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Abstract 

Zimmermann-Laband syndrome (ZLS; MIM135500) is a rare developmental disorder 

characterized by facial dysmorphism, including coarsening of the face, bulbous soft nose, gingival 

enlargement, nail aplasia or hypoplasia, hypertrichosis, and intellectual disability, with or without 

epilepsy. To date, about 40 patients have been described with features fitting ZLS.   

With the aim of identifying ZLS causative gene/s a WES approach on three ZLS patients 

was performed and allowed us to identify two disease genes, KCNH1 and ATP6V1B2 (Kortum et 

al., 2015). An enlargement of the cohort was performed through the recruitment of further five 

patients, that were analyzed by WES or Sanger sequencing, disclosing the presence of additional 

mutations in KCNH1 and ATP6V1B2 genes (Kortum et al., 2015), and highlighting the role of 

potassium channels and vacuolar ATPase in the pathogenesis of this disease. 

KCNH1 gene encodes a member of the potassium channel, voltage-gated, subfamily H 

protein. Patch-clamp recordings on KCNH1 mutants identified in this work showed strong negative 

shifts in voltage-dependent activation, supporting a possible gain-of-function effect for all ZLS-

associated KCNH1 mutants.  

ATP6V1B2 gene encodes the B2 subunit of the multimeric vacuolar H+ ATPase. Structural 

analysis predicts a perturbing effect of the mutation on complex assembly. 

Sanger sequencing screening of the coding sequence of the KCNH1 and ATP6V1B2 genes in 

four patients with clinical features within the ZLS clinical spectrum, disclosed the presence of 

mutation-negative patients, pointing to genetic heterogeneity for ZLS. To identify the “missing” 

ZLS disease genes, a WES approach on two KCNH1 and ATP6V1B2 mutation-negative subjects 

was performed, disclosing the presence of a novel likely pathogenic de novo variant in ATP6V1C1, 

encoding an interactor of ATP6V1B2. 

Common clinical features of patients mutated in KCNH1, ATP6V1B2 and ATP6V1C1 genes 

include craniofacial dysmorphism, gingival enlargement, mild to severe intellectual disability, and 

aplastic or hypoplastic nails and terminal phalanges, although with remarkable variability. Epilepsy 

is present only in KCNH1 mutated patients.  

A recruitment of additional ZLS and ZLS-related patients is ongoing; these subjects will be 

screened for mutations in previously and newly identified disease genes in order to provide a more 

accurate picture of the molecular spectrum of mutations and their associated clinical spectrum.  

Structural and functional studies are ongoing to characterize the effect of the ATP6V1B2 

and ATP6V1C1 mutants on the proper assembly/activity of the ATPase complex. 
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1. Introduction 

1.1 Zimmermann-Laband Syndrome: review of the literature 

Zimmermann-Laband syndrome (ZLS; MIM135500), firstly described by Zimmermann 

(1928) in two patients, is a rare developmental disorder characterized by facial dysmorphism, such 

as coarsening of the face, bulbous soft nose, gingival enlargement and thick floppy ears, nail aplasia 

or hypoplasia, hypertrichosis, and intellectual disability, with or without epilepsy (Balasubramanian 

and Parker, 2010). Although, Zimmermann is considered the first describing this condition, a 

patient with similar features has been reported in 1886 by Humphry, which presented a patient with 

only the left side of the body affected. She showed gingival hyperplasia, long eyelashes and 

eyebrows, thick floppy ear, facial hypertrichosis, hypoplasia of nail and terminal phalange of the 

second digit of the foot  (figure 1). 

 

 
Figure 1. Original drawing of the patient described by Humphry (1886). Unilateral gingival hyperplasia can be 
observed. 
 

Laband (1964) and Alavandar (1965) reported two Asiatic Indian families in which gingival 

fibromatosis occurred in association with hypoplasia of the terminal phalanges and absence or 

dysplasia of the fingernails. The report by Laband (1964) described the disorder in an East Indian 

38-year-old woman and 5 of her 7 children. The mother showed large, soft ears, hypertension, 

hyperextensibility of metacarpophalangeal joints, and splenomegaly. The affected children had soft 

tissue enlargement of the nose and ears, splenomegaly, skeletal abnormalities, reduced size of 

toenails and thumbnails, short terminal phalanges, and hypermobility of several joints. The report 

by Alavandar (1965) described 5 affected persons in 3 generations with associated features of 

thickening of the soft tissues of the nose and ear with softness of the cartilages, hyperextensible 

joints, and hepatomegaly. 

Chodirker et al. (1986) reported a case of a syndrome that he named for the first time 

Zimmermann-Laband, characterized by profound mental retardation, gingival fibromatosis, and 

absence of nails of thumbs and halluces.  
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Pina-Neto et al. (1988) reported a female patient with bulbous soft nose, thick floppy ears, 

gingival hypertrophy, large tongue, generalized hypertrichosis, joint laxity, hepatosplenomegaly, 

hypoplasia of distal phalanges of thumbs, thumbnails and toenails, generalized hypotonia, delayed 

neuromotor and speech development, mild mental retardation, lordosis, and flat feet. 

Bakaeen and Scully (1991) described two siblings with Zimmermann-Laband syndrome, 

characterized by a pronounced gingival hyperplasia, thickened and enlarged ears and nose, nail 

dysplasia, hypoplastic terminal phalanges, hyperextensibility of the joints, and hepatosplenomegaly. 

In 1992, Pfeiffer et al. described two patients with gingival fibromatosis, swelling of 

perioral tissues, nail hypo/aplasia, and abnormalities of terminal phalanges. 1 of the two patients 

suffers from epileptic seizures and shows osseous mandibular hypertrophy, two maxillary 

mesiodentes and lumbar spondylodysplasia. In the same year, Koch and collaborators reported on a 

10-year-old girl with a diagnosis of Zimmermann-Laband syndrome, associated with an atypical 

retinitis pigmentosa.  

Van Buggenhout et al. (1995) reported a 54 year-old male patient with Zimmermann-

Laband syndrome, showing severe mental retardation, gingival hyperplasia, bulbous soft nose, thick 

floppy ears, full eyebrows, nails aplasia, hypoplastic distal phalanges with abnormal shape of the 

thumb phalanges of hands and feet, and scoliosis. 

Robertson et al. (1998) reported on a 4-decade follow-up of a male with Zimmermann-

Laband syndrome who developed a cardiomyopathy and dilatation of the aortic root and arch. 

Dumic et al. (1999) reported a Croatian son of non consanguineous parents that had gingival 

hyperplasia and overgrowth of the major portion of the palatal tissue, bulbous soft nose and ears, 

hypoplastic toenails, hyperextensibility of the metacarpophalangeal joints, deep palmar and plantar 

crease, large tongue, and hypoplastic toenails. 

In the report of a balanced reciprocal translocation in mother and daughter by Stefanova et 

al. (2003), the 40-year-old proposita had been referred to the dental clinic at age 16 years because 

of excessive gingival growth that completely covered the tooth crowns. She and her daughter, 

showed gingival hyperplasia, large fleshy nose, macrostomia, full lips, large tongue, large thick 

eyelashes, and normal intelligence. The mother showed dystrophic fingernails and aplasia of the 

toenails, whereas the daughter had aplasia of both the fingernails and toenails, prominent ears, and 

generalized hirsutism. 

Shah and coworkers (2004) presented an unusual case of Zimmermann-Laband syndrome in 

a young male with bilateral developmental cataract. 

In 2005, Holzhausen and collaborators published a report describing a 13-year-old female 

patient with previously undiagnosed Zimmermann-Laband syndrome, having the following clinical 
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and radiographic alterations: thick floppy ears, bulbous soft nose, prominent maxillae, thick lips, 

thick eyelashes and eyebrows, mild hirsutism, hypertelorism, telecanthus, short neck, high foot 

arch, hypoplasia of toenails, deformed terminal phalanges of the toes and thumbs, and 

hyperextensibility of the metacarpophalangeal joints, and supernumerary teeth. The patient did not 

have intellectual disability. 

Davalos et al. (2005) reported two unrelated children, a boy and a girl, clinically and 

radiologically diagnosed with ZLS who displayed previously unreported features, such as: marked 

body overgrowth, cavernous hemangiomata in the frontal and left cerebellar regions in the boy, and 

unusual radiologic characteristics including broad medullary canals and metaphyses of the long 

bones, thin cortices, broad ribs, and accelerated skeletal maturation in the girl. The boy had 

psychomotor delay, whereas the girl had normal intelligence. The girl's mother and two brothers 

had also mild hypertrichosis but no other features of ZLS. The boy's father had soft tissue 

enlargement of the nose, ears, and lips. 

A further 4-months-old male subject with ZLS was reported by Atabek et al. in 2005. He 

was the first child of a young non consanguineous couple. The upper part of his mouth showed a 

hyperplastic gingiva, and, in addition, he had a markedly generalized hypertrichosis, dysplastic nails 

of the fingers and toes, hyperpigmented scrotal skin, hyperextensible metacarpophalangeal joints, 

and deep palmar and plantar creases. 

Hoogendijk and coworkers reported in 2006 a 14-year-old child with a gross hypertrophy of 

the maxillary and mandibular gingiva. His facial features include a bulbous soft nose, thick upper 

and lower lips, a low anterior hairline, and bushy eyebrows. Abnormalities of the nails of the feet 

were noted. 

In the work of Kim et al. (2007), a male 46,XY,t(3;17)(p14.3;q24.3) with gingival 

hyperplasia, hypertrichosis, unusually large ears and marked hypertrophy of the nose is presented. 

Abo-Dalo (2007 and 2008) reported three novel patients with ZLS. They shared as main 

clinical features hypoplastic terminal phalanges, aplastic nails, gingival fibromatosis, and mental 

retardation. One of them had macrocephaly and behavioral problems, another one had bulbous flat 

nose, macroglossia, hypertrichosis, while the third one had seizures, microcephaly, short stature, 

and scoliosis. Those three subjects were analyzed in the present research project, and correspond to 

case 5, 6 and 8, respectively. 

Lin et al. described a patient with ZLS diagnosis in 2010. The diagnosis was made on the 

presence of gingival fibromatosis, bulbous nose, thick lips, hirsutism, deformed terminal phalanges, 

splenomegaly, and mental retardation. The patient exhibited also supernumerary teeth and thymic 

hyperplasia. 
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Chacon-Camacho and collaborators (2011) expanded the phenotypic spectrum of ZLS, 

reporting a patient with colpocephaly, hemivertebra, polydactyly, hyperpigmentation, and 

hemihyperplasia. 

Davalos et al. (2011) reported a 9-year-old girl with Zimmermann-Laband syndrome. The 

patient had macrosomia, macrocephaly, generalized hypertrichosis, hepatomegaly, nail hypoplasia, 

gingival hyperplasia, and facial dysmorphism. She had severe bilateral sensorineural hearing loss. 

An additional patient was reported by Sawaki et al. (2012) having the classical features of ZLS. 

Castori et al. (2013) described two unrelated subjects with Zimmermann-Laband syndrome 

who were analyzed in the current study (corresponding to case 1 and 2 in this work). One patient, 

was the unique son of unrelated parents. He had mild generalized hypertrichosis, anonychia of the 

thumbs and great toes, hypoplasia of nails of the fifth fingers and fourth left finger, gingival 

hypertrophy, soft nose, his psychomotor development was delayed with severe motor impairment, 

and seizures. The second patient, was a 5-year-old girl. She was the only child of two non 

consanguineous parents. At birth, she had generalized hypotonia, coarse face, hirsutism, and nails 

hypoplasia of hands and feet, aplasia or hypoplasia of phalanges on both hands and feet, delayed 

psychomotor development, gingival hypertrophy, soft nose and ear cartilages, and hirsutism. Figure 

2 illustrates some pictures representing the most typical features of Zimmermann-Laband 

syndrome. 
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Figure 2. Main ZLS features. (A-G) Typical facial appearance of ZLS patients, with flat nasal bridge, bulbous nose, 
thick ears, in D gingival hyperplasia can be observed; (H-L) Picture showing gingival hyperplasia; (M-R) pictures 
showing aplasia/hypoplasia of nails and terminal phalanges of hands, in M, N, and O the aplasia of nails and hypoplasia 
of terminal phalanges is evident, in P, Q and R hypoplasia of nails; (S-X) pictures showing aplasia of feet nails, in S and 
X can also be noted hypertrichosis; (Y,Z) two pictures showing an example of back and limb hirsutism. 
(A and H, Laband et al., 1964; B, I, M and S, Stefanova et al., 2003; C and N, Abo-Dalo et al., 2008; D, 
Balasubramanian and Parker, 2010; E and J, Davalos et al., 2011; F, K, O, P, T and U, Castori et al., 2013; L, Q, R, V-
X, Kortum et al., 2015; Y and Z, Kim et al., 2007) 
 

1.2 Clinical features of Zimmermann-Laband syndrome 

All the patients reported in literature with the diagnosis of ZLS share some clinical features, 

such as gingival hyperplasia, hypoplasia or aplasia of nails and phalanges. Most of them have 

bulbous soft nose and thick lips, and in different proportion: soft dysmorphic ears (40%), joint 

hypermobility (48%), generalized hypertrichosis (37%), intellectual disability (40%), and epilepsy 
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(14%). Other less frequent characteristics are: thick eyebrows and long eyelashes (27%), 

hypertelorism (12%), downslanting palpebral fissures (10%), micrognathia (27%), high-arched or 

cleft palate (21%), supranumerary teeth or hypodontia (12%), macroglossia (23%), joint 

contractures (4%), hypotonia (12%), pes planus or cavus (10%), hallux valgus (8%), short neck 

(10%), spine anomalies (15%), undertubulated long bones (4%), growth delay or short stature (8%), 

hemihyperplasia or body overgrowth (4%), soft skin (12%), hyperpigmentation (4%), deep palmar 

or plantar creases (4%), cataract (6%), deafness (4%), hepatomegaly (27%), splenomegaly (17%), 

heart defects (12%), and abnormal genitalia (6%) (Castori et al., 2013). Most of the symptoms 

manifest during infancy. In table 1 a list of the main features of ZLS as reported in the clinical 

synopsis of OMIM is reported. An autosomal dominant inheritance with de novo mutations is the 

proposed mode of inheritance for this disease, even though autosomal recessive inheritance could 

not be excluded. X-linked inheritance was less likely because there is no reported imbalance 

between the two sexes. 
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ZIMMERMANN-LABAND SYNDROME FEATURES (MIM135500) 
TYPE OF ANOMALIES DESCRIPTION 
Weight Weight at birth >90th centile 

Facial dysmorphism 

Coarse facies 
Prominent mandible 
Broad nasal bridge 
Fleshy nose 
Thick lips 
Gingival fibromatosis/hyperplasia 
High-arched palate 
Long, lobulated, posteriorly rotated ears 

Hair anomalies 
Thick eyebrows 
Synophrys 
Hypertrichosis 

Hearing anomalies Hearing loss (rare) 

Vision anomalies 
Myopia 
Cataracts 

Teeth anomalies Delayed tooth eruption 

Cardiovascular anomalies 
Cardiomyopathy 
Patent ductus arteriosus 
Aortic root/arch dilatation 

Liver/Spleen/Kidneys anomalies 
Hepatosplenomegaly 
Extrahepatic biliary atresia (rare) 
Renal calculi (rare) 

Spine anomalies 
Scoliosis 
Spina bifida occulta 

Hands and feet anomalies 
Hyperextensible fingers 
Hypoplastic distal phalanges 
Hypoplastic nails 

Skin anomalies Dry, thick skin 

Neurological anomalies 
Hypotonia 
Seizures 
Intellectual disability 

 
Table 1. Main clinical features of Zimmerman-Laband syndrome as reported in clinical synopsis of OMIM. 
 

1.3 Zimmermann-Laband-related syndromes 

ZLS belongs to a group of syndromes characterized by considerable clinical overlap, such as 

autosomal recessive deafness, onychodystrophy, osteodystrophy, mental retardation, seizures 

syndrome (DOORS; MIM220500), Cantu syndrome (CS; MIM239850), Temple-Baraitser 

syndrome (TMBTS; MIM611816), and dominant deafness-onychodystrophy syndrome (DDOD; 

MIM124480). 

Overlapping characteristics among those syndromes are coarse facies, absence or hypoplasia 

of phalanges and nails, seizures, intellectual disability, and hypertrichosis. There are also some 
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clinical differences, e.g. the autosomal recessive deafness, onychodystrophy, osteodystrophy, 

mental retardation, seizures syndrome (DOORS) has a more severe phenotype involving the central 

nervous system, vision anomalies (blindness, optic atrophy or cataract), profound sensorineural 

deafness, cerebral atrophy with enlarged ventricles, and peripheral polyneuropathy. 

In Cantu syndrome (CS), cardiovascular malformations like cardiomegaly, congenital 

hypertrophy of left ventricle, bicuspid aortic valve, and patent ductus arteriosus are much more 

frequent. In addition, skeletal abnormalities as widened ribs, osteoporosis, platyspondily, and 

widened metaphyses are more frequently observed. 

The dominant deafness-onychodystrophy syndrome (DDOD) differs from ZLS mainly for 

the constant presence of sensorineural hearing loss. Finally, Temple-Baraitser syndrome (TMBTS) 

is characterized by a more severe central nervous system involvement than ZLS, with delayed 

psychomotor development, seizures, intellectual disability, and hypotonia. In ZLS, those neurologic 

findings are not always present, and can have very different degrees of severity, from mild to very 

severe. A comparison among ZLS and the above cited syndromes is presented in table 2. 

 

CLINICAL FEATURES ZLS TMBTS CS DOORS DDOD 
Overgrowth at birth  + - + - - 
Coarse facies   + - + + - 
Hearing loss + - - - + 
Myopia and/or cataracts + - - + - 
Broad nasal bridge     + + + + - 
Fleshy nose  + - - - - 
Thick lips   + + + + - 
Gingival fibromatosis and/or hyperplasia + - + - - 
Aortic root and/or arch dilatation    + - - - - 
Hepatosplenomegaly      + - - - - 
Scoliosis    + - - - - 
Joint hypermobility + - - - - 
Hypoplastic nails and/or distal phalanges + + - + + 
Hypertrichosis     + - + - - 
Hypotonia    + + - + - 
Seizures      + + - + - 
Intellectual disability + + + + - 

 
Table 2. Major clinical features of ZLS, compared with four related syndromes. + = present; - = absent; ZLS = 
Zimmermann-Laband syndrome; CS = Cantu Syndrome; DOORS = deafness, onychodystrophy, osteodystrophy, 
mental retardation, seizures syndrome; DDOD = dominant deafness-onychodystrophy syndrome. 
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1.4 Molecular bases of ZLS-related syndromes 

Mutated genes causative of ZLS-related syndromes have been identified in the last five 

years, using next generation sequencing approach, mainly whole-exome sequencing. 

The first ZLS-related syndrome for which the molecular bases were characterized is the 

Cantu syndrome, caused by de novo mutations in the ABCC9 gene (Harakalova et al., 2012; van 

Bon et al., 2012). The protein encoded by this gene is a member of the superfamily of ATP-binding 

cassette (ABC) transporters. ABCC9 is a member of the MRP subfamily which is involved in 

multi-drug resistance, and is thought to form ATP-sensitive potassium channels in cardiac, skeletal, 

and vascular and non-vascular smooth muscle. 

Afterwards, mutations in the TBC1D24 gene, encoding a protein with a TBC domain, were 

found to be causative of the DOORS syndrome (Campeau et al., 2014; Azaiez et al., 2014). TBC 

domain containing proteins may serve as specific GTPase-activating proteins, the Rab (Ras-related 

proteins in brain) small GTPases which are involved in the regulation of membrane trafficking. This 

protein is apparently not functionally linked to the ABCC9 protein.  

Lately, the DDOD syndrome was found to be caused by a de novo truncating mutation in the 

ATP6V1B2 gene (Yuan et al., 2014), encoding a component of vacuolar ATPase (V-ATPase), a 

multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase 

dependent organelle acidification is necessary for protein sorting, zymogen activation, receptor-

mediated endocytosis, and synaptic vesicle proton gradient generation. ATP6V1B2 is highly 

expressed in osteoclasts. 

Finally, Simons and coworkers (2015) found that TMBTS is caused by mutations in 

KCNH1. This gene encodes a pore-forming (alpha) subunit of a voltage-gated non-inactivating 

delayed rectifier potassium channel, subfamily H. It is activated at the onset of myoblast 

differentiation, and is highly expressed in brain. Since ABCC9 and KCNH1 encode proteins that 

constitute potassium channels, TMBTS and CS appear to be determined by a dysregulation of the 

intracellular potassium omeostasis. 

 

1.5 Aim of the work 

The aim of this project was the identification of genes underlying Zimmermann-Laband 

syndrome. To this aim, we selected a panel of clinically well-characterized ZLS patients, to be 

analyzed through a Whole-Exome Sequencing approach (WES). Our understanding of the 

molecular events underlying this condition could provide new tools for diagnosis of this rare 

disorder, with direct impact on diagnosis, prognosis, counseling, and patient management. 
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2. Materials and methods 

2.1 Subjects 

In this study, we selected, in the first step of the work, 3 subjects with a phenotype fitting the 

ZLS clinical features. They were clinically assessed by clinical geneticists and neurologists, from 

the Department of Pediatrics and Infantile Neuropsychiatry, “Sapienza” University of Rome, 

Department of Molecular Medicine, “Sapienza” University of Rome - San Camillo-Forlanini 

Hospital (Rome), Bambino Gesù Children’s Hospital (Rome), respectively. Case 1 and 2 were 

previously reported by Castori et al., 2013.  

After the first step of recruitment and analysis, 5 further patients were added to the cohort, 

thanks to an international collaboration with the following centres: University of Hamburg 

(Germany), Zentrum für Kinder-und Jugendmedizin of Oldenburg (Germany), Sydney Children’s 

Hospital (Australia), University of New South Wales (Australia), Saveetha Medical College and 

Hospital (India), University of Montreal (Canada), Centre Hospitalier de la Haute-Saône (France), 

Royal Children’s Hospital and University of Melbourne (Australia), University of Montreal 

(Canada). 

In a third step, 4 further patients were enrolled in the study, from the Università Cattolica del 

Sacro Cuore (Rome), Bambino Gesù Children’s Hospital (Rome), Federico II University (Naples), 

and Azienda Ospedaliero - Universitaria “Meyer” (Florence). 

Informed consent for DNA storage and genetic analyses was obtained from the parents or 

legal guardians of all subjects. Genetic studies were approved by all the institutional review boards 

of the participating institutions. Permission to publish photographs was given for all subjects shown 

in this work. 

 

2.2 Sequencing approach 

In the first 3 selected subjects (case 1, 2 and 3), we used a Whole-Exome Sequencing 

approach (WES). In case 2 and 3 we sequenced the trio, in case 1 only the proband. In a second 

phase of this study the ZLS cohort was expanded with 5 further patients. In two of them (case 4 and 

8, and the relative parents) a WES approach was performed, while, in the other three subjects (case 

5, 6, and 7) a Sanger sequencing of the coding portion of the newly identified genes was used. 

Validations of candidate variants of cases 4 and 8, and Sanger screening of cases 5-7 was performed 

by researchers from the University of Hamburg (Germany). Finally, the more recently selected 

patients (cases 9-12) were firstly analyzed by Sanger sequencing of the coding portion of the newly 

identified genes (KCNH1 and ATP6V1B2), and then two patients (cases 9 and 10) were analyzed 
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through WES of the probands and their parents. WES data analysis of case 10 is still ongoing (table 

3). 

 

Case 
Sequencing 
approach 

Trio/Singleton Enrichment kit NGS platform 

1 WES Singleton 
NimbleGen SeqCap EZ v3.0 

(Roche) 
HiSeq 2000 
(Illumina) 

2 WES Trio 
NimbleGen SeqCap EZ v3.0 

(Roche) 
HiSeq 2000 
(Illumina) 

3 WES Trio 
SureSelect AllExonV4 

(Agilent) 
HiSeq 2000 
(Illumina) 

4 WES Trio 
TruSeq Exome Enrichment kit 

(Illumina) 
HiSeq 2000 
(Illumina) 

5 Sanger / / / 
6 Sanger / / / 
7 Sanger / / / 

8 WES Trio 
TruSeq Exome Enrichment kit 

(Illumina) 
HiSeq 2000 
(Illumina) 

9 WES Trio 
SureSelect Clinical Research Exome kit 

(Agilent) 
NextSeq500 
(Illumina) 

10 WES Trio 
SureSelect Clinical Research Exome kit 

(Agilent) 
NextSeq500 
(Illumina) 

11 Sanger / / / 
12 Sanger / / / 

 
Table 3. Schematic representation of the sequencing approach performed on our cohort. WES = Whole-Exome 
Sequencing. 

 

2.3 Whole-exome sequencing of ZLS selected patients 

Targeted enrichment and massively parallel sequencing were performed on genomic DNA 

of seven cases and the parents of six of them (cases 2, 3, 4, 8, 9, and 10). The DNA was extracted 

from circulating leukocytes using the Gentra Puregene Blood Kit (Qiagen). Enrichment of the 

whole-exome was performed using the NimbleGen SeqCap EZ Library v.3.0 (64 Mb) (Roche) for 

cases 1 and 2 (and her parents), the SureSelect AllExonV4 (51 M) (Agilent) for case 3 and her 

parents, the TruSeq Exome Enrichment kit (Illumina) for cases 4 and 8 and their respective parents, 

and the SureSelect Clinical Research Exome kit for case 9 and her parents. Each captured library 

was then loaded onto the HiSeq 2000 platform (Illumina) for cases from 1 to 8 and onto the 

NextSeq500 platform (Illumina) for cases 9 and 10. Raw image files were processed for base 

calling by the on-instrument software.  
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2.4 Whole-exome sequencing: data analysis and variant/gene annotation 

Reads were aligned to the human reference genome (UCSC GRCh37/hg19) using the 

Burrows-Wheeler Aligner v.0.7.10 (Li and Durbin, 2009). PCR duplicates were removed using 

Picard's MarkDuplicates. 

Single Nucleotide Variants (SNVs) and small indels were identified by means of the GATK 

HaplotypeCaller and UnifiedGenotyper algorithms (McKenna et al., 2010): the former calls SNVs 

and indels simultaneously via local de novo assembly of haplotypes. Whenever the program 

encounters a region showing signs of variation, it discards the existing mapping information and 

completely reassembles the reads in that region. This allows the HaplotypeCaller to be more 

accurate for difficult regions, for example containing variants mapping close to each other. 

HaplotypeCaller identifies more accurately indels than UnifiedGenotyper. The latter uses a 

Bayesian genotype likelihood model to estimate simultaneously the most likely genotypes. The 

called variants were filtered applying the following quality filters: variants with quality >100, and 

quality-by-depth score >1.5 (the quality parameter normalized by the number of the reads) were 

retained; variants below these thresholds or resulting from four or more reads having ambiguous 

mapping (this number being greater than 10% of all aligned reads) were discarded. Only variants 

called by both algorithms were considered. 

Since the disease is very rare it could be hypothesized that the causative mutation is not 

present or is annotated with a very low frequency in databases containing data of the DNA variants 

of the population. Therefore, variants were annotated using frequency data obtained from publicly 

available databases (dbSNP138 for cases 1-8 and dbSNP142 for cases 9 and 10, and ExAC) and an 

in-house database.  

 dbSNP is the acronym of Single Nucleotide Polymorphism database 

(https://www.ncbi.nlm.nih.gov/snp), a public-domain archive for a broad collection of simple 

genetic polymorphisms. This collection of polymorphisms includes single-base nucleotide 

substitutions, small deletions or insertions, retroposable element insertions and microsatellite repeat 

variations. ExAC (Exome Aggregation Consortium) (http://exac.broadinstitute.org/) contains DNA 

variants obtained from 60706 unrelated individuals sequenced as part of disease-specific and 

population genetic studies (Lek et al., 2016). Finally, the in-house database is composed of variants 

identified through WES approach in subjects affected by different developmental diseases, and their 

parents studied in our research group and collaborating groups. This database represented a useful 

tool to filter variants that represent high frequency polymorphisms and recurrent artifacts due to 

sequencing technology. 
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We set as a Minor Allele Frequency (MAF) threshold  0.1%, and retained only not annotated 

variants, variants of unknown frequency, and variants with MAF <0.1%. We retained also clinically 

associated variants according to ClinVar database. ClinVar is a freely accessible, public archive of 

reports of the relationships among human variations and phenotypes, with supporting evidence. 

 To predict the functional impact of variants, we used SnpEff toolbox v.3.6 (Cingolani et 

al., 2013), an annotation tool that provides information at variant level: the effect of the variant on 

the transcript, the changed codon, and the isoform used to annotate the variant (usually the isoform 

for which the variant effect is greater or the longest isoform if the effect is the same).  

 Since the phenotype is very severe, it is likely that the causative variant(s) has(have) a 

great impact on the function of the protein or in the maturation of the transcript. We therefore 

retained only functionally relevant variants (i.e., missense, nonsense and coding indel variants and 

intronic variants located from −5 to +5 with respect to an exon-intron junction). 

 Further functional annotations regarding either the variant or the gene were added using 

SnpEff v.3.6 and dbNSFP v.2.5 (Cingolani et al., 2013). Several scores were used to evaluate the 

functional impact of the variant on the function of the protein, e.g. Polyphen-2, SIFT, and CADD. 

Polyphen-2 predicts possible impact of an amino acid substitution on the structure and function of a 

human protein. This prediction is based on a number of features including the sequence, and 

phylogenetic and structural information related to the substitution. The substitution can be classified 

as “probably damaging”, “possibly damaging”, “benign” and “unknown”, if the lack of data does 

not allow to perform a prediction (Adzhubei et al., 2010).  SIFT (Sorting Tolerant From Intolerant) 

assesses the effect of a substitution assuming that crucial positions in protein sequences have been 

conserved throughout evolution and therefore substitutions at these positions may affect protein 

function. By using sequence homology, SIFT predicts the effects of all possible substitutions at 

each position in the protein sequence, with a score ranging from 0 to 1. The amino acid substitution 

is predicted as “damaging” if the score is <= 0.05, and “tolerated” if the score is > 0.05 (Kumar et 

al., 2009). Combined Annotation-Dependent Depletion (CADD) is a tool for scoring the 

deleteriousness of single nucleotide variants as well as insertion/deletions variants in the human 

genome, integrating multiple annotations into one metric by comparing variants that survived 

natural selection with simulated mutations (Kircher et al., 2014). It ranges from 0 to, theoretically, 

infinite, with a threshold of 15 usually used to consider a variant potentially pathogenetic. 

 Information regarding genes was retrieved from several databases such as: OMIM (Online 

Mendelian Inheritance in Man), a database that collects information about human mendelian 

diseases and/or phenotype and associated genes (https://omim.org/), Uniprot (Universal Protein 

Resource), a comprehensive resource for protein sequence and annotation data, used to obtain 
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information regarding the pathway in which the gene is involved (http://www.uniprot.org/), and 

GeneOntology (GO), a project that collects biological functions of genes at the molecular, cellular 

and tissue system levels (http://geneontology.org/). 

 

2.5 Selection of candidate variants 

After the steps of filtering and annotation of variants and genes, we selected the candidate 

variants using different criteria: segregation, effect of the variant, function of the gene, and 

involvement in a known disease. 

Regarding the segregation, we considered different mode of inheritance: autosomal 

dominant, autosomal recessive, and X-linked. When possible, i.e. when the trio was sequenced, also 

the de novo variants were considered. 

The variants were also prioritized considering the conservation of the amino acidic residue, 

pathogenicity/deleteriousness of the variant, and information about the function of the genes and 

their involvement in a known disease. As the three patients had the same clinical diagnosis, we 

looked at first for the presence of the same putative causative variant or different variants in the 

same gene in at least two patients. 

 

2.6 Variant validation and mutation analysis 

Candidate variants validation, segregation analyses, and Sanger screening were performed 

by PCR (GoTaq Flexi DNA Polymerase – Promega) followed by Sanger sequencing. Primers were 

designed in intronic regions flanking the coding exons of KCNH1 (NC_000001.11, 210678315–

211134115, complement), ATP6V1B2 (NC_000008.11, 20197193-20221696), and ATP6V1C1 

(NC_000008.11, 103021020-103073057) in order to have the same annealing temperature. The 

amplification was performed using the following temperature cycle: initial denaturation at 95°C for 

2’, then the next three steps were repeated for 30 times, denaturation at 95°C for 30’’, annealing at 

60°C for 30’’, elongation at 72°C for 30’’, then final elongation at 72°C for 5’, and finally the 

reaction was terminated at 4°C for 5’. Amplicons were directly sequenced using the ABI BigDye 

Terminator Sequencing kit (Life Technologies) and an automated capillary sequencer (ABI3500, 

Life Technologies). Sequence electropherograms were analyzed using Sequencing Analysis 

Software v.5.4 (Life Technologies). Genotyping was carried out with the AmpFlSTR Identifiler 

Plus (Life Technologies) to confirm paternity and maternity. The sequence of the primers used for 

amplification and sequencing are listed in the following tables (tables 4 and 5). 
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Gene Name Sequence (5’->3’) Gene Name Sequence (5’->3’) 
KCNH1 ex1_Fwd gtttcctgctgtcgtaagaagc ATP6V1B2 ex1_Fwd cgttggcctgcacgcgtttg 

ex1_Rev gaagagctctcctgttaggatg ex1_Rev cttctaaagagacaagtgggtc 
ex2_Fwd tccttacagggcgacatttctg ex2_Fwd aagttgtataggcacagatgtag 
ex2_Rev tcctgtgaatacacactaaatgag ex2_Rev gacacccagtctaaagtatggc 
ex3_Fwd ttcttaatctaacttgagttctttg ex3_Fwd gagggtattgaaagctctcagc 
ex3_Rev tcccaacatacacaagggcttc ex3_Rev atcggactaagtgacactgagc 
ex4_Fwd tgtgataacccagcacttgaag ex4+5_Fwd ctgtaggcatgaacccttgatc 
ex4_Rev ccttctcctaccccgatacac ex4+5_Rev ctatctggcaaaggtacaagac 
ex5_Fwd agagtgactcatgggagcttag ex6_Fwd atgtagttctggtcttctggtg 
ex5_Rev gattagcacactagttttgtgcc ex6_Rev gtgaggtaactggattatacaaac 
ex6_Fwd ctcccatacttctttcatacctg ex7_Fwd ggtttcgtttatgattacgattcc 
ex6_Rev atcaagcatgctccctctgttc ex7_Rev tgtacagcttactacaatgttctc 
ex7_Fwd aagggttgcataaaattgcatctc ex8_Fwd gaaggaacaattcaaatctgtagc 
ex7_Rev gctggcactgtagccatttcc ex8_Rev gttaggtccaaatgctgttattac 
ex8_Fwd cctagtagcttggtggtaagag ex9_Fwd tcttttggtttgagtggcctaag 
ex8_Rev gtaaggctgatctagaagcaaac ex9_Rev tctaatcacttctaccaagttgac 
ex9_Fwd agagtgcagtctggcgtagtg ex10_Fwd tggcatgttgaaacaaacatgttg 
ex9_Rev gaagcaatctctaactgaaggtg ex10_Rev tgttctcaaaataacttcaactcg 
ex10_Fwd tttgccttctctgagcccaatc ex11_Fwd gtacagagggactttttgtggg 
ex10_Rev tccatcttctaatctagcaacatc ex11_Rev agattcttaattctggcgctctg 
ex11_Fwd cagccagcatgtggctaacac ex12_Fwd aggaagagacagtaggattcatc 
ex11_Rev tgttggtcatgtggacatatgtg ex12_Rev atcttgatcatttgcatctgtcc 
  ex13_Fwd ctcttgtgaggagaactagagc 
  ex13_Rev gtgacagagcctcttctctaac 
  ex14_Fwd tggataacactgctaagttgg 
  ex14_Rev caacacaaaggtgggaaccg 

 
Table 4. Sequences of the primers used to screen the coding sequences of KCNH1 and ATP6V1B2 genes. 
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Gene Name Sequence (5’->3’) 

ATP6V1C1 ex2_Fwd cactttgcttgagatcctatgc 
ex2_Rev taaatcatgccaatggctggag 
ex3_Fwd tagggagaatttaagatttgtgag 
ex3_Rev ccattccaataagcagagtatac 
ex4_Fwd caaagtcttggtccattttatcc 
ex4_Rev tgagattatgtttcagggaacag 
ex5_Fwd atttcctcaatgccaatttcagc 
ex5_Rev tctaagttgtaaggatttcttctg 
ex6_Fwd aaatgacctcctaaagtcgtgc 
ex6_Rev ccttagtgagcttttctccatg 
ex7_Fwd actaagactaatccctctcaatg 
ex7_Rev ttacgcttggattttatggaaaac 
ex8_Fwd ttgaagtatacttactatagccag 
ex8_Rev tcacaaaggcaagacagcaaac 
ex9+10_Fwd tacttttctcttccacctgtttc 
ex9+10_Rev aagctttagaggaaattcattctg 
ex11_Fwd catgtagaaagtgaattatgcgac 
ex11_Rev aagctgtatgatgatactgataatc 
ex12_Fwd cgttaaccatgattaaagagtatg 
ex12_Rev agggtaaacaatgtaaattactatg 
ex13_Fwd agtgcatacatttagcccagag 
ex13_Rev aagaagcaagcaaaggatactag 

 
Table 5. Sequences of the primers used to screen the coding sequence of ATP6V1C1 gene. 

 

2.7 Haplotype determination 

Case 1 carried two mutations in KCNH1 gene, one in the exon 2 (inherited from the mother) 

and one in exon 7 (de novo). To evaluate the phase of the two variants, a fragment containing 

KCNH1 coding sequence including exons from 2 to 7 was amplified, from cDNA obtained from the 

retrotranscription of total RNA extracted from patient cultured fibroblasts. Retrotranscription was 

performed using the SuperScript III Reverse Transcriptase (ThermoFisher), with random examers. 

The PCR product was cloned into the pCR2.1 TOPO TA Cloning Vector (Invitrogen), and the 

resulting plasmids were transformed into E. coli. Then, individual E. coli clones were picked and 

subjected to colony PCR and Sanger sequencing. 

 

2.8 3D-Modeling 

To preliminarily assess the effect of the mutations found in KCNH1 and ATP6V1B2, 3D-

modeling was performed in collaboration with researchers from the “Department of Sciences and 

Chemical Technologies”, University of ‘Tor Vergata’ of Rome. Homology models of helices S5 



21 
 

and S6 of the K+ voltage-gated channel, subfamily H member 1 (KCNH1) were generated, on the 

basis of the available crystallographic structures of homologous proteins, KvAP voltage-dependent 

K+ channel from Aeropyrum pernix, K+ complex of the NaK channel, and the voltage-gated K+ 

channel from Listeria monocytogenes.  

Homology models of the B subunit (isoform 2) of the human V-ATPase (ATP6V1B2) were 

generated, on the basis of the ATPase from Enterococcus hirae. 

 

2.9 Heterologous KCNH1 expression in CHO cells and Xenopus oocytes 

Electrophysiological experiments were performed in collaboration with researchers of the 

“Department of Cellular and Integrative Physiology”, University Medical Center Hamburg-

Eppendorf, of Hamburg (Germany), to test the effect of the mutations found in KCNH1 gene. The 

used techniques are summarized in the following paragraphs. 

cDNAs of wild-type or mutant human KCNH1 (hEAG1, isoform 1) and cDNA encoding EGFP-N1 

(Clontech) were transfected in Chinese hamster ovary (CHO) cells using Lipofectamine 2000 

(Invitrogen) (Schuster et al., 2011). 

cRNA encoding either wild-type KCNH1 channel or the KCNH1 mutant G469R were injected in 

Xenopus oocytes. 

 

2.10 Electrophysiological studies 

Patch-clamp experiments were performed 5–30h after CHO cell transfection or 

microinjection in the conventional whole-cell configuration of the patch-clamp technique. Xenopus 

oocyte currents were recorded with the two-electrode voltage-clamp technique. Patch-clamp data 

processing was performed with PulseFit 8.65 (HEKA), Excel (Microsoft) and Sigmaplot 11.0 

(Systat Software). Current amplitudes were determined as mean values during the last period of the 

2s test pulses or as maximal current amplitude for slightly inactivating current traces. Experimental 

data are given as means ± s.e.m., with n representing the number of experiments from different 

cells. 

 

 

 

 

 



22 
 

3. Results 

3.1 Clinical features of selected ZLS subjects 

Case 1 (figure 3) is an italian boy, the unique child of unrelated parents and was born at 

term (37 weeks) by vaginal delivery. Birth length was 47cm (3rd-10th centile), weight 2430g (3rd-

10th centile) and occipital-frontal circumference of 33cm (3rd-10th centile). Additional findings at 

birth included absence of the first finger and toenails and mild generalized hypertrichosis. He stood 

up head at 10 months, walked alone at 24 months and said “mama” and “dada” at 12 months. 

Marked delay of the subsequent psychomotor development was noted with severe motor 

impairment, inability to communicate and lack of facial expressiveness. Seizures developed at 8 

months of age in form of generalized stiffening episodes. Such a complication was treated by 

valproic acid and levetiracetam with partial remission of symptoms. At 2 years, brain MRI showed 

mild dilatation of the cavum vergae, and expansion of the subarachnoid spaces at the temporal 

lobes. Appendicular radiographic examination, performed at the same age, demonstrated hypoplasia 

of the 1st distal phalanx at both hands and feet. Standard karyotyping and CGH array were negative. 

At 7 years, amino acid profile repeatedly revealed high plasmatic levels of hypoxanthine and 

xanthine. At examination, he weighted 21kg (25th-50th centile), was height 121cm (25th-50th centile) 

and had an OFC of 51cm (25th-50th centile). Craniofacial anomalies included mildly turricephalic 

skull, arched eyebrows, bilateral eyelid ptosis, long eyelashes, long phyltrum, a large and protruding 

tongue, and gingival hypertrophy with unerupted upper incisors. The nose appeared very soft at 

palpation. Limbs showed anonychia of the thumbs and great toes, hypoplasia of nails of the 5th 

fingers and 4th left finger. The remaining toenails were rudimentary. Pectus carinatum, thoracic 

kyphosis and cervical hirsutism were also noted. Neurologic examination revealed increased 

drooling, facial expressionless, limb hypotonia and hypotrophic skeletal musculature. He was 

definitely assessed as affected by severe cognitive and motor disability (Castori et al., 2013). 

 

 
 

Figure 3. (A-C) CASE 1. Pictures showing facial appearance and gingival enlargement (A), anonychia of the thumbs 
and great toes and nail hypoplasia of the right fifth finger and right second to fifth toes (B, C). 
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Case 2 (figure 4) was the unique female child of an Italian healthy and unrelated couple (30-

year-old mother and 32-year-old father). She was born at term (39 weeks) from normal delivery. 

Birth parameters were length 48cm (25th centile), weight 2800g (9th-25th centile) and OFC 31cm 

(0.4th-2nd centile). At birth, generalized hypotonia, coarse face, hirsutism, and partial anonychia of 

hands and feet were noted. Transfontanellar ultrasound showed periventricular hyperechogenicity. 

Hand and foot radiographs, performed at 2 months, showed absence of the 2nd and 4th-5th distal 

phalanges on both hands, absence of 3rd distal phalanx on the left, severe hypoplasia with triangular 

aspect of 3rd distal phalanx on the right, tapering and mild hypoplasia of 1st distal and 2nd-5th middle 

phalanges on both hands, absence of 2nd-5th distal and 5th middle phalanges, and hypoplasia of 1st 

distal and 2nd-4th middle phalanges on both feet. Psychomotor development was delayed as she 

stood up head at 12 months, sat steady at 24 months, walked with support at 36 months, walked 

alone at 42 months, said first words at 18 months and first three-word sentences at 5 years. The last 

neurologic examination, at 5 years and 2 months, better characterized the intellectual disability as 

borderline (IQ 74) and noted that her communication competence and praxis were delayed, both 

corresponding to 33 months. The patient underwent standard karyotyping and CGH array with 

negative results. At examination, patient’s weight was 30kg (>97th centile), height 115cm (50th-75th 

centile) and OFC 51cm (50th centile). Facial features included widow’s peak, thick and laterally 

flared eyebrows, long eyelashes, mildly upslanting palpebral fissures, prominent nasal septum with 

hypoplastic alae nasi and a vertical cutaneous-cartilagineous ridging on the nasal tip, prominent 

phyltrum, thick helices and ear lobules. Intraoral examination showed gingival hypertrophy of the 

upper and lower alveoli with normally erupted decidual teeth. The nose and ear cartilages were 

extremely soft at palpation. Hands and feet showed complete anonychia. The neck was short. The 

thumbs were elongated. Hirsutism was evident at back, and upper and lower limbs. The patient also 

displayed mild hypotonia and generalized joint hypermobility (Castori et al., 2013). 

 

 
 

Figure 4. (A-D) CASE 2. Pictures showing facial appearance and gingival enlargement (A,D), anonychia of the fingers 
of hands and feet, and hypoplasia of the terminal phalanges (B,C). 
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Case 3 (figure 5) was the first daughter of two Italian non-consanguineous and healthy 

parents. At birth her weight was 3070g (52th centile), and length was 51cm (84th centile). The OFC 

measurement is not reported. At examination she was 12 years old, and her parameters were weight 

62.5kg (96th centile), height 155cm (71th centile), and OFC 56cm (97th centile). IQ test gave a low 

score, 55. At 6 months she started with episodes of focal epilepsy, controlled with Tegretol, and 

electroencephalographic exam showed bilateral frontotemporal abnormal slow electric activity. 

Ophthalmological examination demonstrated the presence of myopia and oculomotor apraxia. 

Facial characteristics included thick eyebrows, large nose, bulbous nasal tip, thick helix, 

macrostomia, thick upper and lower lip, malocclusion and low frontal hairline. Oral examination 

showed the gingival hyperplasia before anticonvulsant treatment. Limbs were asymmetric. She has 

scoliosis and moderate hirsutism on limbs. Other features were ataxia, intentional tremor, motor 

clumsiness, and two café-au-lait spots. 

 

 
 

Figure 5. (A-C) CASE 3. Pictures showing facial appearance (A), absent aplasia of fingers and terminal phalanges of 
hands and feet (B,C). 

 

The three patients’ clinical features highlight the great clinical variability of ZLS phenotype. 

Intellectual disability ranges from very mild (case 2) to severe intellectual disability (case 1). 

 Hypotonia is present in two cases (case 1 and 2). Epilepsy is present in cases 1 and 3. Ataxia 

was present in two cases (case 1 and 3). Gingival hyperplasia was present in all the three patients, 

while hypoplasia of nails and terminal phalanges were present only in cases 1 and 2. The three 

patients share a coarse face with anomalies of ears and nose cartilages, with a more pronounced 

phenotype in case 2, showing a peculiar nose (figure 4A). Hirsutism was present in all affected 

subjects. The comparison among the first three patients studied in this research project is 

summarized in table 6. 
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Table 6. Summary of the features of the first three analyzed patients. 
M = male; F = female; + = present; - = absent; ID = intellectual disability; NA = not assessed; ND = not documented. 

 

3.2 Whole-exome sequencing data analysis 

WES data analysis allowed to detect a mean coverage of 99.4%, 98.3%, and 99.6% with a 

mean depth on target of respectively 56x, 57x, and 83x for the three patients, respectively (table 7). 

The number of total variants identified in the three proband was:  68672, 63874, and 82500, for 

cases 1, 2 and 3, respectively. 
 Assuming that this severe phenotype is caused by variants having a great impact on the 

function of the protein or in the maturation of the transcript, we filtered 10861, 10652, and 10698 

high-quality variants with a functional effect (missense, frameshift, stop-gained, stop-loss, start-

gained, start-loss, intronic variants located 5 nucleotides from the exon variants), according to 

UnifiedGenotyper and HaplotypeCaller algorithms.  

Since the disease is very rare, we filtered only variants not present, or annotated with a very 

low frequency in population databases (dbSNP, ExAC and in-house database) narrowing down the 

number of candidate variants. 348, 310, and 347 variants were selected as novel, clinically 

associated, or with low/unknown frequency.  

Variants were then classified based on genotype (table 7), assuming an autosomal dominant or 

recessive mode of inheritance. 

In case 1, we found one homozygous variant in KDM6B, and 32 compound heterozygous 

variants in 15 genes. For those variants we were not able to predict their phase as we had only 

sequenced the exome of the proband. For the same reason, it was not possible to assess variants 

with a de novo onset. 

In case 2, there were two compound heterozygous variants in EPPK1, and one predicted de 

novo variant in ATP6V1B2 gene. 

Subject Case 1 Case 2 Case 3 
Sex M F F 
ID +++ + ++ 
Seizures + − + 
Hypotonia + + - 
Hearing loss NA − NA 
Coarse face + ++ + 
Gingival enlargement + + + 
Aplastic/hypoplastic nails + + − 
Aplastic/hypoplastic terminal phalanges + + − 
Scoliosis + ND + 
Hypertrichosis + + + 
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In case 3, we found 6 predicted compound heterozygous variants in EVPL, KIF7, and 

SNX27, and 3 predicted de novo variants in EVPL, TP53I3, and KCNH1 genes. 

 

Case 1 2 3 
Target region coverage 99.4% 98.3% 99.6% 
Average sequencing depth 56x 57x 83x 
Total variants 68672 63874 82500 
Nonsynonymous, 
splice variants (+/-5) 

10861 10652 10698 

Novel, clinically associated,  
unknown/low frequency variants 

348 310 347 

Predicted homozygous variants 1 0 0 

Predicted compound heterozygous variants 
32a 

(15 genes) 
2 

(1 gene) 
6 

(3 genes) 
Predicted de novo variants / 1 3 

 
Table 7. Results of the exome sequencing of the first three patients (Cases 1, 2, and 3). Number of variants obtained 
from the exome sequencing experiments, classified by mode of inheritance. aSince we sequenced only the proband, we 
were not able to establish the phase of those variants. 
 

3.3 Selection of candidate variants 

The selection of the candidate variants was based on mode of inheritance, sharing of 

variants/genes among patients, and deleteriousness of the variants, as described in “Materials and 

methods” section. 

Among all the identified variants, we considered at first the variants/genes shared by at least 

two patients. This approach led to the identification of three different variants in the same gene 

(KCNH1) in cases 1 and 3. Case 1 carried two variants in heterozygosis, c.125T>C (p.I42T), and 

c.1054C>G (p.L352V), case 2 c.1405G>A (p.G469R) (NM_002238, NP_002229). The c.125T>C 

(p.I42T) variant in KCNH1 was annotated in ExAC with a minor allele frequency of 0.0008% 

(rs772076205). In case 2, the best candidate variant was a predicted de novo variant in ATP6V1B2 

gene, c.1454G>C (p.R485P) (NM_001693, NP_001684) (table 8).  

 

Case Zygosity Gene Genomic 
position 

Nucleotide 
Change 

Amino acid 
Change 

rs ID 

1 
Compound 

Heterozygous 
KCNH1 

Chr1:211280674 c.125T>C p.I42T rs772076205 
Chr1:211093309 c.1054C>G p.L352V . 

2 De novo ATP6V1B2 Chr8:20077831 c.1454G>C p.R485P . 
3 De novo KCNH1 Chr1:210977485 c.1405G>A p.G469R . 
 
Table 8. Selected candidate variants. The mode of inheritance, the genomic position and the variant position on the 
transcript and protein are indicated. 
 



27 
 

All the above mentioned variants in the KCNH1 and ATP6V1B2 genes were predicted to be 

“probably damaging” by Polyphen, “damaging” by SIFT, and the CADD score predicted a 

deleterious effect (table 9). 

 

Case Gene Nucleotide 
change 

Amino acid 
change 

Polyphen 
prediction 

SIFT 
prediction 

CADD 
score 

1 KCNH1 
c.125T>C p.I42T 

Probably 
damaging 

Damaging 27 

c.1054C>G p.L352V 
Probably 
damaging 

Damaging 25.3 

2 ATP6V1B2 c.1454G>C p.R485P 
Probably 
damaging 

Damaging 34 

3 KCNH1 c.1405G>A p.G469R 
Probably 

Damaging 
Damaging 34 

 
Table 9. Predicted effect of the candidate variants is summarized, as evaluated by Polyphen, SIFT, and CADD. 

 

3.4 Validation of candidate variants 

All the selected variants were analyzed in the probands and their parents through Sanger 

sequencing and their segregation was confirmed. 

In case 1, one of the two variants in KCNH1, c.125T>C; p.I42T, resulted to be inherited 

from the mother, while the other, c.1054C>G; p.L352V, resulted to be de novo. The germline origin 

of the de novo variants was confirmed through Sanger sequencing on DNA extracted from blood, 

hair bulb and/or buccal cells (figure 6). The paternity and maternity were confirmed in the three 

patients. 

 

 
 

Figure 6. Sequence electropherograms showing the de novo origin of the identified KCNH1 and ATP6V1B2 missense 
mutations in cases 1, 2, and 3 (indicated by red arrows). The heterozygous state of three mutations was documented in 
peripheral leukocytes, hair bulb and/or buccal cells of cases 1 and 3 indicating germline origin. An additional previously 
annotated heterozygous KCNH1 variant, c.125T>C (p.Ile42Thr), was present in case 1 and his healthy mother 
(indicated by blue arrows). 
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3.5 Haplotype analysis 

Case 1 carried two variants in KCNH1 gene, c.125T>C; p.I42T, inherited from the mother, 

and c.1054C>G; p.L352V, with a de novo onset. In order to characterize the phase of the two 

variants, amplification of cDNA from patient fibroblasts was performed allowing to detect that the 

c.125T>C variant was in cis with the c.1054C>G variant, demonstrating the onset of the de novo 

variant on maternal allele.  

During colony screening through Sanger sequencing a further KCNH1 isoform, not 

annotated in EST database (https://www.ncbi.nlm.nih.gov/genbank/) and lacking of exon 6, was 

identified. Preliminary expression analysis through retrotranscription of RNA from fetal and adult 

brain and fibroblast suggest that an isoform encompassing exons 1-11 and lacking exon 6 is 

expressed at least in those tissues. This transcript could potentially lead to the translation of a 

protein lacking the amino acids 187-344 corresponding to the first three transmembrane helices. 

Gene expression and biochemical studies are ongoing to better characterize this isoform in terms of 

expression, localization, and function. 

 

3.6 Enlargement of the ZLS cohort 

3.6.1 Clinical features 

An international collaboration allowed us to extend the cohort of ZLS patients with 5 further 

patients. Three of them (cases 5, 6, and 8) were reported by Abo-Dalo and co-workers (2008), while 

the other two have never been reported before (figure 7). These five patients present the following 

clinical features:  

Case 4: a German girl with severe intellectual disability and autism, hypotonia, generalized 

tonic clonic seizures, asymmetric cerebral ventricles, macrocephaly, long and coarse face, gingival 

hyperplasia, hypoplastic terminal phalanges of hands and feet, aplastic or hypoplastic nails, thoracic 

scoliosis, and hypertrichosis. 

Case 5: an Australian boy with profound intellectual disability, hypotonia, seizures, coarse 

face, thick scalp hair and eyebrows, broad forehead, broad nasal tip, short philtrum, thick lips, large 

ears with anteverted and thickened ear helices, gingival hyperplasia, aplastic or hypoplastic nails, 

and severe scoliosis (Abo-Dalo et al., 2008). 

Case 6: an Australian girl with profound intellectual disability, hypotonia, seizures, 

macroglossia, central incisor, arched eyebrows, gingival hyperplasia, hypoplastic terminal 

phalanges and aplastic nails of hands and feet, and thoracic scoliosis (Abo-Dalo et al., 2008). 
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Case 7: an Indian female with severe intellectual disability, neonatal seizures, sensorineural 

hearing loss, bilateral horizontal nystagmus, low set ears, high forehead, pointed nose, prominent 

alae nasi, mild hypertelorism, epicanthal folds, long philtrum, large lower lips, down turned angle 

of mouth, hypoplasia of terminal phalanges, and bilateral nail aplasia/hypoplasia. 

Case 8: a French boy with severe intellectual disability, hypotonia, encephalopathy, 

unilateral total deafness, coarse face, thick scalp hair, synophrys, large bulbous nose with “bifid” 

nasal tip, thick lips, macroglossia, gingival hyperplasia, aplastic terminal phalanges and nails of 

hands and feet, severe kyphosis/lordosis, and hypertrichosis (Abo-Dalo et al., 2008). 

 

 
 
Figure 7. Clinical features of the additional ZLS-affected individuals (A, F) Facial phenotype of cases 4, 6, and 8: (A) 
case 4, (F) case 6, (H) case 8. Note the gingival enlargement in case 6. (B, C) Case 4 shows anonychia of the right great 
toe and hypoplastic nails of all other right toes and fingers of left hand. (D, E) Case 5 shows aplastic nails of the thumb 
and first to third toes and hypoplastic nails of all other fingers and toes. (G) Case 7 shows anonychia of the left great toe 
and hyponychia of all other toes. (I) Gingival enlargement in case 8. (J, K) Case 8 shows aplastic terminal phalanges of 
the second and fifth fingers on the left hand, the fifth finger on the right hand and all toes except the first. 
Hypertrichosis can be observed in case 8 (J, K). 
 

3.6.2 Whole-exome sequencing results 

WES was performed on cases 4 and 8 and data analysis allowed to detect a mean coverage 

of 97.7%, and 98.6% with a mean depth on target of respectively 36x, and 52x for the two patients, 
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respectively. Among the total variants (70894, and 81294), 9542, and 10693 high-quality variants 

with a functional effect (missense, frameshift, stop-gained, stop-loss, start-gained, start-loss, 

intronic variants located 5 nucleotides from the exon variants) were predicted by UnifiedGenotyper 

and HaplotypeCaller algorithms for each case. After frequency filtering, 227, and 268 were selected 

as novel, clinically associated, or with low/unknown frequency. Variants were then classified based 

on genotype. In case 4, we found two predicted homozygous variants in IL4R, and CAPN15, 4 

predicted compound heterozygous variants in DNMBP and RGS3, and 6 predicted de novo variants 

in IKZF2, CLK4, SDK1, SLC38A2, VPS13C, and KCNH1. 

In case 8, there were 4 predicted compound heterozygous variants in CPXM2, and HSPG2, 

and 7 predicted de novo variant in CFHR5, PMS2, TJP2, DNAJC25-GNG10, NAV3, GP1BA, and 

ATP6V1B2 (table 10). 

 

Case 4 8 
Target region coverage 97.7% 98.6% 
Average sequencing depth 36x 52x 
Total variants 70894 81294 
Nonsynonymous, 
splice variants (+/-5) 

9542 10693 

Novel, clinically associated,  
unknown/low frequency variants 

227 268 

Predicted homozygous variants 2 0 

Predicted compound heterozygous variants 
4 

(2 genes) 
4 

(2 genes) 
Predicted de novo variants 6 7 

 
Table 10. Results of the exome sequencing of cases 4 and 8. Number of variants obtained from the exome sequencing 
experiments, classified by mode of inheritance. 

 

3.6.3 Selection of candidate variants 

The selection of the candidate variants was based on mode of inheritance, sharing of 

variants/genes among patients, and deleteriousness of the variants. 

Among all the identified variants, we considered at first the variants/genes shared with the 

previously analyzed exomes. This approach led to the identification of a variant in KCNH1 gene in 

case 4, c.1399A>G (p.I467V) (NM_002238, NP_002229). The variant found in KCNH1 has never 

been reported in dbSNP or ExAC. In case 8, the same variant in ATP6V1B2 found in case 2, 

c.1454G>C (p.R485P) (NM_001693, NP_001684) was identified (table 11). 
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Case Zygosity Gene 
Genomic 
position 

Nucleotide 
change 

Amino acid 
change 

rs 
ID 

4 De novo KCNH1 Chr1:210977491 c.1399A>G p.I467V . 
8 De novo ATP6V1B2 Chr8:20077831 c.1454G>C p.R485P . 

 
Table 11. Selected candidate variants. The mode of inheritance, the genomic position and the variant position on the 
transcript and protein are indicated. 
 

3.6.4 Validation of candidate variants and Sanger sequencing screening 

All the selected variants were analyzed in the probands and their parents through Sanger 

sequencing and their segregation was confirmed.  

The variant found in case 4 in KCNH1 gene, c.1399A>G; p.I467V, and the variant identified 

in case 8 in ATP6V1B2 gene, c.1454G>C; p.R485P, resulted to be de novo (figure 8). The paternity 

and maternity were confirmed in the two patients. 

In addition, a Sanger sequencing screening of the coding sequences of KCNH1 and 

ATP6V1B2 genes in the cases 5, 6, and 7 allowed us to identify a patient with two new de novo 

variants in cis, c.[974C>A;1066G>C], p.[S325Y;V356L], one patient with one new de novo variant, 

c.1042G>A (p.G348R), and one patient with a de novo variant already identified, c.1399A>G 

(p.I467V) in case 4, in KCNH1 (figure 8 and 9). Those variants resulted not to be annotated in 

dbSNP and ExAC (table 12). 

 

Case Zygosity Gene Genomic 
position 

Nucleotide 
change 

Amino acid 
Change 

rs ID 

5 De novo KCNH1 Chr1:211093389; 
211093297 

c.[974C>A; 
1066G>C] 

p.[S325Y; 
V356L] 

. 

6 De novo KCNH1 Chr1:211093321 c.1042G>A p.G348R . 
7 De novo KCNH1 Chr1:210977491 c.1399A>G p.I467V . 

 
Table 12. Variants identified in cases 5, 6 and 7 through Sanger sequencing screening of the coding sequence of 
KCNH1 and ATP6V1B2 genes. The mode of inheritance, the genomic position and the variant position on the transcript 
and protein are indicated. 
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Figure 8. Sequence electropherograms showing the de novo origin of the identified KCNH1 and ATP6V1B2 missense 
mutations in cases 4-8 (indicated by red arrows). The heterozygous state of three mutations was documented in 
peripheral leukocytes for all samples and in buccal cells in case 8. 
 

 
 
Figure 9. By cloning the KCNH1 exon 7–containing amplicon of case 5 followed by sequencing, we determined the 
haplotypes and found that the two identified de novo changes c.974C>A and c.1066G>C are in cis (wild-type allele 
above, and mutated KCNH1 allele below in the figure; mutated nucleotides are framed). 
 

The c.1399A>G (p.I467V) variant in KCNH1 was predicted to be “probably damaging” by 

Polyphen, and deleterious according to CADD score. SIFT predicted this variant as “tolerated”. The 

c.974C>A (p.S325Y) variant in KCNH1 was predicted as “possibly damaging” by Polyphen, 

“damaging” by SIFT and deleterious by the CADD scoring system. The c.1066G>C (p.V356L) 

variant in KCNH1 was predicted as “benign” by Polyphen, “tolerated” by SIFT, and deleterious 

according to the CADD score. Finally, the c.1042G>A (p.G348R) variant in KCNH1 was predicted 

as “probably damaging” by Polyphen, “damaging” by SIFT, and deleterious by the CADD score 

(table 13). 
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Case Gene 
Nucleotide 

Change 
Amino acid 

Change 
Polyphen 
prediction 

SIFT 
prediction 

CADD 
score 

4, 7 KCNH1 c.1399A>G p.I467V 
Probably 
damaging 

Tolerated 24.7 

5 KCNH1 
c.974C>A p.S325Y 

Possibly 
damaging 

Damaging 24.6 

c.1066G>C p.V356L Benign Tolerated 21.9 

6 KCNH1 c.1042G>A p.G348R 
Probably 
damaging 

Damaging 31 

 
Table 13. Predicted effect of the mutations identified in the patients enclosed in the enlarged cohort is summarized, as 
evaluated by Polyphen, SIFT, and CADD. 
 

All the identified variants were highly conserved across eukaryotes, figure 10. 
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Figure 10. Multiple protein sequence alignments around the KCNH1 and ATP6V1B2 amino acid substitutions from 
different species. Alignment of the regions flanking the detected missense variants in orthologous proteins, showing the 
evolutionary conservation of amino acids S325, G348, L352, V356, I467 and G469 in human KCNH1 (NP_002229) 
and of R485 in human ATP6V1B2 (NP_001684). Multiple alignments were gathered from 
http://www.ncbi.nlm.nih.gov/homologene/. Conserved residues have a red background, and non‐conserved residues 
have a gray background. Amino acid sequence alignments demonstrate high (S325 and V356 in human KCNH1) or 
complete (G348, L352, I467 and G469 in human KCNH1 and R485 in human ATP6V1B2) evolutionary conservation 
of the altered residues. 
 

3.7 ZLS cohort: summary of the clinical features  

All the patients analyzed through WES and Sanger sequencing and found to be mutated in 

KCNH1 and ATP6V1B2 genes show intellectual disability, and coarse face. Deafness was present in 

2/8 cases, gingival hyperplasia and hypoplastic nails/phalanges in 7/8 cases, scoliosis in 6/8 cases, 
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hirsutism in 5/8 (tables 14 and 15). Worth to be noted, seizures is present only in the six patients 

harboring KCNH1 mutations (table 14). The two patients (cases 4 and 7) with the c.1399A>G 

(p.I467V) variant in KCNH1 have in common severe intellectual disability, seizures, a coarse face, 

and hypoplastic nails and phalanges, the hypoplasia of phalanges is less marked in case 7 than in 

case 4. The two patients mutated in ATP6V1B2 (case 2 and 8) both have intellectual disability, a 

very similar coarse face, gingival hyperplasia, hypoplastic nails and phalanges, and marked 

generalized hirsutism. Intellectual disability was mild in case 2 and severe in case 8, gingival 

hyperplasia was less marked in case 2 than in case 8. 

 

Gene KCNH1 
Mutation 

(NM_002238) 
c.1054C>G 

p.L352V 
c.1405G>A 
p.G469R 

c.1399A>G 
p.I467V 

c.[974C>A;1066G>C] 
p.[S325Y;V356L] 

c.1042G>A 
p.G348R 

Mutation 
(NM_172362) 

c.1135C>G 
p.L379V 

c.1486G>A 
p.G496R 

c.1480A>G 
p.I494V 

c.[1055C>A;1147G>C] 
p.[S352Y;V383L] 

c.1123G>A 
p.G375R 

Case 1 3 4 7 5 6 
Sex M F F F M F 
ID + + + + + + 

Seizures + + + + + + 
Hypotonia + - + - + + 
Deafness NA NA - + - - 

Coarse face + + + + + + 
Gingival 

hyperplasia 
+ + + - + + 

Hypoplastic 
nails 

+ - + + + + 

Hypoplastic 
phalanges 

+ - + + - + 

Scoliosis + + + ND + + 
Hirsutism + + + - - - 

 
Table 14. Summary of the mutations identified in KCNH1 in this work (reported in Kortum et al., 2015), and clinical 
features of the analyzed patients. Mutations are reported according to both the isoforms. 
M = Male, F = Female, ID = Intellectual Disability, NA = Not Assessed, ND = Not Documented 
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Gene ATP6V1B2 

Mutation (NM_001693) 
c.1454G>C 

p.R485P 

Case 2 8 
Sex F M 
ID + + 

Seizures - - 
Hypotonia + + 
Deafness - + 

Coarse face + + 
Gingival hyperplasia + + 

Hypoplastic nails + + 
Hypoplastic phalanges + + 

Scoliosis - + 
Hirsutism + + 

 
Table 15. Summary of the mutations identified in ATP6V1B2 in this work (reported in Kortum et al., 2015), and 
clinical features of the analyzed patients. M = Male, F = Female, ID = Intellectual Disability 

 

3.8 KCNH1: structural and functional studies results 

The KCNH1 gene is located on the long arm of chromosome 1. Alternative splicing of this 

gene results in two transcript variants encoding distinct isoforms (NM_172362 and NM_002238), 

that differ in the coding sequence for 81 nucleotides in length. The encoded protein is a member of 

the potassium channel, voltage-gated, subfamily H protein (also called Kv10.1). This member is a 

pore-forming subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. The 

functional channel is a homotetramer constituted by 7 transmembrane helices, and a hairpin 

structure (known as the pore-forming loop, P-loop). It is highly expressed in myoblast and brain, 

and activates at the onset of myoblast differentiation. Five of six mutations that we found in ZLS 

patients are located in the two helices involved in the opening of the channel, one mutation maps in 

the voltage-sensor helix (figure 11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



37 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 11. Schematic view of the KCNH1 channel showing the location of the residues affected in individuals with 
ZLS (colored dots). The S4 segment acts as voltage-sensor domain, and the assembly of four subunits is required to 
form a functional channel. cNBD, cyclic nucleotide-binding domain; EAG, EAG domain; P, pore region 

 

In collaboration with Prof. Lorenzo Stella’s research group of Tor Vergata, the KCNH1 

mutations were characterized from the structural point of view using a homology model. The 

affected amino acid residues of KCNH1 were located in the voltage-sensing S4 helix (S325), the 

S4–S5 linker (G348), and the S5 (L352 and V356) and S6 (I467 and G469) segments. The p.G469R 

change is predicted to impair tetramer formation or favour the open state with a lower conductance 

due to the presence of cationic residues close to the channel pore. L352, V356 and I467 form a tight 

hydrophobic cluster in the open structure, which rearranges in the closed conformation. 

Perturbations of these residues, are predicted to affect the closed/open transition (figure 12). 
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Figure 12. Structural impact of ZLS-associated KCNH1 mutations. (A) Model of helices S5 and S6 of KCNH1 in their 
closed state (viewed from the intracellular side of the membrane). Affected residues (yellow) and K+ (gray sphere) are 
shown. (B) Model of helices S5 and S6 of KCNH1 in their open state. The color code is as in a. (C) Enlargement of the 
pore-closing region in the closed state. Atoms are shown as spheres to illustrate the steric hindrance of this region, 
which would hardly accommodate a larger charged residue, such as arginine, at position 469. (D) Enlargement of the 
hydrophobic cluster formed by L352, V356 and I467 (side chains shown in sphere representation) in the open state. 

 

In collaboration with a research group of the University of Hamburg, functional 

consequences of the ZLS-associated KCNH1 mutations by patch-clamp experiments on CHO cells 

expressing wild-type and mutant KCNH1 channels were assessed. The current amplitudes of the 

mutants did not differ significantly from the amplitudes of wild-type KCNH1; all mutant channels, 

however, exhibited a remarkable shift in the activation threshold to more negative potentials, 

producing dramatic increases in whole-cell K+ conductance in the negative-potential range (the 

G469R change gives this result when the mutated protein is co-expressed with the wild type 

protein). In comparison to wild-type channels, the mutants exhibited accelerated channel activation 

and slower deactivation. Together, these data show a potential gain-of-function effect for the 

disease-associated KCNH1 mutants (figure 13). 
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Figure 13. Voltage-dependent activation of human wild-type (WT) and mutant KCNH1 channels expressed in CHO 
cells. (A) Families of whole-cell currents elicited with 2-s variable test pulses as indicated in the pulse protocol shown 
at the right below the current traces. For the L352V mutant, a more negative holding potential of −100 mV and test 
pulses starting from −120 mV were used. Expression of the G469R mutant did not result in recordings of voltage-
dependent K+ currents (n = 22). Zero current is indicated by dashed lines and arrowheads. (B) Mean (±s.e.m.) KCNH1 
current amplitudes as a function of the test pulse potential. Current amplitudes were normalized to the maximum 
amplitude recorded at +60 mV. Data points were connected by straight lines. The inset shows current amplitudes at +40 
mV normalized to the mean current for the wild-type channel. (***P < 0.001, significantly different from wild type) (C) 
Mean (±s.e.m.) normalized whole-cell conductance as a function of the test pulse potential. Lines represent fourth-order 
Boltzmann functions fitted to the data points. Numbers of experiments are shown in parentheses. (D) Mean (+s.e.m.) 
values of the potential of half-maximal KCNH1 channel activation (V0.5 activation), derived from fits to permeability 
data considering the Goldman-Hodgkin-Katz current equation. One-way ANOVA with post-hoc Bonferroni t testing 
yielded significant (***P < 0.001) differences for all combinations except the one indicated (NS, not significant). 

 

3.9 ATP6V1B2: 3D studies results 

The ATP6V1B2 (ATPase H+ Transporting V1 Subunit B2) gene encodes a non-catalytic 

subunit of the peripheral V1 complex of vacuolar ATPase, a multisubunit enzyme that mediates 

acidification of eukaryotic intracellular organelles, and is located on the short arm of the 

chromosome 8. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. 

The V1 domain contains the ATP catalytic site. The p.R485P mutation falls at the interface between 

subunits B and A (figure 14). 
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Figure 14. Schematic view of the subunit structure of the V-ATPase. The catalytic V1 complex consists of the A, B, C, 
D, E, F, G and H subunits. The V0 domain is membrane embedded and is composed of a characteristic C-ring structure 
with which the a, d and e subunits are associated. R485 is highlighted by a blue dot. 

 

To explore the structural impact of the p.R485P amino acid change a homology model of the 

B2 subunit was generated and inserted  into the crystallographic structure of the A3B3 hexamer of 

the Enterococcus hirae ATPase. p.R485P substitution is not expected to affect the affinity of the 

protein for the ATP. R485 is however located in an α-helical segment that is predicted to be 

disrupted by substitution to proline. Overall, the arginine-to-proline substitution is predicted to 

perturb intersubunit interactions within the V1 subcomplex by destabilizing the C-terminal segment 

of the B subunit (figure 15). 
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Figure 15. Structural impact of ZLS-associated ATP6V1B2 mutation. (A) Homology model of the B subunit of the 
human V-ATPase (ribbon representation) in the context of the A3B3 hexamer of the E. hirae ATPase (surface 
representation, with A subunits colored in salmon and B subunits colored in light blue). The complex is shown as seen 
from the membrane surface. One of the B subunits was substituted by the homology model of the B subunit of the 
human V-ATPase (ribbon representation). ATP analogs are shown in green, and R485 is represented in yellow. (B) 
Enlargement of the A-B interface. R485 and D507 are shown in stick representation. The C-terminal segment of the B 
subunit predicted to be destabilized by the p.R485P substitution is represented in yellow. The space-filling model of 
residues 485–511 is also shown, as a semitransparent white surface. 

 

3.10 Further ZLS cohort enlargement 

With the aim of disclosing the presence of additional KCNH1/ATP6V1B2 mutations or new 

genes mutated in patients with features of ZLS phenotypic spectrum and to better characterize 

molecular bases, we recruited 4 additional patients. These patients have clinical features strongly 

suggestive of ZLS, like coarse face, gingival hyperplasia, hypertrichosis, aplasia/hypoplasia of nails 

and terminal phalanges. 

Sanger sequencing screening of the entire coding sequences of KCNH1 and ATP6V1B2 

genes in the probands resulted to be negative, suggesting genetic heterogeneity.  

Therefore, we decided to perform a WES approach in two patients (case 9 and 10) and their 

respective parents (figures 16 and 17). While in case 10 the WES data analyses are still ongoing, for 

the case 9, results are reported in the following section. 

Case 9 has intellectual disability, a bulbous soft nose with a bifid tip, malformation of the 

cartilage ears, nail aplasia of hands and feet, and hypoplastic terminal phalanges. Worth of noting, 

the father presented some clinical features present in his daughter but in a milder form, as a bulbous 

nose, and hypoplastic nails and terminal phalanges of hands and feet (figure 16).  

 



 

Figure 16. Comparison among phenotypic features of c
complete lack of nails, while father’s feet and hands show
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Figure 17. Pictures showing some of the features of case 10. Long eyebrows, m
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3.11 WES data analysis results
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Case 9 
Target region coverage 97% 
Average sequencing depth 111x 
Nonsynonymous, 
splice variants (+/-5) 

13431 

Novel, clinically associated, 
unknown/low frequency variants 

442 

Predicted homozygous variants 0 

Predicted compound heterozygous variants 
6 

(3 genes) 
Predicted de novo variants 4 

 
Table 16. Results of the exome sequencing of case 9. Number of variants identified in the exome, classified by mode of 
inheritance. 
 

3.12 Variants analysis and selection of candidate genes 

Variants and genes identified in the previous step were analyzed in details in order to select 

the best candidate variant/s. The genes harboring the compound heterozygous variants were 

excluded for several reasons, i.e. frequency in population database, gene expression and protein 

function. The de novo variants in SARAF and TMEM247 genes were excluded because they were 

artifacts due to a misalignment of the reads. The best candidate was a predicted de novo variant 

c.865G>A, p.E289K, that affects a highly conserved amino acid in ATP6V1C1 gene (NM_001695, 

NP_ 001686) (figure 18), coding for an interactor of ATP6V1B2 subunit (table 17). 

 
Case Zygosity Gene Genomic 

position 
Nucleotide 

change 
Amino acid 

change 
rs 
ID 

9 De novo ATP6V1C1 Chr8:104076978 c.865G>A p.E289K . 
 

Table 17. New candidate gene identified by WES of the patient added to the ZLS cohort. The mode of inheritance, the 
genomic position and the variant position on the transcript and protein level are indicated. 
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Figure 18. Multiple protein sequence alignments near the ATP6V1C1 amino acid substitution from different species. 
Alignment of the regions flanking the detected missense variant in orthologous proteins, showing the evolutionary 
conservation of amino acid E289 in human ATP6V1C1 (NP_001686). Multiple alignment was gathered from 
http://www.ncbi.nlm.nih.gov/homologene/. Conserved residues have a red background, and non‐conserved residues 
have a gray background. Amino acid sequence alignments demonstrate a highly evolutionary conservation of the altered 
residue. 

 

This variant was predicted as “possibly damaging” by Polyphen, “damaging” by SIFT, and 

deleterious according to the CADD score (table 18). 

 
Case Gene Nucleotide 

Change 
Amino acid 

change 
Polyphen 
Prediction 

SIFT 
prediction 

CADD 
score 

9 ATP6V1C1 c.865G>A p.E289K Possibly 
damaging 

Damaging 36 

 
Table 18. Predicted effect of the newly identified variant in case 9 according to Polyphen, SIFT, and CADD. 
 

3.13 Validation of candidate variant 

Sanger sequencing confirmed the presence of the variant in the proband in DNA extracted 

from blood, hair bulb, and buccal cells (figure 19).  

The presence in the father of case 9 of some features fitting with ZLS syndrome suggested 

the presence of the pathogenic variant also in this subject, probably with a lower percentage of cells 

carrying the mutation.  

Electropherograms of the region encompassing ATP6V1C1 variant of the father disclosed 

the presence of the variant allele in a low proportion in DNA from different tissues (blood, hair 

bulb, buccal cells) (figure 19A). A manual inspection, using the Integrative Genomics Viewer 

(IGV) of reads aligning in this region of father WES, disclosed the presence of 6 reads with the 

variant allele versus 85 reads carrying the wild-type allele (figure 19B). The c.865G>A (p.E289K) 
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variant was not detected by variant calling algorithms used in the WES analysis pipeline probably 

due to the low abundance of the variant allele. When we applied a different pipeline (MuTect2, 

Cibulskis et al., 2013) from the GATK package, a somatic SNP and indel caller that takes into 

account the presence of mosaicism, the ATP6V1C1 variant allele was identified also in the father 

(figure 19B). 

 

 
 
Figure 19. (A) Electropherograms showing the mutation in ATP6V1C1 gene in the proband’s cells and, with variable 
proportion, also in the father. (B) Reads from father WES alignment with IGV disclosing the presence of low copy 
number reads harboring the variant allele. 
 

3.14 ATP6V1C1 gene 

ATP6V1C1 (ATPase H+ Transporting V1 Subunit C1), is located on the long arm of 

chromosome 8, and encodes a component of vacuolar ATPase (V-ATPase). ATP6V1C1 is one of 

two genes encoding the V1 domain C subunit proteins and is ubiquitously expressed. The subunit C 

is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific 

function in its catalytic activity. ATP6V1C1 is an essential component of the osteoclast proton 

pump and in F-actin ring formation in osteoclasts (Feng et al., 2009). In figure 20 the structure of 

the V-ATPase is represented and the subunit affected by the mutation is indicated. 

Structural analyses are ongoing to characterize the effect of the ATP6V1C1 mutation on the 

ATPase assembly/function. 
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Figure 20. Schematic view of the subunit structure of the V-ATPase. The catalytic V1 complex consists of the A, B, C, 
D, E, F, G and H subunits. The V0 domain is membrane embedded and is composed of a characteristic C-ring structure 
with which the a, d and e subunits are associated. The subunit affected by the p.E289K is indicated by a red arrow. 
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4.  Discussion 

Zimmermann-Laband Syndrome (ZLS), firstly described in 1928 by Zimmermann, is 

characterized by gingival fibromatosis, dysplastic or absent nails, hypoplasia of the distal 

phalanges, scoliosis, hepatosplenomegaly, hirsutism, and abnormalities of the cartilage of the nose 

and/or ears. To date, about 40 patients have been described with features fitting ZLS.  

ZLS belongs to a group of clinically overlapping and genetically heterogeneous syndromes, 

such as Temple-Baraitser syndrome (TMBTS), dominant deafness-onychodystrophy syndrome 

(DDOD), deafness, onychodystrophy, osteodystrophy, mental retardation, seizures syndrome 

(DOORS), and Cantu syndrome (CS). Intellectual disability, epilepsy, deafness, hypoplasia or 

aplasia of nails and/or terminal phalanges, and gingival enlargement vary among the different 

disorders as well as within each condition. 

With the aim of identifying ZLS causative gene/s, we selected three patients with the 

diagnosis of Zimmermann-Laband syndrome and performed a WES approach on the three patients 

and their parents in two cases. DNA variants were analyzed and prioritized based on segregation, 

sharing among patients, effect on protein structure/function and gene function. This analysis let us 

to identify two excellent candidate genes, KCNH1 and ATP6V1B2. An enlargement of the cohort 

was performed through the recruitment of further five patients in a collaborative effort with several 

international research groups. Patients were analyzed by WES or Sanger sequencing of the coding 

portion of KCNH1 and ATP6V1B2 genes confirming the presence of additional mutations.  

Overall, this analysis led to the identification of six mutations in KCNH1 gene in six 

patients, and one mutation in ATP6V1B2 gene in two patients (tables 14 and 15). All variants were 

single-nucleotide substitutions causing missense mutations, with a germline origin, and not 

annotated in any population database.  

 KCNH1 and ATP6V1B2 genes mutations were studied using in silico and functional 

approaches. 3D modeling of KCNH1 and ATP6V1B2 suggest a deleterious effect for the identified 

mutations, confirming the prediction of in silico prediction tools, as Polyphen, SIFT and CADD 

score. Electrophysiological studies of KCNH1 mutants show that all mutant channels activate to 

more negative potentials, showing a potential gain-of-function effect. 

A following enlargement of the cohort was performed with additional four patients that were 

analyzed through Sanger sequencing of the coding portion of KCNH1 and ATP6V1B2 genes, this 

screening resulted negative. Two patients were selected for WES leading to the identification of a 

potentially pathogenic mutation in one patient in the ATP6V1C1 gene, encoding an interactor of 

ATP6V1B2. 
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Common clinical features of patients mutated in KCNH1, ATP6V1B2 and ATP6V1C1 genes 

include craniofacial dysmorphism, gingival enlargement, mild to severe intellectual disability, and 

aplastic or hypoplastic nails and terminal phalanges, although with remarkable variability. Epilepsy 

was present in all six subjects with KCNH1 mutations and absent in the patients with ATP6V1B2 or 

ATP6V1C1 mutations. The face is coarser and the hypoplasia of nails and distal phalanges is more 

severe in patients with mutations in ATP6V1B2 and ATP6V1C1. Other clinical features, such as 

hearing loss and hypertrichosis, were variably present (table 15). 

 

4.1 KCNH1 

KCNH1 gene encodes a member of the potassium channel, voltage-gated, subfamily H 

protein (also called Kv10.1). KCNH1 is expressed in myoblast at the onset of fusion (Occhiodoro et 

al., 1998) and in adult brain tissue. KCNH1 protein is encoded by two different annotated 

transcripts (NM_002238, and NM_172362) which differ in the presence of 27 amino acids (aa 318–

344) between the transmembrane helices 3 and 4 and encoding the same domains: the amino-

terminal region, containing an eag (ether à go-go) domain, the carboxy-terminal region, containing 

a cyclic nucleotide binding homology domain (CNBHD), and 6 transmembrane helices (S1-S6). 

The S4 helix works as a voltage sensor domain, the S5 and S6 helices are connected by the P-loop 

and together constitute the pore. Both the N- and the C-terminal domains are cytoplasmic and are 

necessary for the gating of the channel (Haitin et al., 2013) (figure 21). 

 

 
 

Figure 21. Structure of the eag domain–CNBHD complex of mEAG1 (murine Kcnh1). Cartoon of a cross section of a 
KCNH channel. Transmembrane domains are in grey, the N-terminal eag domains are in green, the C-linkers are in 
orange and the CNBHD domains are in blue. The intrinsic ligand motifs are highlighted in yellow, and the post-
CNBHD in red (Haitin et al., 2013). 
 

The functional channel is a homo- or heterotetramer. During KCNH1 sequencing analysis 

we found an alternative isoform expressed in fibroblasts and confirmed also in fetal and adult 

human brain. This isoform lacks exon 6, encoding the first three transmembrane alpha-helices. A 
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recent study, demonstrated the presence of short splice variants of KCNH1 resulting from different 

exon-skipping events in human brain and cancer cell lines (Ramos Gomes et al., 2015). Those 

isoforms lacked the transmembrane domains of the channel and produced cytoplasmic proteins 

without channel function, that exert their functions inducing a reduction in the overall expression of 

full-length KCNH1 or affecting its glycosylation pattern. One of these isoforms triggered the 

activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle 

control (Ramos Gomes et al., 2015). These results highlight the relevance of non-canonical 

functions of the ion channel KCNH1, whose perturbation could underlie developmental processes. 

 Gene expression and biochemical studies are ongoing to better characterize this isoform in 

terms of expression, localization and function, both in patients and in wild-type cells. 

Overall, we found 6 de novo missense variants in KCNH1 in six patients c.1054C>G, 

p.L352V; c.1405G>A, p.G469R; c.1399A>G, p.I467V; c.[974C>A;1066G>C], p.[S325Y;V356L]; 

and c.1042G>A, p.G348R through exome sequencing and Sanger sequencing screening. Mutation 

c.1399A>G, p.I467V was found in two patients (cases 4 and 7) (table 14, figure 11). 

Most mutations (p.L352V, p.G469R, p.I467V, p. V356L, and p.G348R), involve the helices 

forming pore (S5 and S6), and S325Y maps into the voltage-sensor helix (S4) (figure 11), 

suggesting that the ion conductance perturbation could underlie the pathogenic mechanism. 

3D modeling studies were performed on 4 of the 6 variants in KCNH1 (p.L352V, p.V356L, 

p.I467V, p.G469R). Mutations affecting the residues L352, V356 and I467 impair the closed/open 

transition of the channel, while the change p.G469R affects the flow of the ions through the pore 

(figure 12).These results suggest that the molecular size and charge changes of the channel pore 

could affect the proper functioning of the gate. 

Patch-clamp experiments on CHO cells expressing wild-type or mutant KCNH1 channels 

demonstrated that p.G348R, p.L352V, p.I467V and p.[S325Y; V356L] substitutions have a gain-of-

function effect, while the G469R mutant failed to produce voltage-dependent outward currents 

suggesting that the G469 residue is essential for proper channel gating (figure 13). Experiments in 

Xenopus laevis oocytes documented a dominant action of the G469R mutant over the wild-type 

channel, with reduced K+ conductance of the heterotetrameric channels at depolarizing potentials 

but with pronounced conductance at negative potentials, similar to the other ZLS-causing KCNH1 

mutants. Together, these data show a gain-of-function effect for all disease-associated KCNH1 

mutants.  

In humans, KCNH channels contribute to neuronal signaling in the nervous system and are 

important regulators of cellular excitability. They have been associated with cancer (Pardo et al., 

1999), cardiac long QT syndrome type, epilepsy and schizophrenia (Haitin et al., 2013). KCNH1 
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can also be involved in adipogenic and osteogenic differentiation in bone marrow-derived 

mesenchymal stem cells (Zhang et al., 2014). Overexpression of the gene may confer a growth 

advantage to cancer cells and favor tumor cell proliferation (Ouadid-Ahidouch et al., 2016). 

 KCNH1 plays an active role in cell cycle progression in both cancer and non-transformed 

cells. Its transcription is directly regulated by the pRb/E2F1 pathway during G2/M, resulting in 

transient expression that contributes to progression through G2/M. In HeLa cells, KCNH1 depletion 

leads to delayed G2/M progression, indicating that channel expression at the end of the cell cycle 

facilitates G2/M completion (Urrego et al., 2016) 

As recently reported, KCNH1 is a regulator of ciliogenesis (Sánchez et al., 2016). The 

cilium is used as an antennae by the cells to sense the surrounding environment and can be found in 

cells that are not actively proliferating (Sánchez et al., 2016). Experimental evidences demonstrated 

that KCNH1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly.  

 This shed light on the role of KCNH1 in the modulation of ciliogenesis, and could 

potentially explain the influence of KCNH1 expression on the proliferation of normal cells and its 

tumorigenic effects. Interestingly, a mutant form of KCNH1 was studied, corresponding to mutation 

L352V found in our case 1 (Sanchez et al., 2016). The mutant form of the channel was transfected 

into wild-type mouse embryonic fibroblasts (MEFs) and its effect on ciliary resorption was tested, 

demonstrating a significant reduction of ciliated cells (Sanchez et al., 2016).  

As mutations in KCNH1 show hyperactive effects, this may disrupt cell proliferation and 

neuronal activity. It could be hypothesized that if KCNH1 is implicated in ciliary resorption, a 

developmental phenotype in the presence of channel hyperactivity could be related to impaired 

ciliogenesis.  

Interestingly, while mouse model lacking functional Kcnh1 channels appeared normal in 

their development and in brain morphology, although with mild hyperactivity (Ufartes et al., 2013), 

a recently knockdown model of Kcnh1 in zebrafish delays neural development and causes 

embryonic lethality, suggesting that Kcnh1 is involved in cell proliferation during early 

development and that it exerts basic functions beyond neural signaling (Stengel et al., 2012). 

Recently, de novo KCNH1 mutations have been reported as disease causing in individuals 

with Temple-Baraitser syndrome (TMBTS) (Simons et al., 2015; Mégarbané et al., 2016), a rare 

developmental disorder characterized by severe mental retardation and anomalies of the hands and 

feet with absence/hypoplasia of the nails. Most patients have seizures and dysmorphic facial 

features (Jacquinet et al., 2010). All nine reported TMBTS-affected individuals presented with 

absent or hypoplastic thumb and great toenails, and epileptic seizures with varying age of onset, but 

none of them was described to have gingival hyperplasia (Simons et al., 2015; Mégarbané et al., 
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Thus, there might be other factors involved, i.e. genetic modifiers, that prevent the 

prediction of some features, e.g. occurrence and age of onset of epileptic seizures, from the 

presence and the location of a pathogenic KCNH1 mutation. 

 

Mutation 
c.1399A>G 

p.I467V 

Reference 
Present work 

(Kortum et al., 2015) 
Simons et al., 

2015 
Total 

Case 4 7 3 5 6 5 
Diagnosis ZLS TMBTS  

Sex F F M F F 1M:4F 
ID + + + NR + 4/4 

Seizures + + + + + 5/5 
Hypotonia + - + + + 4/5 
Deafness - + - - - 1/5 
Coarse 
Face 

+ + + + + 5/5 

Gingival 
hyperplasia 

+ - - - - 1/5 

Hypoplastic 
Nails 

+ + + + + 5/5 

Hypoplastic 
phalanges 

+ + + + + 5/5 

Scoliosis + NR NR NR NR 1/1 
Hirsutism + - - - - 1/5 

 
Table 19. Clinical features of the patients carrying the same mutation in KCNH1 reported in literature. 
M = male, F = female, + = present, - = absent, ID = Intellectual disability, NR = not reported, ZLS = Zimmermann-
Laband syndrome, TMBTS = Temple-Baraitser syndrome. 

 

A comparison of clinical features of all KCNH1 mutated patients to date reported in 

literature, allowed us to disclose the presence of some features shared among patients, like severe 

intellectual disability, neonatal hypotonia, seizures of varying age of onset, and hypoplastic nails.  

Even though gingival hyperplasia has not been reported in TMBTS-affected individuals 

(Simons et al. 2015), is a frequent clinical feature in individuals with KCNH1 mutations. The limb 

phenotype is variable and may include the absence/hypoplasia of the thumb nails, hallux nails, and 

other finger-/toenails. In addition, the thumbs can be long and proximally implanted. Deafness and 

hirsutism are observed in only a small fraction of the cases. The main clinical features of the 

KCNH1 mutated patients are summarized in table 20. 
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Present 
Work, 

Kortum et al., 
2015 

Simons et al., 
2015 

Bramswig et al., 
2015 

Fukai et al., 
2016 

Mégarbané et al., 
2016 

Total 

N. of cases 6 6 4 4 1 21 
Diagnosis ZLS TMBTS ID SDDHS TMBTS  

Sex 2M:4F 2M:4F 4F 4M M 9M:12F 
ID 6/6 5/5 4/4 4/4 + 20/20 

Seizures 6/6 6/6 3/4 4/4 - 19/21 
Hypotonia 4/6 6/6 4/4 3/4 + 18/21 
Deafness 1/4 0/6 0/4 0/4 - 1/19 
Coarse 
Face 

6/6 6/6 4/4 3/4 + 20/21 

Gingival 
hyperplasia 

5/6 0/6 4/4 1/4 + 11/21 

Hypoplastic 
Nails 

5/6 6/6 4/4 3/4 + 19/21 

Hypoplastic 
phalanges 

4/5 5/6 0/4 0/4 - 9/20 

Scoliosis 5/6 NR NR 0/4 NR 5/10 
Hirsutism 3/6 0/6 0/4 0/4 - 3/21 

 
Table 20. A summary of the main ZLS features is presented and compared with clinical features of other KCNH1 
mutated patients. M=male, F=female, +=present, -=absent, ID=Intellectual disability, NR=not reported, 
ZLS=Zimmermann-Laband syndrome, TMBTS=Temple-Baraitser syndrome, SDDHS=Syndromic Developmental 
Delay, Hypotonia and Seizures. 

 

Therefore, we can conclude that there is not a clear genotype-phenotype correlation among 

KCNH1 mutations and clinical features and that the mutations in KCNH1 likely cause a phenotypic 

continuum of neurodevelopmental disorders covering both ZLS and TMBTS. 

More information of KCNH1 mutations and their clinical consequences are needed, in order 

to more clearly delineate the genotype-phenotype correlation, and to characterize the molecular 

mechanisms involved in the pathogenesis of this phenotypic spectrum. 

In one patient (case 5) we found two de novo mutations in KCNH1 on the same allele 

(c.[974C>A;1066G>C]; p.[S325Y;V356L]), 92 nucleotides apart (figure 9). This is a very unusual 

occurrence. Multiple mutations that exhibit nonrandom proximal spacing in higher eukaryotes are 

termed ‘‘closely spaced multiple mutations’’ (CSMMs) and are most compatible with a model in 

which they are generated simultaneously or quasi-simultaneously in the same cell cycle (Colgin et 

al., 2002; Hill et al., 2004). Examples of pathogenic CSMMs are known from a collection of human 

inherited disease-causing multiple mutations (Chen et al., 2009). Two single-base substitutions 

(C>G and T>C) separated by 25 bp, causing two different cis amino acid substitutions in the 

androgen receptor gene on the maternal X-chromosome have been reported in feminized, male 

monozygotic twins (Mongan et al., 2002). A patient with Multiple Endocrine Neoplasia, type IIA 
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(MEN2A) have been reported to have two cis missense substitutions in the RET gene resulting from 

single base substitutions (C>T and C>G) separated by 19 bp (Tessitore et al., 1999). An additional 

case with two single-base changes separated by nine nucleotides in the ELA2 gene, predicting two 

amino acid substitutions (p.V69L and p.V72L), is reported (Salipante et al., 2007). 

Multiple synchronous mutations have been postulated to arise via transient hypermutability, 

resulting from the deregulated expression of a replicative DNA polymerase or another protein 

involved in the maintenance of replication fidelity, the disruption of the balance of the nucleotide 

pool, or the recruitment of error-prone polymerases (Chen et al., 2009). The onset of CSMMs has 

been studied in mouse models or in human cell lines, but the actual mechanisms that cause them is 

not yet clear. 

One of the two changes, p.S325Y, is predicted as “pathogenic” by Polyphen, SIFT and 

CADD score, while the other, p.V356L, is predicted as “benign” by Polyphen and SIFT. Moreover, 

they map in residues that are both less conserved than the other KCNH1 mutated residues (figure 

10).  

 

4.2 ATP6V1B2 

ATP6V1B2 encodes one of two V1 domain B subunit isoforms of the V-ATPase proton 

pump and is the only B isoform highly expressed in osteoclasts. V-ATPase dependent organelle 

acidification is necessary for intracellular processes such as protein sorting, zymogen activation, 

receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is 

composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of 

three A, three B, and two G subunits, as well as a C, D, E, F, and H subunit. The V1 domain 

contains the ATP catalytic site. 

We found one de novo variant in ATP6V1B2 in two ZLS patients, c.1454G>C (p.R485P), 

through exome sequencing. 3D modeling studies predicted that the substitution of the R485 with a 

proline perturb intersubunit interactions within the V1 subcomplex, possibly preventing the 

formation of a functional V-ATPase. Clinical features of cases 2 and 8 include gingival 

enlargement, anonychia of the hands and feet, aplastic terminal phalanges of the fingers and toes, 

and hypertrichosis (table 21). 

Recently, a heterozygous truncating ATP6V1B2 mutation, c.1516C>T (p.R506*), has been 

reported in three patients with autosomanl dominant deafness and onychoystrophy syndrome 

(DDOD) (Yuan et al., 2014). DDOD patients mutated in ATP6V1B2 show hypoplasia of nails and 

terminal phalanges but no intellectual disability, coarse face, gingival hyperplasia, or hirsutism 

(figure 23 and table 21). Among all the ATP6V1B2 mutated patients, deafness is present in all the 
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three DDOD cases but only in one patient analyzed in the present work (table 21). The DDOD 

mutation inserts a premature stop codon that prevents the synthesis of the last six amino acids. Cell 

studies demonstrated that the truncated protein reduced the ATP hydrolysis mediated by the V-

ATPase and also the acidification of the intracellular organelles. In figure 24 the positions of the 

mutated residues with respect to the assembled V-ATPase are represented. 

Consistent with partial clinical overlap, the ZLS- and DDOD-causing mutations in 

ATP6V1B2 affect the same protein region, which participates in V1 subcomplex assembly. These 

mutations can both lead to a reduction of the number of functional V-ATPases. Functional studies 

are required to understand the consequences of these alterations on the proper assembly/function of 

the V-ATPase. 

 

 
 
Figure 23. (A-C, F-H) Hands and feet of three patients with DDOD, mutated in ATP6V1B2 (Yuan et al., 2014), 
(D,E,I,J) Hands and feet of cases 7 and 8 of the present work, mutated in ATP6V1B2 (Kortum et al., 2015). (A-C) 
Pictures of the hands of the DDOD patients showing the absence of the fifth finger and thumb nails indicated by black 
arrows, aplasia of the middle phalanx in the fifth fingers indicated by white arrows, hypoplasia of the middle three 
fingernails. (F-G) Pictures of the feet of the DDOD patients showing the absence of all toenails. (D,E,I,J) Hands and 
feet of cases 7 and 8 with ZLS showing nails and phalanges aplasia. (D,I) Case 7 shows shortened second to fourth 
fingers, except the third finger on the right hand, and toes. Case 8 shows aplastic terminal phalanges of the fifth finger 
on the right hand and all toes except the first. 
 

 

 

 

 

 

 

 

 

 



56 
 

Mutation 
c.1454G>C 

p.R485P 
c.1516C>T 

p.R506* 

Reference 
Present work 

(Kortum et al., 2015) 
Yuan et al., 

2014 
Case 2 8 1 2 3 

Diagnosis ZLS DDOD 
Sex F M F M F 
ID + + - - - 

Seizures - - - - - 
Hypotonia + + - - - 
Deafness - + + + + 
Coarse 

face 
+ + - - - 

Gingival 
hyperplasia 

+ + - - - 

Hypoplastic 
nails 

+ + + + + 

Hypoplastic 
phalanges 

+ + + + + 

Scoliosis - + NR NR NR 
Hirsutism + + - - - 

 
Table 21. A summary of the main clinical feature of ATP6V1B2 mutated patients. 
M = male, F = female, + = present, - = absent, NR = not reported, ZLS = Zimmermann-Laband syndrome, DDOD = 
Dominant deafness onychodystrophy syndrome. 

 

 

 
Figure 24. Schematic view of the subunit structure of the V-ATPase. The catalytic V1 complex consists of the A, B, C, 
D, E, F, G and H subunits. The V0 domain is membrane embedded and is composed of a characteristic C-ring structure 
with which the a, d and e subunits are associated. The blue dot indicate the R485 residue, the green dot represent the 
R506 residue.  

 

4.3 ATP6V1C1 

ATP6V1C1 encodes the subunit C, that constitutes the V1 subcomplex of the V-ATPase 

proton pump. The subunit C, together with the subunits E, G, and H, and the N-terminal domain of 
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subunit a, make up the peripheral stalks and serve to tether V1 to V0 subcomplexes (Cotter et al., 

2015). ATP6V1C1 has also a regulatory role in the V-ATPase assembly. It can trigger the 

formation of functional proton pumps in response to various stimuli, like increasing of glucose 

level, activation of PI3K, mTORC1 and EGF pathways (Cotter et al., 2015). 

ATP6V1C1 is expressed in activated osteoclasts when these cells operate bone reabsorption 

(Feng et al., 2009). ATP6V1C1 can also bind G-actin, increasing its polymerization rate, 

stabilization and crosslinking F-actin (Vitavska et al., 2003, Vitavaska et al., 2005). Another 

important function is its role in cellular proliferation, it is indeed overexpressed in several type of 

cancers like oral squamous carcinoma and breast cancer (Feng et al., 2014). 

By WES approach we found a de novo mutation in ATP6V1C1, c.865G>A (p.E289K) in one 

ZLS patient. This patient (case 9) shows remarkably overlapping features with ATP6V1B2 mutated 

patients analyzed in the present work. Those patients share a coarse face, intellectual disability, and 

hypoplastic nails and phalanges, although ATP6V1C1 mutated individual lacks gingival hyperplasia 

and hirsutism (table 22). 

ATP6V1B2 and ATP6V1C1 constitute the V1 subcomplex, ATP6V1B2-econded subunit 

constitutes the ATPase domain together with the A subunits, while the C subunit constitutes the 

stalk that link A-B subunits to the Vo subcomplex. On the basis of the phenotypic similarity among 

ATP6V1B2- and ATP6V1C1-mutated patients and the structural analysis of ATP6V1B2 mutant 

protein, it can be hypothesized that the p.E289K mutation of ATP6V1C1 could exert a similar 

effect, impairing the biogenesis of a functional V-ATPase. Structural and functional studies are 

ongoing to characterize the effect of the p.E289K mutation on the proper assembly/activity of the 

ATPase complex. 
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Gene ATP6V1B2 ATP6V1C1 

Mutation 
c.1454G>C 

p.R485P 
c.865G>A 
p.E289K 

Case 2 8 9 
Sex F M F 
ID + + + 

Seizures - - - 
Deafness - + + 
Coarse 

face 
+ + + 

Gingival 
hyperplasia 

+ + - 

Hypoplastic 
nails 

+ + + 

Hypoplastic 
phalanges 

+ + + 

Scoliosis - + NR 
Hirsutism + + - 

 
Table 22. A comparison of the main clinical features of patients ATP6V1B2 and ATP6V1C1 mutated respectively. 
M=male, F=female, +=present, -=absent, NR=not reported. 

 

The mosaicism for the ATP6V1C1 variant allele in the father’s proband fitted with a mild 

manifestation of some ZLS features also in this subject.  

Standard workflow analyses of WES data were not able to detect the presence of the 

pathogenic allele in the father’s blood cells, as the algorithm used to disclose the presence of DNA 

mutations discards reads in low percentage, as they potentially represent sequencing and/or 

alignment errors. When a different pipeline (MuTect2, Cibulskis et al., 2013), specifically designed 

to disclose the presence of low percentage variant allele, was used, we were able to identify the 

mutation also in the mildly affected father (figures 16 and 19). This suggests that using 

bioinformatic tools that usually identify somatic mutations in tumoral samples, can be useful also 

for Mendelian diseases. 

These results confirmed the role of mosaicism in Mendelian diseases, causing a milder 

phenotype than when present in the germline. Recent technological advances in genomics have 

enhanced the ability to detect and characterize different types of mosaicism with increasing 

sensitivity, demonstrating the widespread nature of mosaicism in a wide range of disorders. 

 Although the accurate differentiation between sequencing error and a mosaic mutation is a 

challenging task, mosaicism levels as low as 2% could be distinguished from sequencing errors 

using dedicated analysis tools. Mosaic disorders pose a new challenge for genotype-phenotype 

correlations and prediction of disease manifestations and severity, with several clinical implications, 

in terms of recurrence risk and prognosis. 
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4.4 ATP6V1B2 and ATP6V1C1: the role of V-ATPase 

The eukaryotic V-type ATPase (V-ATPase) is a multi-subunit membrane protein complex 

that has an important role in both endocytosis and intracellular transport. In receptor-mediated 

endocytosis, a low pH within early endosomes triggers the dissociation of internalized ligand–

receptor complexes. This allows for recycling of receptors to the plasma membrane, V-ATPases 

located in the apical membrane of type-A renal intercalated cells function in proton secretion into 

the renal fluid and hence in acid–base balance in the kidney, in macrophages and neutrophils.

 Plasma membrane V-ATPases also have an important role in bone resorption. Osteoclasts 

attach to the surface of bone to create a sealed extracellular compartment, acidification of this space 

serves to both dissolve the bone matrix and to increase the activity of acid hydrolases that are 

secreted by the osteoclast (Nishi and Forgac, 2002). 

Several pathways have been identified (e.g. mTOR pathway, WNT signal transduction 

pathway, Notch pathway) involving V-ATPase functions (Sun-Wada and Wada 2015), highlighting 

its crucial role in cell pathways whose dysregulation could underlie ZLS pathogenesis. To date, 

there are no clear links between V-ATPase cell functions and pathogenic mechanisms underlying 

ZLS phenotype. The identification of a further mutated subunit in a ZLS patient and the clinical 

overlap of ATP6V1B2 and ATP6V1C1 mutated patients suggests that V-ATPase have a significant 

role in developmental processes, yet to be identified, whose dysregulation could determine several 

developmental defects.  

 

4.5 Mutations in ATP6V1B2, ATP6V1C1, and KCNH1: the question of 

splitting or lumping 

We identified KCNH1, ATP6V1B2, and ATP6V1C1 as disease-associated genes for ZLS. So 

far, only hypothetical functional links exist between KCNH1, and ATP6V1B2 and ATP6V1C1. Both 

the V-ATPase and KCNH1 have been shown to regulate neurotransmitter release and are important 

for synaptic transmission (Mortensen et al., 2014; Poëa-Guyon et al., 2013). The V-ATPase, as 

already stated, serves in the acidification of intracellular organelles, and effective proton pumping 

requires the movement of a counterion. Initial data indicate that K+ could act as the counterion 

(Steinberg et al., 2010). Rapid internalization of plasma membrane–localized KCNH1 and its 

sorting to lysosomes provide a first clue of the function of KCNH1 in lysosomal conductive 

pathways. Alternatively, altered acidification of intracellular compartments may lead to 

disturbances in cellular transport processes in general and to perturbed regulation of KCNH1 

trafficking in particular (Kohl et al., 2011). 
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A comparison of phenotypes associated with mutations in KCNH1 and ATPase subunits 

suggests that ATPase subunits mutations cause a more pronounced phenotype characterized mostly 

by hypertrichosis, limb anomalies (including aplastic terminal phalanges and anonychia of hands 

and feet), and a coarser facial phenotype. These results suggest that there is a clinical overlap but 

probably they represent distinct phenotypes.  

The original and following published patients with a clinical diagnosis of ZLS also show 

coarse facial features, a large nose which can be poorly formed due to soft cartilage and hypoplastic 

terminal phalanges (Bazopoulou-Kyrkanidou et al. 1990; Laband et al. 1964). Taken together, all 

these results led us to hypothesize that the ZLS patients with KCNH1 mutations belong to the 

TMBTS spectrum, while the individuals with ATP6V1B2 and ATP6V1C1 mutations represent the 

original and more severe ZLS spectrum. This led to a debate, about the “splitting” or “lumping” 

approach to study these disorders (Bramswig et al., 2015), that is still ongoing. 

However, due to the limited number of individuals described, some with only scarce clinical 

data and no clinical photographs, it is difficult to draw an accurate conclusion. Additional patients 

with a TMBTS/ZLS phenotype are needed to further investigate this phenotypic spectrum and give 

some hints to come to a final conclusion about the above-mentioned hypotheses. It would be 

insightful also to perform a detailed characterization of the molecular bases of these disorders, in 

order to understand the mechanisms by which these genes cause the pathogenesis of these 

syndromes. 

Moreover, the presence of several ZLS patients (Kortum et al., 2015 and the present work) 

mutation negative for KCNH1, ATP6V1B2, and ATP6V1C1 suggests further genetic heterogeneity. 

To this aim, we are currently recruiting patients with ZLS and ZLS-like phenotype. Patients 

will be screened by Sanger sequencing of the coding portions of KCNH1, ATP6V1B2, ATP6V1C1 

genes. Mutation positive patients will be analyzed in order to provide a more accurate picture of the 

molecular spectrum of mutations and their associated clinical spectrum. Patients that will be found 

mutation negative will be considered for WES/WGS-based approaches directed to identify the 

missing disease genes. 

Functional studies are ongoing in order to better characterize the altered function of the 

mutated genes and the perturbed pathways that cause the pathogenic mechanism. 
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5. Conclusions 

Zimmermann-Laband syndrome is a rare developmental disorder characterized by facial 

dysmorphism, nail aplasia or hypoplasia, hypertrichosis, and intellectual disability with or without 

epilepsy. In this work (Kortum et al., 2015) we identified for the first time the causative genes that 

highlight the role of potassium channels (KCNH1) and the vacuolar ATPase (ATP6V1B2 and 

ATP6V1C1) in the pathogenesis of this disorder. 

The identification of two genes (KCNH1 and ATP6V1B2) involved also in clinically 

overlapping phenotypes (Temple-Baraitser syndrome, intellectual disability, syndromic 

developmental delay, hypotonia and seizures and dominant deafness and onychodystrophy 

syndrome), suggest that they cause a phenotypic spectrum. These observations allowed to conclude 

that the characterization of the molecular bases of these overlapping syndromes could represents a 

powerful tool for their classification. 

Genetic evidence points to a genetically heterogeneity for ZLS, indicating that additional 

unknown genes are involved. An enlargement of the cohort of patients would provide additional 

data to perform genotype-phenotype correlations and further characterize the genetic heterogeneity 

of this syndrome. 

Our understanding of the molecular events underlying this condition will provide new tools 

for diagnosis of this rare disorder, with direct impact on diagnosis, prognosis, counseling, and 

patient management. 
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