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SUPPLEMENTARY NOTE 1: BOUNDS ON THE DIAGONAL ELEMENTS OF THE FISHER INFORMATION MATRIX

Here we detail the demonstration of the inequality [S1]

[F−1]i,i ≥
1

Fi,i
. (S1)

To prove Eq. (S1) we recall that the square root of the positive definite Fisher matrix is given by the matrix with the same
(orthonormal) eigenvectors as F and the square root of its eigenvalues. We indicate as fi > 0 and vi (with v>i vj = δi,j) the
eigenvalues and eigenvectors of F, respectively (Fvi = fivi). Notice that F is real and symmetric and thus diagonalize. In
addition, F is positive semidefinite (therefore fi ≥ 0) and assuming that F is invertible we have fi 6= 0. We write

F =
∑
i

fi viv
>
i ,

√
F =

∑
i

√
fi viv

>
i ,

(
√
F)−1 =

√
F−1 =

∑
i

1√
fi
viv
>
i ,

and therefore
√
F(
√
F)−1 =

√
F
√
F−1 = 1,

with 1 the identity matrix. Using the Cauchy-Schwarz inequality

1 =
(∑

k

[
√
F]i,k[

√
F−1]k,i

)2
≤
(∑

k

[
√
F]i,k[

√
F]k,i

)(∑
k

[
√
F−1]i,k[

√
F−1]k,i

)
,

we obtain

1 ≤ Fi,i[F
−1]i,i ∀i,

and recover Eq. (S1). The equality sign is saturated if and only if F = c1, where c is a positive real number.

SUPPLEMENTARY NOTE 2: UPPER BOUND TO Fi,i

The following inequality holds

Fi,i ≤ F (i)
Q

[
ρ̂(λ)

]
, (S2)

where F (i)
Q

[
ρ̂(θ)

]
= [FQ]i,i is the diagonal element of the quantum Fisher information matrix,

F
(i)
Q

[
ρ̂(θ)

]
= Tr[ρ̂(λ)L̂2

i ] (S3)
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and L̂i is the symmetric logarithmic derivative, satisfying

∂ρ̂(λ)

∂λi
=
L̂iρ̂(λ) + ρ̂(λ)L̂i

2
. (S4)

The demonstration of the inequality (S2) follows from Ref. [S2] (see also the review [S3]). Using Eqs. (7) and (S4), we have

Fi,i =
∑
x

1

p(x|λ)

(
∂p(x|λ)

∂λi

)2

=
∑
x

<(Tr[ρ̂(λ)L̂iΠ̂x])2

Tr[ρ̂(λ)Π̂x)]
,

where <(y) is the real part of y. We then use the following chain of inequalities valid for all values of x:

<
(
Tr[ρ̂(λ)L̂iΠ̂x]

)2 ≤ ∣∣Tr[ρ̂(λ)L̂iΠ̂x]
∣∣2

≤ Tr
[
ρ̂(λ)Π̂x

]
Tr
[
Π̂xL̂iρ̂(λ)L̂i

]
,

the first inequality due to <(y)2 ≤ |y|2 and the second is due to Caushy-Schwarz. We thus obtain (for all values of x)

<(Tr[ρ̂(λ)L̂iΠ̂x])2

Tr[ρ̂(λ)Π̂x)]
≤ Tr

[
Π̂xL̂iρ̂(λ)L̂i

]
. (S5)

Summing over x, we thus recover Eq. (S2) with F (i)
Q

[
ρ̂(λ)

]
given in Eq. (S3). The equality sign can be saturated by taking a

projective measurement Π̂x on the eigenstates of L̂i.
To find an explicit expression for F (i)

Q

[
ρ̂(λ)

]
, let us write ρ̂(λ) in diagonal form ρ̂(λ) =

∑
k pk|k〉〈k|, with pk ≥ 0, {|k〉} is

a complete basis (
∑
k |k〉〈k| = 1) and

∑
k pk = 1. We have

F
(i)
Q

[
ρ̂(λ)

]
= 2

∑
k,k′

pk+pk′ 6=0

(pk − pk′)2

pk + pk′

∣∣〈k|Ĥi|k′〉
∣∣2,

where

Ĥi ≡ i
(
∂Û(λ)

∂λi

)
Û−1(λ). (S6)

In particular,

F
(i)
Q

[
ρ̂(λ)

]
≤ 4
(
∆Ĝi

)2
. (S7)

The quantity [FQ]i,i has the physical meaning of a single-parameter quantum Fisher information with respect to transformations

Û(λ) where all the parameters are fixed except λi (in other words ∂Û(λ)
∂λj

= 0 for i 6= j).

SUPPLEMENTARY NOTE 3: RELATION TO QUDIT ENTANGLEMENT

The relation between [FQ]i,i and qudit entanglement is a generalisation of the criteria of useful entanglement discussed in
Ref. [S4] (see also [S5] and the review [S3]). We recall that a state %0 of N qudits is said to be qudit-separable if can be written
as

%̂sep =
∑
k

pk |ψk,1〉〈ψk,1| ⊗ |ψk,2〉〈ψk,2| ⊗ ...|ψk,N 〉〈ψk,N |,

where |ψk,n〉 (n = 1, · · · , N) is a single qudit state. We assume here that the Hamiltonian Ĝi is local in the qudits (i.e. it can
be written as Ĝi =

∑N
n=1 ĝ

(n)
i , where ĝ(n)i acts on the nth qudit), and, for simplicity, we take ĝ(n)i = ĝi for all n = 1, · · · , N .

Under these conditions we find

F
(i)
Q ≤ N(gi,max − gi,min)2, (S8)

where gi,max and gi,min are the maximum and minimum eigenvalues of ĝi. Taking into account Eq. (S2), we obtain that the
inequality

Fi,i ≤ N(gi,max − gi,min)2 (S9)

holds for all separable qudit states and all possible POVMs. A violation of this inequality signals qudit entanglement.
The demonstration of Eq. (S8) uses general properties of the single-parameter quantum Fisher information [S3]):



3

d e f

g h i

Q1

Q2

Q1

Q2

a b

Q1

Q2

c

SUPPLEMENTARY FIG. S1. Phase sensitivity of the three-mode balanced MZI with |1, 1, 1〉 probe state and photon-number measurement.
a, Contour plot of Tr[F−1] as a function of φ1 and φ2. b-c, Regions of Tr[F−1] around the values of the phases which minimize Tr[F−1].
d, working point Q1 and c, working point Q2. d, Contour plot of (F−1)1,1 as a function of φ1 and φ2. e-f, Regions of (F−1)1,1 around the
values of the phases which minimize Tr[F−1]. e, working point Q1 and f, working point Q2. g, Contour plot of (F−1)2,2 as a function of φ1

and φ2. h-i, Regions of (F−1)2,2 around the values of the phases which minimize Tr[F−1]. h, working point Q1 and i, working point Q2.
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SUPPLEMENTARY FIG. S2. Analysis of stability for the four-mode interferometer with |1, 1, 1, 1〉 probe state and photon-number mea-
surement. To perform a two-step adaptive protocol for the estimation of two unknown phases with the highest precision, we need that in a
neighbourhood of radius δ centered in the working point O1, the quantity Tr[F−1] has no singularities. a-b, Contour plot of Tr[F−1] around
the working point O1 = [π, π] for a φ0 = 0.01 and b φ0 = 0.1. Green circles: regions with δ = 0.01 around O1. Red circles: regions with
δ = 0.1 around O1. We note that increasing φ0 the singularities move away from the neighbourhood, increasing the stability of the estimation
protocol.

• the convexity of F (i)
Q :

F
(i)
Q

[
ρ̂sep

]
≤
∑
k

pkF
(i)
Q

[
|ψ1,k〉 ⊗ ...⊗ |ψN,k〉

]
;
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• the additivity of F (i)
Q :

F
(i)
Q

[
|ψ1,k〉 ⊗ ...⊗ |ψN,k〉

]
=

N∑
n=1

F
(i)
Q

[
|ψn,k〉

]
;

• the bound

F
(i)
Q

[
|ψn,k〉

]
≤ 4
(
∆ĝi

)2
|ψn,k〉

;

• the inequality

4
(
∆ĝi

)2
|ψn,k〉

≤
(
gi,max − gi,min

)2
,

which holds for every n, i.e. for every single-qudit state.

Putting all these results together, we arrive at Eq. (S8).

SUPPLEMENTARY NOTE 4: MODE AND PARTICLE ENTANGLEMENT

Here we discuss the role of entanglement in the section ”Multimode Mach-Zehnder interferometry” of the main text, focusing
on the three-mode MZI interferometer. The generalization to the four mode MZI is a trivial extension.

We first observe that the Fock state |1, 1, 1〉 = a†aa
†
ba
†
c|0〉 does not contain any mode entanglement, as it can be written as

|1〉a⊗ |1〉b⊗ |1〉c. Here a†k represent the creation operator of one particle over mode k (a, b, c represent the three spatial modes),
and the notation |1, 1, 1〉 indicates the injection of three identical particles, one for each of the three arms of the interferometers.
The particles are labeled by using the path in which they are, so that we call path notation this specific representation. Such
notation is indeed very convenient as it is possible to define the tritter, quarter and phase shifter matrixes in a natural way by
considering the transformation of the creation operators before and after the optical element.

Now let us define a different representation, which we call particle notation, formally equivalent to the previous one. We
define now the qubit as the path taken by a particle in the interferometer, so that if the particle 1 is in mode a, we identify it as
|a〉1.

As an example, let us consider a two-particle Fock state over modes a and b. This state can be written in particle notation as:

|1〉a|1〉b →
1√
2

(|a〉1|b〉2 + |b〉1|a〉2). (S10)

Note that this two-particle wave-function is symmetric with respect to particle exchange, since we are dealing with indistin-
guishable photons. Eq. (S10) is clearly particle entangled in this notaton.

In the following we show the difference between particle and path representation, (see also Refs. [S6, S7]), starting from the
simple case of the beam splitter trasformation, and extending it to the 3-mode case.

Beam splitter is local in particle and non local in path. The beam splitter transformation in path notation is naturally
defined in terms of creation operators in the second quantization scheme:

b†a →
1√
2

(a†a + a†b), b†b →
1√
2

(a†a − a
†
b). (S11)

The Fock state can be written as |1, 1〉 = a†aa
†
b|0, 0〉. Applying Eq. (S11) to the input state generates the state 2−1(b† 2a −

b† 2b )|0, 0〉 = 2−1/2(|2, 0〉 − |0, 2〉).
We note that Eq. (S11) represent a non local set of transformations. Indeed the beam splitter mixes the modes, so that a

particle in mode a does not remain just in subspace a. Hence, in path notation the action of the beam splitter is non local.
Starting from the Fock state written in particle notation, the action of the beam splitter on the modes (a, b) is:

|a〉l →
1√
2

(|a〉l + |b〉l), |b〉l →
1√
2

(|a〉l − |b〉l), (S12)

with l = 1, 2. The transformation described by (S12) is local in the representation: particle l which identify the Hilbert space
of the qudit remains the same before and after the transformation. The beam splitter, a linear optical element, cannot make
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particles interact but merely mixes the modes. Transformation (S12) applied to a Fock state input (S10) generates an output state
2−1/2(|a〉1|a〉2 − |b〉1|b〉2), which is the equivalent in particle notation of 2−1/2(|2, 0〉 − |0, 2〉).

Tritter is local in particle and non local in path. Here we extend the results for a multimode beam splitter, in particular
we focus on the three-mode equivalent of the beam splitter, the tritter. The three-particle Fock state can be written in particle
notation by considering all the permutations of three particles in three modes:

|1, 1, 1〉 → 1√
6

(|a〉1|b〉2|c〉3 + |a〉1|c〉2|b〉3 + |b〉1|a〉2|c〉3 + |b〉1|c〉2|a〉3 + |c〉1|a〉2|b〉3 + |c〉1|b〉2|a〉3) = |{a, b, c}〉123 (S13)

This state is clearly separable in path notation and non-factorizable in particle notation and thus (particle) entangled. Now we
prove that the unitary operation performed by the tritter is local in particle notation and non-local in path notation. The tritter
matrix U (3) has diagonal elements (U (3))i,i = 3−1/2 and off-diagonal elements (U (3))i,j = 3−1/2eı2π/3 with i 6= j. It operates
on the creation operator so that b†k =

∑
i(U (3))i,ka

†
k holds. Applying the operation over the three-particle Fock state leads to:

|1, 1, 1〉 →
(
− 1

6
√

3
+
i

6

)
(|3, 0, 0〉+ |0, 3, 0〉+ |0, 0, 3〉) +

(
1

2
√

3
+
i

2

)
|1, 1, 1〉. (S14)

Analogously to the case of the beam splitter, the transformation over the creation operators is non-local in the path notation:
indeed a particle in the Hilbert space defined by mode a is transformed in a linear superposition of particles in all the other
modes. This property can be generalized to the case of an N -mode multiport interferometer.

We can define the tritter transformation in particle notation by considering that it mixes the modes:

|a〉l → 1√
3
(|a〉l + e2ıπ/3|b〉l + e2ıπ/3|c〉l),

|b〉l → 1√
3
(e2ıπ/3|a〉l + |b〉l + e2ıπ/3|c〉l),

|c〉l → 1√
3
(e2ıπ/3|a〉l + e2ıπ/3|b〉l + |c〉l),

(S15)

with l = 1, 2, 3. We note again that these relations are local in this representation. If we apply the trasformation to the state
(S13) we obtain: (

− 1

6
√

3
+
i

6

)
(|a〉1|a〉2|a〉3 + |b〉1|b〉2|b〉3 + |c〉1|c〉2|c〉3) +

(
1

2
√

3
+
i

2

)
|{a, b, c}〉123 (S16)

which is completely equivalent to the result obtained with the path notation. Note that the parenthesis here represent all the
possible permutation of the three particles. We again want to stress that this behavior is completely general: a multimode beam
splitter is a linear optical elements which mixes the modes but does not make particle interact. As a consequence it can always
be defined as a local operation over the particles, and a non local operation over the modes.

Phase shift transformation. A phase shift φ on mode k is represented by a transformation on the creation operators

b†j = (1 + δj,k(e−ıφ − 1))a†j , (S17)

and in terms of particle notation:

|j〉l → (1 + δj,k(e−ıφ − 1))|j〉l. (S18)

The transformation in the two notations is equivalent and represent a local operation over a single mode.
Conclusion. The description of the overall interferometer is directly obtained from the previous considerations. Indeed, since

the composition of local operations is still local, the action of the multimode MZI described in the main text is local in the
particles, and thus cannot generate particle entanglement in the state. The results shown in the main text which describe a quan-
tum advantage in the simultaneous estimation of multiple parameters is directly connected to the particle quantum correlations
present in the input state. The calculations were performed using the path notation, in which creation operators and interfero-
metric transformation are naturally defined. The quantum advantage is given by the particle entanglement in the input source.
Indeed, in particle notation the interferometer is made by a series of local operations as considered by the theoretical analysis.

SUPPLEMENTARY NOTE 5: THE ESTIMATOR FOR THE ADAPTIVE PROTOCOL

The chosen estimator is essentially a Maximum likelihood estimator, with likelihood function L(φ):

L(φ) = log

[
p(α)(φ)

kmax∏
k=1

p(k|φ)nk

]
. (S19)
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Here, p(α)(φ) represents the knowledge on the parameters, p(k|φ) is the conditional probability of outcome k, and nk is the
number of occurrence of outcome k. At each step, the distribution p(α)(φ) is a Gaussian distribution:

p(α)(φ) =

2∏
i=1

1√
2πσ

(α) 2
i

e
−

(φ1−φ
(α)
i

)2

(2σ
(α) 2
i

) , (S20)

being φ(α)i and σ(α)
i the estimated value and the error on the parameter i obtained at step α− 1 respectively.

SUPPLEMENTARY NOTE 6: ANALYTICAL EXPRESSION FOR THE FISHER INFORMATION MATRIX FOR THE 3-MODE
MACH-ZEHNDER INTERFEROMETER

The expressions for the Fisher information matrix (FIM) with a |1, 1, 1〉 input state evolving in the 3-mode interferometer and
measured with a photon-counting apparatus can be obtained from the definition of Eq. (3) in the main text. The probabilities
p(x|λ) of the general definition in this case are the probabilities pm,n,q(φ) of observing an output state with respectively
(m,n, q) photons (with m + n + q = 3) on the three output modes after the overall interferometer transformation Û =

Û (3)Û(φ)Û (3). The output probabilities can be derived as pm,n,q(φ) = |〈m,n, q|Û |1, 1, 1〉|2. Finally, the FIM is obtained
by applying Eq. (3).

We obtain in the 3-mode, two-phase scenario the following results for the elements of the 2× 2 FIM matrix:

F11 =
4

9

[
6
NA(φ1, φ2,−π3 )

DA(φ1, φ2)
+ 6

NA(φ1, φ2,
π
3 )

DA(φ2, φ1)
+ 4

N2
B(φ1, φ2)

DB(φ1, φ2)
+
N2
C(φ1, φ2)

DC(φ1, φ2)

]
; (S21)

F12 = F21 =
4

9

[
6
ND(φ1, φ2)

DA(φ1, φ2)
+ 6

ND(φ2, φ1)

DA(φ2, φ1)
+ 4

NB(φ2, φ1)NB(φ1, φ2)

DB(φ1, φ2)
+
NC(φ2, φ1)NC(φ1, φ2)

DC(φ1, φ2)

]
; (S22)

F22 =
4

9

[
6
NA(φ2, φ1,

π
3 )

DA(φ1, φ2)
+ 6

NA(φ2, φ1,−π3 )

DA(φ2, φ1)
+ 4

N2
B(φ2, φ1)

DB(φ1, φ2)
+
N2
C(φ2, φ1)

DC(φ1, φ2)

]
; (S23)

where we defined the following functions:

NA(x1, x2, α) = 2 sin2

(
3x1 −

3

2
x2

)
[cos (3x2 + α)− 1] ; (S24)

NB(x1, x2) = 2
[
sin
(

2x1 − x2 −
π

3

)
− sin (3x1)− sin (3x1 − 3x2)

]
+ sin

(
x1 − 2x2 +

π

3

)
+ sin

(
x1 + x2 +

π

3

)
; (S25)

NC(x1, x2) = sin (3x1) + sin (3x1 − 3x2) + 2 sin
(

2x1 − x2 −
π

3

)
+ sin

(
x1 − 2x2 +

π

3

)
+ sin

(
x1 + x2 +

π

3

)
; (S26)

ND(x1, x2) = 4 cos

(
3

2
x1 −

π

3

)
cos

(
3

2
x2 +

π

3

)
sin

(
3x1 −

3

2
x2

)
sin

(
3

2
x1 − 3x2

)
; (S27)

DA(x1, x2) = 2 cos
(

3x1 +
π

3

)
+ 2 cos

(
3x2 −

π

3

)
+ 2 cos

(
3x1 − 3x2 −

π

3

)
− 3; (S28)

DB(x1, x2) = 21 + 12

[
cos

(
x1 − 2x2 −

2π

3

)
− cos

(
2x1 − x2 −

π

3

)
+ cos

(
x1 + x2 −

2π

3

)]
+

+ 8 [cos (3x1) + cos (3x2) + cos (3x1 − 3x2)] ;

(S29)

DC(x1, x2) = 3
[
2 + cos

(
2x1 − x2 −

π

3

)
+ cos

(
x1 − 2x2 +

π

3

)
+ cos

(
x1 + x2 +

π

3

)]
+

+ cos (3x1) + cos (3x2) + cos (3x1 − 3x2) .
(S30)
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The results for a 4-mode interferometer with two phases can be obtained by adopting the same procedure described above.
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