig. 7 ). Its reflection at the wall produces a non-uniform shock- 
wave impinging again the bubble. The reflected shock is now more 
intense on the sides than on the center of the bubble thereby en- 
hancing the elongation in the z -direction. The effect is clearly more 
intense for bubbles closer to the wall. 

After the first collapse, up to the re-expansion stage, all the 
bubbles flatten as a consequence of the radial flow occurring near 
the wall. The second collapse is characterized by a rapid reduction 
of the radial semi-axis b (see the third and the forth rows of Fig. 6 ) 
and therefore by a quick increase of the eccentricity as a conse- 
quence of the local high curvature at the equator of the bubble in 
association with surface tension. 

The flow produced during the bubble collapse and the conse- 
quent bubble motion is investigated in Fig. 10 showing the po- 
sition of bubble center of mass, z c . A strong axial flow, clearly 
visible in the inset on the left, is produced near the bubble axis 
during the collapse stage. This flow is responsible for the bubble 
migration toward the wall after the collapse ( t > 2). Overall, de- 
spite the difference in lengthscale, the observed phenomenology 
is entirely consistent with the experimental observations on mil- 
limeter bubbles reported in Philipp and Lauterborn (1998) . During 
the re-expansion stage the flow is directed radially outward (in- 
set on the right), stopping the bubble motion toward the wall. The 
subsequent collapse regenerates the axial flow and the bubble ap- 
proaches the wall again. 

Shockwaves and jets formed during bubble collapse are asso- 
ciated with intense pressure and temperature peaks. At each time 
instant maximum pressure and temperature are recorded and 
reported in the plots of Fig. 11 and 12 , respectively. The first peak, 

Fig. 12. Time evolution of maximum temperature recorded in the whole fluid do- 
main. As well as the pressure peaks, the temperature reaches the local maxima 
when the collapse is completed. Again, it is possible to observe a temperature peak 
during the re-expansion stage, but it is less apparent than its pressure equivalent. 
In the inset we report the time evolution of the maximum pressure in the case 
I = 400 . 
both in pressure and temperature, occurs at the end of the first 
collapse stage, when the bubble stops shrinking. This peak is the 
strongest one for a bubble collapsing in free space ( Magaletti et al., 
2015 ). Fig. 11 shows that the end of the first collapse is the instant 
of maximum pressure also for most cases of bubbles collapsing 
near the wall. However there are conditions where a successive 
peak exceeds by far the first one. When it occurs, such extremely 
intense pressure peak is due to the bubble experiencing the 
second collapse after it translated to get in touch with the wall, 
see the snapshots in the last row of Fig. 5 . It may even happen 
that an intermediate pressure peak occurs between the first and 
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Fig. 13. Spatial evolution of the maximum pressure values recorded on the wall 
during propagation of the shock wave for each initial condition. The pressure val- 
ues are decreasing with increasing of initial bubble distance from the wall. It is 
possible to observe that for the bubbles placed at distances closer to the wall the 
shape of the envelope varies strongly due to interaction with the shockwave reflec- 
tion. Inset: Radial evolution of the pressure range recorded on the wall for initial 
condition z 0 = 2 . 2 . The different dotted lines correspond to different time instants 
and the purple line corresponds to the envelope of the maximum pressure values. 
(For interpretation of references to color in this figure, the reader is referred to the 
web version of this article.) 
the second collapse. When present, this is due to the expansion 
of the bubble at a suitable distance to the wall that generates a 
compression of the fluid between bubble and wall (third row of 
Fig. 6 ). As already commented, the increase in the triggering shock 
intensity leads to bubble poration and jet development. Interest- 
ingly, at the moment of jet formation, a peak in the pressure field 
is observed, inset of Fig. 11 . The origin of the pressure peak is 
purely hydrodynamical, since no corresponding temperature peak 
occurs, see inset of Fig. 12 . Since the jet-induced pressure peak 
is comparable with that of the shock, the present results seem to 
confirm the high damaging potential of the jetting phase. 

The collapsing bubble induces a strong stress on the solid wall. 
Fig. 13 reports the envelope of the pressure maxima at the wall 
for different initial bubble positions. The inset illustrates the way 
the envelope is constructed from instantaneous pressure distribu- 
tions at the wall at successive time instants. By comparing with 
the pressure maxima in the field, Fig. 11 , it is clear that the pres- 
sure at the wall is much weaker than the maximum inside the 
field. Nevertheless the typical pressure at the wall is very large, 
order ten times the critical pressure of the fluid. For water, this 
would correspond to a pressure in the order of 200 MPa, a figure 
which compares well with experimental measurements on collaps- 
ing bubbles near solid walls ( Tomita and Shima, 1986 ). Concerning 
the temperature at the wall, in the present conditions extreme val- 
ues were never experienced, except in cases where the collapsing 
bubble came in direct contact with the wall. 
5. Conclusions 

We have numerically studied the collapse of a pure vapor 
nanobubble near a solid boundary by applying a diffuse interface 
approach. The model is especially suitable to describe in a con- 
sistent and unified way the complex phenomena occurring during 
cavitation, namely: phase change, latent heat release, shock wave 
formation and propagation, transition to supercritical conditions. 

Table 1 
Comparison of the maximum pressure and temper- 
ature reached during the first collapse in three dif- 
ferent geometrical configurations. In all the cases the 
overpressure that triggers the collapse is of intensity 
I = 75 . The data shown as representative of the shock 
induced collapse in proximity of the wall is referred 
to the case with z 0 = 1 . 6 . 

p max / p c θmax / θ c 
Spherical 3 × 10 5 708 
Shock induced – no wall 175.16 3.29 
Shock induced – near wall 384 8.22 

Like in the case of spherically symmetric collapse, a pure vapor 
bubble is found to collapse with a sequence of volume oscillations, 
associated to a sequence of successive collapses which are arrested 
and inverted by the formation of the incondensable, supercritical 
phase due to compression and latent heat release. In comparison 
with symmetric collapse, the peak pressures and temperature are 
significantly lower in the case of aspherical bubble collapse, see 
Table 1 . Interestingly, the peak pressure for shock wave induced 
collapse in free space leads to even lower pressure and tempera- 
tures in comparison with those reached when the collapse is trig- 
gered near the wall. This indicates that the wall, by confining the 
radial expansion of the bubble and reflecting the triggering shock 
enhances the peak pressure level. Despite the pressure peak real- 
ized at the wall is significantly lower than the maxima found in- 
side the field, still large level of stress is transferred to the wall, as 
potential source of damage. A strong jet is found when the trigger- 
ing shock strength is sufficiently large. In fact, jet impingement on 
the wall is often quoted as a concurrent cause of material damage 
( Tomita and Shima, 1986 ). 

It is worthwhile noting that the peak pressure and temperature 
levels obtained in the present simulations are expected to overes- 
timate the experimental values. The reason is the simple equation 
of state used to make the computations more easily affordable. In 
particular, a pressure equation of state better suited to model a 
real fluid could help to reduce the peak temperature and pressure 
values. Moreover, unless extremely weak forcing is used to initi- 
ate the bubble collapse, the large temperatures reached inside the 
bubble are expected to lead to dissociation and ionization phenom- 
ena, which concur in substantially limiting the peak temperature. 

A further aspect to be considered for future works is the pres- 
ence of dissolved gas in the liquid to reproduce the condition 
of partially gas-filled cavitation bubbles that are more commonly 
found in applications. 
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